
Domain Independent
Ask Approximation in CCP?

Enea Zaffanella

Dipartimento di Informatica
Università di Pisa

Corso Italia 40, 56125 Pisa, Italy
zaffanel@di.unipi.it

Abstract. The main difficulty in the formalization of a static analysis
framework for CC programs is probably related to the correct approxima-
tion of the entailment relation between constraints. This approximation
is needed for the abstract evaluation of the ask guards and directly in-
fluences the overall precision of the analysis. In this paper we provide
a solution to this problem by stating reasonable correctness conditions
relating the abstract and the concrete domains of computation. The so-
lution is domain independent in the sense that it can be applied to the
class of downward closed observables. Properties falling in this class have
already been studied in the context of the analysis of sequential (con-
straint) logic programs. As an example, we consider an abstract domain
designed for the analysis of freeness in CLP programs and we show how
it can be usefully applied in the CC context to discover undesired data
dependencies between concurrent processes.

1 Introduction

Abstract interpretation is intended to formalize the idea of approximating pro-
gram properties by evaluating them on suitable non-standard domains. The stan-
dard domain of values is replaced by a domain of descriptions of values and the
basic operators are provided with a corresponding non-standard interpretation.
In the classical framework of abstract interpretation [7], the relation between
abstract and concrete semantic objects is provided by a pair of adjoint functions
referred to as abstraction α and concretization γ. The idea is to describe data-
flow information about a program P by evaluating the program by means of an
abstract interpreter I. The abstract interpretation I(P) is correct if any possible
concrete computation is described by γ(I(P)).

Concurrent Constraint (CC) programming [26] arises as a generalization of
both concurrent logic programming and constraint logic programming (CLP). In
the CC framework processes are executed concurrently in a shared store, which
is a constraint representing the global state of the computation. Communication
? This work has been supported by the “PARFORCE” (Parallel Formal Computing

Environment) BRA-Esprit II Project n. 6707.

is achieved by ask and tell basic actions. A process telling a constraint simply
adds it to the current store, in a completely asynchronous way. Synchronization
is achieved through blocking asks. Namely the process is suspended when the
store does not entail the ask constraint and it remains suspended until the store
entails it. While being elegant from a theoretical point of view, this synchro-
nization mechanism turns out to be very difficult to model in the context of
static analysis. The reason for such a problem lies in the anti–monotonic nature
of the ask operator wrt the asked constraint: if we replace this constraint with
a weaker one we obtain stronger observables. As a consequence, the approxi-
mation theory developed to correctly characterize the upward closed properties
(i.e. properties closed wrt entailment) becomes useless when we are looking for
a domain independent solution to the ask approximation problem [28].

In this paper we thus consider the downward closed properties and we specify
suitable domain independent correctness conditions that allow to overcome the
problem of a safe abstraction of ask constraints. In particular we develop an
approximation theory that correctly detects the definite suspension of an ask
guard. This information can be used in many ways, e.g. for the debugging of CC
programs as well as to identify processes that are definitely serialized (so that
we can avoid their harmful parallel execution). Moreover, the same information
can improve the precision of the static analysis framework, as it allows to cut
the branches of code that will not be considered in the concrete computation.

This (partial) classification of CC program’s observables is not new. See [19]
for an interesting discussion about safety and liveness properties in CCP, being
downward closed and upward closed respectively. As a matter of fact, in the
literature there already exist abstract domains developed for the static analysis
of sequential (constraint) logic languages dealing with downward closed observ-
ables, e.g. freeness in the Herbrand constraint system [23, 6, 3] as well as in
arithmetic constraint systems [13, 20]. It is our opinion that these abstract do-
mains can be usefully applied to the CC context and provide meaningful ask
approximations. We indeed show an example where the abstract domain for-
malized in [13] is applied to detect an undesired data dependency between two
concurrent processes.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of lattice
theory [2] and abstract interpretation [7, 9].

A set P equipped with a partial order ≤ is said to be partially ordered. Given
a partially ordered set 〈P,≤〉 and X ⊆ P , the set ↑X = {y ∈ P | ∃x ∈ X .x ≤ y }
is the upward closure of X. In particular X is an upward closed set iff X = ↑X.
The downward closure ↓X and downward closed sets are defined dually.

We write f : A→ B to mean that f is a total function of A into B. Functions
from a set to the same set are usually called operators. The identity operator λx.x
is denoted by id. Given the partially ordered sets 〈A,≤A〉 and 〈B,≤B〉, a function
f : A → B is monotonic if for all x, x′ ∈ A. x ≤A x′ implies f(x) ≤B f(x′).

f is continuous iff for each non-empty chain X ⊆ A: f(tAX) = tBf(X). A
function f is additive iff the previous conditions are satisfied for each non-empty
set X ⊆ A (f is also called complete join-morphism). A retraction % on a partially
ordered set 〈L,≤〉 is a monotonic operator such that for all x ∈ L. f(f(x)) =
f(x) (idempotent). An upper closure operator (uco) on L is a retraction ρ such
that ∀x ∈ L. x ≤ ρ(x) (extensive); a lower closure operator (lco) on L is a
retraction δ such that ∀x ∈ L. δ(x) ≤ x (reductive). More on closure operators
can be found in [8].

Let 〈L,≤,⊥,>,∨,∧ 〉 and 〈L′,≤′,⊥′,>′,∨′,∧′ 〉 be complete lattices. An
upper Galois connection between L and L′ is a pair of functions (α, γ) such that

1. α : L→ L′ and γ : L′ → L
2. ∀x ∈ L .∀y ∈ L′ . α(x) ≤′ y ⇔ x ≤ γ(y).

An upper Galois insertion between L and L′ is an upper Galois connection
such that α is surjective (equivalently, γ is one-to-one). Both α (the abstraction
function) and γ (the concretization function) are monotonic. α is a complete
join-morphism and γ is a complete meet-morphism and each one determines the
other; i.e. α(x) = ∧′ {y ∈ L′ |x ≤ γ(y)} and γ(y) = ∨{x ∈ L |α(x) ≤′ y }.

3 The language

CC is not a language, it is a class of languages parametric wrt the constraint
system, a semantic domain formalizing the gathering and the management of
partial information. Starting from Scott’s partial information systems [27], de-
scribing the basic notion of entailment in a constructive fashion, the domains of
[26] enclose typical cylindric algebras’ operators [17].

Definition 1 (partial information system).
A partial information system is a quadruple 〈D,∆,Con,` 〉 where D is a denu-
merable set of elementary assertions (tokens), ∆ ∈ D is a distinguished assertion
(the least informative token), Con is a family of finite subsets of D (the consis-
tent subsets of tokens) and `⊆ Con × Con is a (compact) entailment relation
satisfying (for u, v, w ∈ Con, P ∈ D):

∅ ` {∆}
u ` {P} if P ∈ u
u ` w if u ` v and v ` w

Entailment closed sets of tokens are called constraints and provide representa-
tives for the equivalence classes induced by the entailment relation; in particular,
true denotes the set of the trivial tokens. The simple constraint system gener-
ated by the partial information system is the set of all the constraints together
with the partial order induced on them by the reverse of the entailment rela-
tion (which we will denote a). We write ⊗ to denote the constraint composition
operator (the lub) which is obtained by taking the entailment closure of the set
theoretical union. We refer to [27] and [26] for a more detailed presentation.

Progr ::= Dec. Agent

Dec ::= ε
| p(x):-Agent. Dec

Agent ::= Stop

| tell(c)
| ∃ x inAgent
| Agent ‖ Agent

|
n∑
i=1

ask(ci)->Agenti

| p(y)

Table 1. The syntax

Definition 2 (constraint system).
A (cylindric) constraint system C> = 〈C ∪ {false},a, true, false,⊗,u, V,∃x, dxy 〉
is an algebraic structure where

– 〈C,a, true,⊗,u 〉 is a simple constraint system
– false is the top element
– V is a denumerable set of variables
– ∀x, y ∈ V , ∀c, d ∈ C, the cylindric operator ∃x satisfies

1. ∃xfalse = false
2. ∃xc a c
3. c a d implies ∃xc a ∃xd
4. ∃x(c⊗ ∃xd) = ∃xc⊗ ∃xd
5. ∃x(∃yc) = ∃y(∃xc)

– ∀x, y, z ∈ V , ∀c ∈ C, the diagonal element dxy satisfies
1. dxx = true

2. z 6≡ x, y implies dxy = ∃z(dxz ⊗ dzy)
3. x 6≡ y implies c a dxy ⊗ ∃x(c⊗ dxy)

Note that we are distinguishing between the consistent constraints C and the
top element false representing inconsistency. In the following we will write C
to denote the subalgebra of consistent constraints, namely the set C together
with the constraint system’s operators restricted to work on C. We will denote
operators and their restrictions in the same way and we will often refer to C as
a “constraint system”.

Tables 1 and 2 introduce the syntax and the operational semantics of CC lan-
guages. For notational convenience, we consider processes having one variable
only in the head. We also assume that for all the procedure names occurring in
the program text there is a corresponding definition. The operational model is

R1 〈 tell(c), d 〉−→〈 Stop, d⊗ c 〉

R2
〈A, c⊗ ∃xd 〉−→〈A′, c′ 〉

〈 ∃(x, c) inA, d 〉−→〈∃(x, c′) inA′, d⊗ ∃xc′ 〉

R3
〈A, c 〉−→〈A′, d 〉

〈A ‖ B, c 〉−→〈A′ ‖ B, d 〉
〈B ‖ A, c 〉−→〈B ‖ A′, d 〉

R4
j ∈ {1, . . . , n} ∧ d ` cj

〈
n∑
i=1

ask(ci)->Ai, d 〉−→〈Aj , d 〉

R5
p(x):-A ∈ P

〈 p(y), d 〉−→〈∆y
xA, d 〉

Table 2. The transition system T

described by a transition system T = (Conf,−→). Elements of Conf (configura-
tions) consist of an agent and a constraint, representing the residual computation
and the global store respectively. −→ is the (minimal) transition relation satis-
fying axioms R1-R5.

The execution of an elementary tell action simply adds the constraint c to
the current store d (no consistency check). Axiom R2 describes the hiding op-
erator. The syntax is extended to deal with a local store c holding informa-
tion about the hidden variable x. Hence the information about x produced
by the external environment does not affect the process behaviour and con-
versely the external environment cannot access the local store. Initially the
local store is empty, i.e. ∃ x inA ≡ ∃(x, true) inA. Parallelism is modelled as
interleaving of basic actions. In a guarded choice operator, a branch Ai is en-
abled in the current store d iff the corresponding guard constraint ask(ci) is
entailed by the store, i.e. d ` ci. The guarded choice operator indeterministi-
cally selects one enabled branch Ai and behaves like it. If there is no enabled
branch then it suspends, waiting for other processes to add the desired infor-
mation to the store. Finally, when executing a procedure call, rule R5 mod-
els parameter passing without variable renaming, where p(x):-A ∈ P and
∆

y
xA = ∃µ in (tell(dµy) ‖ ∃ x in (tell(dxµ) ‖ A))2.

Definition 3 (c-computations semantics).
A c-computation for program D.A is a sequence s = 〈A0, c0 〉 . . . 〈Ai, ci 〉 . . .
of configurations such that A0 = A and c0 = c and for all 0 < i < |s|

2 Here µ is a variable not occurring in the program [26].

〈Ai−1, ci−1 〉−→〈Ai, ci 〉3. The c-computations semantics of a program is the
set of all its c-computations.

Let /−→ denote the absence of admissible transitions. Computations reaching
configuration 〈An, cn 〉 such that 〈An, cn 〉 /−→ are called finite computations. If
the residual agent An contains some choice operators then the corresponding
computation is suspended, otherwise it is a successful computation and in this
case we denote An by ε.

Definition 4 (c.a.c. semantics).
The c.a.c. (computed answer constraints) semantics for program P = D.A in
the store c is

O[[D.A]]c =
{
d ∈ C

∣∣∣ 〈A , c 〉 ∗−→〈B , d 〉 /−→}
⋃ {

d ∈ C

∣∣∣∣∣ A0 = A, c0 = c, d = ⊗
i<ω

ci,

〈A0 , c0 〉−→ . . .−→〈Ai , ci 〉−→ . . .

}

Note that this semantics collects the limit constraints of infinite fair compu-
tations as well as the answer constraints associated to finite computations, re-
gardless of whether the latter are successful or suspended. In any case we are
considering consistent constraints only, i.e. we disregard all computations deliv-
ering false.

4 Program properties and approximations

As we have seen, the c.a.c. semantics of a CC program associates each initial store
c to the set of all the consistent constraints that we obtain by executing P = D.A
at c. In a similar way we define a semantic property φ as a subset of C, namely
the set of consistent constraints that satisfy the property. Therefore a program
satisfies a semantic property φ at c iff the observables of the program are a subset
of the property, i.e. O[[P]]c ⊆ φ. Following this general view4, the static analysis
of a CC program can be formalized as a finite construction of an approximation (a
superset) of the program denotation. If the approximation satisfies the semantic
property, then we can correctly say that our program satisfies the property too.
Abstract interpretation [9] formalizes the approximation construction process by
mapping concrete semantic objects and operators into corresponding abstract
semantic objects and operators.

Let us define a program property to be ordering closed iff it is downward
closed or upward closed wrt entailment. As an example, consider the Herbrand
constraint system CH . If the constraint c ∈ CH binds variable x to a ground
term, then all the constraints d ∈ CH such that d ` c will bind x to a ground
term; therefore groundness is an upward closed property. On the other hand,
3 As usual, if |s| = ω we also require that s is fair wrt the parallel operator.
4 The same reasoning can be lifted in order to consider the c-computations semantics.

freeness is a downward closed property. A variable x is free in c ∈ CH iff there
does not exist a term functor f/n such that c ` (∃y1 . . .∃yn x = f(y1, . . . , yn)).
Thus, if x is free in c then it will be free in all the constraints d ∈ CH such
that c ` d. However, there obviously exist properties falling in none of these two
classes, e.g. independence. Let us say that variables x and y share in c ∈ CH iff c
binds x and y to the terms tx and ty such that var(tx) ∩ var(ty) 6= ∅. Variables
x and y are independent in c if they do not share in c. Now, if x and y share in
c, we can choose constraints d1, d2 ∈ CH such that d1 ` c ` d2 and x and y are
independent in both d1 and d2.

Ordering closed properties are very common in the static analysis of logic
languages and furthermore they are easier to verify, because correctness of the
abstract interpretation can be based on a semantics returning ordering closed
observables. In [28] entailment closed5 properties are considered. The main result
is that it is impossible to develop a meaningful generalized semantics for CC
languages in the style of [16], namely the only way to correctly abstract ask
constraints in a domain independent fashion is a trivial approximation.

In this work we turn our interest upon downward closed properties and we
show that a (carefully chosen but natural) notion of correctness of the abstract
domain wrt the concrete one allows to automatically derive a correct approx-
imation of all the asks occurring in the program. Dealing with such a class of
properties, the collecting semantics can be defined naturally as the downward clo-
sure of the operational semantics, as there is no benefit in considering a stronger
one [28].

Remark. If φ is downward closed then O[[P]]c ⊆ φ ⇔ ↓(O[[P]]c) ⊆ φ.

As we are observing infinite computations also, we have to be careful when defin-
ing the downward closed properties that we are interested in. In particular we
have to remember that usually the correctness of our abstract semantic con-
struction is based on the Scott’s induction principle; this principle is only valid
for admissible properties.

Definition 5. A property φ ⊆ C is admissible iff φ is closed under directed lub’s.

This definition means that whenever an admissible property is satisfied by all the
finite approximations of the semantics, then the semantics will satisfy the prop-
erty too. As an example of a downward closed property that is not admissible,
consider the following definition of nongroundness: a variable x is nonground in
c ∈ CH iff c binds x to a term t such that var(t) 6= ∅. Given the infinite chain
of constraints ci ≡ (∃y x = f i(y)) ∈ CH , for every i < ω we have that x is
nonground in ci. However, considering the limit constraint c ≡ ⊗

i<ω
ci = (x = fω)

one observes that x is not nonground in c. In order to grant the correctness of
5 Due to a dual definition of the ordering on the constraint system, in [28] entailment

closed properties are the downward closed ones. The choice of turning the domain
upside–down was influenced by the standard theory of semantic approximation by
means of upper Galois insertions [9].

this analysis, we have to redefine the property, e.g. by stating that if c binds x
to an infinite term then x is nonground in c.

Hence, in this work we are interested in downward closed and admissible
program properties. The Hoare’s powerdomain construction [24, 27] over the
constraint system characterizes this kind of observables.

Definition 6. The Hoare’s powerdomain of the constraint system C is

H(C) = 〈 P↓(C),⊆, {true}, C,],∩ 〉

where P↓(C) is the set of all the nonempty, downward closed and admissible
subsets of C;] is the closure under directed C-lub’s of the set theoretical union;
:{·}: : C → P↓(C) defined as :{c}: = ↓{c} is the singleton embedding function.

The alert reader would observe that this collecting semantics models nonempty
observables only. From a semantic construction point of view, this is not com-
pletely satisfactory as we cannot describe the behaviour of a program having
inconsistent computations only. However, the alternative choice of considering
failed computations would imply some negative consequences. Firstly, it would
complicate the formalization of the correctness conditions, requiring a special
treatment for inconsistency. Moreover it would degrade the precision of our static
analysis, adding very little to the understanding of the program. To see this, ob-
serve that when considering downward closed observables a failed computation
has to be interpreted as “the program may fail”, meaning that anything can
happen. Also consider that there are CC languages explicitly designed to stati-
cally avoid the possibility of a failing computation (see [25] for a discussion of
this topic in the distributed programming context).
From now on, ⊗̃ and ∃̃x will denote the additive extensions of ⊗ and ∃x over
H(C). Thus, for all S, T ∈ P↓(C), we have

S ⊗̃T =
⊎{

:{c⊗ d}:
∣∣ c ∈ S, d ∈ T, c⊗ d ∈ C }

∃̃x S =
⊎{

:{∃xc}:
∣∣ c ∈ S }

Note that the merge over all paths operator [9] is provided by] (the lub of
H(C)). Also note that in general the (lifted) constraint composition operator ⊗̃
is not idempotent, while being extensive.

5 Correctness

In this section we formalize the notion of correctness of an abstract domain wrt
a concrete constraint system when downward closed properties are observed.

Definition 7. An abstract domain A = 〈L,v],⊥],>],t],u],⊗], V,∃]x, d]xy 〉 is
a complete lattice L = 〈L,v],⊥],>],t],u] 〉 together with a binary operator
⊗], a family of unary operators ∃]x for x ∈ V and a family of distinguished
elements d]xy ∈ L for x, y ∈ V .

As outlined in the previous section, we have to grant the existence of an upper
Galois insertion relating the Hoare’s powerdomain of the concrete constraint sys-
tem and the abstract domain of descriptions, together with suitable correctness
conditions regarding the domain’s operators.

Definition 8. An abstract domain A = 〈L,v],⊥],>],t],u],⊗], V,∃]x, d]xy 〉 is
down–correct wrt the constraint system C = 〈C,a, true,⊗,u, V,∃x, dxy 〉 using α
iff there exists an upper Galois insertion (α, γ) relating H(C) and L and ∀S, T ∈
P↓(C), ∀x, y ∈ V

α(S ⊗̃T) v] α(S)⊗] α(T)

α(∃̃xS) v] ∃]xα(S)
α(:{dxy}:) v] d]xy

By assuming that the abstract domain A is down–correct wrt the constraint
system C using α, we are able to prove the correctness of any abstract semantic
construction based on the abstract interpretation theory. This means that the
proof is valid for any abstract semantics that systematically mimics the basic
concrete semantic operators (], ⊗, ∃x, dxy) and the relation a by using the
corresponding abstract operators (t], ⊗], ∃]x, d]xy) and the relation v]. For the
purposes of the present work it is sufficient to consider the operational semantics.

Definition 9. Given the concrete agent (resp. program, configuration) A, the
corresponding abstract agent (resp. program, configuration) α(A) is obtained by
replacing all the concrete constraints c ∈ C occurring in A by the corresponding
abstractions α(:{c}:) ∈ L. Abstract agents (resp. programs, configurations) are
partially ordered by writing A]v]B] iff B] is obtained from A] by replacing each
abstract constraint c] by another abstract constraint d] such that c]v]d].

The following lemma shows that the abstract program correctly mimics each
transition of the concrete one. This also means that if the abstract program
suspends, then the concrete program suspends too.

Lemma 10 (correctness).

If

 〈A, c 〉−→〈B, d 〉
and

α(〈A, c 〉)v] 〈A], c] 〉
then

 〈A
], c] 〉−→〈B], d] 〉

and
α(〈B, d 〉)v] 〈B], d] 〉

The following proposition is proved by induction on the number of transitions.

Proposition 11 (c-computations correctness).
For every concrete c-computation s = {〈Ai, ci 〉}i<|s| of P there exists a corre-
sponding abstract α(:{c}:)-computation s] = {〈A]i , c

]
i 〉}i<|s]| of α(P) such that

|s| = |s]| and for all 0 ≤ i < |s| we have α(〈Ai, ci 〉)v] 〈A]i , c
]
i 〉.

Corollary 12 (c.a.c. correctness).
α
(
↓
(
O[[D.A]]c

))
v]
⊔](O[[α(D.A)]]α(:{c}:)

)

Note that in general the converse of Lemma 10 does not hold; in particular the
concrete program may suspend while the abstract one has a transition. As a con-
sequence, a finite concrete computation can be mapped into a diverging abstract
computation, i.e. this approximation of the semantics does not preserve the ter-
mination’s modes. Nonetheless, Proposition 11 ensures that every finite concrete
computation is correctly approximated by a partial abstract computation of the
same finite length.

Definition 7 and 8 do not require that the abstract domain is a constraint
system and neither that it can be obtained as the Hoare’s powerdomain of a
constraint system. In the latter case we are in an ideal situation where a simpler
notion of correctness can be used instead.

Definition 13.
An abstract constraint system A> = 〈L,a],⊥],>],⊗],u], V,∃]x, d]xy 〉 is correct
wrt the constraint system C = 〈C,a, true,⊗,u, V,∃x, dxy 〉, using a surjective
and monotonic function α : C → L, iff for each c, d ∈ C (s.t. c⊗d ∈ C), x, y ∈ V

α(c⊗ d) a] α(c)⊗]α(d)
α(∃xc) a] ∃]xα(c)
α(dxy) = d]xy

Let A> be an abstract constraint system which is correct wrt the constraint
system C using α. Observe that ⊗] is the lub over A>.

Proposition 14.
1. H(A>) is down–correct wrt H(C) using α̃ (the additive extension of α)
2. α is a ⊗–morphism between C and L
3. α̃ is a complete ⊗̃–morphism between P↓(C) and P↓(L)

Defining abstract domains based on correct abstract constraint systems is a very
difficult task. The previous proposition gives an explanation to this assertion:
these domains have to satisfy properties that usually are too strong.

6 Examples

As a first example, we present the (somehow trivial) abstract constraint system
of untouched variables6 V = 〈 P(V) , ⊆ , ∅ , V , ⊗] , ∩ , V , ∃]x , d]xy 〉, where

S⊗]T = S ∪ T
∃]xS = S \{x} d]xy =

{
{x, y} if x 6≡ y
∅ otherwise

Let us assume that C is a concrete constraint system having variables in V
and satisfying the following axiom [12]: ∀c, d ∈ C . ∃xc ` d ⇒ ∃xd = d. Note
that even if this axiom is not a consequence of Definition 2, it is true in almost
all the “real” constraint systems.
6 To our knowledge, this domain has been firstly introduced in [15].

Proposition 15. Let α : C → P(V) being defined as α(c) = {x ∈ V | ∃xc 6= c}.
The abstract constraint system V is correct wrt C by using α.

Therefore, we are in the ideal situation of Definition 13 and we can define our
abstract domain as the Hoare’s powerdomain of V. Having stated correctness,
we can approximate every concrete ask evaluation (i.e. entailment check) by
the corresponding abstract ask evaluation. Whenever the abstract computation
suspends, we definitely know that every concrete constraint described by the
abstract store contains no information about one (or more) of the variables
touched by the ask. As a consequence all the associated concrete computations
will suspend too and we are safe.

Remark. This abstract domain is very weak: every time we perform an abstract
procedure call we lose all the information about the actual parameter. This is
due to the interaction between the abstract cylindric operator and the abstract
diagonal element, namely when performing the parameter passing we compute
∃]xd]xy = {y}. As a consequence the usefulness of this domain is restricted to local
(i.e. intra-procedural) analyses. However the solution of such a problem is well
known: we have to consider a richer abstract domain (e.g. one of the domains
for freeness analysis given in the literature), where also some information about
variable sharing is taken into account.

6.1 Abstracting the constraint system RLinEq
Even if previous example is not very involved, the same approach is valid for any
admissible downward closed property of any constraint system. Some examples
of this kind of abstract domains can be found in the literature.

[13] describes an abstract domain for the static analysis of CLP programs
that is useful for the detection of definitely free variables in the presence of both
Herbrand constraints as well as systems of linear equations. Let us consider the
latter case. Given a linear equation system

E =

 a11X1 + a12X2 + . . .+ a1nXn = b1
· · · · · · · · · · · · · · ·

am1X1 + am2X2 + . . .+ amnXn = bm

where X1, . . . , Xn are variables and aij and bj are numbers, variable Xi is def-
initely free if there does not exist a linear combination of the equations in E
having the form Xi = b. Denoting lc(E) the infinite set of linear combinations
of equations in E, [13] defines the following abstraction function.

α(E) =
{
{X1, . . . , Xk}

∣∣∣∣ (a1X1 + . . .+ akXk = b) ∈ lc(E)
ai 6= 0 i = 1, . . . , k k > 0

}
Thus, the abstract domain is A = 〈 P(P(V)\∅),⊆,∪,∩,⊗], V,∃]x, d]xy 〉 where

S1⊗]S2 = S1 ∪ S2 ∪
{
A

∣∣∣∣ A = (A1 ∪A2) \D, A 6= ∅
A1 ∈ S1, A2 ∈ S2, D ⊆ A1 ∩A2

}
∃]xS = {A ∈ S |x 6∈ A} d]xy =

{
{{x, y}} if x 6≡ y
∅ otherwise

We refer to [13] for a complete definition of the domain and for the proofs of
the abstract operators’ correctness. Intuitively, the correctness conditions ensure
that all the possible linear combinations of concrete equations are described by
the computed abstract element. The abstract entailment is a containment test;
as a particular case, if the abstract linear combination {Xi} is not a member of
the abstract store description, we can safely say that variable Xi is free.

In [13] it is also shown that inequalities and disequations can be correctly
abstracted in the same way, namely by reading them as equations.

Example 1. Consider this definition of the process length, computing the length
of a list, together with the following initial configuration.

length(L,N) :-
ask(L=[]) -> tell(N=0)
+

ask(L=[|]) -> ∃ L1,N1 in
tell(L=[|L1],N=N1+1) ‖ length(L1,N1).

〈 produce(L) ‖ length(L,N) ‖ ask(N>20) -> consume(L) , true 〉

By substituting each concrete constraint by its abstraction, we obtain the corre-
sponding abstract program and initial agent; note that Herbrand constraints are
mapped into the least abstract element ∅, while the disequation N>20 is treated
as N=20.

length(L,N) :-
ask(∅) -> tell({{N}})
+

ask(∅) -> ∃ L1,N1 in tell({{N,N1}}) ‖ length(L1,N1).

〈 produce(L) ‖ length(L,N) ‖ ask({{N}}) -> consume(L) , ∅ 〉

By considering the possible abstract transitions of this program, we can easily
make the following observations.

1. The abstract ask guard associated to the process consume is initially sus-
pended (i.e. the abstract entailment test ∅ ⊇ {{N}} is not satisfied);

2. as long as we reduce the process length by selecting the second branch of
its definition, the abstract global store will not change; namely we compute
the store ∃]N1{{N,N1}} = ∅, going back to the initial situation; therefore
the ask guard associated to the process consume keeps suspending;

3. when reducing the process length by selecting the first branch of its defini-
tion, the global store changes to {{N}} and the abstract ask synchronization
succeeds.

Therefore, processes produce and length can be executed concurrently, while
process consume has to wait for the process length to reach the end of the list L,
i.e. to terminate. Indeed, this is actually what happens in any concrete computa-
tion. Consider the sequence of concrete constraints ci obtained by restricting on

variable N the stores generated by the process length. Note that |L| > i implies
ci ≡ (∃M N = M+i) but, since the variable M is unconstrained, ci cannot entail
the concrete guard N>20. This behaviour is not very satisfactory and probably
it does not correspond to our intended semantics, as we could prefer a situation
where all of these processes can execute concurrently.

To conclude, in this example our approximation is able to detect an undesired
data dependency between the process length and the ask guard associated to
consume7.

7 Toward an abstract semantics

In this section we will informally consider the problems related to the construc-
tion of an abstract semantics that correctly approximates the concrete one in
the case of downward closed observables.

It is known that, in the general case, the c.a.c. semantics of a CC program is
not invariant wrt different schedulings of parallel processes, i.e. it is not conflu-
ent. In principle, confluence is not needed to correctly define a static analysis
framework. However, in order to be really useful, a static analysis must be cor-
rect wrt all the possible scheduling and must not be too inefficient. Therefore,
when considering real programs, confluence becomes as desirable as correctness
[15]. As a matter of fact, almost all the literature concerning the static analysis
of CC languages [4, 5, 14, 15, 28] considers a two-steps approximation; in the first
step the standard semantics is replaced by a confluent non-standard semantics,
which is then abstracted in the second step. These intermediate semantics are
correct wrt the standard one, but usually must pay in terms of accuracy of the
results.

This is not the case when considering downward closed properties, because
we can base our static analysis on a confluent semantics being as precise as the
c.a.c. semantics. Confluence is easily obtained by reading the CC indeterministic
program as a nondeterministic program (an angelic program, using the termi-
nology of [18]), that is by interpreting all the don’t care choice operators of the
program as don’t know choice operators. In the nondeterministic case, when con-
sidering a choice operator we split the control and consider all the branches. In
the transition system this difference is captured by replacing rule R4 of Table 2
with the following.

R4′
d ` c

〈 ask(c)->A, d 〉−→〈A, d 〉 R4′′
j ∈ {1, . . . , n}

〈
n∑
i=1

Ai, d 〉−→〈Aj , d 〉

Observe that the only difference between the two programs is that the indeter-
ministic program has less suspensions; however, due to the monotonic nature
of CC computations, for every suspended computation of the nondeterministic
7 This data dependency can be avoided by telling the constraint N1>=0 (or equivalently
N>0) in the second branch of the definition of the process length.

program there exists a (terminated or suspended or infinite) computation in the
original program that computes a stronger store. Let O′ be the c.a.c. semantics
based on the confluent transition system.

Proposition 16. For all c ∈ C . ↓(O[[P]]c) = ↓(O′[[P]]c).

Technical problems related to termination can be solved essentially in the same
way as it was done in [4].

Let us now consider some of the denotational semantics proposed in the liter-
ature. In [26] deterministic CC processes are elegantly modelled as upper closure
operators (uco’s) over the constraint system. The main property of this kind of
representation is that any uco is fully determined by the set of its fixpoints. More-
over all the semantic operators on processes are naturally mapped into simple set
theoretic operations over their representations, e.g. the parallel composition of
two processes is obtained by intersecting their sets of fixpoints. [18] extends such
a semantics to nondeterministic CC languages. When upward closed observables
are considered, each (nondeterministic) process can be mapped into a linear uco
over the Smyth’s powerdomain of the constraint system. These functions can be
coded as sets of (singleton) fixed point, essentially in the same way as it was done
in [26] for the deterministic case. In [18] it is also shown that these processes
can be alternatively modelled as sets of uco’s on the (simple) constraint system.
Different sets of closure operators may in general denote the same nondeter-
ministic process and therefore the Smyth’s powerdomain construction is applied
onto the (extensionally ordered) domain of uco’s. Such an alternative semantics
definition can be easily adapted to model the abstract case, provided that we
are dealing with an abstract constraint system (see Definition 13). However, as
we are observing downward closed properties, we should consider the Hoare’s
powerdomain of the domain of uco’s.

Definition 17. The Hoare’s powerdomain of uco’s on the constraint system C
is

H(uco(C)) = 〈 P↓(uco(C)),⊆,⊥H ,>H ,],∩ 〉

where P↓(uco(C)) is the set of all the non–empty subsets of uco’s on C that are
downward closed and admissible wrt the extensional ordering; {| · |} : uco(C)→
P↓(uco(C)) is defined as {|f |} =

{
g ∈ uco(C)

∣∣ ∀c ∈ C . g(c) a f(c)
}

;] is the
closure of the union, ⊥H = {|C|} = {id} is the bottom element and >H = uco(C)
is the top element.

The equations modelling the semantic functions look essentially the same
as those given in [18] (see Table 3, where Π is the set of process names and
= = Π → P↓(uco(C)) is the domain of environments). The only difference is
the definition of the singleton embedding operator.

Unfortunately, most of the abstract domains modelling downward closed
properties are not constraint systems. In these cases, if we are interested in
a denotational abstract semantic construction, we can consider a suitable vari-
ant of the approach based on ask/tell traces developed in [10, 11]. Here the first

N : Progr → P↓(uco(C))

N [[D. A]] = E [[A]](lfpD[[D]])

D : Dec × = → =

D[[ε]]I = I

D[[p(x):-A. D]] I = D[[D]] (I [p 7→ E [[∃ x in (tell(dxµ) ‖ A)]] I])

E [[·]] : Agent × = → P↓(uco(C))

E [[Stop]] I = {|C|}

E [[tell(c)]] I = {| ↑c|}

E [[ask(c)->A]] I =
⊎{
{| ↑c ∪ (↑c ∩ f) |}

∣∣ f ∈ E [[A]] I
}

E [[∃ x inA]] I =
⊎{
{|∃∃x f |}

∣∣ f ∈ E [[A]] I
}

E [[A ‖ B]] I =
⊎{
{|f ∩ g|}

∣∣ f ∈ E [[A]] I , g ∈ E [[B]] I
}

E [[
n∑
i=1

Ai]] I =
n⊎
i=1

E [[Ai]] I

E [[p(y)]] I =
⊎{
{|∃∃µ (↑dµy ∩ f)|}

∣∣ f ∈ I[p]
}

where

∃∃x f = {d ∈ C | ∃xd = ∃xc, c ∈ f }

Table 3. The generalized semantics

problem to solve is termination, because a trace can be infinite even if it is de-
fined over a finite abstract domain. We think that a notion of canonical form for
traces (similar to the one developed in [26] for bounded trace operators) would
suffice.

It is worth pointing out that the approximation theory developed in this
work can be applied to any kind of semantic construction dealing with the basic
mechanism of blocking ask. As a matter of fact, note that we already proved
the correctness result for (the abstract version of) the c-computations semantics
(see Proposition 11), which observes all the intermediate steps of the concrete
computations; we also implicitly used this semantics in Example 1. Therefore,

our technique can be also applied to semantics observing the way the answer
constraints are actually computed. We believe that such a correctness result can
be easily lifted to the case of a non-interleaving semantics, e.g. by considering a
variant of the true concurrent semantics developed in [21, 22]. In this case the
definite suspension information could be useful to obtain upper bounds to the
degree of parallelism of the program.

8 Conclusions and related works

The static analysis of CC languages is a relatively new but very active area of
research. To our knowledge, this is the first work on this topic in which a domain
independent correct approximation of ask constraints is identified. Almost all
the previous works about the static analysis of CC programs [4, 14, 15, 28] either
consider a specific constraint system or assume that a correct ask approximation
has already been found. [5] claims that it is possible to abstract ask constraints in
a domain independent way even when considering entailment closed properties
(e.g. groundness). This result contrasts with a negative result established in [28]
and simple counterexamples can be shown that prove the uncorrectness of such
an approach in the general case.

The approximation described in our work can be applied to a wide class of
program properties, namely the downward closed ones. Several properties falling
in this class (e.g. freeness) have already been studied in the context of the static
analysis of sequential (constraint) logic languages. In our opinion the same ab-
stract domains can be used in the CC case, provided that a suitable abstract
semantic construction is identified. At the same time, we strongly believe that
such a general result can motivate the study of “new” downward closed proper-
ties. This approximation theory allows to detect definitely suspended branches
of the computation. Such an information can be usefully applied to the debug-
ging and specialization of CC programs. Another area of application could be the
compile-time (partial) scheduling of concurrent processes; whenever our analysis
can prove that two or more processes are definitely serialized, we can avoid their
costly and harmful parallel execution.

The definition of “the right” abstract semantics is an open problem. We have
shown that if we are only interested in the downward closed properties obtainable
from the c.a.c. semantics, then we can assume that all the choice operators in our
program are local, thus achieving the confluence of the computation without any
loss of precision. In our opinion, however, an extensive study of the cost/precision
tradeoffs of the different abstract semantics proposals is strongly needed.

It has been recently shown that delay mechanisms in both sequential con-
straint languages and constraint solvers can be formalized as asks primitives on
an underling domain (see [1] for the definition of ask&tell constraint systems
and some related issues). This connection is currently being further investigated
from the point of view of ask approximation.

Acknowledgements: The author would like to thank Catuscia Palamidessi for
her valuable comments and suggestions on a previous version of this work.

References

1. R. Bagnara. Constraint Systems for Pattern Analysis of Constraint Logic–Based
Languages. Presented at the First Int’l Workshop on Concurrent Constraint Pro-
gramming, Venice, Italy, 1995.

2. G. Birkhoff. Lattice Theory. In AMS Colloquium Publication, third ed., 1967.
3. M. Codish, D. Dams, G. Filé, and M. Bruynooghe. Freeness Analysis for Logic

Programs - And Correctness? In D. S. Warren, editor, Proc. Tenth Int’l Conf. on
Logic Programming, pages 116–131. The MIT Press, Cambridge, Mass., 1993.

4. M. Codish, M. Falaschi, K. Marriott, and W. Winsborough. Efficient Analy-
sis of Concurrent Constraint Logic Programs. In A. Lingas, R. Karlsson, and
S. Carlsson, editors, Proc. of the 20th International Colloquium on Automata, Lan-
guages, and Programming, volume 700 of Lecture Notes in Computer Science, pages
633–644, 1993.

5. C. Codognet and P. Codognet. A general semantics for Concurrent Constraint
Languages and their Abstract Interpretation. In M. Meyer, editor, Workshop on
Constraint Processing at the International Congress on Computer Systems and
Applied Mathematics, CSAM’93, 1993.

6. A. Cortesi and G. Filè. Abstract Interpretation of Logic Programs: an Abstract
Domain for Groundness, Sharing, Freeness and Compoundness Analysis. In Proc.
ACM Symposium on Partial Evaluation and Semantics-based Program Transfor-
mation, pages 52–61. ACM Press, 1991.

7. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238–252,
1977.

8. P. Cousot and R. Cousot. A constructive characterization of the lattices of all
retracts, pre-closure, quasi-closure and closure operators on a complete lattice.
Portugaliæ Mathematica, 38(2):185–198, 1979.

9. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282,
1979.

10. F.S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent Con-
straint Programming. In S. Abramsky and T. Maibaum, editors, Proc. TAP-
SOFT’91, volume 493 of Lecture Notes in Computer Science, pages 296–319.
Springer-Verlag, Berlin, 1991.

11. F.S. de Boer and C. Palamidessi. A process algebra for concurrent constraint
programming. In K. Apt, editor, Proc. Joint Int’l Conf. and Symposium on Logic
Programming, Series in Logic Programming, pages 463–477, Washington, USA,
1992. The MIT Press, Cambridge, Mass.

12. F.S. de Boer, C. Palamidessi, and A. Di Pierro. Infinite Computations in Nonde-
terministic Constraint Programming. Theoretical Computer Science. To appear.

13. V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness analysis in
the presence of numerical constraints. In D. S. Warren, editor, Proc. Tenth Int’l
Conf. on Logic Programming, pages 100–115. The MIT Press, Cambridge, Mass.,
1993.

14. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Anal-
ysis for Concurrent Constraint Programming. In Proc. of the Eight Annual IEEE
Symposium on Logic in Computer Science, pages 210–221. IEEE Computer Society
Press, 1993.

15. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence and Con-
current Constraint Programming. In Proc. of the Fourth International Confer-
ence on Algebraic Methodology and Software Technology (AMAST’95), Montreal,
Canada, 1995.

16. R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint
Logic Programs. In Proc. of the International Conference on Fifth Generation
Computer Systems 1992, pages 581–591, 1992.

17. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-
Holland, Amsterdam, 1971.

18. R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in con-
current constraint programming. Technical report, System Science Lab., Xerox
PARC, 1991.

19. M. Z. Kwiatkowska. Infinite Behaviour and Fairness in Concurrent Constraint
Programming. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors,
Semantics: Foundations and Applications, volume 666 of Lecture Notes in Com-
puter Science, pages 348–383, Beekbergen The Netherlands, 1992. REX Workshop,
Springer-Verlag, Berlin.

20. K. Marriott and P. J. Stuckey. Approximating Interaction between Linear Arith-
metic Constraints. In M. Bruynooghe, editor, Proc. 1994 Int’l Logic Programming
Symposium, pages 571–585. The MIT Press, Cambridge, Mass., 1994.

21. U. Montanari and F. Rossi. Contextual Occurrence Nets and Concurrent Con-
straint Programming. In Proc. Dagstuhl Seminar on Graph Transformations in
Computer Science, volume 776 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1994.

22. U. Montanari and F. Rossi. A Concurrent Semantics for Concurrent Constraint
Programming via Contextual Nets. In Principles and Practice of Constraint Pro-
gramming. The MIT Press, Cambridge, Mass., 1995.

23. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freness of Program Variables through Abstract Interpretation. In K. Furukawa,
editor, Proc. Eighth Int’l Conf. on Logic Programming, pages 49–63. The MIT
Press, Cambridge, Mass., 1991.

24. G.D. Plotkin. Pisa lecture notes. Unpublished notes, 1981-82.
25. V. A. Saraswat, K. Kahn, and J. Levy. Janus: A step towards distributed con-

straint programming. In S. K. Debray and M. Hermenegildo, editors, Proc. North
American Conf. on Logic Programming’90, pages 431–446. The MIT Press, Cam-
bridge, Mass., 1990.

26. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Con-
current Constraint Programming. In Proc. Eighteenth Annual ACM Symp. on
Principles of Programming Languages, pages 333–353. ACM, 1991.

27. D. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt,
editors, Proc. Ninth Int. Coll. on Automata, Languages and Programming, volume
140 of Lecture Notes in Computer Science, pages 577–613. Springer-Verlag, Berlin,
1982.

28. E. Zaffanella, G. Levi, and R. Giacobazzi. Abstracting Synchronization in Concur-
rent Constraint Programming. In M. Hermenegildo and J. Penjam, editors, Proc.
Sixth Int’l Symp. on Programming Language Implementation and Logic Program-
ming, volume 844 of Lecture Notes in Computer Science, pages 57–72. Springer-
Verlag, 1994.

This article was processed using the LATEX macro package with LLNCS style

