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bagnara@cs.unipr.it

3 School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U. K.
hill@scs.leeds.ac.uk

Abstract. We study the problem of an efficient and precise sharing
analysis of (constraint) logic programs. After recognizing that neither
plain Sharing nor its non-redundant (but equivalent) abstraction scale
well to real programs, we consider the domain proposed by C. Fecht [12,
13]. This domain consists of a combination of Pos with a quite weak
abstraction of Sharing. While verifying that this domain is truly remark-
able, in terms of both precision and efficiency, we have revealed significant
precision losses for several real programs. This loss concerns groundness,
pair-sharing, linearity, but not freeness. (Indeed, we have proved that a
wide family of abstractions of Sharing do not incur precision loss on free-
ness.) We define a simple domain for sharing analysis that supports the
implementation of several widening techniques. In particular, with this
domain it is straightforward to turn Fecht’s idea into a proper widening.
More precise widenings are also considered. However, in spite of thor-
ough experimentation we found that the first widening we propose is
hard to improve on, provided Pos is included in the domain. We show
that when Pos is not included, a widening based on cliques of sharing
pairs is preferred.
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1 Introduction

For (constraint) logic programs, the main purpose of sharing analysis is to detect
pair-sharing; that is, which pairs of variables are definitely independent. In a pre-
vious work [3] we observed that the Sharing domain of Jacobs and Langen [15] is
redundant for pair-sharing. This achievement has important theoretical conse-
quences (some of which will be exploited in the present work) and also a practical
interest. In fact, it allows to keep sharing-sets as small as possible without any
precision loss and to replace the star-union operation, whose complexity is expo-
nential, by self-bin-union, which is quadratic. Even though significant speed-ups
have been observed in practice (up to three orders of magnitude on the analy-
sis of real programs), the problem of scalability of the analysis, both in terms
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of precision (that is, the number of pairs that are detected as being definitely
independent) and of resource usage, was still to be solved.

In this paper we address this problem. However, in order to give the right
focus to the present work, we need to explain in detail what we aim at.

1.1 Analyses and Analyzers

The experimental part of our work is devoted to the construction of practical,
precise and efficient data-flow analyzers for constraint logic-based languages.
Some issues connected with the emphasized words deserve clarification.

A “practical analyzer” is one that has a chance to be turned into a useful tool.
On one hand this means that compromising assumptions about the languages
and the programs to be analyzed must be avoided as far as possible. Researchers
in our area (including the present authors) have often made assumptions that
are falsified by the implemented languages and their programs. This state of
affairs can be justified in a relatively immature field, but this is no longer the
case for the data-flow analysis of logic programs. Therefore we believe that we
should now rid ourselves of most, if not all, limiting assumptions. We must take
into account, for instance, that implemented languages perform unification that
omits the occur-check ; that programmers do exploit “nasty constructs” such as
assert/1 and call/1; that real programs make use of all kinds of built-ins
provided by the language; as well as libraries, foreign language interfaces etc.

Many applications of data-flow analysis, such as semantics-based program-
ming environments, need very precise information about a program’s behavior in
order, say, to assist the programmer during development, debugging, and certi-
fication. In the literature there are several papers reporting on the experimental
evaluation of data-flow analyzers. In some of them one can find analysis’ times
well under the second for non-trivial, lengthy programs. What can one conclude
from the fact that a program of several thousands lines can be analyzed in a cou-
ple of seconds on a desktop computer? If one excludes the possibility outlined
above that special assumptions have been exploited so that the results cannot
be generalized, the answer is probably that more precision is attainable. One of
the important applications of data-flow analysis is in computer-assisted program
verification or certification. In this field, what is not done by the computer must
be done by hand. Who will spend hours to complete proofs by hand when the
computer can do them in the same or even double the time? Similar remarks
hold also for optimized compilation, if one takes into account that (1) only pro-
duction versions deserve to be compiled with the optimization passes turned on,
(2) a production version is compiled once and used thousands, perhaps millions
of times, and (3) computers do work overnight.

So we do not participate in the race for the fastest ever analysis, especially
when done (as is often the case) at the expense of precision. The real problem
is how to increase precision yet avoid the concrete effects of exponential com-
plexity. Consider groundness analysis, for instance. The cruder domains do not
pose any efficiency problem. In contrast, the more refined domains for ground-
ness, such as Pos, work perfectly until you bump into a “nasty” program clause



(i.e., with more than, say, fifty variables for which the analyzer knows too little
at that point of the analysis). When this happens, Pos will exhaust your com-
puter’s memory. One would like to have a more linear, or stable behavior. The
right solution, as indicated by Cousot and Cousot [11], is not to revert to the
simpler domains. We should use instead complex domains together with widen-
ing/narrowing operators. With such techniques we can try to limit precision
losses to those cases where the cost of the complexity implied by these refined
domains exceeds the available resources.

Ideally, it should be possible to endow data-flow analyzers with a knob. The
user could then “rotate the knob” in order to control the complexity/precision
ratio of the system. The widening/narrowing approach can make this possibility
a reality. Unfortunately, the design of widening operators tends somewhat to
escape the realm of theoretical analysis, and thus, in the authors’ opinion, it
has not been studied enough. Indeed, the development of successful widening
operators requires, perhaps more than other things, extensive experimentation.

1.2 Fecht’s Work

C. Fecht [12, 13] proposed a domain ↓SH for sharing analysis based on an ab-
straction of the usual Jacobs and Langen domain SH [15]. This domain is the
same as SH but the concretization of a set of variables in ↓SH is equivalent to
the concretization of its powerset in SH . The advantage of ↓SH is not just that
an element can be normalized by removing all but the maximal sets, thereby
reducing its size, but because it enables more efficient (but less precise) abstract
operations than those used for SH and its non-redundant version SH ρ [3]. More-
over, for computing the abstract unification in ↓SH , Fecht describes two useful
optimizations that improve efficiency without losing any further precision.

One of the problems with the domain ↓SH is that it does not capture ground
dependencies. These are important for tracking sharing dependencies and, hence,
sharing. Fecht solved this by deriving the ground dependencies through the Pos
component of the combined domain Pos + ↓SH and also Pos + ↓SH + Lin.
Fecht tested both these domains and showed that, with his benchmarks, they
compared favorably with equivalent ones using SH for the sharing and ground
dependencies. He reported a negligible loss of precision and demonstrated that
large programs could be analyzed using both Pos + ↓SH and Pos + ↓SH + Lin
in a reasonable time scale. The results, although inconclusive, demonstrated real
promise for an analyzer based on the ↓SH approach. We say the results were
inconclusive. The reason for this is that only a few non-trivial programs were
tested and, for most of these, precision was not compared. (Fecht’s SH analyzer
could not cope with large programs possibly due to the problem that there was
no redundancy elimination.) We note that Fecht did not present the domain
↓SH as a widening1 and did not discuss how a widening based on his domain
might be achieved.
1 Indeed the approach of Fecht falls under the category “use a simpler domain” which,

as clearly explained in [11], is both contrary and inferior to the approach “use a
complex domain with widening” that is advocated in this paper.



1.3 Combining Domains

In Fecht’s work, and also in the work presented here, the combination of a sharing
domain with Pos is the simplest possible. For any operation of the analysis, ab-
stract mgu in particular, the Pos component is evaluated first. All sharing groups
containing at least one variable that is definitely ground according to the result-
ing Pos formula are removed from the sharing component. This combination is
made particularly efficient by the ready availability of definite groundness infor-
mation allowed by the GER representation introduced in [5], where obtaining the
set of definitely ground variables (and also the classes of groundness-equivalent
variables) is a constant-time operation. Note that, theoretically speaking, more
sophisticated combinations of Pos with Sharing are possible [8].

Following several other authors, we observed in [3], that, from a practical
point of view, sharing analysis without freeness or linearity does not make sense.
Both these properties allow, in a significant proportion of cases, to dispense with
costly operations (such as star-union or, better, self-bin-union [4]) increasing
the precision of sharing information at the same time, and this with very little
overhead. Moreover, freeness is a useful property in itself. For details on how the
combination with freeness is realized, we refer the reader to [17, 19]. See [7] for
the combination of both freeness and linearity information.

1.4 Experimental Results

We have compared the domain of Fecht enhanced with freeness information, that
is Pos+↓SH +Free+Lin, with the same domain where ↓SH is substituted by the
non-redundant sharing domain SH ρ [3]. The precision of the analysis is measured
by summing results over the success-patterns, for goal-independent (GI) analysis,
and in both the call- and success-patterns, for goal-dependent (GD) analysis, for
each procedure. For the domains tested, that is, Pos+↓SH +Free+Lin, abbrevi-
ated as P+DSH+F+L, and Pos+SH ρ+Free+Lin, abbreviated as P+NSH+F+L,
the precision results consist of: the total number of definitely non-sharing pairs
of program variables, NSP, the total number of definitely ground variables, GV,
and the total number of definitely linear variables that are possibly not ground,
LV. The freeness results are not compared because, as we have shown in [19],
freeness is not affected, neither by abstracting SH to ↓SH , nor by redundancy
elimination.

The comparison involved all the 92 Prolog programs in our current test-suite.
On 73 of them there was no difference in precision. This is really remarkable
considering that the ↓SH approximation is rather crude.

The combined domain Pos + ↓SH + Lin is isomorphic to ASub + Pos (where
ASub is the pair-sharing domain of Søndergaard [18]), and the domain Pos+↓SH
is exactly the domain ASub+ defined by Cortesi and Filé in [9]. However, they
considered this domain only en passant and only from a theoretical point of view.
In other words, Fecht has the whole merit for having trusted on this domain from
a precision/efficiency perspective.

The results for the remaining 19 programs are summarized in Table 1. The



Goal-Independent Goal-Dependent

P+DSH+F+L P+NSH+F+L P+DSH+F+L P+NSH+F+L

Program NSP GV LV NSP GV LV NSP GV LV NSP GV LV

aqua c 10749 ?406 2753 ? ? ? 16306 ?1186 2028 ? ? ?

bmtp 1451 136 972 1461 136 976

bryant 784 10 146 1088 10 223 1033 141 58 1781 141 58

caslog 6456 ?466 1588 7027 ?474 1615 11073 ?1625 1079 ? ? ?

cg parser 136 31 159 138 31 160

dpos an 92 40 76 95 40 76 183 76 53 183 76 53

lg sys 7274 645 2260 7334 645 2261

nand 473 23 182 475 23 182 1341 481 70 1341 481 70

nbody 261 52 104 262 52 104 477 151 41 478 151 41

oldchina 2185 285 1163 2193 285 1166 3985 802 760 ? ? ?

quot an 288 37 160 288 37 160 639 159 122 646 159 122

reg 774 42 272 796 42 284 207 67 52 207 67 52

rubik 70 ?55 110 73 ?76 93 174 ?110 124 201 ?200 103

scc 63 0 37 63 0 37 503 174 46 506 174 46

sfecht 28 0 14 85 0 31 221 0 47 278 0 64

simple an 370 27 139 373 27 139 572 82 76 639 82 76

slice 427 126 453 428 126 453

spsys 788 81 386 800 81 394

trs 32 6 22 53 6 22 73 ?12 20 104 ?12 20

Table 1. Pos + ↓SH + Free + Lin vs Pos + SH ρ + Free + Lin: precision.

blank entries in the goal-dependent columns are for those program whose goal-
dependent analysis is pointless. This usually happens because the program con-
tains a procedure call to an unknown procedure (e.g., by means of call/1). The
China analyzer (i.e., our system [1]) promptly recognizes these cases and reverts
to a goal-independent analysis. This is one of the reasons why focusing only on
goal-dependent analyses is, in our opinion, a mistake. The other reason being
that the ability of analyzing libraries once and for all is desirable and, more
generally, so is the separate analysis of different program modules, especially in
very large projects. Focusing only on goal-independent analyses is the opposite
mistake: GD analyses, when possible, are more precise than GI ones. For these
reasons, we insist in presenting experimental results for both.

A star symbol (?) in the GV column signifies that one of the widenings we
employ on the GER representation of Pos fired. This is a widening imposing
a limit on the number of ROBDD nodes simultaneously allocated. It makes
approximations of the R (ROBDD) component when this limit is reached2, while
retaining full precision on the G (definitely ground variables) and the E (classes
of equivalent variables) components [2, 5]. The scarcity of stars in this and the
following tables, shows how seldom this widening is actually required.3

2 That is, by approximating x ∧ y with x or with y, x ∨ y with true and so forth.
3 Indeed, the newest version of China avoids also the widening for the caslog program.



Apart from sfecht, which is a synthetic benchmark designed in order to show
that arbitrary precision losses are possible with ↓SH , Table 1 illustrates how
heavy precision penalties can be incurred by ↓SH even on real programs. Most
notably, for bryant we see a precision loss as high as 28% on goal-independent
analysis (GI) and 42% on goal-dependent analysis. In addition, simple an loses
10% (GD), while trs loses 40% (GI) and 30% (GD). Note that, for these pro-
grams, the Pos widening fires only on the GD analysis of trs. The rubik program
shows an interesting phenomenon: here the Pos widening fires incurring a preci-
sion loss of exactly 1 ground variable (a critical one indeed), but SH ρ saves the
day by recovering the lost groundness information. A similar thing happens for
caslog. Thus, the widely held opinion (now proved in [8]) that Sharing does not
help Pos on groundness does not carry through when widenings are considered.

While space limitations do not allow to report full timing information, we
can easily confirm Fecht’s claim: the speedup is dramatic. Just a few examples:
the fixpoint computation time in seconds for bmtp, caslog, lg sys, and spsys
drops from 15.6, 614.7, 735.9, and 2.2, to 0.8, 2.0, 3.3, and 0.6, respectively. All
the experiments described in this paper were performed on a PC equipped with
an AMD K6@400MHz, 128MB of main memory, and running Linux 2.2.1.

1.5 The Present Work

The objective of this work, after having recognized that Fecht’s approach incurs
significant precision loss on several real programs, is to improve the state of the
art in mode analysis, in general, and sharing analysis in particular.

We moved from the observation that, when the sharing-sets become large,
then they are at the same time heavy to manipulate and, at least for a subset
of the variables involved, light as far as information content is concerned. We
thus introduce a new representation for set-sharing made of two components.
They are both sharing-sets. However, while the second one is interpreted in the
usual way, the first component records worst-case sharing assumptions of sets of
variables.

We define the operations required for the analysis with this representation,
and we prove them correct. We also introduce two safe optimizations that turn
out to be very effective in practice.

We then show how the proposed representation supports a variety of widen-
ings. One of those is a simple adaptation of Fecht’s idea. Others are much more
sophisticated and involve only a limited precision loss. However, in spite of thor-
ough experimentation (of which only a tiny fraction can be reported here) we
found that the first widening we propose is hard to improve on, provided Pos
is included in the domain. This suggests that what is lost by this widening is
mostly constituted by ground dependencies, and these can be recovered (and
improved) by the Pos component. We show that when Pos is not included, a
widening based on cliques of sharing pairs is preferred. Since some authors advo-
cate the use of Sharing without coupling it with Pos (we do not share this view),
this is an important message for them.



Among the contributions of this paper we would like to stress the follow-
ing: we present a data-flow analysis for groundness, freeness, pair-sharing, and
linearity, with unprecedented levels of precision and efficiency. With the imple-
mentation described in this paper, the China analyzer is able to honor one of its
most important design goals: never crash (e.g., by exhausting all the available
memory), always terminate with a correct result and in reasonable time.

The paper is structured as follows: In Section 2 we briefly recall the re-
quired notions and notations, even though we assume general acquaintance with
the topics of abstract interpretation, sharing analysis and groundness analysis.
Section 3 introduces a simple domain for sharing analysis that supports the im-
plementation of several widening techniques. In particular, with this domain it
is straightforward to turn Fecht’s idea into a proper widening. This is done in
Section 4, after the introduction of an infinite family of widenings and the proof
of their safety. More precise widenings are also considered. The experimental
evaluation of the proposed approach is presented in Section 5. Section 6 con-
cludes with some final remark. The reader is referred to [19] for full proofs of all
the results presented in this paper, and for more material on this subject.

2 Preliminaries

For any set S, ℘(S) denotes the power set of S and #S is the cardinality of S.
A monotone and idempotent self-map ρ : P → P over a poset 〈P,�〉 is called
a closure operator (or upper closure operator) if it is also extensive, namely
∀x ∈ P : x � ρ(x). In this paper, we assume there is a fixed and finite set of
variables of interest denoted by VI . If t is a first-order term over VI , then vars(t)
denotes the set of variables in t. Bind denotes the set of equations of the form
x = t where x ∈ VI and t is a first-order term over VI . Note that we do not
impose the occur-check condition x /∈ vars(t), since we have proved in [14] that
this is not required to ensure correctness of the operations of Sharing and its
derivatives. The following definition is a simplification of the standard definition
for the Sharing domain [10, 14, 15] where the set of variables of interest is fixed
and finite.

Definition 1. (The set-sharing domain SH .) The set SH is defined as
SH def= ℘(SG), where SG def=

{
S ∈ ℘(VI )

∣∣ S 6= ∅

}
.

We now introduce the required abstract operations over SH .

Definition 2. (Some abstract operations over SH .) The binary function
proj : SH × ℘(VI ) → SH projects an element of SH onto a subset of VI : if
sh ∈ SH and V ∈ ℘(VI ), then proj(sh, V ) def= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ∈ ℘(VI ), the extraction of the relevant com-
ponent of sh with respect to V is encoded by the function rel : ℘(VI )×SH → SH
defined as rel(V, sh) def= {S ∈ sh | S ∩ V 6= ∅ }.



For sh ∈ SH and V ∈ ℘(VI ), the exclusion of the irrelevant component of
sh with respect to V is encoded by the function rel : ℘(VI )× SH → SH defined
as rel(V, sh) def= sh \ rel(V, sh).

The star-union function (·)? : SH → SH , is given, for each sh ∈ SH , by
sh? def=

{
S ∈ SG

∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S = T1 ∪ · · · ∪ Tn
}
.

For each sh1, sh2 ∈ SH , the binary union function bin: SH × SH → SH is
given by bin(sh1, sh2) def= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

We also use the self-bin-union function sbin: SH → SH which is given by
sbin(sh) def= bin(sh, sh)

The function amgu captures the effects of a binding on an SH element. Let
(x = t) ∈ Bind, sh ∈ SH , Vx = {x}, Vt = vars(t), and Vxt = Vx ∪ Vt. Then

amgu(sh, x = t) def= rel(Vxt, sh) ∪ bin
(
rel(Vx, sh)?, rel(Vt, sh)?

)
.

The domain SH captures set-sharing. However, the property we wish to de-
tect is pair-sharing and, for this, it has been shown that SH includes unwanted
redundancy [3].

Definition 3. (Redundancy.) Let sh ∈ SH and S ∈ SG. S is redundant for
sh if and only if #S > 2 and pairs(S) =

⋃{
pairs(T )

∣∣ T ∈ sh, T ⊂ S
}

where

pairs(S) def=
{
P ∈ ℘(S)

∣∣ #P = 2
}
.

Definition 4. (The domain SH ρ.) The function ρ : SH → SH is given, for
each sh ∈ SH , by ρ(sh) def= sh ∪ {S ∈ SG | S is redundant for sh }. Then
SH ρ = ρ(SH ) =

{
ρ(sh)

∣∣ sh ∈ SH
}

.

We use the notation sh1 =ρ sh2 and sh1 ⊆ρ sh2 to denote ρ(sh1) = ρ(sh2) and
ρ(sh1) ⊆ ρ(sh2), respectively. The advantage of SH ρ is that we can replace the
star-union operation in the definition of the amgu by self-bin-union without loss
of precision [3]. In particular, it is shown that

amgu(sh, x = t) =ρ rel(Vxt, sh) ∪ bin
(

sbin
(
rel(Vx, sh)

)
, sbin

(
rel(Vt, sh)

))
. (1)

3 A New Representation for Set-Sharing

We introduce here a new representation for set-sharing. It is made up of two
components: one is the original set-sharing domain while the other represents all
possible subsets of each of its elements and, for this reason, is called a clique-set.

Definition 5. (Clique-set.) A clique-set is an element of CL and CL def= SH .

An element of a clique-set is called a clique.

Definition 6. (Sharing-sets representation for clique-sets.) The (over-
loaded) functions ↓ : SG → SH and ↓ : CL → SH are given, for each C ∈ SG
and each cl ∈ CL, by ↓C def= ℘(C) \ {∅} and ↓ cl def=

⋃
C∈cl ↓C. Observe that ↓

is an upper closure operator over SH . If cl ∈ CL and C ∈ SG then we say that
C is down-redundant in cl if there exists C ′ ∈ cl such that C ⊂ C ′.



The addition or removal of down-redundant elements to or from a clique-set
makes no difference to the sharing-sets that it represents. So, a clique represents
a worst case4 pair-sharing condition on the set of variables it contains.

In an implementation, as we need to keep the clique-sets as small as possible,
down-redundant cliques are removed via a normalization function.

Definition 7. (Normalization of clique-sets.) The normalization function
|·| : CL→ CL is given, for each cl ∈ CL, by

|cl | def= cl \ {C ∈ cl | C is down-redundant for cl }.

We now define abstract unification over clique-sets and state its soundness.

Definition 8. (Abstract unification over cliques.) For each V ∈ ℘(VI )
and each cl ∈ CL, the function relCL : ℘(VI )× CL→ CL is given by

relCL(V, cl) def= {C \ V | C ∈ cl } \ {∅}.

The function amguCL : CL × Bind → CL is given, for each cl ∈ CL and each
(x = t) ∈ Bind, by

amguCL(cl , x = t) def= relCL(Vxt, cl) ∪ bin
(
sbin(clx), sbin(cl t)

)
,

where clx = rel(Vx, cl), cl t = rel(Vt, cl), Vx = {x}, Vt = vars(t), and, finally,
Vxt = Vx ∪ Vt.

Theorem 1. For each cl ∈ CL and each (x = t) ∈ Bind,

amgu
(
↓ cl , x = t

)
⊆ρ ↓ amguCL(cl , x = t).

Because cliques represent their downward closure, amguCL introduces down-
redundant cliques when both the relevant components are non-empty. As already
observed (without proof) and implemented by Fecht, there are two optimizations
for computing the amguCL that enable useful efficiency improvements. These are
reformulated in Section 3.1 for the domains defined here.

We next define our new sharing domain for widening.

Definition 9. (The SH W representation.) The set SH W is given by

SH W def=
{

(cl , sh)
∣∣ cl ∈ CL, sh ∈ SH

}
and is ordered by v defined as follows, for each shw , (cl1, sh1), (cl2, sh2) ∈ SH W:

(cl1, sh1) v (cl2, sh2) ⇐⇒ (cl1 ⊆ cl2) ∧ (sh1 ⊆ sh2).

It can be seen that SH W is a complete lattice.
The sharing-set represented by an element of SH W is given by the function

I(·) : SH W → SH defined, for each (cl , sh) ∈ SH W, by I
(
(cl , sh)

) def= ↓ cl ∪ sh.
The normalization of an element of SH W is given by |·| : SH W → SH W defined,
for each (cl , sh) ∈ SH W, by |(cl , sh)| def=

(
|cl |, sh \ ↓ cl

)
.

4 While this terminology is due to Langen [16], our definition differs from the one he
used.



The normalization removes unnecessary elements from a description in SH W. We
now define an upper closure operator % inducing an equivalence relation on the
elements of SH W.

Definition 10. (The %(SH W) domain.) The function % : SH W → SH W is given,
for each shw ∈ SH W with shw def= (cl , sh), by %(shw) def=

(
ρ(↓ cl), ρ

(
I(shw)

))
.

Then % is an upper closure operator for SH W [19]. We will use the notation
shw1 =% shw2 to denote %(shw1) = %(shw2) and shw1 v% shw2 to denote
%(shw1) v %(shw2).

The orderingv% is used for modeling the relative precision between widenings
in Section 4. When shw1 =% shw2, shw1 and shw2 behave the same way as far
as representing pair-sharing and groundness is concerned.

Proposition 1. If shw ∈ SH W, then I(shw) =ρ I
(
%(shw)

)
and shw =% |shw |.

Definition 11. (Operations over SH W.) For each (cl , sh), (cl i, shi) ∈ SH W,
i = 1, 2, and each V ∈ ℘(VI ), the functions relW, relW : ℘(VI ) × SH W → SH W

and ∪W,binW : SH W × SH W → SH W, the functions sbinW : SH W → SH W and
amguW : SH W × Bind → SH W are defined as follows:

relW
(
V, (cl , sh)

) def=
(
rel(V, cl), rel(V, sh)

)
,

relW
(
V, (cl , sh)

) def=
(
relCL(V, cl), rel(V, sh)

)
,

(cl1, sh1) ∪W (cl2, sh2) def=
(
cl1 ∪ cl2, sh1 ∪ sh2

)
,

binW
(
(cl1, sh1), (cl2, sh2)

) def=
(
bin(cl1, cl2) ∪ bin(cl1, sh2) ∪ bin(sh1, cl2),

bin(sh1, sh2)
)
,

sbinW
(
(cl , sh)

) def= binW
(
(cl , sh), (cl , sh)

)
=
(
sbin(cl) ∪ bin(cl , sh), sbin(sh)

)
,

amguW(shw , x = t) def= relW(Vxt, shw)

∪W binW

(
sbinW

(
relW(Vx, shw)

)
,

sbinW(relW(Vt, shw)
))
,

where Vx = {x}, Vt = vars(t), and Vxt = Vx ∪ Vt.

The next two theorems, proven in [19], state the correctness of amguW and
that normalization does not affect the correctness or precision of amguW.

Theorem 2. For each shw ∈ SH W and each (x = t) ∈ Bind,

amgu
(
I(shw), x = t

)
⊆ρ I

(
amguW(shw , x = t)

)
.

Theorem 3. For each shw ∈ SH W and each (x = t) ∈ Bind,

amguW(shw , x = t) =% amguW
(
|shw |, x = t

)
.



In general, =% is not a congruence for amguW and precision may be lost
when the first component of shw is non-empty and the second component of
shw contains redundant elements. Further work on this aspect is ongoing.

In Eq. (1), the basic amgu operation is defined using the SH ρ domain. How-
ever, when we have freeness and linearity information it has been proven that
we can avoid one or both of the self-bin-unions occurring as components of the
binary union operation. The question arises as to whether this optimization can
be applied when we have the amguW operation for the SH W domain. That is,
can we avoid the corresponding sbinW operations under the same linearity and
freeness conditions? The answer is yes, we can generalize Theorem 2 and show
that such an optimization is sound. However, the optimization may lose precision
and further work on this aspect is ongoing.

3.1 Optimizations

We can optimize the computation of amguW in two ways. To explain these,
we need some extra notation. Let: shw = (cl , sh) ∈ SH W and x = t ∈ Bind ;
Vx = {x}, Vt = vars(t), and Vxt = Vx ∪ Vt; shwx = (clx, shx) = relW(Vx, shw)
and shw t = (cl t, sht) = relW(Vt, shw); and, finally,

shw rel = (cl rel, shrel) = binW
(
sbinW(shwx), sbinW(shw t)

)
.

Theorem 4. If neither shwx = (∅,∅) nor shw t = (∅,∅), then

relW(Vxt, shw) =
(
rel(Vxt, cl) ∪ cl ′, rel(Vxt, sh)

)
,

where cl ′ ⊆ ↓ cl rel.

Theorem 5. Suppose that Cx =
⋃

clx, Ct =
⋃

cl t, Sx =
⋃

shx, St =
⋃

sht,
Axt = bin

(
sbin(shx), sbin(sht)

)
, Bxt = bin(shx, sht), Bx = bin(clx, shx), and

Bt = bin(cl t, sht). Let also

shw opt
rel

def=


(
{Cx ∪ Ct ∪ Sx ∪ St},∅

)
, if clx 6= ∅, cl t 6= ∅;(

{Cx ∪ St} ∪Bx ∪Bxt, Axt
)
, if clx 6= ∅, cl t = ∅;(

{Ct ∪ Sx} ∪Bt ∪Bxt, Axt
)
, if clx = ∅, cl t 6= ∅;

(∅, Axt), if clx = ∅, cl t = ∅.

Then,

shw rel =%

{
shw opt

rel , if shwx 6= (∅,∅), shw t 6= (∅,∅);
(∅,∅), otherwise.

Both these results are proven in [19]. These can then be combined to provide
the following optimization (also proven in [19]) for the computation of amguW.



Corollary 1. Assuming the notation used in Theorem 5, then

amguW(shw , x = t)

=%

{(
rel(Vxt, cl), rel(Vxt, sh)

)
∪W shw opt

rel , if shwx 6= (∅,∅), shw t 6= (∅,∅);
relW(Vxt, shw), otherwise.

Observe that this result applies to the basic amguW operation as given in
Definition 11. When one or both of the self-bin-unions here is omitted due to
available freeness and linearity information, then =% in the corollary becomes
v% and we may lose further precision. Further work on this subject is ongoing.

4 Widening Set-Sharing

We can now define a family of unary widenings over SH W.

Definition 12. (Widening for SH W.) The function ∇ : SH W → SH W is a
widening for SH W if, for each shw ∈ SH W, we have shw v% ∇ shw.

The following result establishes the safety of such widening operators.

Theorem 6. For each shw ∈ SH W and each (x = t) ∈ Bind we have

amguW(shw , x = t) v% amguW
(
∇ shw , x = t

)
.

The obvious corollary is that any analysis using these widenings, possibly
a different widening at each step of the analysis, is correct. After widening we
always normalize the resulting description to provide a smaller representation.
Moreover, it is also shown in [19] that similar results hold for each of the com-
ponent operators, such as binW, for amguW. Thus we can (and do) safely widen
and normalize within the actual computation of amguW. The analyzer has the
freedom of using whichever widening suits its current needs. Those needs can be
dictated by a number of heuristics. Of course, really useful widenings are guarded
by some applicability condition. The simplest conditions are those based on the
cardinality of the sets in the SH W description. For example, for each widening
∇ and for suitable choices of f : N2 → N and n ∈ N, one can define

∇f,n(cl , sh) def=

{
∇(cl , sh), if f(# cl ,# sh) > n,

(cl , sh), otherwise.

We order the widenings in the obvious way. If ∇1 and ∇2 are two widenings
and for all shw , ∇1(shw) v% ∇2(shw), then let ∇1 v% ∇2, meaning that ∇1 is
more precise than ∇2.

At the top end of the scale of widenings we have two panic widenings. They
are defined by

∇p(cl , sh) def=
(

cl ∪
{⋃

sh
}
,∅
)
,

∇P (cl , sh) def=
({⋃

cl ∪
⋃

sh
}
,∅
)
.



The panic widenings are present in the China implementation, with very strict
guards, only to obey the “never crash” motto: no real program we have access
to makes them fire.

At the other extreme we have very soft widenings.

Definition 13. (Cautious widening.) A widening ∇ : SH W → SH W is called
a cautious widening if, for each shw ∈ SH W,

I(∇ shw) =ρ I(shw).

Thus, a widening is cautious if it is invariant with respect to the set-sharing
representation. In particular, it never introduces new pair-sharings nor new sin-
gletons in the description. However, information is lost as soon as the operations
for the analysis given by Definition 11 are considered. For example, consider
two elements of SH W: shw1

def=
(
∅, {x, y, z, xy, xz, yz}

)
and shw2

def=
(
{xyz},∅

)
so that we have I(shw1) =ρ I(shw2) but %(shw1) 6= %(shw2). While sharing
between y and z is not contemplated in relW

(
{x}, shw1

)
=
(
∅, {x, xy, xz}

)
, the

same does not hold for relW
(
{x}, shw2

)
= shw2.

A useful cautious widening is the gentle widening, defined as follows. Consider
shw ∈ SH W, and let us define the undirected graph G

def= (N,E) such that
N

def=
{
x
∣∣ {x} ∈ I(shw)

}
and E def=

{
(x, y)

∣∣ {x, y} ∈ I(shw), x, y ∈ N,x 6= y
}

.
Then

∇G shw def=
(
{C1, . . . , Ck}, sh

)
,

where C1, . . . , Ck are all the maximal cliques of G. Note that, although the
problem of enumerating all the maximal cliques of an undirected graph is NP-
complete, this does not seem to be a problem for the graphs arising during the
analysis of even the biggest real programs. For the experimentation we used
the algorithm by Bron and Kerbosch [6], which is Algorithm 457 in the ACM
collection, even though more efficient algorithms are present in the literature.

Of intermediate precision is the widening based on Fecht’s idea, which we
will call Fecht’s widening. It is simply given by

∇F (cl , sh) def= (cl ∪ sh,∅).

This widening is not cautious. However, it does not introduce new pairs. As it
can introduce new singletons, it may destroy ground dependencies, and this is
why this kind of widening is better coupled with Pos.

5 Experimental Evaluation

For the experimental evaluation of the Fecht’s widening ∇F , precision is com-
pared with respect to the non-redundant sharing domain SH ρ. In fact, this
approach is almost always as precise as the optimal one using SH ρ.



Goal-Independent Goal-Dependent

P+WSH+F+L P+NSH+F+L P+WSH+F+L P+NSH+F+L

Program NSP GV LV NSP GV LV NSP GV LV NSP GV LV

aqua c 11147 ?406 2757 ? ? ? 16364 ?118 8 2028 ? ? ?

caslog 6553 ?474 1615 7027 ?474 1615 11338 ?1739 1062 ? ? ?

oldchina 2193 285 1166 2193 285 1166 3985 802 760 ? ? ?

quot an 288 37 160 288 37 160 639 159 122 646 159 122

Table 2. Pos + SH W + Free + Lin vs Pos + SH ρ + Free + Lin using ∇F100: precision.

For this and the following experiments, the widening was guarded by a size
threshold of 100 on the second component (i.e., the normal sharing part). In other
words, immediately before each abstract mgu operation the analyzer operated
redundancy elimination, as usual. If after this the operand (cl , sh) was such
that # sh > 100, then (cl , sh) was substituted by ∇F (cl , sh). Let us call this
guarded widening ∇F100. The results are reported in Table 2. Note that only the
programs where the analysis with SH W gives different results from the analysis
with SH ρ are reported in the table. Thus, for all the programs in the test-suite,
the analysis with SH W using the (rather drastic) widening ∇F100 gives the same
results obtainable (at a much higher cost) with SH ρ, apart from those in Table 2.
For aqua c we obtain termination in reasonable time, as with Fecht’s technique
but with higher precision. The same holds for the GD analysis of caslog and
oldchina. However, while the GI analysis of oldchina is “optimal” (meaning
“as precise as SH ρ”), this is not the case for caslog. Non-optimality happens
also for the GD analysis of quot an.

Obviously, ∇F100 is never less precise than Fecht’s domain. What is surprising,
however, is that it is almost as efficient. The timings and the number of applica-
tions of the widening are reported in Table 3 for all the programs such that at
least one timing was above 0.4 seconds. The first observation to be made is that
the widening comes into play only a few times on the test-suite. On average, it
is safe to say that on 99.9% of cases the sharing-sets remain of reasonable size
(100 groups or less in this experiment). Table 3 says that this definition of “rea-
sonable” makes sense: for those programs where widening does not take place
the difference in performance between Fecht’s domain and our SH W with the
∇F100 widening is very limited. Analysis of aqua c shows that limiting precision
may cost (less precision means more self-bin-unions to perform, thus even less
precision, . . . ).

The results on the precision of ∇F100 are so good that we are left with a
ridiculous test-suite for checking how much we can improve by using a more
cautious widening. Our experimentation showed that the gentle widening ∇G100

improves over ∇F100 only on quot an. The same does, but at a lower price, a
bigger widening ∇g that is defined as ∇G apart from the fact that singletons
are disregarded. In other words, the undirected graph considered for ∇g, given



Goal-Independent Goal-Dependent

P+DSH+F+L P+WSH+F+L P+DSH+F+L P+WSH+F+L

Program T T #W T T #W

action 0.1 0.1 1 1.1 1.4 1

aircraft 0.2 0.2 0 0.7 0.7 0

aqua c 10.4 10.9 56 48.6 40.7 3

bmtp 0.8 0.9 6

bryant 0.1 0.1 0 0.6 1.4 1

caslog 2.0 2.5 17 17.7 19.2 22

chat80 0.9 1.0 2 4.3 4.9 6

chat parser 0.4 0.4 1 1.7 1.8 1

dpos an 0.2 0.2 0 0.5 0.8 1

eliza 0.1 0.1 0 0.2 0.4 1

4lg sys 3.3 3.9 23

log interp 0.2 0.4 2 0.7 0.9 1

mixtus 0.9 0.9 4

oldchina 1.2 1.4 11 7.7 8.3 4

parser dcg 0.2 0.1 0 0.7 0.6 0

peephole1 0.1 0.1 0 0.4 0.7 1

pets an 0.8 0.9 4 4.5 4.5 1

peval 0.2 0.3 3 0.4 0.5 1

plaiclp 0.7 0.7 3

press 0.1 0.1 0 0.4 0.7 0

quot an 0.3 0.4 0 1.3 1.7 1

read 0.1 0.1 0 0.3 0.6 1

reg 0.4 0.4 4 0.4 0.4 1

sdda 0.1 0.1 1 0.2 0.4 2

sim 0.2 0.3 2 0.7 0.8 2

simple an 0.1 0.2 0 0.6 0.9 2

slice 0.6 0.7 2

spsys 0.6 0.7 5

trs 0.2 0.3 2 0.5 0.6 1

unify 0.1 0.1 0 0.5 0.7 0

Table 3. Pos + ↓SH + Free + Lin vs Pos + SH W + Free + Lin using ∇F100: timings (T)
and number of (sharing) widenings (#W).

shw ∈ SH W, is G def= (N,E) such that E def=
{

(x, y)
∣∣ {x, y} ∈ I(shw), x 6= y

}
and N

def=
{
x
∣∣ (x, y) ∈ E or (y, x) ∈ E

}
.

Now, suppose we perform sharing analysis without combining the sharing
domain with Pos. Then using a more or less precise widening makes a difference.
In Table 4 are reported the results (fixpoint time and number of definitely not-
sharing pairs) for SH W with ∇F100, SH W with ∇g100, and plain SH ρ. The GD
analysis of bryant is particularly eloquent example of the superiority of more
cautious widenings when Pos is not used.



Goal-Independent Goal-Dependent

SH W,∇F100 SH W,∇g100 SH ρ SH W,∇F100 SH W,∇g100 SH ρ

Program T NSP T NSP T NSP T NSP T NSP T NSP

aqua c 4.1 10703 15.0 10899 ? ? 27.6 15754 37.8 15754 ? ?

bryant 0.2 1066 0.2 1066 0.2 1066 1.0 1033 1.0 1781 0.9 1781

caslog 2.1 6506 4.5 6539 744.4 7027 17.9 11054 21.8 11054 ? ?

chat80 0.6 2536 1.1 2536 9.1 2536 4.4 3923 7.7 3926 285.7 5111

eliza 0.1 49 0.1 49 0.1 49 0.3 109 0.5 113 0.5 113

lg sys 2.7 7328 7.9 7334 725.1 7334

oldchina 0.9 2187 2.6 2189 5.0 2193 5.9 3936 9.5 3936 ? ?

pets an 0.6 2525 1.3 2563 19.8 2569 3.7 4664 5.3 4664 1006.5 4710

quot an 0.3 288 0.4 288 0.3 288 1.4 639 3.2 646 3.1 646

simple an 0.1 373 0.1 373 0.1 373 0.8 572 1.3 639 17.6 639

slice 0.6 426 0.9 428 0.8 428

Table 4. SH W with ∇F100 vs SH W with ∇g100 vs plain SH ρ: timings and precision.

6 Conclusion

We believe we have made a significant step forward towards the solution of
the problem of practical, precise, and efficient sharing analysis of (constraint)
logic programs. We have studied a new representation for set-sharing that allows
for the incorporation of a variety of widenings. Extensive experimentation has
shown that one of these widenings, which is based on an idea of C. Fecht, pro-
vides seemingly hard to beat precision and performance, when combined with
Pos. When this combination is not performed, we have also shown that “more
cautious” widenings offer more precision at an acceptable extra-cost.

We are now studying how to increase precision of the analysis beyond the
limits of set-sharing. This includes more precise tracking of freeness and linearity,
and the efficient incorporation of structural information into the analysis domain.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125
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