
Decomposing Non-Redundant Sharing by
Complementation

Enea Zaffanella1, Patricia M. Hill2?, and Roberto Bagnara3

1 Servizio IX Automazione, Università degli Studi di Modena, Italy.
zaffanella.enea@unimo.it

2 School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U. K.
hill@scs.leeds.ac.uk

3 Dipartimento di Matematica, Università degli Studi di Parma, Italy.
bagnara@cs.unipr.it

Abstract. Complementation, the inverse of the reduced product opera-
tion, is a relatively new technique for systematically finding minimal de-
compositions of abstract domains. Filé and Ranzato advanced the state
of the art by introducing a simple method for computing a complement.
As an application, they considered the extraction by complementation
of the pair-sharing domain PS from the Jacobs and Langen’s set-sharing
domain SH . However, since the result of this operation was still SH ,
they concluded that PS was too abstract for this. Here, we show that
the source of this difficulty lies not with PS but with SH and, more pre-
cisely, with the redundant information contained in SH with respect to
ground-dependencies and pair-sharing. In fact, the difficulties vanish if
our non-redundant version of SH , SH ρ, is substituted for SH . To estab-
lish the results for SH ρ, we define a general schema for subdomains of SH
that includes SH ρ and Def as special cases. This sheds new light on the
structure of SH ρ and exposes a natural though unexpected connection
between Def and SH ρ. Moreover, we substantiate the claim that comple-
mentation alone is not sufficient to obtain truly minimal decompositions
of domains. The right solution to this problem is to first remove redun-
dancies by computing the quotient of the domain with respect to the
observable behavior, and only then decompose it by complementation.

Keywords: Abstract Interpretation, Domain Decomposition, Complementa-
tion, Sharing Analysis.

1 Introduction

Complementation [5], which is the inverse of the well-known reduced product
operation [7], can systematically obtain minimal decompositions of complex ab-
stract domains. It was argued that these decompositions would be useful in find-
ing space saving representations for domains and to simplify domain verification
problems.
? Part of this work was supported by EPSRC grant GR/M05645.

In [8], Filé and Ranzato presented a new method for computing the comple-
ment, which is simpler than the original proposal by Cortesi et al. [4, 5] because
it has the advantage that, in order to compute the complement, only a relatively
small number of elements (namely the meet-irreducible elements of the refer-
ence domain) need be considered. As an application of this method, the authors
considered the Jacobs and Langen’s sharing domain [13], SH , for representing
properties of variables such as groundness and sharing. This domain captures
the property of set-sharing. However, it has been observed [1] that for most (if
not all) applications, the property of interest is not set-sharing but pair-sharing.
Filé and Ranzato illustrated their method by minimally decomposing SH into
three components; using the words of the authors [8, Section 1]:

“each representing one of the elementary properties that coexist in the
elements of Sharing, and that are as follows: (i) the ground-dependency
information; (ii) the pair-sharing information, or equivalently variable
independence; (iii) the set-sharing information, without variable inde-
pendence and ground-dependency.”

However, this decomposition did not use the usual domain PS for pair-sharing.
Filé and Ranzato observed that the complement of the pair-sharing domain
PS with respect to SH is again SH and concluded that PS was too abstract
to be extracted from SH by means of complementation. In order to overcome
this difficulty, and to obtain this non-trivial decomposition of SH , they used
a different (and somewhat unnatural) definition for an alternative pair-sharing
domain that they called PS ′. The nature of PS ′ and its connection with PS is
examined more carefully in Section 6.

We noticed that the difficulty Filé and Ranzato had was not in the definition
of PS , which accurately represents the property of pair-sharing, but in the use of
the set-sharing domain SH itself since it carries some redundant information. It
was shown in [1] that, for groundness and pair-sharing, SH includes redundant
information. By defining an upper closure operator ρ that removed this redun-
dancy, a much smaller domain SH ρ was found that captured pair-sharing with
the same precision as SH . We show here that using the method given in [8],
but with this domain instead of SH as the reference domain, the difficulties in
the decomposition disappear. Moreover, we show that PS is exactly one of the
components obtained by complementation of SH ρ. Thus the problem exposed
by Filé and Ranzato was, in fact, due to the “information preserving” property
of complementation, as any factorization obtained in this way is such that the
reduced product of the factors gives back the original domain. In particular, any
factorization of SH has to encode the redundant information identified in [1].
We will show that such a problem disappears when SH ρ is used as the reference
domain.

Although the primary purpose of this work is to clarify the decomposition of
the domain SH ρ, the formulation is sufficiently general to apply to other proper-
ties that are captured by SH . The domain Pos of positive Boolean functions and
its subdomain Def , the domain of definite Boolean functions, are normally used

for capturing groundness. Each Boolean variable has the value true if the pro-
gram variable it corresponds to is definitely bound to a ground term. However,
the domain Pos is isomorphic to SH via the mapping from formulas in Pos to
the set of complements of their models [3]. This means that any general results
regarding the structure of SH are equally applicable to Pos and its subdomains.

To establish the results for SH ρ, we define a general schema for subdomains
of SH that includes SH ρ and Def as special cases. This sheds new light on the
structure of the domain SH ρ, which is smaller but significantly more involved
than SH .1 Of course, as we have used the more general schematic approach,
we can immediately derive (where applicable) corresponding results for Def and
Pos. Moreover, an interesting consequence of this work is the discovery of a
natural connection between the abstract domains Def and SH ρ. The results
confirm that SH ρ is, in fact, the “appropriate” domain to consider when pair-
sharing is the property of interest.

The paper is structured as follows: In Section 2 we briefly recall the required
notions and notations, even though we assume general acquaintance with the
topics of lattice theory, abstract interpretation, sharing analysis and groundness
analysis. Section 3 introduces the SH domain and several abstractions of it.
The meet-irreducible elements of an important family of abstractions of SH
are identified in Section 4. This is required in order to apply, in Section 5, the
method of Filé and Ranzato to this family. We conclude in Section 6 with some
final remark where, in particular, we explain what is, in our opinion, the lesson
to be learned from this and other related works.

2 Preliminaries

For any set S, ℘(S) denotes the power set of S and #S is the cardinality of S.
A preorder � over a set P is a binary relation that is reflexive and transitive.

If � is also antisymmetric, then it is called partial order. A set P equipped with
a partial order � is said to be partially ordered and sometimes written 〈P,�〉.
Partially ordered sets are also called posets.

Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and only
if x � y for each x ∈ S. An upper bound y for S is the least upper bound (or
lub) of S if and only if, for every upper bound y′ for S, y � y′. The lub, when
it exists, is unique. In this case we write y = lubS. Lower bounds and greatest
lower bounds are defined dually.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y}
exist, is called a lattice. In this case, lub and glb are also called, respectively,
the join and the meet operations of the lattice. A complete lattice is a lattice
〈L,�〉 such that every subset of L has both a least upper bound and a greatest
lower bound. The top element of a complete lattice L, denoted by >, is such
that > ∈ L and ∀x ∈ L : x � >. The bottom element of L, denoted by ⊥, is
defined dually.
1 For the well acquainted with the matter: SH is a powerset and hence it is dual-

atomistic; this is not the case for SH ρ.

An algebra 〈L,∧,∨〉 is also called a lattice if ∧ and ∨ are two binary op-
erations over L that are commutative, associative, idempotent, and satisfy the
following absorption laws, for each x, y ∈ L: x∧ (x∨ y) = x and x∨ (x∧ y) = x.
The two definitions of lattices are equivalent. This can be seen by setting up the
isomorphism given by: x � y

def⇐⇒ x ∧ y = x
def⇐⇒ x ∨ y = y, glb{x, y} def= x ∧ y,

and lub{x, y} def= x∨ y. A complete lattice C is meet-continuous if for any chain
Y ⊆ C and each x ∈ C, x ∧

(∨
Y
)

=
∨
y∈Y (x ∧ y).

A monotone and idempotent self-map ρ : P → P over a poset 〈P,�〉 is called
a closure operator (or upper closure operator) if it is also extensive, namely
∀x ∈ P : x � ρ(x). If C is a complete lattice, then each upper closure operator
ρ over C is uniquely determined by the set of its fixpoints, that is, by its image
ρ(C) def=

{
ρ(x)

∣∣ x ∈ C }. The set of all upper closure operators over a complete
lattice C, denoted by uco(C), form a complete lattice ordered as follows: if
ρ1, ρ2 ∈ uco(P), ρ1 v ρ2 if and only if ρ2(C) ⊆ ρ1(C). We will often denote
upper closure operators by the sets of their fixpoints. The reader is referred to
[11] for an extensive treatment of closure operators.

The reduced product of two elements ρ1, ρ2 of uco(C) is: ρ1uρ2
def= glb{ρ1, ρ2}.

Suppose C is a meet-continuous lattice (which is the case for most domains for
abstract interpretation [5], here included all the domains considered in this pa-
per). Then the inverse of the reduced product operation, called complementation,
is well defined and given as follows. If ρ v ρ1 then ρ ∼ ρ1

def= lub{ ρ2 | ρ1 u ρ2 =
ρ }. Given a meet-continuous lattice C and ρ ∈ uco(C), the pseudo-complement
(or, by an abuse of terminology now customary in the field, simply complement)
of ρ is denoted by idC ∼ ρ, where idC is the identity over C. Let C be a meet-
continuous lattice and Di

def= ρDi(C) with ρDi ∈ uco(C) for i = 1, . . . , n. Then
{Di | 1 ≤ i ≤ n } is a decomposition for C if C = D1 u · · · u Dn. The decom-
position is also called minimal if, for each k ∈ N with 1 ≤ k ≤ n and each
Ek ∈ uco(C), Dk @ Ek implies C @ D1 u · · · u Dk−1 u Ek u Dk+1 u · · · u Dn.
Let C be a complete lattice and X ⊆ C. Then Moore(X) denotes the Moore
completion of X, namely, Moore(X) def=

{∧
Y
∣∣ Y ⊆ X

}
. We say that C is

meet-generated by X if C = Moore(X). An element x ∈ C is meet-irreducible if
∀y, z ∈ C :

(
(x = y ∧ z) =⇒ (x = y or x = z)

)
. The set of meet-irreducible ele-

ments of a complete lattice C is denoted by MI(C). Note that > ∈ MI(C). An ele-
ment x ∈ C is a dual-atom if x 6= > and, for each y ∈ C, x ≤ y < > implies x = y.
The set of dual-atoms is denoted by dAtoms(C). Note that dAtoms(C) ⊂ MI(C).
The domain C is dual-atomistic if C = Moore

(
dAtoms(C)

)
. Thus, if C is dual-

atomistic, MI(C) = {>} ∪ dAtoms(C).
The following result holds [8, Theorem 4.1].

Theorem 1. If C is meet-generated by MI(C) then uco(C) is pseudo-comple-
mented and for any ρ ∈ uco(C)

idC ∼ ρ = Moore
(
MI(C) \ ρ(C)

)
.

Another useful result from lattice theory is the following.

Theorem 2. All continuous lattices are meet-generated by their meet-irreducible
elements.

Hence we have the following corollary [8, Corollary 4.5].

Corollary 1. If C is dual-atomistic then uco(C) is pseudo-complemented and
for any ρ ∈ uco(C)

idC ∼ ρ = Moore
(
dAtoms(C) \ ρ(C)

)
.

Domains such as SH are normally defined over a denumerable set of variables
Vars and then a finite subset of Vars is used to define a subset of SH that is
restricted to these variables. In this paper, we assume there is a fixed and finite
set of variables of interest VI ⊂ Vars of cardinality n.

If t is a first-order term over VI , then vars(t) denotes the set of variables
occurring in t. Bind denotes the set of equations of the form x = t (sometimes
written x 7→ t) where x ∈ VI and t is a first-order term over VI . Note that we
do not impose the occur-check condition x /∈ vars(t), since we have proved in
[12] that this is not required to ensure correctness of the operations of SH and
its derivatives. We also define Subst def= ℘(Bind).

3 The Sharing Domains

3.1 The Set-sharing Domain SH

In this paper, since the set of relevant variables is fixed, it is assumed that
SH , Def and PS are each restricted to the finite set of variables VI ⊂ Vars.
Therefore, the domain elements for SH (and hence for all their subdomains such
as PS and Def) do not include the set of variables explicitly.

Definition 1. (The set-sharing domain SH .) The domain SH is given by
SH def= ℘(SG) where SG def=

{
S ∈ ℘(VI)

∣∣ S 6= ∅}. SH is partially ordered by
set inclusion so that the lub is given by set union and glb by set intersection.

Note that, as we are adopting the upper closure operator approach to ab-
stract interpretation, all the domains we define here are ordered by subset
inclusion. In the following examples, the elements of SH will be always writ-
ten in a simplified notation, omitting the inner braces. For instance, the set{
{x}, {x, y}, {x, z}, {x, y, z}

}
will be written simply as {x, xy, xz, xyz}.

For the purpose of this paper, we just need the following operations over SH .
See [1] for a precise definition of all the operations used for an analysis.

Definition 2. (Some operations over SH .) The function bin: SH × SH →
SH , called binary union, is given by

bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

The star-union function (·)? : SH → SH is given by

sh? def=
{
S ∈ SG

∣∣∣ ∃sh ′ ⊆ sh . S =
⋃

sh ′
}
.

For each j ≥ 1, the j-self-union function (·)j : SH → SH is given by

shj def=
{
S ∈ SG

∣∣∣ ∃sh ′ ⊆ sh .
(

sh ′ ≤ j, S =
⋃

sh ′
)}

.

The extraction of the relevant component of an element of SH with respect to a
subset of VI is encoded by the function rel : ℘f(VI)× SH → SH given by

rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.

The function amgu captures the effects of a binding x 7→ t on an element of SH .
Let vx = {x}, vt = vars(t) and vxt = vx ∪ vt. Then

amgu(sh, x 7→ t) def=
(
sh \ (rel(vxt, sh)

)
∪ bin

(
rel(vx, sh)?, rel(vt, sh)?

)
.

We also define the extension amgu: SH × Subst → SH by

amgu(sh, ∅) def= sh,

amgu
(
sh, {x 7→ t} ∪ σ

) def= amgu
(
amgu(sh, x 7→ t), σ \ {x 7→ t}

)
.

The function proj : SH × ℘(VI) → SH that projects an element of SH onto a
subset V ⊆ VI of the variables of interest is given by

proj(sh, V) def= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }.

The j-self-union operator is new. We show later when it may be safely used to
replace the star-union operator. Note, in particular that, letting j = 1, 2, and n,
we have sh1 = sh, sh2 = bin(sh, sh), and, as # VI = n, shn = sh?.

Since SH is a power set, SH is dual-atomistic and

dAtoms(SH) =
{

SG \ {S}
∣∣ S ∈ SG

}
.

Example 1. Suppose VI = {x, y, z}. Then the seven dual-atoms of SH are:

s1 = { y, z, xy, xz, yz, xyz},
s2 = {x, z, xy, xz, yz, xyz},
s3 = {x, y, xy, xz, yz, xyz},

 these lack a singleton;

s4 = {x, y, z, xz, yz, xyz},
s5 = {x, y, z, xy, yz, xyz},
s6 = {x, y, z, xy, xz, xyz},

 these lack a pair;

s7 = {x, y, z, xy, xz, yz }, this lacks VI .

Then the meet-irreducible elements of SH are s1, . . . , s7 together with SG , the
top element.

3.2 The Tuple-sharing Domains

To provide a general characterization of domains such as the groundness and
pair-sharing domains in SH , we first identify the sets of elements that have the
same cardinality.

Definition 3. (Tuples of cardinality k.) For each k ∈ N with 1 ≤ k ≤ n, the
overloaded functions tuplesk : SG → SH and tuplesk : SH → SH are defined as

tuplesk(S) def=
{
T ∈ ℘(S)

∣∣ #T = k
}
,

tuplesk(sh) def=
⋃{

tuplesk(S′)
∣∣ S′ ∈ sh

}
.

In particular, if S ∈ SG , sh ∈ SH , let

pairs(S) def= tuples2(S),

pairs(sh) def= tuples2(sh).

The usual domains that represent groundness and pair-sharing information
will be shown to be special cases of the following more general domain.

Definition 4. (The tuple-sharing domains TSk.) For each k ∈ N such that
1 ≤ k ≤ n, the function ρTSk

: SH → SH is defined as

ρTSk
(sh) def=

{
S ∈ SG

∣∣ tuplesk(S) ⊆ tuplesk(sh)
}

and, as ρTSk
∈ uco(SH), it induces the lattice

TSk
def= ρTSk

(SH).

Note that ρTSk

(
tuplesk(sh)

)
= ρTSk

(sh) and that there is a one to one corre-
spondence between TSk and ℘

(
tuplesk(VI)

)
. The isomorphism is given by the

functions tuplesk : TSk → ℘
(
tuplesk(VI)

)
and ρTSk

: ℘
(
tuplesk(VI)

)
→ TSk.

Thus the domain TSk is the smallest domain that can represent properties char-
acterized by sets of variables of cardinality k. We now consider the tuple-sharing
domains for the cases when k = 1, 2, and n.

Definition 5. (The groundness domain Con.) The upper closure operator
ρCon : SH → SH and the corresponding domain Con are defined as ρCon

def= ρTS1

and Con def= TS1 = ρCon(SH).

This domain, which represents groundness information, is isomorphic to the
domain of conjunctions of Boolean variables. The isomorphism tuples1 maps
each element of Con to the set of variables that are possibly non-ground. The
usual domain (also normally called Con) for representing groundness can be
obtained (as for Pos and Def) by set complementation.

Definition 6. (The pair-sharing domain PS .) The upper closure operator
ρPS : SH → SH and the corresponding domain PS are defined as ρPS

def= ρTS2 and

PS def= TS2 = ρPS(SH).

This domain represents pair-sharing information and the isomorphism tuples2

maps each element of PS to the set of pairs of variables that may be bound
to terms that share a common variable. The domain for representing variable
independence can be obtained by set complementation. Finally, in the case when
k = n we have a domain consisting of just two elements:

TSn =
{

SG ,SG \ {VI }
}
.

Just as for SH , the domains TSk are dual-atomistic and:

dAtoms(TSk) =
{(

SG \ {U ∈ SG | T ⊆ U }
) ∣∣∣ T ∈ tuplesk(VI)

}
.

Thus we have

dAtoms(Con) =
{(

SG \ {U ∈ SG | x ∈ U }
) ∣∣∣ x ∈ VI

}
,

dAtoms(PS) =
{(

SG \ {U ∈ SG | x, y ∈ U }
) ∣∣∣ x 6= y ∈ VI

}
.

Example 2. Consider Example 1. Then the dual atoms of Con are

{ y, z, yz},
{x, z, xz },
{x, y, xy },

and the dual atoms of PS are

{x, y, z, xz, yz},
{x, y, z, xy, yz},
{x, y, z, xy, xz }.

It can be seen from the dual atoms, that the precision of the information
encoded by domains TSj and TSk is not comparable when j 6= k. Also, we note
that, if j < k, then ρTSj

(TSk) = {SG} and ρTSk
(TSj) = TSj .

3.3 The Tuple-Sharing Dependency Domains

We now need to define domains that capture the propagation of groundness and
pair-sharing; in particular, the dependency of these properties on the further
instantiation of the variables. In the same way as with TSk for Con and PS , we
first define a general subdomain TSDk of SH . This must be safe with respect
to the tuple-sharing property represented by TSk when performing the usual
abstract operations. This was the motivation behind the introduction in [1] of
the pair-sharing dependency domain SH ρ. We now generalize this for tuple-
sharing.

Definition 7. The tuple-sharing dependency domain (TSDk.) For each
k where 1 ≤ k ≤ n, the function ρTSDk

: SH → SH is defined as

ρTSDk
(sh)

def=
{
S ∈ SG

∣∣∣ ∀T ⊆ S : #T < k =⇒ S =
⋃
{U ∈ sh | T ⊆ U ⊆ S }

}
,

and, as ρTSDk
∈ uco(SH), it induces the tuple-sharing dependency lattice

TSDk
def= ρTSDk

(SH).

It follows from the definitions that the domains TSDk form a strict chain.

Proposition 1. For j, k ∈ N with 1 ≤ j < k ≤ n, we have TSDj ⊂ TSDk.

Moreover, TSDk is not less precise than TSk.

Proposition 2. For k ∈ N with 1 ≤ k ≤ n, we have TSk ⊆ TSDk. Further-
more, if n > 1 then TSk ⊂ TSDk.

A consequence of Propositions 1 and 2 is that TSDk is not less precise than
TS1 u · · · u TSk.

Corollary 2. For j, k ∈ N with 1 ≤ j ≤ k ≤ n, we have TSj ⊆ TSDk.

It also follows from the definitions that, for the TSDk domain, the star-union
operator can be replaced by the k-self-union operator.

Proposition 3. For 1 ≤ k ≤ n, we have ρTSDk
(shk) = sh?.

We consider the tuple-sharing dependency domains for the cases when k = 1,
2, and n.

Definition 8. (The ground dependency domain Def .) The upper closure
operator ρDef : SH → SH and the corresponding domain Def are defined as
ρDef

def= ρTSD1 and Def def= TSD1 = ρDef (SH).

By Proposition 3, we have for all sh ∈ SH , ρTSD1(sh) = sh? so that TSD1 is a
representation of the domain Def used for capturing groundness. It also confirms
the well-known result that the star-union operator is redundant for elements in
Def .

Definition 9. (The pair-sharing dependency domain PSD.) The upper
closure operator ρPSD : SH → SH and the corresponding domain PSD are defined
as ρPSD

def= ρTSD2 and PSD def= TSD2 = ρPSD(SH).

Then, it follows from [1, Theorem 7] that PSD is in fact the domain, corre-
sponding to SH ρ, defined for capturing pair-sharing. By Proposition 3, we have
for all sh ∈ SH , ρPSD(sh2) = sh?; thus confirming the result in [1] that for ele-
ments in PSD , the star-union operator sh? can be replaced by the 2-self-union

sh2 = bin(sh, sh) without any loss of precision. Furthermore, Corollary 2 con-
firms the result established in [1] that PSD also captures groundness. Finally,
letting k = n, we observe that TSDn = SH .

In [1], the PSD domain is shown to be as good as SH for both representing
and propagating pair-sharing. It is also proved that any weaker domain does not
satisfy these properties, so that PSD is the quotient [6] of SH with respect to
the pair-sharing property PS . In the view of recent results on abstract domain
completeness [9], this also means that PSD is the least fully-complete extension
(lfce) of PS with respect to SH .

From a purely theoretical point of view, the quotient of an abstract interpreta-
tion with respect to a property of interest and the least fully-complete extension
of an upper closure operator are not equivalent. It is known [6] that the quotient
may not exist, while the lfce is always defined. However, it is also known [10] that
when the quotient exists it is exactly the same as the lfce. Moreover, it should
be noted that the quotient will exist as long as we consider a semantics where at
least one of the domain operators is additive and this is almost always the case
(just consider the merge-over-all-paths operator, usually implemented as the lub
of the domain). Therefore, for the domains considered here, these two approaches
to the completeness problem in abstract interpretation are equivalent.

We now generalize and strengthen the result in [1] and show that, for each
k ∈ {1, . . . , n}, TSDk is the quotient of SH with respect to the reduced product
TS1 u · · · u TSk (equivalently, the lfce of TS1 u · · · u TSk with respect to SH).

The following results can be obtained by generalizing the corresponding re-
sults in [1].

Theorem 3. Let sh1, sh2 ∈ SH and 1 ≤ k ≤ n. If ρTSDk
(sh1) = ρTSDk

(sh2)
then, for each σ ∈ Subst, each sh ′ ∈ SH , and each V ∈ ℘f(VI),

ρTSDk

(
amgu(sh1, σ)

)
= ρTSDk

(
amgu(sh2, σ)

)
,

ρTSDk
(sh ′ ∪ sh1) = ρTSDk

(sh ′ ∪ sh2),

ρTSDk

(
proj(sh1, V)

)
= ρTSDk

(
proj(sh2, V)

)
.

Theorem 4. Let 1 ≤ k ≤ n For each sh1, sh2 ∈ SH , ρTSDk
(sh1) 6= ρTSDk

(sh2)
implies

∃σ ∈ Subst ,∃j ∈ {1, . . . , k} . ρTSj

(
amgu(sh1, σ)

)
6= ρTSj

(
amgu(sh2, σ)

)
.

4 The Meet-Irreducible Elements

In Section 5, we use the method of Filé and Ranzato [8] to decompose the
dependency domains TSDk. In preparation for this, in this section, we identify
the meet-irreducible elements for the domains and state some general results.

We have already observed that TSk and TSDn = SH are dual-atomistic.
However, TSDk, for k < n, is not dual-atomistic and we need to identify the
meet-irreducible elements. In fact, the set of dual-atoms for TSDk is

dAtoms(TSDk) =
{

SG \ {S}
∣∣ S ∈ SG ,#S ≤ k

}
.

Note that # dAtoms(TSDk) =
∑k
j=1

(
n
j

)
. Specializing this for k = 1 and k = 2,

respectively, we have:

dAtoms(Def) =
{

SG \ {{x}}
∣∣ x ∈ VI

}
,

dAtoms(PSD) =
{

SG \ {S}
∣∣ S ∈ pairs(VI)

}
∪ dAtoms(Def),

and that # dAtoms(Def) = n and # dAtoms(PSD) = n(n + 1)/2. We present
as an example of this the dual atoms for Def and PSD when n = 3.

Example 3. Consider Example 1. Then the 3 dual-atoms for Def are s1, s2, s3

and the 6 dual atoms for PSD are s1, . . . , s6. Note that these are not all the meet-
irreducible elements since sets that do not contain xyz such as ⊥ = ρDef (⊥) = ∅
and {x} cannot be obtained by the meet (which is set intersection) of a set of
dual-atoms. Thus, unlike Con and PS , neither Def nor PSD are dual-atomistic.

Consider next the subset Mk of meet-irreducible elements of TSDk that are
neither the top element SG nor dual atoms. Mk has an element for each sharing
group S ∈ SG such that #S > k and each tuple T ⊂ S with #T = k. Such
an element is obtained from SG by removing all sharing groups U such that
T ⊆ U ⊆ S. Formally,

Mk
def=
{

SG \ {U ∈ SG | T ⊆ U ⊆ S }
∣∣ T, S ∈ SG , T ⊂ S,#T = k

}
.

Note that, as there are
(
n
k

)
possible choices for T and 2n−k − 1 possible choices

for S, we have #Mk =
(
n
k

)
(2n−k − 1) and # MI(TSDk) =

∑k−1
j=0

(
n
j

)
+
(
n
k

)
2n−k.

Again, we illustrate this definition with the case when n = 3.

Example 4. Consider again Example 3. First, consider the domain Def . The
meet-irreducible elements which are not dual-atoms, beside SG , are the follow-
ing:

q1 = { y, z, xz, yz, xyz} ⊂ s1,

q2 = { y, z, xy, yz, xyz} ⊂ s1, r1 = { y, z, yz} ⊂ q1 ∩ q2,

q3 = {x, z, xz, yz, xyz} ⊂ s2,

q4 = {x, z, xy, xz, xyz} ⊂ s2, r2 = {x, z, xz } ⊂ q3 ∩ q4,

q5 = {x, y, xy, yz, xyz} ⊂ s3,

q6 = {x, y, xy, xz, xyz} ⊂ s3, r3 = {x, y, xy } ⊂ q5 ∩ q6.

Next, consider the domain PSD . The only meet-irreducible elements that are
not dual-atoms, beside SG , are the following:

m1 = {x, y, z, xz, yz } ⊂ s4

m2 = {x, y, z, xy, yz } ⊂ s5

m3 = {x, y, z, xy, xz } ⊂ s6.

Each of these lack a pair and none contains the sharing group xyz.

We now show that we have identified precisely all the meet-irreducible ele-
ments of TSDk.

Theorem 5. If k ∈ N with 1 ≤ k ≤ n, then

MI(TSDk) = {SG} ∪ dAtoms(TSDk) ∪Mk.

As a consequence, we have the following result.

Corollary 3. Let k ∈ N with 1 ≤ k ≤ n. Then

dAtoms(TSk) =
{

sh ∈ MI(TSDk)
∣∣ VI /∈ sh

}
.

For the decomposition, we need to identify which meet-irreducible elements
of TSDk are in TSj . Using Corollaries 2 and 3 we have the following result.

Corollary 4. If j, k ∈ N with 1 ≤ j < k ≤ n, then MI(TSDk) ∩ TSj = {SG}.

By combining Proposition 1 with Theorem 5 we can identify the meet-irreducible
elements of TSDk that are in TSDj , where j < k.

Corollary 5. If j, k ∈ N with 1 ≤ j < k ≤ n, then

MI(TSDk) ∩ TSDj = dAtoms(TSDj).

5 The Decomposition of the Domains

5.1 Removing the Tuple-Sharing Domains

We first consider the decomposition of TSDk with respect to TSj . It follows from
Theorem 1 and Corollaries 2 and 4 that, for 1 ≤ j < k ≤ n, we have

TSDk ∼ TSj = TSDk. (1)

Since SH = TSDn, we have, using Eq. (1) and setting k = n, that, if j < n,

SH ∼ TSj = SH . (2)

Thus, in general, TSj is too abstract to be removed from SH by means of com-
plementation. (Note that here it is required j < n, because we have SH ∼ TSn 6=
SH .) In particular, letting j = 1, 2 (assuming n > 2) in Eq. (2), we have

SH ∼ PS = SH ∼ Con = SH , (3)

showing that Con and PS are too abstract to be removed from SH by means of
complementation. Also, by Eq. (1), letting j = 1 and k = 2 it follows that the
complement of Con in PSD is PSD .

Now consider decomposing TSDk using TSk. It follows from Theorem 1,
Proposition 2 and Corollary 3 that, for 1 ≤ k ≤ n, we have

TSDk ∼ TSk = Moore
(
MI(TSDk) \ ρTSk

(TSDk)
)

= { sh ∈ TSDk | VI ∈ sh }. (4)

Thus we have

TSDk ∼ (TSDk ∼ TSk) = TSk. (5)

We have therefore extracted all the domain TSk from TSDk. So by letting k = 1,
2 in Eq. (5), we have found the complements of Con in Def and PS in PSD :

Def ∼ Con = { sh ∈ Def | VI ∈ sh },
PSD ∼ PS = { sh ∈ PSD | VI ∈ sh }.

Thus if we denote the domains induced by these complements as Def ⊕ and
PSD⊕, respectively, we have the following result.
Theorem 6.

Def ∼ Con = Def ⊕, Def ∼ Def ⊕ = Con,

PSD ∼ PS = PSD⊕, PSD ∼ PSD⊕ = PS .

Moreover, Con and Def ⊕ form a minimal decomposition for Def and, similarly,
PS and PSD⊕ form a minimal decomposition for PSD.

5.2 Removing the Dependency Domains

First we note that, by Theorem 5, Proposition 1 and Corollary 5 the complement
of TSDj in TSDk, where 1 ≤ j < k ≤ n, is given as follows:

TSDk ∼ TSDj = Moore
(
MI(TSDk) \ ρTSDj

(TSDk)
)

=
{

sh ∈ TSDk

∣∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh
}
. (6)

It therefore follows from Eq. (6) and setting k = n that the complement of ρTSDj

in SH for j < n is:

SH ∼ TSDj =
{

sh ∈ SH
∣∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh

}
(7)

def= SH +
j .

In particular, in Eq. (7) when j = 1, we have the following result for Def (also
proved in [8, Lemma 5.4]):

SH ∼ Def =
{

sh ∈ SH
∣∣ ∀x ∈ VI : {x} ∈ sh

}
.

This complement is denoted by SH +
Def . Also, in Eq. (7) when j = 2, we have the

following result for PSD :

SH ∼ PSD =
{

sh ∈ SH
∣∣ ∀S ∈ SG : #S ≤ 2 =⇒ S ∈ sh

}
.

This complement is denoted by SH +
PSD .

We next construct the complement of PSD with respect to Def . By Eq. (6),

PSD ∼ Def =
{

sh ∈ PSD
∣∣ ∀x ∈ VI : {x} ∈ sh

}
def= PSD+.

Then the complement factor Def − def= PSD ∼ PSD+ is exactly the same as
SH ∼ SH +

Def and PSD and SH behave similarly for Def .

5.3 Completing the Decomposition

Just as for SH , the complement of SH +
Def using PS (or, more generally, TSj where

1 < j < n) is SH +
Def . By Corollary 3 and Theorem 1, as PS is dual-atomistic,

the complement of PS in PSD+ is given as follows.

Theorem 7.

PSD‡ def= PSD+ ∼ PS

=
{

sh ∈ PSD
∣∣ VI ∈ sh,∀x ∈ VI : {x} ∈ sh

}
,

PSD+ ∼ PSD‡ = PS .

So, we have extracted all the domain PS from PSD+ and we have the following
result.

Corollary 6. Def −, PS, and PSD‡ form a minimal decomposition for PSD.

6 Conclusion

In [1], we said that PSD ∼ PS 6= PSD . This paper now clarifies that statement.
We have provided a minimal decomposition for PSD whose components include
Def − and PS . Moreover, we have shown that PSD is not dual-atomistic. The
meet-irreducible elements of PSD have been completely specified. As a conse-
quence, it can be seen that the dual-atoms of PSD are precisely those elements
which have the form SG \ {S} where #S ≤ 2.

By studying the sharing domain SH in a more general framework, we have
been able to show that the domain PSD has natural place in a scheme of domains
based on SH . Moreover, by means of this approach we have highlighted the close
relationship between Def and PSD and the many properties they share.

Our starting point was the work of Filé and Ranzato. In [8], they noted, as
we have, that SH +

Def ∼ PS = SH +
Def so that none of the domain PS could be

extracted from SH +
Def . They noticed that ρPS maps all dual-atoms that contain VI

to SG and thus lose all pair-sharing information. To avoid this, they replaced PS
with the domain PS ′ where, for all sh ∈ SH +

Def , ρPS′(sh) = ρPS(sh) \
(
{VI } \ sh

)
,

and noted that SH +
Def ∼ PS ′ = { sh ∈ SH +

Def | VI ∈ sh }. To understand the
nature of this new domain PS ′, we first observe that, PS ′ is simply the reduced
product of PS and TSn. This is because TSn = MI(TSn) =

{
SG \ {VI },SG

}
.

In addition, SH +
Def ∼ TSn = { sh ∈ SH +

Def | VI ∈ sh }, which is precisely the
same as SH +

Def ∼ PS ′. Thus, since SH +
Def ∼ PS = SH +

Def , it is not surprising that
it is precisely the added component TSn that is removed when we compute the
complement for SH +

Def with respect to PS ′.
We also note that, in [8], the fact that one of the components found by

decomposition (here called TSn) has only two elements is seemingly regarded as
a positive thing, because [8, Section 1] “This shows that domain decomposition
can lead to great gains in the size of the representation.” In our humble opinion,

if one of the components is very small (e.g., only 2 elements in this case) this
means that almost all the complexity remained elsewhere. If the objective is
to decompose in order to find space saving representations for domains and to
simplify domain verification problems, then “balanced” decompositions (that is,
into parts of nearly equal complexity) should instead be regarded as the best
one can hope for.

It should be stressed that the problems outlined above are not dependent on
the particular domain chosen and, in our opinion, they are mainly related to the
methodology for decomposing a domain. Indeed, we argue that complementation
alone is not sufficient to obtain truly minimal decompositions of domains. The
reason being that complementation only depends on the domain’s data (that
is, the domain elements and the partial order relation modeling their intrinsic
precision), while it is completely independent from the domain operators that
manipulate that data. In particular, if the concrete domain contains elements
that are redundant with respect to its operators (because the observable behavior
of these elements is exactly the same in all possible program contexts) then
any factorization of the domain obtained by complementation will encode this
redundancy. However, the theoretical solution to this problem is well known
[6, 9, 10] and it is straightforward to improve the methodology so as to obtain
truly minimal decompositions: first remove all redundancies from the domain
(this can be done by computing the quotient of a domain with respect to the
observable behavior) and only then decompose it by complementation. This is
exactly what is done here.

We conclude with some remarks on complementation. There are a number of
reasons why we believe this is important. First of all, complementation is really
an excellent concept to work with from a theoretical point of view: it allows the
splitting of complex domains into simpler components, avoiding redundancies
between them. However, as things stand at present, complementation has never
been exploited. This may be because it is easier to implement a single complex
domain than to implement several simpler domains and integrate them together.
Note that complementation requires the implementation of a full-integration
between components (i.e., the reduced product), otherwise precision would be
lost and the theoretical results would not apply.

One notable example of domain decomposition that does enable significant
memory and time savings with no precision loss is the GER decomposition of
Pos [2], and this is not based on complementation. Observe that the complement
of G with respect to Pos is Pos itself. This is because Pos is isomorphic to SH
[3] and G ≡ Con def= TS1 so that, by Eq. (3), Pos ∼ G = Pos. It is not difficult
to observe that the same phenomenon happens if one considers the groundness
equivalence component E, that is, Pos ∼ E = Pos. In fact, it can be shown
that two variables x and y are ground-equivalent in sh ∈ SH ≡ Pos if and
only if rel

(
{x}, sh

)
= rel

(
{y}, sh

)
. In particular, this implies both {x} /∈ sh and

{y} /∈ sh. Thus, it can be easily observed that in all the dual-atoms of Pos no
variable is ground-equivalent to another variable (because each dual-atom lacks
just a single sharing-group).

References

1. R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
In P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International
Symposium, volume 1302 of Lecture Notes in Computer Science, pages 53–67, Paris,
France, 1997. Springer-Verlag, Berlin.

2. R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of the “Sev-
enth International Conference on Algebraic Methodology and Software Technology
(AMAST’98)”, volume 1548 of Lecture Notes in Computer Science, pages 471–485,
Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

3. M. Codish and H Søndergaard. The Boolean logic of set sharing analysis. In
C. Palamidessi, H. Glaser, and K. Meinke, editors, Principles of Declarative Pro-
gramming, volume 1490 of Lecture Notes in Computer Science, pages 89–100, Pisa,
Italy, 1998. Springer-Verlag, Berlin.

4. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complementa-
tion in abstract interpretation. In A. Mycroft, editor, Static Analysis: Proceedings
of the 2nd International Symposium, volume 983 of Lecture Notes in Computer
Science, pages 100–117, Glasgow, UK, 1995. Springer-Verlag, Berlin.

5. A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato. Complemen-
tation in abstract interpretation. ACM Transactions on Programming Languages
and Systems, 19(1):7–47, 1997.

6. A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract interpreta-
tion for comparing static analyses. Theoretical Computer Science, 202(1&2):163–
192, 1998.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pages 269–282, 1979.

8. G. Filé and F. Ranzato. Complementation of abstract domains made easy. In
M. Maher, editor, Logic Programming: Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, MIT Press Series in Logic Pro-
gramming, pages 348–362, Bonn, Germany, 1996. The MIT Press.

9. R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: a domain
perspective. In M. Johnson, editor, Proceedings of the 6th International Con-
ference on Algebraic Methodology and Software Technology (AMAST’97), volume
1349 of Lecture Notes in Computer Science, pages 231–245, Sydney, Australia,
1997. Springer-Verlag, Berlin.

10. R. Giacobazzi, F. Ranzato, and F. Scozzari. Complete abstract interpreta-
tions made constructive. In J. Gruska and J. Zlatuska, editors, Proceedings of
23rd International Symposium on Mathematical Foundations of Computer Science
(MFCS’98), volume 1450 of Lecture Notes in Computer Science, pages 366–377.
Springer-Verlag, Berlin, 1998.

11. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott.
A Compendium of Continuous Lattices. Springer-Verlag, Berlin, 1980.

12. P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In
G. Levi, editor, Static Analysis: Proceedings of the 5th International Symposium,
volume 1503 of Lecture Notes in Computer Science, pages 99–114, Pisa, Italy, 1998.
Springer-Verlag, Berlin.

13. D. Jacobs and A. Langen. Static analysis of logic programs for independent AND
parallelism. Journal of Logic Programming, 13(2&3):291–314, 1992.

