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ABSTRACT
Sharing, a domain due to D. Jacobs and A. Langen for the
analysis of logic programs, derives useful aliasing informa-
tion. It is well-known that a commonly used core of tech-
niques, such as the standard integration of Sharing with free-
ness and linearity information, can significantly improve the
precision of Sharing. However, a number of other propos-
als for refined domain combinations have been circulating
for years. One feature that is common to these proposals is
that they do not seem to have undergone a thorough exper-
imental evaluation even with respect to the expected preci-
sion gains. In this paper, we discuss and/or experimentally
evaluate: helping Sharing with definitely ground variables
computed with Pos; the incorporation of explicit structural
information into the domain of analysis; more sophisticated
ways of integrating Sharing and Pos; the issue of reorder-
ing the bindings in the computation of the abstract mgu;
an original proposal concerning the addition of a domain
recording the set of variables that are deemed to be ground
or free; a more refined way of using linearity to improve the
analysis; the issue of whether tracking compoundness allows
to compute more precise sharing information; and, finally,
the recovery of hidden information in the combination of
Sharing with the usual domain for freeness.

Categories and Subject Descriptors
F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program Analysis

General Terms
Experimentation, Measurement, Performance

∗The work of the first two authors has been partly sup-
ported by MURST project “Certificazione automatica di
programmi mediante interpretazione astratta”. The work
of the third author has been partly supported by EPSRC
under grant M05645.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

Keywords
Mode Analysis, Sharing Analysis, Abstract Interpretation

1. INTRODUCTION
In the execution of a logic program, two variables are

aliased at some program point if they are bound to terms
that share a common variable. In logic programming, a
knowledge of the possible aliasing between variables has
some important applications.

Information about variable aliasing is essential for the ef-
ficient exploitation of AND-parallelism [10, 21, 24, 32]. In-
formally, two atoms in a goal are executed in parallel if, by
a mixture of compile-time and run-time checks, it can be
guaranteed that they do not share any variable. This im-
plies the absence of binding conflicts at run-time, that is, it
will never happen that the processes associated to the two
atoms try to bind the same variable.

Another significant application is occur-check reduction
[18, 33]. It is well-known that many implemented logic pro-
gramming languages (e.g., almost all Prolog systems) omit
the occur-check from the unification procedure. Occur-check
reduction amounts to identifying the unifications where such
omission is safe, and, for this purpose, information on the
possible aliasing of program variables is crucial.

Aliasing information can also be used indirectly in the
computation of other interesting program properties. For
instance, the precision with which freeness information can
be computed depends on the precision with which aliasing
can be tracked [8, 11, 19, 27, 28, 31].

Notice that, sometimes, the property under investigation
is called “definite independence”. Two variables are inde-
pendent if they are bound to terms that have no variables in
common. That is, if two variables are not possibly aliased
then they are definitely independent and vice versa. Thus
analyzers for possible aliasing and definite independence are
effectively equivalent.

Before continuing, a brief note on terminology: a variable
is compound if it is bound to a non-variable term, it is ground
if it is bound to a term containing no variables, it is free if
it is not compound, it is linear if it is bound to a term that
does not contain multiple occurrences of a variable.

In logic programming the expression “sharing informa-
tion” often refers to a mixture of groundness, aliasing, free-
ness and linearity information, since groundness, freeness
and linearity are properties that allow a more precise char-
acterization of the sharing of program variables. Thus, what



is called “a domain for sharing” usually captures ground-
ness, aliasing, and quite often also freeness and linearity. A
“sharing analysis” is an analysis based on a sharing domain.
Notice that this idiom is nothing more than a historical ac-
cident: as we will see in the sequel, compoundness and other
kinds of structural information could also be included in the
collective term “sharing information”.

Sharing, a domain due to D. Jacobs and A. Langen [23, 24,
28], is based on the concept of sharing-set. A sharing-set,
which is a set of sets of variables, represents, in the con-
text of a set of variables of interest, groundness, groundness
dependencies, possible aliasing between variables, and more
complex sharing-dependencies among the variables that are
involved in the execution of a logic program [4].

Even though Sharing is, in a sense, remarkably precise, it
is well-known that more precision is attainable by combin-
ing Sharing with other domains. In the PhD thesis of Lan-
gen [28], it is shown that linearity can greatly improve the
accuracy of sharing analysis. The synergy attainable from
the integration between aliasing and freeness information
was pointed out, for the first time, by K. Muthukumar and
M. Hermenegildo [32]. These two enhancements have been
combined into a single proposal by W. Hans and S. Winkler
in [20] and are now widely accepted (see also [8]), so that
nobody would seriously think to perform sharing analysis
without them.

In this paper, we investigate eight sharing analysis tech-
niques and/or enhancements which have potential for im-
proving the precision of the sharing information over and
above that obtainable using the classical combination of
Sharing with the usual domains for freeness and linearity
(denoted by Free and Lin, respectively). These include the
combination of Sharing with other domains and using more
powerful abstract semantic operators. Although many of
these enhancements have been circulating for years, they do
not seem to have undergone a thorough experimental eval-
uation.

Our investigation is primarily from the point of view of
precision. Reasonable efficiency is also clearly of interest but
this has to be secondary to the question as to whether preci-
sion is significantly improved and, only if this is established,
should better implementations be researched. One of the
enhancements is the integration of structural information in
Sharing and an important contribution of this paper is that
it shows both the feasibility and the positive impact of this
combination. Note, however, that precise sharing analysis
techniques are valuable even if rather inefficient, provided
they are feasible. While inefficiency may prevent their adop-
tion in production analyzers, they can help in assessing the
precision of the more competitive techniques. Consider a
program P and suppose that, at the program points of in-
terest in P , there are p pairs of variables that, in principle,
may be aliased. Using a certain sharing analysis technique
T we prove that, indeed, n of these p pairs cannot be aliased.
Since we know nothing about the p − n remaining pairs, it
is difficult to say something on the precision of T . Let us
call i the number of independent variable pairs that T could
not discover, and a the number of pairs that are aliased in
some computation path of P . We have p − n = i + a and
the precision of T is high when i is small. A complex analy-
sis technique T ′ may be useful, regardless of its efficiency, in
order to provide a lower bound for i, which is otherwise only
limited from above by p − n. In other words, if technique

T ′ cannot supersede technique T in production analyzers, it
can still be useful for assessing the quality of T .

The experimental part of this work has been conducted
with the China analyzer [2]. China is a data-flow analyzer
for CLP(HN ) languages (i.e., Prolog, CLP(R), clp(FD) and
so forth), HN being an extended Herbrand system where
the values of a numeric domain N can occur as leaves of the
terms. China, which is written in C++, performs bottom-
up analysis deriving information on both call-patterns and
success-patterns by means of program transformations and
optimized fixpoint computation techniques.

The comparison involved a test-suite of 160 programs.
This includes several real programs of respectable size and is
the biggest one ever reported in the literature on data-flow
analysis of (constraint) logic programs.

Because of the exponential complexity of Sharing, a practi-
cal data-flow analysis using this domain can only be achieved
by resorting to widening operators [17, 34]. However, this
would affect the precision of the analysis and add unwanted
noise to our experimental results. Thus, for an unbiased as-
sessment of the different domain combination enhancements,
we disabled all the widenings available to China. The conse-
quence of this is that the analysis of a few programs did not
terminate in reasonable time or absorbed memory beyond
acceptable limits. In fact, this prevented any comparisons
for only 8 of the benchmark programs, and in all exper-
imental evaluations we have compared results on at least
140 programs. Thus, when a program does not appear in a
comparison table, this can mean one of two things: one or
both the analyses required excessive time or exhausted the
available memory and had to be stopped, or both completed
but with identical results.

For space reasons, not all the details of the experimental
work (such as a description of the constantly growing bench-
mark suite) could be included here. The interested reader
can find much more information on the subject at the URI
http://www.cs.unipr.it/China.

This paper represents the latest step in our systematic
investigation of many diverse issues concerning the Sharing
domain. We first examined the adequacy of Sharing with
respect to the property of interest, that is, pair-sharing [6].
Prior to this work, Sharing had been accepted and imple-
mented as it was, but in [4] we proved that Sharing is redun-
dant for pair-sharing and we identified the weakest abstrac-
tion of Sharing that can capture pair-sharing and groundness
with the same degree of precision. One notable advantage of
this abstraction is that the costly star-union operator is no
longer necessary. For this reason, all the experimental work
for this paper was conducted using this abstraction instead
of the original Sharing domain of Jacobs and Langen [23]. In
[22] we have proved the soundness, idempotence, and com-
mutativity of Sharing. Most importantly, these results have
been established, for the first time, without assuming that
the analyzed language performs the occur-check in the uni-
fication procedure. This closed a long-standing gap, as all
the works on the use of Sharing for the analysis of Prolog
programs had always disregarded this problem. The prob-
lem of scalability of Sharing, still retaining as much precision
as possible, was tackled in [34], where a family of widenings
is presented that allows to achieve the desired goal. Finally,
in [35] we have studied the decomposition of Sharing and
its non-redundant counterpart via complementation. This
work has shed new light on the relation between these do-



mains and PS (the usual domain for pair-sharing) and Def
(the domain of definite Boolean functions), and on the use
of complementation to obtain (minimal) decompositions.

The present paper is structured as follows. In Section 2,
we define some notation and briefly recall the definitions as-
sociated with Sharing. In each of the next eight sections,
we discuss different enhancements and precision optimiza-
tions for Sharing. Section 3 considers the combination of Pos
with Sharing; Section 4, investigates the effect of including
explicit structural information by means of the Pattern(·)
construction; Section 5 discusses possible heuristics for re-
ordering the bindings so as to maximize the precision of
Sharing with Free and Lin; Section 6 studies further opti-
mizations with respect to the combination of Sharing and
Pos; Section 7 describes a new mode ‘ground or free’ for
propagation with Sharing, Free and Lin, and discusses the
precision improvements obtained; Section 8 researches a sim-
ple idea for improving the efficiency and precision of Sharing
with Lin; Section 9 looks at the question of whether com-
poundness information would be useful for precision gains;
and Section 10 studies the possible exploitation of hidden
information available in the Sharing plus Free domain. Sec-
tion 11 concludes with some final remarks.

2. PRELIMINARIES
For any set S, ℘(S) denotes the powerset of S. For ease of

presentation, we assume there is a finite set of variables of
interest denoted by VI . If t is a syntactic object then vars(t)
and mvars(t) denote the set and the multiset of variables in
t, respectively. If a occurs more than once in a multiset
M we write a A M . Bind denotes the set of equations of
the form x = t where x ∈ VI and t 6= x is a first-order
term over VI . Note that we do not impose the occur-check
condition x /∈ vars(t), since we have proved in [22] that
this is not required to ensure correctness of the operations
of Sharing and its derivatives. The following definitions are
a simplification of the standard definitions for the Sharing
domain [13, 22, 24] and assume that the set of variables of
interest is VI .1

Definition 1. (The set-sharing domain SH .) The set

SH is defined by SH
def
= ℘(SG), where SG

def
= ℘(VI ) \ {∅}.

SH is ordered by subset inclusion. Thus the lub and glb of
the domain are set union and intersection, respectively.

Definition 2. (Abstract operations over SH .) Projec-
tion of an element of SH onto a subset of VI is encoded by
the binary function proj : SH × ℘(VI ) → SH : if sh ∈ SH
and V ∈ ℘(VI ), then

proj(sh, V )
def
= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }

∪
{
{x}

∣∣ x ∈ VI \ V
}
.

For each sh ∈ SH and each V ∈ ℘(VI ), the extraction of
the relevant component of sh with respect to V is given by

1Note that, during the analysis process, the set of variables
of interest is continuously expanded (when solving clause’s
bodies) and restricted (when abstract descriptions are pro-
jected onto the variables occurring in clause’s heads). How-
ever, at any given time the set of variables of interest is
fixed. By consistently denoting this set by VI we simplify
the presentation, since we can omit the set of variables of
interest to which an abstract description refers.

the function rel : ℘(VI )× SH → SH defined as

rel(V, sh)
def
= {S ∈ sh | S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ∈ ℘(VI ), the function
rel : ℘(VI )×SH → SH gives the irrelevant component of sh
with respect to V . It is defined as

rel(V, sh)
def
= sh \ rel(V, sh).

The function (·)? : SH → SH , also called star-union, is
given, for each sh ∈ SH , by

sh?
def
=

{
S ∈ SG

∣∣∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S =

n⋃
i=1

Ti

}
.

For each sh1, sh2 ∈ SH , the function bin: SH×SH → SH ,
called binary union, is given by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

We also use the self-bin-union function sbin: SH → SH ,
which is given, for each sh ∈ SH , by

sbin(sh)
def
= bin(sh, sh).

The function amgu: SH×Bind → SH captures the effects
of a binding on an SH element. Assume (x = t) ∈ Bind ,
sh ∈ SH , Vx = {x}, Vt = vars(t), and Vxt = Vx ∪ Vt. Then

amgu(sh, x = t)
def
= rel(Vxt, sh)

∪ bin
(
rel(Vx, sh)?, rel(Vt, sh)?

)
. (1)

The domain SH captures set-sharing. However, the prop-
erty we wish to detect is pair-sharing and, for this, it has
been shown in [6] that SH includes unwanted redundancy.
The same paper introduces an upper-closure operator ρ on

SH and the domain PSD
def
= ρ(SH ), which is the weakest

abstraction of SH that is as precise as SH as far as tracking
groundness and pair-sharing is concerned. A notable advan-
tage of PSD is that we can replace the star-union operation
in the definition of the amgu by self-bin-union without loss
of precision. In particular, in [6] it is shown that

amgu(sh, x = t) =ρ rel(Vxt, sh)

∪ bin
(

sbin
(
rel(Vx, sh)

)
, sbin

(
rel(Vt, sh)

))
, (2)

where the notation sh1 =ρ sh2 means ρ(sh1) = ρ(sh2).
It is important to observe that the complexity of the amgu

operator on SH (1) is exponential in the number of sharing-
groups of sh. In contrast, the operator on PSD (2) has
polynomial complexity. Practically speaking, very often this
makes the difference between thrashing and termination of
the analysis in reasonable time. That is why all the exper-
imental work described in this paper was conducted using
the PSD domain. Nonetheless, in order not to confuse the
reader unfamiliar with PSD , in the sequel we only refer to
the original SH domain and its amgu operator as defined
in (1). The results proved in [6] ensure that, provided pair-
sharing is the actual property of interest, all that follows
applies equally well for the PSD domain, where star-union
is systematically replaced by self-bin-union.

Now, in a similar way as done in [20], we briefly recall the
standard integration of set-sharing with freeness [32] and
linearity [28]. Freeness and linearity are each represented



by a set of variables. Note that these are ordered by reverse
subset inclusion, so that the lub and glb operators are given
by set intersection and union, respectively.

Definition 3. (The domain SHFL.) The set SHFL is

defined by SHFL
def
= SH × F × L, where F

def
= L

def
= ℘(VI ).

The Cartesian product SHFL is ordered, as usual, by the
component-wise extension of the orderings defined on the
three sub-domains. Note that a complete definition, be-
sides explicitly dealing with the set of relevant variables VI ,
would require the addition of a bottom element ⊥ repre-
senting the semantics of those program fragments having
failed computations only. We could also define an equiva-
lence relation identifying this bottom element with all the
elements in SHFL corresponding to an impossible concrete
computation state. E.g., elements 〈sh, f, l〉 ∈ SHFL such
that f * vars(sh) (because free variables cannot be ground)
or VI \ vars(sh) * l (because ground variables are also lin-
ear). Note however that these spurious elements are never
generated during the analysis process.

Definition 4. (Abstract operations over SHFL.) Pro-
jection of an element of SHFL onto a subset of VI is encoded
by the binary function proj : SHFL × ℘(VI ) → SHFL: if
d = 〈sh, f, l〉 ∈ SHFL and V ∈ ℘(VI ), then

proj(d , V )
def
=
〈
proj(sh, V ), f ∪ (VI \ V ), l ∪ (VI \ V )

〉
.

For each d = 〈sh, f, l〉 ∈ SHFL and each pair of first order
terms s, t having variables in VI , we define the predicates

indd(s, t)
def
=
(

rel
(
vars(s), sh

)
∩ rel

(
vars(t), sh

)
= ∅

)
,

freed(t)
def
=
(
∃x ∈ VI . x = t ∧ x ∈ f

)
,

lind(t)
def
=
(
vars(t) ⊆ l

)
∧
(
∀x, y ∈ vars(t) : x = y ∨ indd(x, y)

)
∧
(
∀x ∈ vars(t) : x A mvars(t)⇒ x /∈ vars(sh)

)
.

The function amgu: SHFL× Bind → SHFL captures the
effects of a binding on an SHFL element. Let (x = t) ∈ Bind
and d = 〈sh, f, l〉 ∈ SHFL. Let also Vx = {x}, Vt = vars(t),
Vxt = Vx ∪ Vt, Rx = rel(Vx, sh) and Rt = rel(Vt, sh). Then

amgu
(
〈sh, f, l〉, x = t

) def
= 〈sh ′, f ′, l′〉,

where

sh ′ = rel(Vxt, sh) ∪ bin
(
Sx, St

)
,

Sx =

{
Rx, if freed(x) ∨ freed(t) ∨

(
lind(t) ∧ indd(x, t)

)
;

R?x, otherwise;

St =

{
Rt, if freed(x) ∨ freed(t) ∨

(
lind(x) ∧ indd(x, t)

)
;

R?t , otherwise;

f ′ =


f, if freed(x) ∧ freed(t);

f \ vars(Rx), if freed(x);

f \ vars(Rt), if freed(t);

f \ vars(Rx ∪Rt), otherwise;

l′ =
(
VI \ vars(sh ′)

)
∪ f ′ ∪ l′′;

l′′ =


l \
(
vars(Rx) ∩ vars(Rt)

)
, if lind(x) ∧ lind(t);

l \ vars(Rx), if lind(x);

l \ vars(Rt), if lind(t);

l \ vars(Rx ∪Rt), otherwise.

Note that, when analyzing languages omitting the occur-
check, further improvements of this abstract mgu opera-
tor allow to avoid some precision losses when dealing with
cyclic bindings. These special cases, already implemented in
the China analyzer, have been omitted from the definition
above for ease of presentation.

3. COMBINING WITH POS
It is well known that Sharing keeps track of ground de-

pendencies. More precisely, Sharing contains Def , the do-
main of definite Boolean functions [1], as a proper subdo-
main [14, 35]. However, there are several good reasons to
couple Sharing with Pos:

1. this combination is essential for a powerful widening
technique on Sharing to be applied [34]. This is very
important, since analysis based on Sharing without a
widening is not practical.

2. Def is not expressive enough to capture all the ground
dependencies of Prolog programs [1]. Moreover, Def
cannot even capture the dependencies induced by the
primitive constraints of some CLP languages, and we
target the analysis at Prolog and CLP programs.

3. In the context of the analysis of CLP programs, the
notions of “ground variable” and the notion of “vari-
able that cannot share a common variable with other
variables” are distinct. A numeric variable in, say,
CLP(R), cannot share with other variables (not in the
sense of interest in this paper) but is not ground un-
less it has been constrained to a unique value. Thus
the analysis of CLP programs with Sharing alone ei-
ther will lose precision on pair-sharing (if numerical
variables are allowed to “share” in order to compute
their groundness) or will not be able to compute the
groundness of numerical variables (if numerical vari-
ables are excluded from the sharing-sets). In the first
alternative, as we have already noted, the precision
with which groundness of numerical variables can be
tracked will also be limited. Since groundness of nu-
merical variables is important for a number of appli-
cations (e.g., compiling equality constraints down to
assignments or tests in some circumstances), we advo-
cate the use of Pos and Sharing at the same time.

4. Detecting definitely ground variables through Pos and
exploiting them to simplify the operations on Sharing
is very worthwhile as far as efficiency is concerned if
the set of ground variables is readily available. This is
the case, for instance, with the GER implementation
of Pos [7], the fastest Pos implementation known to
date. This technique alone allows to obtain speedups
of up to two orders of magnitude.

5. Knowing the set of ground variables in advance, not
only reduces the complexity of Sharing operations. It
also improves precision when the domain keeps track
of freeness and linearity information by incorporating



Free and Lin. In fact, while it has been proved that
Sharing alone is commutative, meaning that the re-
sult of the analysis does not depend on the ordering
in which the bindings are executed [22], Sharing with
Free and Lin does not enjoy this property. In par-
ticular, for the combination of Sharing with Lin it is
known since [28, pp. 66-67] that better results are ob-
tained if the grounding bindings are considered before
the others.2 As a simple example, consider the se-
quences of unifications

(
f(X,X, Y ) = A, X = a

)
and(

X = a, f(X,X, Y ) = A
)

[28, p. 66]. Again, the com-
bination with Pos, since it allows the analyzer to know
the set of all definitely ground variables in advance, is
clearly advantageous in this respect.

We have thus compared the combination of Sharing with
Free and Lin in isolation and with the addition of Pos. The
combination with Pos considered here is the simplest one:3

definitely ground variables are propagated from the Pos
component to the sharing domain and used (1) to eliminate
the sharing groups containing at least one ground variable,
and (2) to reorder the bindings so as to handle the ground-
ing ones first. These techniques are systematically applied
in all the (combinations of) domains described in this paper.

The results are reported in Table 1. For all the tables in
this paper, P is the number of possibly sharing pairs, V is
the number of variables, that is, the number of argument
positions of the predicates, I is the number of pairs of inde-
pendent variables, G, L, and F , are the number of ground,
linear, and free variables, respectively.

While in the case of goal-independent analysis the only
improvements are for linearity, for goal dependent analysis
better results are also observed for ground variables and
independent pairs. Because all of the above reasons, for the
remaining comparisons of the different enhancements and
precision optimizations, the Pos domain is always included
unless otherwise stated.

4. TRACKING EXPLICIT STRUCTURAL
INFORMATION

A way of increasing the precision of almost any analysis
domain is by incrementing it with structural information.
This technique was proposed by A. Cortesi et al. in [15],
where the generic structural domain Pat(<) was introduced.
A similar proposal, tailored to sharing analysis, is due to [8],
where abstract equation systems are considered. In our ex-
perimental evaluation we use the Pattern(·) construction [2,
3, 5], which is similar to Pat(<) and correctly supports the
analysis of languages omitting the occur-check in the unifi-
cation procedure as well as those that do not. The construc-
tion Pattern(·) upgrades a domain D (which must support
a certain set of basic operations) with structural informa-
tion. The resulting domain, where structural information
is retained to some extent, is usually much more precise
than D alone. Of course, there is a price to be paid: in the
analysis based on Pattern(D), the elements of D that are

2A binding x = t is grounding with respect to an abstract
description if, in all the concrete computation states approx-
imated by the abstract description, variable x is ground or
all the variables in t are ground. E.g., when considering an
abstract description sh ∈ SH , the binding x = t is grounding
if rel({x}, sh) = ∅ or rel(vars(t), sh) = ∅.
3More precise combinations will be considered in Section 6.

to be manipulated are often bigger (i.e., they consider more
variables) than those that arise in analyses that are simply
based on D. There are also many occasions where retain-
ing structural information gives rise to consistent speedups.
The reason for this is twofold. On the one hand, structural
information has the potential of pruning some computation
paths on the grounds that they cannot be followed by the
program being analyzed. On the other hand, maintaining a
tuple of terms with many variables, each with its own de-
scription, can be cheaper than computing a description for
the whole tuple [5].

Let us call Modes, the combination of Pos, Sharing, Free,
and Lin. We have compared the precision for Modes with
that obtained using Pattern(Modes). The results are re-
ported in Tables 2 and 3.

The approach we have chosen for measuring the precision
gain is simple though unsatisfactory: throw away all the
structural information at the end of the analysis and com-
pare the number of independent pairs, as well as the numbers
of ground, linear and free variables. However, the analysis
with Pattern(Modes) yields much more information. Con-
sider a simple but not trivial Prolog program: mastermind.4

Consider also the only direct query for which it has been
written, ‘?- play.’, and focus the attention on the proce-
dure extend code/1. A standard goal-dependent analysis
of the program with the Modes domain cannot say anything
on the successes of extend code/1.

If we perform the analysis with Pattern(Modes) the situ-
ation changes radically. Here is what such a domain allows
China to derive:5

extend_code([([A|B],C,D)|E]) :-

list(B), list(E),

(functor(C,_,1);integer(C)),

(functor(D,_,1);integer(D)),

ground([C,D]), may_share([[A,B,E]]).

This means: “during any execution of the program, when-
ever extend code/1 succeeds it will have its argument bound
to a term of the form [([A|B],C,D)|E], where B and E are
bound to list cells (i.e., to terms whose principal functor is
either ’.’/2 or []/0); C and D are ground and bound to
a functor of arity 1 or to an integer; and pair-sharing may
only occur among A, B, and E”.

Once structural information has been discarded, the anal-
ysis with Pattern(Modes) only specifies that extend code/1

may succeed. Thus, our approach to the comparison pre-
tends that explicit structural information gives no improve-
ments in the analysis of extend code/1 in mastermind. In
other words, we have only measured how the explicit struc-
tural information present in Pattern(Modes) improves the
precision on Modes itself, which is only a tiny part of the real
gain in accuracy. Of course, structural information is very
valuable in itself. When exploited for optimized compilation
it allows for enhanced clause indexing and simplified unifica-
tion. Moreover, several program verification techniques are
highly dependent on this kind of information. However, the

4A program implementing the game “Mastermind”, rewrit-
ten by H. Koenig and T. Hoppe after code by M. H. van
Emden. Available at http://www.cs.unipr.it/China/
Benchmarks/Prolog/mastermind.pl.
5Some extra groundness information obtained by the anal-
ysis has been omitted for simplicity: this says that, if A and
B turn out to be ground, then E will also be ground.



Goal-dependent analysis Without Pos / With Pos

Program P V I G L F

chat parser 4070 1484 3321/3332 505/505 906/908 357/357
dpos an 324 366 187/188 78/79 131/132 44/44
knight 117 92 102/103 44/45 62/63 16/16
sim v5-2 459 535 456/457 415/417 535/535 106/106
tsp 502 220 488/488 122/122 206/220 38/38

Goal-independent analysis Without Pos / With Pos

Program P V I G L F

bmtp 3091 1681 1759/1759 146/146 1148/1151 295/295
bp0-6 264 115 215/215 31/31 88/90 21/21
bryant 1252 330 1112/1112 32/32 124/210 4/4
cg parser 257 274 138/138 31/31 192/193 58/58
km-all 28898 14046 18379/18379 1929/1929 9887/9900 2943/2943
knight 58 45 37/37 14/14 37/38 3/3
oldchina 3584 2178 2266/2266 309/309 1451/1457 281/281
sax 3284 1993 1697/1697 269/269 970/974 202/202
tsp 251 110 219/219 26/26 95/98 19/19

Table 1: The effect of integrating Pos.

Without s. i. / With s. i.

Program P V I G L F

action 160 180 15/17 4/5 10/11 6/6
ann 832 479 563/575 110/117 192/202 78/91
astar 59 66 56/57 50/51 63/66 11/12
chasen 158 185 71/72 55/58 89/92 33/35
dpos an 324 366 188/212 79/105 132/170 44/50
eliza 224 208 115/116 69/71 106/109 33/36
ftfsg2 223 238 144/156 45/57 105/117 42/42
ftfsg 134 122 91/95 22/24 60/62 26/26
grammar 32 34 28/28 7/9 34/34 16/16
jugs 71 68 33/34 8/8 22/24 13/13
knight 117 92 103/110 45/45 63/92 16/17
lc 106 112 32/105 11/91 28/112 17/18
ljt 513 285 513/513 270/270 285/285 13/17
llprover 616 670 434/435 180/190 284/294 101/111
log interp 455 477 178/182 43/43 118/118 72/72
loops 66 86 63/63 66/66 82/86 13/15
nbody 600 347 478/478 155/155 196/200 40/40
parser 436 365 336/344 60/60 278/365 202/202
press 294 266 174/178 44/44 77/79 30/30
quot an 1132 817 639/664 144/167 266/289 95/95
read 437 281 359/359 118/118 198/201 64/64
reg 334 387 208/208 69/78 121/130 49/49
sdda 195 172 69/79 24/28 49/54 25/25
sim v5-2 459 535 457/457 417/417 535/535 106/111
tictactoe 274 130 270/270 88/88 104/108 11/13
tsp 502 220 488/489 122/126 220/220 38/38
yasmm 78 60 49/51 21/21 27/41 6/6

Table 2: The effect of explicit structural information: goal-dependent analysis.



Without s. i. / With s. i.

Program P V I G L F

8puzzle 20 18 10/10 7/7 14/16 2/2
action 80 90 36/38 1/2 48/49 22/22
aircraft 391 588 344/346 208/234 570/582 58/58
ann 416 239 216/225 15/18 129/132 41/45
arch1 437 285 167/182 9/9 113/120 33/33
bmtp 3091 1681 1759/1761 146/148 1151/1152 295/297
bup-all 177 168 68/70 16/16 95/99 34/34
cg parser 257 274 138/138 31/31 193/194 58/58
chat80 3722 1646 2628/2660 342/342 1296/1303 308/308
cobweb 782 361 444/482 30/33 115/130 33/35
cs2 166 94 115/119 31/35 66/71 4/4
cugini ut 372 407 153/166 71/74 219/226 40/40
difflists 33 40 16/16 8/9 22/32 2/2
dpos an 164 192 98/100 42/45 118/120 21/23
files 98 131 57/59 59/59 112/113 20/20
ftfsg2 384 404 255/260 94/95 282/286 73/73
ftfsg 254 263 124/129 17/18 149/153 57/57
ga 433 147 364/366 55/60 123/128 15/15
grammar 16 17 11/11 4/5 17/17 4/4
km-all 28898 14046 18379/18535 1929/1986 9900/9979 2943/2962
knight 58 45 37/43 14/14 38/44 3/3
ljt 256 140 29/35 5/9 42/46 19/23
llprover 307 333 191/191 84/86 256/253 24/24
log interp 261 254 66/88 14/14 97/98 28/28
metutor 534 494 324/326 138/139 326/327 43/47
mixtus-all 3874 2186 2344/2364 161/163 1308/1319 419/423
nbody 300 173 265/265 64/64 160/164 8/8
oldchina 3584 2178 2266/2284 309/309 1457/1462 281/281
parser 218 182 117/117 28/28 148/182 61/61
petsan 3838 1461 2603/2603 278/281 934/934 217/219
plaiclp 2453 1296 1760/1760 158/165 947/957 230/240
quot an 563 400 289/292 38/41 199/203 46/46
reg 1600 693 814/1212 49/61 336/419 63/63
sax 3284 1993 1697/1772 269/327 974/1034 202/232
sdda 96 80 27/27 4/5 31/35 13/13
sim v5-2 242 281 104/104 53/54 190/190 25/25
sim 1502 459 911/1100 76/80 254/273 25/25
slice-all 833 800 438/444 135/137 582/619 119/119
spsys 1582 1093 805/988 88/123 483/551 103/104
tictactoe 101 56 93/93 13/13 46/54 4/5
trees1 71 62 50/62 29/40 50/61 4/12
trs 109 73 53/56 6/8 28/34 4/4

Table 3: The effect of explicit structural information: goal-independent analysis.

value of this extra precision can only be measured from the
point of view of the target application of the analysis.

Tables 2 and 3 indicate that enhancing Sharing with struc-
tural information can make useful improvements to preci-
sion. Moreover, occasionally (such as for lc in Table 2),
this improvement is considerable. This demonstrates that
there is a relevant amount of sharing information that is
not detected when using the classical set-sharing domains.
Therefore, we conducted the remaining experiments both
with and without explicit structural information. A similar
experimental evaluation, but based on the abstract equa-
tion systems of [8], was reported by Mulkers et al. in [29,
30]. Here a depth-k abstraction (replacing all subterms oc-

curring at a depth greater or equal to k with fresh abstract
variables) is conducted on a small benchmark suite (19 pro-
grams) for values of k between 0 and 3. The domain they
employed was not suitable to the analysis of real programs
and, in fact, even the analysis of a modest-sized program
like ann could only be carried out with depth-0 abstraction
(i.e., without any structural information).

Another previous attempt to evaluate the impact of struc-
tural information on sharing failed because of combinatorial
explosion of the analysis [A. Cortesi, personal communica-
tion, 1996]. What makes a realistic experimentation now
possible is the adoption of the non-redundant domain PSD ,
where the exponential star-union operation is replaced by



quadratic self-bin-union, and the integration of this domain
with the GER implementation of Pos [7]. Indeed, as demon-
strated by the results reported in [5], an analyzer that incor-
porates a carefully designed structural information compo-
nent, besides being more precise, can also be very efficient.

5. REORDERING THE NON-GROUNDING
BINDINGS

In Section 3, we have already explained why we always
consider the grounding bindings first. All the examples we
could find in the literature use a grounding binding to show
that abstract unification on the combination of Sharing with
Free and Lin is non-commutative. However, the problem is
more general than that.

As an example, consider {u, v, w, x, y, z} as the set of rel-
evant variables, and the SHFL element6

d
def
=
〈
{vy, wy, xy, yz},∅, {u, x, z}

〉
,

where u, x, and z are linear variables. We now apply the
bindings v = w and x = y. Using the binding v = w first,
we have:

d1 = amgu(d , v = w)

=
〈
{vwy, xy, yz},∅, {u, x, z}

〉
,

d1,2 = amgu(d1, x = y)

=
〈
{vwxy, vwxyz, xy, xyz},∅, {u, z}

〉
.

Using the binding x = y first, we have:

d2 = amgu(d , x = y)

=
〈
{vwxy, vwxyz, vxy, vxyz, wxy,wxyz, xy, xyz},

∅, {u, z}
〉
,

d2,1 = amgu(d2, v = w)

=
〈
{vwxy, vwxyz, xy, xyz},∅, {u}

〉
.

Therefore d2,1 loses the linearity of z (which, in turn, could
cause bigger precision losses later in the analysis).

The brute-force approach that tries all the orderings of the
non-grounding bindings is clearly not feasible. Of course, it
would be highly desirable to find a heuristic based on the
local search paradigm: at each step, the next binding for
the amgu procedure should be chosen by evaluating just the
effect of its abstract execution, considered in isolation, on
the precision of the analysis.

One such heuristic would be to consider saying “delay the
bindings requiring star-unions”. The logic underlying this is
that it is likely to obtain intermediate abstract descriptions
having less sharing groups. This, in turn, should reduce
precision losses in the freeness and linearity components. In
the next example, by adopting this heuristic, the linearity
of variable y is preserved. Consider the application of the
bindings x = z and v = w to the following abstract descrip-
tion:

d
def
=
〈
{vw,wx,wy, z},∅, {u, v, x, y}

〉
.

6Elements of SH are written in a simplified nota-
tion, omitting the inner braces. For instance, the set{
{x}, {x, y}, {x, z}, {x, y, z}

}
is written as {x, xy, xz, xyz}.

Since x is linear and it does not share with z, computing
amgu(d , x = z) requires a single star-union, while both star-
unions are needed for amgu(d , v = w) because v and w may
share. Thus, using the proposed heuristic, we apply x = z
first and obtain:

d1 = amgu(d , x = z)

=
〈
{vw,wxz,wy},∅, {u, v, y}

〉
,

d1,2 = amgu(d1, v = w)

=
〈
{vw, vwxyz, vwxz, vwy},∅, {u, y}

〉
.

In contrast, if we apply v = w first, we have:

d2 = amgu(d , v = w)

=
〈
{vw, vwx, vwxy, vwy, z},∅, {u, x, y}

〉
,

d2,1 = amgu(d2, x = z)

=
〈
{vw, vwxyz, vwxz, vwy},∅, {u}

〉
.

It should be noted that this heuristic, considered in isolation,
is not a general solution to the problem. Indeed in our first
example the star-unions have to be computed in both cases.
Moreover, a further example shows that such a heuristic can
even cause a precision loss. Consider the bindings u = x and
v = w and the abstract description

d
def
=
〈
{u, uw, v, w, xy, xz}, {u, x}, {u, x}

〉
.

Since x and u are free variables, star-unions are not needed
for computing amgu(d , u = x), while they are needed for
amgu(d , v = w).

d1 = amgu(d , u = x)

=
〈
{uwxy, uwxz, uxy, uxz, v, w}, {u, x}, {u, x}

〉
,

d1,2 = amgu(d1, v = w)

=
〈
{uvwxy, uvwxyz, uvwxz, uxy, uxz, vw},∅,∅

〉
.

Using the other ordering we have:

d2 = amgu(d , v = w)

=
〈
{u, uvw, vw, xy, xz}, {x}, {x}

〉
,

d2,1 = amgu(d2, u = x)

=
〈
{uvwxy, uvwxz, uxy, uxz, vw},∅,∅

〉
.

Note that in d2,1 variables y and z are independent, whereas
they may share in d1,2.

Another possibility would be to consider a heuristic that,
maybe disregarding the number of star-unions required, di-
rectly tries to improve the precision on the freeness and
linearity components by choosing first those bindings that
maximally preserve freeness and linearity information. How-
ever, the last example shown above witnesses that in some
cases even such a proposal causes precision losses (the bind-
ing u = x would be preferred and chosen first as it preserves
the freeness of variable u).

Even if the behavior of other heuristics could be investi-
gated, up to now all our attempts to find a good heuristic —
one that rarely decreases precision — have failed. In con-
clusion, on this subject there seems to be room for more
research.



6. MORE PRECISE COMBINATIONS
WITH POS

Since there is an overlap between the information provided
by Pos and the information provided by Sharing, it is clear
that the Cartesian product Pos×Sharing contains redundant
elements, i.e., different pairs that characterize the same set
of concrete computational states. The reduced product [16]
between Pos and Sharing has been elegantly characterized in
[12], where set-sharing à la Jacobs and Langen is expressed
in Pos itself. Without aiming at the full power of the re-
duced product we illustrate here two techniques (besides
the propagation of definitely ground variables) in which the
information contained in the Pos component can be used to
improve the description provided by the Sharing component.

Suppose the Pos component (a Boolean formula) implies
a binary disjunction x ∨ y. This means that either x is
ground or y is ground or both are so. In any case, x and y
cannot share a common variable. It is consequently safe to
remove from the Sharing component all the sharing groups
containing both x and y.

Now suppose the Pos component implies
∧
x,y∈X(x↔ y)

for some set of variables X. In this case, the groundness of
any variable in X implies the groundness of all the variables
in X. Since all the variables in X share the same (possibly
empty) set of variables, after the same set of abstract bind-
ings has been performed on both the Pos and Sharing com-
ponents, we can remove from the Sharing component each
sharing group S such that S ∩X 6= ∅ and X * S.

We implemented both these techniques together. The
few improvements we observed in the experiments concerned
only the number of independent variable pairs, even though,
in theory, also the accuracy of both freeness and linearity
can be affected. In fact, only three programs showed any
changes to the number of such pairs. For goal-independent
analysis, the bmtp program had one more pair when ana-
lyzed with and without explicit structural information, and
the sim program had two more pairs when analyzed without
explicit structural information. For goal-dependent analysis,
the program knight had one more pair only when analyzed
without explicit structural information.

7. GROUND OR FREE VARIABLES
Most of the ideas investigated in the present work are

based on earlier work by other authors. In this section we
describe one that is new to this paper. Consider the analysis
of the binding x = t and suppose that, on a set of compu-
tation paths, this binding is reached with x ground while,
on the remaining computation paths, the binding is reached
with x free. In both cases x will be linear and this is all
what will be recorded in the usual combination of Sharing
with Free and Lin. This information is valuable, since, in
case x and t are independent, it allows to dispense with
the star-union of the relevant component for t. However,
the information that is lost, i.e., x being ground or free, is
equally valuable, since this would allow the avoidance of the
star-union of both the relevant components for x and t, in-
dependently of whether or not x and t may share. This loss
has two disadvantages: CPU time is wasted by performing a
costly operation and precision is degraded. In fact, in these
cases the extra star-unions are useless to ensure correctness
and, moreover, they may introduce unneeded sharing groups
to the detriment of accuracy.

It is therefore natural to extend the analysis domain with
another component gf ∈ ℘(VI ) consisting of the set of vari-
ables that are ground or free, thus adding an additional
mode to the picture. As for freeness and linearity, the ap-
proximation ordering is given by reverse subset inclusion.
The ‘ground or free’ property is then propagated in the ab-
stract mgu operation almost the same way as freeness:

gf ′ =
(
VI \ vars(sh ′)

)
∪
(
gf \ (f \ f ′)

)
.

In other words, if a variable “loses freeness” then it also
loses its ‘ground or free’ status, unless it is known to be
definitely ground. In synthesis, the incorporation of the set
of ‘ground or free’ variables can be done cheaply, both in
terms of computational complexity and in terms of code to
be written. As far as computational complexity is concerned
this extension is particularly promising, since the possibility
of avoiding star-unions has the potential of absorbing its
overhead if not of giving rise to a speedup.

We have thus implemented the combination of Pos (in or-
der to maximize the number of definitely ground variables
detected), Sharing, Free, Lin, and ‘ground or free’ variables
and tried it on our benchmark suite. The experimentation
has been performed both with and without added struc-
tural information, and both in a goal-dependent and goal-
independent way. The only difference we have observed is for
the goal-independent analysis of knight without structural
information. In this case, the ‘ground or free’ extension is
worth 6 more definitely independent pairs of variables and
6 more variables detected as definitely linear.

8. MORE PRECISE EXPLOITATION OF
LINEARITY

In [26] A. King proposes a domain for sharing analysis
that performs a quite precise tracking of linearity. Roughly
speaking, each sharing group in a sharing-set carries its own
linearity information. In contrast, in the approach of [28],
which is the one usually followed, a set of definitely linear
variables is recorded along with each sharing-set. The pro-
posal in [26] gives rise to a domain that is quite different
from the ones presented here. Since [26] does not provide
an experimental evaluation, and we are unaware of any sub-
sequent work on the subject, the question whether this more
precise tracking of linearity is actually worthwhile (both in
terms of precision and efficiency) seems open. What inter-
ests us here is that part of the theoretical work presented in
[26] can be usefully applied even in the more classical treat-
ment of linearity presented in [28]. As far as we can tell,
this fact has gone unnoticed up to now.

In [26], point 3 of Lemma 5 (which is reported to be proven
in [25]) states formally that, if s is a linear term and t is a
(possibly) non-linear term, then, after computing the uni-
fication s = t, a variable occurring only once in t can only
be aliased to one variable in s. This result can be exploited
even when using the standard domain for linearity-enhanced
sharing analysis.

Let x be a linear variable and t be a non-linear term. Let
Vx = {x}, Vt = vars(t) and Vxt = Vx ∪ Vt. Let V l

t be the
set of variables that can occur only once in term t. These
are exactly the variables y ∈ Vt such that: (1) y is linear,
(2) y occurs once in t, and (3) y does not share with other
variables in t. Let V nl

t = Vt\V l
t . Note that V nl

t 6= ∅, because
t is a non-linear term. If also V l

t 6= ∅ (and, obviously, if x



and t do not share) then we can use an improved version
of the amgu operator computing the following set-sharing
component:

sh ′ = rel(Vxt, sh) ∪ bin
(
rel(Vx, sh), rel(V l

t , sh)
)

∪ bin
(
rel(Vx, sh)?, rel(V nl

t , sh)
)
.

Note that precision can be improved because, thanks to the
Lemma, the star-union of the relevant component of sh with
respect to Vx is only combined with the relevant compo-
nent of sh with respect to the non-linear variables in V nl

t .
However, the only programs for which we observed an im-
provement in the accuracy of the analysis were the synthetic
benchmarks we wrote in order to show that a precision gain
is indeed possible. Despite its apparently limited practical
relevance, this result has an important theoretical conse-
quence in that it demonstrates that the standard combi-
nation of Sharing with Lin (even when all orderings of the
non-grounding bindings are tried) is not optimal. Also note
that the scope of this observation is not limited to the do-
main defined in [28], since the same enhancement can be
equally applied to any stronger abstract domain (e.g., those
including also freeness [8, 20]).

9. TRACKING COMPOUNDNESS
In [8, 9], M. Bruynooghe et al. considered the combination

of the standard set-sharing, freeness, and linearity domains
with compoundness information. As for freeness and linear-
ity, compoundness was represented by the set of variables
that definitely have the respective property.

As discussed in [8, 9], compoundness information is useful
in its own right for clause indexing. We are interested here
though in the question: can the tracking of compoundness
improve the sharing analysis itself? This question is also
considered in [8, 9] where two techniques are proposed that
exploit the combination of freeness and compoundness.

The first one relies on the presence of the occur-check (and
thus it cannot be applied when analyzing systems that omit
it). Informally, if x is free and t is compound then, just
before computing the binding x = t, we can safely say that
x cannot share with any variable of t. Thus we can improve
our sharing description by removing all the sharing groups
containing both x and a variable in t. In particular, if in this
case there also exists another free variable definitely sharing
with both x and t, then the computation is guaranteed to
fail. We decided that the implementation effort needed to
evaluate this idea was not warranted as the technique is
only sound for the analysis of systems performing the occur-
check. Moreover, only one program in our benchmark suite
was written for such a system.7

The second idea is proposed inside the specification of the
function Reduce, which is intended to remove from an ab-
stract description some spurious information that is redun-
dant. In particular, it is shown that compoundness can be
safely inferred for all the variables that definitely share with
a pair of independent free variables.8 It should be noted

7This is ileanTAP, an intuitionistic theorem prover writ-
ten by J. Otten. The program begins with the directive
:- set flag(occur check,on).
8The function Reduce also deals with some hidden inter-
actions between sharing and freeness information: as these
improvements are subsumed by the work of G. Filé [19], we
discuss them in Section 10.

that such a Reduce function is not part of the abstract uni-
fication algorithm presented in [8] and it is unclear where
and when it should be applied. The authors suggest that
the algorithm should start with reduced abstract descrip-
tions. However, there is no proof (or even claim) that the
algorithm actually preserves this reduction property. Their
only assertion is that precision losses may be avoided if the
algorithm starts with a reduced description. It is our opin-
ion that the second improvement proposed in [9] may well
never apply because

1. the initial descriptions, computed by the abstraction
function, are always reduced;

2. it seems very unlikely that a well-designed compound-
ness analysis can lose this kind of information, which
stems from bindings of the form x = f(y, z). In par-
ticular, this holds when tracking compoundness infor-
mation by using another instance of the domain Pos,
as currently done in the China analyzer.

For these reasons, and also because we were interested in
helping Sharing with compoundness and not the other way
round, we did not implement this idea.

10. SHARING AND FREENESS
As noted by several authors (see, e.g., [8]) the standard

combination of Sharing and Free is not optimal. G. Filé [19]
formally identified the reduced product of these domains and
proposed an improved abstract unification operator. This
new operator exploits two properties that hold for the most
precise abstract description of a single concrete substitution:

1. each free variable occurs in exactly one sharing group;

2. two free variables occur in the same sharing group if
and only if they are aliases (i.e., they have become the
same variable).

When considering the general case, where sets of concrete
substitutions come into play, we can use property 1 to (par-
tially) recover disjunctive information. In particular, it is
possible to decompose an abstract description into a set of
(maximal) descriptions that necessarily come from differ-
ent computation paths, each one satisfying property 1. The
abstract unification procedure can thus be computed sepa-
rately on each component, and the results of each subcom-
putation are then joined to give the final description. As
such components are more precise than the original descrip-
tion (they possibly contain more ground variables and less
sharing pairs), precision gains can be obtained.

Furthermore, by exploiting property 2 on each compo-
nent, it is possible to correctly infer that for some of them
the computation will fail due to a functor clash or to the
occur-check. Note that this is possible even without decom-
posing the abstract description: for example, consider the
substitutions σ1 = {x = f(u), y = g(v)} or σ2 = {x = f(y)}
together with an abstract description saying that x and y
are both free and the only sharing group allowed is {xy}.

The experimental results we obtained for the first of the
two ideas by Filé presented above do not depend on whether
or not structural information or Pos is included in the do-
main (we have tried all possible combinations). While no dif-
ference was observed for goal-dependent analysis, the goal-
independent analyses of petsan and cobweb gave rise to 3



and 2 more pairs of independent variables exposed, respec-
tively. It must be observed that the analysis of several pro-
grams had to be stopped because of the combinatorial ex-
plosion in the decomposition. Indeed, among the proposals
experimentally evaluated in this paper, this one is the most
expensive in computational terms.

We note in passing that such an approach to the recov-
ery of disjunctive information can be pursued beyond the
integration of sharing with freeness. Indeed, by exploiting
‘ground or free’ information as in Section 7, it is possible
to obtain decompositions where each component contains
at most one occurrence (in contrast with the exactly one
occurrence of Filé’s idea) of each ‘ground or free’ variable.

It would be interesting to experiment with the second
idea of Filé (exploitation of the concrete structural infor-
mation contained in a sharing description with freeness).
At present, the problem is how to incorporate this into the
China analyzer without destroying its modular design.9

11. CONCLUSION
In this paper, we have investigated eight enhanced shar-

ing analysis techniques that, at least in principle, have the
potential for improving the precision of the sharing informa-
tion over and above that obtainable using the classical com-
bination of Sharing with Free and Lin. To do this, we have
considered including other domains and using more powerful
abstract semantic operators. Our work has been systematic
since, to the best of our knowledge, we have evaluated all
the techniques that have been proposed in the literature re-
garding how the usual domains of analysis may contribute
to Sharing; that is, better exploitation of linearity, freeness,
compoundness, groundness, and structural information.

We have experimentally evaluated, using the China an-
alyzer, seven of the eight enhancements. We have demon-
strated the impact of structural information on sharing anal-
ysis on the analysis of real programs, showing that good im-
provements can be obtained with the inclusion of explicit
structural information. We have given several reasons why
Pos should be combined with Sharing. It is hard to justify
the remaining proposals as far as precision is concerned. For
the addition of a ‘ground or free’ mode and for the more pre-
cise exploitation of linearity, at least the computational cost
is negligible. Unfortunately, this is no longer true for the
enhanced combination with Pos and for the exploitation of
the interaction of Sharing and Free. When considering these
negative results, the reader should be aware that for such
experimental evaluations we measured precision gains with
respect to a base domain (the combination of Sharing plus
Free plus Lin plus Pos plus the anticipation of the ground-
ing bindings) that to our knowledge is the most accurate
sharing analysis tool ever implemented.

The experimentation reported in this paper has both pos-
itive and negative results. We believe that all of these will
provide the right focus in the design and development of
useful tools for sharing analysis.

9Roughly speaking, the generic structural information do-
main Pattern(·) (a C++ template at the implementation
level) would have to be heavily modified so as to be able
to receive notifications from its parameter.
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