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Abstract. We discuss the construction of proper widening operators
on several weakly-relational numeric abstractions. Our proposal differs
from previous ones in that we actually consider the semantic abstract
domains, whose elements are geometric shapes, instead of the (more con-
crete) syntactic abstract domains of constraint networks and matrices.
Since the closure by entailment operator preserves geometric shapes, but
not their syntactic expressions, our widenings are immune from the di-
vergence issues that could be faced by the previous approaches when
interleaving the applications of widening and closure. The new widen-
ings, which are variations of the standard widening for convex polyhedra
defined by Cousot and Halbwachs, can be made as precise as the pre-
vious proposals working on the syntactic domains. The implementation
of each new widening relies on the availability of an effective reduction
procedure for the considered constraint description: we provide such an
algorithm for the domain of octagonal shapes.

1 Introduction

Numerical properties are of great interest in the broad area of formal methods for
their complete generality and since they often play a crucial role in the definition
of static analyses and program verification techniques. In the field of abstract
interpretation, classes of numerical properties are captured by numerical abstract
domains. These have been and are widely used, either as the main abstraction
for the application at hand, or as powerful ingredients to improve the precision
of other abstract domains.

Among the wide spectrum of numerical abstractions proposed in the litera-
ture, the most famous ones are probably the (non-relational) abstract domain of
intervals [16] and the (relational) abstract domain of convex polyhedra [19]. As
far as the efficiency/precision trade-off is concerned, these domains occupy the
opposite extremes of the spectrum: on the one hand, the operations on convex

? This work has been partly supported by MURST projects “Constraint Based Ver-
ification of Reactive Systems” and “AIDA — Abstract Interpretation: Design and
Applications,” and by a Royal Society (UK) International Joint Project (ESEP)
award.



polyhedra achieve a significant level of precision, which is however countered
by a worst-case exponential time complexity, often leading to scalability prob-
lems; on the other hand, the great efficiency of the corresponding operations on
intervals is made unappealing by the fact that the obtained precision is often un-
satisfactory. This well-known dichotomy (which does not impede that, for some
applications, convex polyhedra or intervals are the right choices) has motivated
recent studies on several abstract domains that lie somehow between these two
extremes, and can therefore be called weakly-relational abstract domains. Ex-
amples include domains based on constraint networks [3–5], the abstract domain
of difference-bound matrices [25, 32], the octagon abstract domain [26], the ‘two
variables per inequality’ abstract domain [33], the octahedron abstract domain
[15], and the abstract domain of template constraint matrices [31]. Moreover,
similar proposals that are not abstractions of the domain of convex polyhedra
have been put forward, including the abstract domain of bounded quotients [3]
and the zone congruence abstract domain [27].

In this paper, we address the issue of the provision of proper widening op-
erators for these domains. For the abstract domain of convex polyhedra, all the
widenings that have been proposed are variations of, and/or improvements to,
what is commonly referred to as the standard widening [19, 22]. This is based on
the general widening principle “drop the unstable components” applied to con-
straints. Not surprisingly, most proposals for widening operators for the weakly
relational domains are based on the same principle and analogous to the standard
widening. For instance, for the domain of difference bound matrices mentioned
above, an operator meant to match the standard widening is given in [32]. Un-
fortunately, as pointed out in [25, 26], this operator is not a widening, since it
has no convergence guarantee. The reason is that closure by entailment, which
is systematically performed so as to provide a canonical form for the elements
and to improve the precision of several domain operations, has a negative inter-
action with the extrapolation operator of [32] that compromises the convergence
guarantee. Intuitively, what can happen is that, while the extrapolation operator
discards unstable constraints, the closure operation reinserts them (because they
were redundant): failure to drop such unstable constraints can (and, in practice,
quite often does) result in infinite upward iteration sequences. For this reason, it
is proposed in [25, 26] to apply the same operator given in [32] to the “syntactic”
version of the same abstract domain, that is, where closure is only very carefully
applied during the fixpoint computations.

We have taken a different approach and resolve the apparent conflict by
considering a “semantic” abstract domain whose elements are the geometric
shapes themselves. Since closure by entailment preserves the geometric shapes
(even though this does not preserve their syntactic expressions), the approach
is immune from the divergence problem described above. On the other hand, in
order to use the standard widening as the basis of the proposed widening, it is
important that we can compute reduced representations of the domain elements
that encode non-redundant systems of constraints. Thus the implementations of
any new widenings based on the semantic approach will need effective reduction
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procedures for the considered constraint description: here we provide such an
algorithm for the domain of octagonal shapes. As a by-product of our work
on verifying the correctness of this reduction algorithm, we noticed that the
algorithm for computing the strong closure of octagonal graphs as described
in [25] could be simplified with a consequential improvement in its efficiency.
This revised strong closure algorithm is also described here.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the domain of bounded difference graphs; a
domain of bounded difference shapes is presented in Section 4, where an alter-
native solution to the divergence problem is proposed; the generalization of the
above results to the case of octagons is the subject of Section 5, where we define
a new strong reduction procedure and an improved strong closure procedure for
octagonal graphs, as well as a semantic widening operator for octagonal shapes.
Section 6 concludes with a discussion of the results achieved. The proofs of all
the stated results can be found in [6].

2 Preliminaries

The reader is assumed to be familiar with the fundamental concepts of lattice
theory [13] and abstract interpretation theory [17, 18]. We refer the reader to the
classical works on the numeric domains of intervals [16] and convex polyhedra [19]
for the specification of the corresponding widening operators.

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that
d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A weighted directed graph

(graph, for short) G in N is a pair (N , w), where w : N ×N → Q∞ is the weight
function for G. A pair (ni, nj) ∈ N × N is an arc of G if w(ni, nj) < +∞; the
arc is proper if ni 6= nj .

A path π = n0 · · ·np in a graph G = (N , w) is a non-empty and finite
sequence of nodes such that (ni−1, ni) is an arc of G, for all i = 1, . . . , p; each
arc (ni−1, ni) where i = 1, . . . , p is said to be in the path π. The path π is
proper if all the arcs in it are proper. The path π is a proper cycle if it is a
proper path and n0 = np (so that p ≥ 2). The length of the path π is the
number p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path
π is

∑p

i=1
w(ni−1, ni) and denoted by w(π). The path π is a zero-cycle if it is

a proper cycle with 0 weight. A graph is consistent if it has no negative weight
cycles; it is zero-cycle free if all its proper cycles have strictly positive weights.

The set G of consistent graphs in N is partially ordered by the relation ‘E’
defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 E G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

When augmented with a bottom element ⊥ representing inconsistency, this par-
tially ordered set becomes a (non-complete) lattice G⊥ =

〈

G ∪ {⊥}, E,u,t
〉

,
where ‘u’ and ‘t’ denote the (finitary) greatest lower bound and least upper
bound operators, respectively.
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Definition 1. (Closed graph.) A consistent graph G = (N , w) is closed if the

following properties hold:

∀i ∈ N : w(i, i) = 0; (1)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
⊔

{

Gc ∈ G
∣

∣ Gc
E G and Gc is closed

}

.

When trivially extended so as to behave as the identity function on the bottom
element ⊥, shortest-path closure is a kernel operator (monotonic, idempotent
and reductive) on the lattice G⊥.

3 Systems of Bounded Differences

The typical way to simplify the domain of convex polyhedra is by restricting
attention to particular subclasses of linear inequalities. One possibility, which has
a long tradition in computer science [12], is to only consider potential constraints,
also known as bounded differences : these are restricted to take the form vi−vj ≤ d
or ±vi ≤ d. Systems of bounded differences have been used by the artificial
intelligence community as a way to reason about temporal quantities [2, 20],
as well as by the model checking community as an efficient yet precise way
to model and propagate timing requirements during the verification of various
kinds of concurrent systems [21, 24]. In the abstract interpretation field, the idea
of using an abstract domain of bounded differences was put forward in [3].

A finite system C of bounded differences on variables V = {v0, . . . , vn−1} can
be represented by a weighted directed graph G = (N0, w) where N0 = {0} ∪ V ,
0 /∈ V is the special variable, and the weight function w is defined, for each
vi, vj ∈ N0, by

w(vi, vj) :=



















min
{

d ∈ Q
∣

∣ (vi − vj ≤ d) ∈ C
}

, if vi 6= 0 and vj 6= 0;

min
{

d ∈ Q
∣

∣ (vi ≤ d) ∈ C
}

, if vi 6= 0 and vj = 0;

min
{

d ∈ Q
∣

∣ (−vj ≤ d) ∈ C
}

, if vi = 0 and vj 6= 0;

0, if vi = vj = 0.

Notice that we assume that min ∅ = +∞; moreover, unary constraints are en-
coded by means of the special variable, which is meant to always have value 0.
A possible representation of (the weight function of) the graph G is by means of
a matrix-like data structure called Difference-Bound Matrix (DBM) [12]. How-
ever, this representation provides no conceptual advantage over the isomorphic
graph (or constraint network [20]) representation. For this reason we will consis-
tently adopt the terminology and notation introduced in Section 2 for weighted
directed graphs. In particular, a graph encoding a consistent system of bounded
differences will be called a Bounded Difference Graph (BDG).
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The first fully developed application of bounded differences in the field of
abstract interpretation can be found in [32], where an abstract domain of closed
BDGs is defined. In this case, the shortest-path closure requirement was meant
as a simple and well understood way to obtain a canonical form for the do-
main elements by abstracting away from the syntactic details; since, basically,
it corresponds to the closure by entailment of the encoded system of bounded
differences. In [32] the specification of all the required abstract semantics oper-
ators is provided, including an operator that is meant to match the widening
operators defined on more classical numeric domains. This operator can be in-
terpreted either as a generalization for closed BDGs of the widening operator
defined on the abstract domain of intervals [16], or as a restriction on the do-
main of closed BDGs of the standard widening defined on the abstract domain
of convex polyhedra [19, 22]: its implementation is based on the following upper
bound operator on the set of consistent graph representations.

Definition 2. (Widening graphs.) Let G1 = (N , w1) and G2 = (N , w2) be

consistent graphs. Then G1∇G2 := (N , w), where the weight function w is de-

fined, for each i, j ∈ N , by

w(i, j) :=

{

w1(i, j), if w1(i, j) ≥ w2(i, j);

+∞, otherwise.

Unfortunately, as pointed out in [25, 26], when used in conjunction with shortest-
path closure, this extrapolation operator does not provide a convergence guar-
antee for fixpoint computations, hence it is not a widening. The reason is that,
whereas the closure operation adds redundant constraints to the input BDG, a
key requirement in the specification of the standard widening is that the first
argument polyhedron must be described by a non-redundant system of con-
straints.3 Thus we have a “conflict of interest” between the use of a convenient
canonical form for the abstract domain —a form that also allows for increased
precision of several domain operations— and the requirements of the widening.

The abstract domain of BDGs has been reconsidered in [25]. Differently from
[32], in [25] BDGs are not required to be closed. In this more concrete, syntactic
domain, the shortest-path closure operator maps each domain element into the
smallest BDG encoding the same geometric shape. Closure is typically used as a
preprocessing step before the application of most, though not all, of the abstract
semantic operators, allowing for improved accuracy in the results of the abstract
computation. The same widening operator proposed in [32] is also used in [25];
however, it is observed that this widening “could have intriguing interactions”
with shortest-path closure, therefore identifying the divergence issue faced in [32].
This observation led the author of [25] to the adoption of the syntactic domain
of BDGs, where closure is not enforced.

3 This requirement was sometimes neglected in recent papers describing the standard
widening on convex polyhedra; it was recently recalled and exemplified in [7, 8].
Note that a similar requirement is implicitly present even in the specification of the
widening on intervals.
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4 Bounded Difference Shapes

While the analysis of the divergence problem is absolutely correct, the solution
identified in [25] is sub-optimal since, as is usually the case, resorting to a syn-
tactic domain (such as the one of BDGs) has a number of negative consequences,
some of which will be recalled in Section 6.

To identify a simpler, more natural solution, we first have to acknowledge
that an element of our abstract domain should be a geometric shape, rather
than (any) one of its graph representations. To stress this concept, such an el-
ement will be called a Bounded Difference Shape (BDS). A BDS corresponds
to the equivalence class of all the BDGs representing it. The implementation of
the abstract domain can freely choose between these possible representations,
switching at will from one to the other, as long as the semantic operators are im-
plemented as expected. Notice that, in such a context, the shortest-path closure
operator is just a transparent implementation detail: on the abstract domain of
BDSs it corresponds to the identity function.

The other step towards the solution of the divergence problem is the simple
observation that a BDS is a convex polyhedron and the set of all BDSs is closed
under the application of the standard widening on convex polyhedra. Thus, no
divergence problem can be incurred when applying the standard widening to an
increasing sequence of BDSs. As mentioned in Section 3, a crucial requirement
in the specification of the standard widening is that the first argument polyhe-
dron is described by a non-redundant system of constraints [7, 8]. Thus it is not
surprising that using closed BDGs has problems since it is very likely that they
will encode redundant constraints. By contrast, we propose the use of a maximal
BDG in the equivalence class of BDGs representing the same geometric shape;
since such a graph encodes no redundant constraints at all.

Definition 3. (Reduced graph.) A consistent graph G1 is reduced if, for

each consistent graph G2 6= G1 such that G1 E G2, we have closure(G1) 6=
closure(G2). A reduction for the consistent graph G is any reduced graph Gr

such that closure(G) = closure(Gr).

Hence, a graph is reduced if it is maximal in the subset of graphs having the
same shortest-path closure. In order to provide a correct and reasonably efficient
implementation of the standard widening on the domain of BDSs, all we need
is a reduction procedure mapping a BDG representation into (any) one of the
equivalent reduced graphs. Such an algorithm was defined in [24] and called
shortest-path reduction. Basically, it is an extension of the transitive reduction
algorithm of [1] to the case of weighted directed graphs. Note that, since each
equivalence class may have many maximal elements, shortest-path reduction is
not a properly defined operator on the domain of BDGs. However, the shortest-
path reduction algorithm of [24] provides a canonical form as soon as we fix a
total order for the nodes in the graph.

In summary, the solution to the divergence problem for BDSs is to apply
the operator specified in Definition 2 to a reduced BDG representation of the
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first argument of the widening. From the point of view of the user, this will
be a transparent implementation detail: on the domain of BDSs, shortest-path
reduction is the identity function, as was the case for shortest-path closure.

4.1 On the Precision of the Standard Widening

The standard widening on BDSs could result, if used with no precautions, in
poorer precision with respect to its counterpart defined on the syntactic do-
main of BDGs. For increased precision, the specification of [25] prescribes two
conditions that the abstract iteration sequence must satisfy:

1. the second argument of the widening should be represented by a closed BDG
(note that, in this case, no divergence problem can arise);

2. the first BDG of the abstract iteration sequence G0 E G1 E . . . E Gi E . . .
should be closed too.

The effects of both improvements can be obtained also with the semantic
domain of BDSs. As for the first one, this can be applied as is, leading to an
implementation where the two arguments of the widening are represented by a
reduced BDG and a closed BDG, respectively. The result of such a widening op-
erator will depend on the specific reduced form computed for the first argument.
The second precision improvement can be achieved by applying the well-known
‘widening up to’ technique defined in [23] or its variation called ‘staged widening
with thresholds’ [14, 29]: in practice, it is sufficient to add to the set of ‘up to’
thresholds all the constraints of the shortest-path closure of the first BDG G0.
Further precision improvements can be obtained by applying any delay strategy
and/or the framework defined in [7, 8].

5 Octagonal Graphs and Shapes

From a theoretical point of view, the observations made in the previous section
are immediately applicable to any other weakly-relational numeric domain whose
elements are convex polyhedra and is closed with respect to the application of
the standard widening, therefore including the domains proposed in [15, 26, 31,
33]. From a practical perspective, the success of such a construction depends on
the availability of a reasonably efficient reduction procedure for the considered
subclass of constraints, because the minimization algorithm for arbitrary linear
inequality constraints is not efficient enough. In this section we provide such a
reduction procedure for the octagon abstract domain [26].

The octagon abstract domain allows for the manipulation of octagonal con-
straints of the form avi + bvj ≤ c, where a, b ∈ {−1, 0, +1} (the same class of
constraints was considered in [11], where octagons were called simple sections).
Bounded differences can then be used to express octagonal constraints by split-
ting each variable vi ∈ V into two forms: a positive form v+

i , interpreted as +vi;
and a negative form v−

i , interpreted as −vi. Thus, an octagonal constraint such as
vi +vj ≤ d can be translated into the bounded difference constraint v+

i −v−j ≤ d;
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alternatively, the same constraint can be translated into v+
j − v−i ≤ d. Note that

unary (octagonal) constraints such as vi ≤ d and −vj ≤ d can be encoded as
v+

i − v−i ≤ 2d and v−

j − v+
j ≤ 2d, respectively, so that the special variable 0 is

no longer needed.
In the following we assume that N± = {0, . . . , 2n−1} is a fixed and finite set

of nodes where, for all i = 0, . . . , n− 1, the node 2i represents the positive form
v+

i and 2i + 1 the negative form v−

i of the variable vi. Moreover, for all i ∈ N±,
ı denotes i+1 if i is even, and i−1 if i is odd. Thus, for all i ∈ N±, we also have
ı ∈ N± and ı = i. Therefore, any finite system of octagonal constraints on the
n variables V = {v0, . . . , vn−1} can be represented by a weighted directed graph
on the 2n nodes N±. Note that, for any i, j ∈ N±, as arcs (i, j) and (, ı) denote
equivalent expressions, the pair is said to be coherent. We restrict attention to
consistent systems of constraints and hence to consistent graphs where coherent
pairs of arcs have the same weight.

Definition 4. (Octagonal graph.) An octagonal graph in N± is any consis-

tent graph G = (N±, w) satisfying the coherence assumption:

∀i, j ∈ N± : w(i, j) = w(, ı). (3)

Thus any octagonal graph on the 2n nodes N± encodes a consistent system of
octagonal constraints on n variables. The set O of all octagonal graphs, with
the usual addition of the bottom element representing the empty octagon, is a
sub-lattice of G⊥, sharing the same least upper bound and greatest lower bound
operators. Note that, at the implementation level, coherence can be automati-
cally and efficiently enforced by letting arc (i, j) and arc (, ı) share the same
representation.

The octagon abstract domain developed in [26] is thus a syntactic domain
having octagonal graphs as elements. When dealing with octagonal graphs, one
has to remember the relation linking the positive and negative forms of each vari-
able: in particular, besides transitivity, a proper closure by entailment procedure
should also consider the following inference rule:

i − ı ≤ d1  − j ≤ d2

2(i − j) ≤ d1 + d2

(4)

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs: to this end, a modified closure procedure
is defined in [26], yielding strongly closed octagonal graphs.

Definition 5. (Strongly closed graph.) An octagonal graph G = (N±, w) is

strongly closed if it is closed and the following property holds:

∀i, j ∈ N± : 2w(i, j) ≤ w(i, ı) + w(, j). (5)

The strong closure of an octagonal graph G in N± is

Closure(G) :=
⊔

{

GC ∈ O
∣

∣ GC
E G and GC is strongly closed

}

.
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Similarly to shortest-path closure, strong closure is a kernel operator on the
lattice of octagonal graphs.

By repeating the reasoning of the previous section, we define the semantic
abstract domain of octagonal shapes, whose elements are equivalence classes of
octagonal graphs representing the same geometric shape. Hence, strong closure
maps an octagonal graph representation of a non-empty octagonal shape into the
minimum element of the corresponding equivalence class. The dual procedure,
mapping the octagonal graph into (any) one of the maximal elements in its
equivalence class, is called strong reduction.

Definition 6. (Strongly reduced graph.) An octagonal graph G1 is strongly
reduced if, for each octagonal graph G2 6= G1 such that G1 E G2, we have

Closure(G1) 6= Closure(G2). A strong reduction for the octagonal graph G is

any strongly reduced octagonal graph GR such that Closure(G) = Closure(GR).

Note that, in the above definition, we only compare G1 with other octagonal

graphs. Thus, we explicitly disregard those trivial redundancies that are due
to the coherence assumption. This is not a real problem because, as discussed
before, any reasonable implementation will automatically and efficiently filter
away these kinds of redundancies.

5.1 A Strong Reduction Procedure for Octagonal Graphs

In this section we generalize the shortest-path reduction algorithm of [24] so as to
obtain a strong reduction procedure for octagonal graphs. Clearly, the algorithm
of [24] cannot be used without modifications, since it takes no account of the
redundancies caused by the new constraint inference rule (4). Nonetheless, the
high-level structure of the strong reduction procedure is the same as that defined
in [24] for shortest-path reduction:

1. Compute the closure by entailment of the constraint graph;
2. Partition the nodes into equivalence classes based on equality constraints;
3. Decompose the graph so as to separate those arcs that link different equiv-

alence classes (encoding only inequalities) from the partition information
(encoding the equivalence classes themselves, i.e., all the equalities);

4. Reduce the subgraph that gives constraints on different equivalence classes;
5. Reduce the partition information;
6. Merge the results of steps 4 and 5 to obtain the reduced constraint graph.

We now describe each of the above steps, formally stating the correctness of the
overall procedure.

Step 1 of the algorithm can be performed by applying the strong closure
procedure defined in [26].

Step 2 is also easily implemented by observing that, in a strongly closed
octagonal graph, equality constraints correspond to proper zero-cycles having
length two.
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Definition 7. (Zero-equivalence.) Let G = (N±, w) be a strongly closed oc-

tagonal graph. The nodes i, j ∈ N± are zero-equivalent in G, denoted i ≡G j, if

and only if w(i, j) = −w(j, i).

While step 6 carries over from BDGs to octagonal graphs, the formal defini-
tion of steps 3–5 of the reduction algorithm is more difficult for octagonal graphs
than it was for BDGs, as it requires some understanding of the structure of the
zero-equivalence classes.

As a first observation, note that i ≡G j if and only if ı ≡G . Therefore, if
E ⊆ N± is a zero-equivalence class for the strongly closed octagonal graph G,
then E := { ı ∈ N± | i ∈ E } is also a zero-equivalence class for G. We say that E
is non-singular if E ∩E = ∅, and singular if E = E ; there is at most one singular
zero-equivalence class in G. We associate to each zero-equivalence class E ⊆ N±

a leader `E := min E ; the class having the leader in positive (resp., negative) form
will be said to be a positive (resp., negative) zero-equivalence class. Thus, the
singular zero-equivalence class, if present, is always positive and, for non-singular
zero-equivalence classes E and E , we have `

E
= `E .

We are now ready to provide a formal specification for step 3 of the strong
reduction algorithm. As was the case in [24], the first subgraph resulting from the
decomposition, relating nodes in different zero-equivalence classes, is obtained
by only connecting the leaders. However, we do not connect the leader of the
singular zero-equivalence class to the other leaders. The second subgraph only
encodes those constraints relating nodes in the same zero-equivalence class.

Definition 8. (Non-singular leaders and zero-equivalence subgraphs.)
Let G = (N±, w) be a strongly closed octagonal graph and L ⊆ N± the set

of leaders of the non-singular zero-equivalence classes for G. The non-singular
leaders’ subgraph of G is the graph L = (N±, wL), where the weight function

wL is defined, for each i, j ∈ N±, by

wL(i, j) :=

{

w(i, j), if i = j or {i, j} ⊆ L;

+∞, otherwise.

The zero-equivalence subgraph of G is the graph E = (N±, wE), where the

weight function wE is defined, for each i, j ∈ N±, by

wE(i, j) :=

{

w(i, j), if i ≡G j;

+∞, otherwise.

Step 4 of the strong reduction algorithm is implemented by checking, for
each proper arc in the non-singular leaders’ subgraph, whether it can be obtained
from the other arcs by a single application of the constraint inference rules. Once
again, note that we disregard redundancies caused by the coherence assumption.

Definition 9. (Strongly atomic arc and subgraph.) Let G = (N±, w) be

an octagonal graph. An arc (i, j) of G is atomic if it is proper and, for all
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k ∈ N± \ {i, j}, w(i, j) < w(i, k) + w(k, j). The arc (i, j) is strongly atomic if

it is atomic and either i =  or 2w(i, j) < w(i, ı) + w(, j).

The strongly atomic subgraph of G is the graph A = (N±, wA) where the

weight function wA is defined, for all i, j ∈ N±, by

wA(i, j) =

{

w(i, j), if (i, j) is strongly atomic in G;

+∞, otherwise.

The implementation of step 5 of the algorithm, i.e., the strong reduction of
the zero-equivalence subgraph, is performed by reducing each zero-equivalence
class in isolation. Once again, we exploit the total ordering defined on N±.

E z0 z1 . . . zm

E z0 z1
. . . zm

Fig. 1. Strong reduction for non-singular zero-equivalence classes

The strong reduction for a positive non-singular zero-equivalence class E fol-
lows that of [24]: it creates a single zero-cycle connecting all nodes in E following
their total ordering, where the weights of the component arcs are as in the
strong closure of the graph. By the coherence assumption, the nodes in the cor-
responding negative zero-equivalence class E are automatically connected in the
opposite order. Figure 1 shows the arcs in the strong reduction of both E and
E , where E = {z0, . . . , zm} is the positive class and where z0 < · · · < zm. The
strong reduction for a singular zero-equivalence class E is similar except that
there is now a single zero-cycle connecting all the positive and negative nodes
in E . Figure 2 shows the strong reduction for the singular zero-equivalence class
E = {z0, z0, . . . , zm, zm}, where z0 < z0 < · · · < zm < zm. In both Figures 1
and 2, the dashed arcs are those that can be obtained from the non-dashed ones
by application of the coherence assumption.

The following definition formalizes the above observations.

Definition 10. (Zero-equivalence reduction.) Let G = (N±, w) be a strongly

closed octagonal graph and let w′ be the weight function defined, for all i, j ∈ N±,

as follows: if i, j ∈ E for some positive zero-equivalence class E of G and
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E

z0 z1 . . . zm

z0 z1
. . . zm

Fig. 2. Strong reduction for the singular zero-equivalence class

– if E = {z0, . . . , zm} is non-singular, assuming z0 < · · · < zm,

w′(i, j) :=











w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = zm, j = z0 and m > 0;

+∞, otherwise;

– if E = {z0, z0, . . . , zm, zm} is singular, assuming z0 < z0 < · · · < zm < zm,

w′(i, j) :=











w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = z0, j = z0 or i = zm, j = zm;

+∞, otherwise;

and w′(i, j) := +∞, otherwise. Then, the zero-equivalence reduction for G is

the octagonal graph Z = (N±, wZ), where, for each i, j ∈ N±,

wZ(i, j) := min
{

w′(i, j), w′(, ı)
}

.

The final step 6 of the strong reduction algorithm is implemented by com-
puting the greatest lower bound AuZ, where A is the strongly atomic subgraph
of L and Z is the zero-equivalent reduction of E, as obtained at steps 4 and 5
of the algorithm.

Theorem 1. Given an octagonal graph G, the strong reduction algorithm com-

putes a strong reduction for G.

If n is the cardinality of the original set V of variables, then steps 1 and 4
of the algorithm have worst-case complexity in O(n3), while all the others steps
are in O(n2). Thus, the overall procedure has cubic complexity. As was the case
for the reduction procedure of [24], once the ordering of variables is fixed, the
strong reduction algorithm returns a canonical form for octagonal graphs.

5.2 An Improved Strong Closure Algorithm

The formal proof of Theorem 1 led to a new result regarding the strong closure
operator for octagonal graphs. The strong closure algorithm formalized in [26, 30]
performs n local propagation steps: in each step, a rather involved variant of the
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constraint propagation in the Floyd-Warshall algorithm is followed by another
constraint propagation corresponding to the new inference rule (4). A finely
tuned implementation of this algorithm [28] performs 20n3 + 24n2 coefficient
operations (additions and comparisons), where n is the dimension of the vector
space. It turns out that the interleaving of the two kinds of propagation steps
is not needed: the same final result can be obtained by the application of the
classical Floyd-Warshall closure algorithm followed by a single local propagation
step using the constraint inference rule (4).

Theorem 2. Let Gc = (N±, wc) be a closed octagonal graph. Consider the

graph GS = (N±, wS), where wS is defined, for each i, j ∈ N±, by

wS(i, j) := min
{

wc(i, j), wc(i, ı)/2 + wc(, j)/2
}

.

Then GS = Closure(Gc).

By coupling the above optimization with the classical Floyd-Warshall algorithm,
we obtain a much simpler implementation performing 16n3 +4n2 +4n coefficient
operations: the saving is always above 20% and it is above 30% for n ≤ 8.

5.3 A Semantic Widening for Octagonal Shapes

A correct implementation of the standard widening on octagonal shapes is ob-
tained by computing any strong reduction of the octagonal graph representing
the first argument. As in the case of BDSs, for maximum precision the strongly
closed representation for the second argument should be computed. Even better,
by adopting the following minor variant, we obtain a “truly semantic” widening
operator for the domain of octagonal shapes.

Definition 11. (Widening octagonal shapes.) Let S1, S2 ∈ ℘(Rn), where

∅ 6= S1 ⊆ S2, be two octagonal shapes represented by the strongly reduced octag-

onal graph G1 and the strongly closed octagonal graph G2, respectively. Let also

S ∈ ℘(Rn) be the octagonal shape represented by the octagonal graph G1 ∇ G2.

Let dim(T ) denote the affine dimension of shape T . Then we define

S1 ∇ S2 :=

{

S2, if dim(S1) < dim(S2);

S, otherwise.

By refraining from applying the graph-based widening when the affine dimension
of the geometric shapes is increasing, the operator becomes independent from
the specific strongly reduced form computed, i.e., from the total ordering defined
on the nodes of the graphs. Also note that the test dim(S1) < dim(S2) can be
efficiently decided by checking whether the nodes of the two octagonal graphs
are partitioned into different collections of zero-equivalence classes.

Theorem 3. The operator ‘∇’ of Definition 11 is a proper widening on the

domain of octagonal shapes. Let ‘∇s’ be the standard widening on the domain of

convex polyhedra, as defined in [22]. Then, for all octagonal shapes S1, S2 ∈ Rn

such that ∅ 6= S1 ⊆ S2, we have S1 ∇ S2 ⊆ S1 ∇s S2.

13



The definition of a semantic widening for the domain of BDSs is obtained by
simply replacing, in Definition 11, the strongly reduced and strongly closed oc-
tagonal graph representations with the reduced and closed BDG representations,
respectively. Then a result similar to Theorem 3 holds for BDSs.

6 Conclusion

By considering the semantic abstract domains of geometric shapes, instead of
their syntactic representations in terms of constraint networks, we have shown
how proper widening operators can be derived for several weakly-relational nu-
meric abstractions. For what concerns the efficient representation of octagonal
shapes by means of octagonal graphs, we have specified and proved correct a
strong reduction procedure, as well as a more efficient strong closure procedure.

It is worth stressing that both the syntactic and the semantic abstract do-
mains are well defined and may be safely adopted for the implementation of a
static analysis application. Nonetheless, it can be argued that using a semantic
abstract domain provides several advantages, as already pointed out in [25, Sec-
tion 5] where the domain of BDGs is compared to the domain of closed BDGs.4

For instance, it is noted that the domain of closed BDGs allows for the specifica-
tion of a nicer, injective meaning function; also, the least upper bound operator
on BDGs is not the most precise approximation of the union of two geometric
shapes. In summary, the discussion in [25, Section 5] makes clear that the solu-
tion to the divergence problem for the abstract iteration sequence was the one
and only motivation for adopting a syntactic domain.

One disadvantage of syntactic abstract domains concerns the user-level in-
terfaces of the corresponding software implementations. Namely, the user of a
syntactic abstract domain (e.g., the developer of a specific static analysis ap-
plication using this domain) has to be aware of many details that, in principle,
should be hidden by the implementation. As an example, consider the shortest-
path closure and reduction procedures for BDGs, which the user might rightfully
see as semantics-preserving operations. As a matter of fact, for the syntactic do-
main of BDGs, these are not semantics-preserving: their application affects both
the precision and the convergence of the abstract iteration. In such a situation,
the documentation of the abstract domain software needs to include several
warnings about the correct usage of these operators, so as to avoid possible
pitfalls. In contrast, when adopting the semantic domain of BDSs, both the clo-
sure and reduction operators may be excluded from the public interface while
the implementation can apply them where and when needed or appropriate.
Such an approach is systematically pursued in the implementation of the Parma

Polyhedra Library [10] (PPL, http://www.cs.unipr.it/ppl), free software dis-
tributed under the GNU General Public License; future releases of the library
will support computations on the domains of BDSs and octagonal shapes.

Another potential drawback of the adoption of a syntactic abstract domain
can be found in the application of domain refinement operators. As an example,

4 Similar observations, tailored to the case of octagons, are also in [26, Section VII].

14



consider the application of the finite powerset operator [9] to the domains of
BDGs and BDSs, so as to obtain two abstract domains that are able to repre-
sent finite disjunctions of the corresponding abstract elements. In both cases, by
providing the widenings on BDGs and BDSs with appropriate finite convergence
certificates [9], it will be possible to lift them to corresponding widenings on the
powerset domains. However, when upgrading the syntactic domain, avoidable
redundancies will be incurred, since different disjuncts inside a domain element
may represent the same geometric shape; furthermore, these “duplicates” can-
not be systematically removed, since by doing so we could change the value of
the finite convergence certificate of the powerset element, possibly breaking the
convergence guarantee of the lifted widening.

The shortest-path reduction algorithm of [24] has also been considered in the
PhD thesis of A. Miné [30] as a tool for the computation of hollow (i.e., sparse)
representations for BDGs, as originally proposed in [24], so as to obtain mem-
ory space savings. The author appears not to identify the positive interaction
between reduction and widening and, as a consequence, he conjectures that the
computation of hollow representations could compromise the convergence of the
abstract iteration sequence (see [30, Section 3.8.2]). An adaptation of the reduc-
tion algorithm for the case of octagonal graphs is defined in [30, Section 4.5.2]:
this differs from the one proposed in Section 5.1 and may fail to obtain a strongly
reduced graph in the sense of Definition 6.

The theoretical results concerning weighted directed graphs hold when the
data type adopted for the representation of weights allows for exact computa-
tions. If a floating-point data type is considered, then most of these results will
be broken due to rounding errors, so that the implementation of a truly semantic
abstract domain will not be possible. Nonetheless, the (approximate) reduction
operators allow for the removal of most of the syntactic redundancies.
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