
A Reactive Implementation of Pos Using
ROBDDs

Roberto Bagnara

Dipartimento di Informatica, Università di Pisa, Corso Italia 40, 56125 Pisa, Italy
E-mail: bagnara@di.unipi.it.

Abstract. The subject of groundness analysis for (constraint) logic pro-
grams has been widely studied, and interesting domains have been pro-
posed. Pos has been recognized as the most suitable domain for captur-
ing the kind of dependencies arising in groundness analysis. Its (by now
standard) implementation is based on reduced ordered binary-decision di-
agrams (ROBDDs), a well-known symbolic representation for Boolean
functions. Even though several authors have reported positive experi-
ences using ROBDDs for groundness analysis, in the literature there is
no reference to the problem of the efficient detection of those variable
which are deemed to be ground in the context of a ROBDD. This is not
surprising, since most currently implemented analyzers need to derive this
information only at the end of the analysis and only for presentation pur-
poses. Things are much different when this information is required during
the analysis. This need arises when dealing with languages which employ
some sort of delay mechanism, which are typically based on groundness
conditions. In these cases, the näıf approaches are too inefficient, since
the abstract interpreter must quickly (and often) decide whether a con-
straint is delayed or not. Fast access to ground variables is also necessary
when aliasing analysis is performed using a domain not keeping track of
ground dependencies. In this paper we introduce and study the problem,
proposing two possible solutions. The second one, besides making possi-
ble the quick detection of ground variables, has also the effect of keeping
the ROBDDs as small as possible, improving the efficiency of groundness
analysis in itself.

1 Introduction

The task of groundness analysis (or definiteness analysis as it is also referred to)
is to derive, for all the program points of interest, whether a certain variable is
bound to a unique value (or ground). This kind of information is very important:
it allows substantial optimizations to be performed at compile-time, and is also
crucial for most semantics-based program manipulation tools. Moreover, many
other analysis are made much more precise by the availability of groundness in-
formation. For these reasons, the subject of groundness analysis for (constraint)
logic programs has been widely studied. After the early attempts, some classes of
Boolean functions have been recognized as constituting good abstract domains for
groundness analysis [7, 16, 1, 19]. In particular, the set of positive Boolean func-
tions, (namely, those functions which assume the true value under the valuation

assigning true to all variables), which is denoted by Pos, has been recognized
as the most precise domain for capturing the kind of dependencies arising in
groundness analysis.

The standard implementation of Pos is based on reduced ordered binary-
decision diagrams (ROBDDs), a well-known symbolic representation for Boolean
functions. Indeed, ROBDDs are general enough to represent all Boolean func-
tions. However, nobody has succeeded, to date, in exploiting the (seemingly very
small) peculiarities of positive functions in order to obtain a more efficient imple-
mentation. Several authors have reported positive experiences using ROBDDs
for groundness analysis (see, e.g., [16, 1]). However, in the literature there is no
reference to the problem of detecting, as efficiently as possible, those variables
which are deemed to be ground in the context of a ROBDD. This is not surpris-
ing, since most currently implemented analyzers need to derive this information
only at the end of the analysis and only for presentation purposes. In these
cases efficiency is not a problem and the simple approaches are good enough.
Things are much different when this information is required during the analysis.
This need arises when dealing with languages which employ some sort of delay
mechanism, which are typically based on groundness conditions. One of these
languages is CLP(R) [14], where non-linear constraints are delayed until they
become linear; only then they are sent to the constraint solver. In the context
of our work on data-flow analysis for CLP(R) we were thus facing the following
problem: in programs with many non-linear constraints, the abstract interpreter
was spending a lot of time deciding whether a constraint is delayed or not. In
the early implementations of the China analyzer this kind of information (which
is needed quite often) was derived using the ROBDD package itself (see Sect. 5).
This had the advantage of making possible the use of untouched, readily-available
ROBDD software, while having the big disadvantage of inefficiency.

In this paper we introduce and study the problem of quick detection of ground
variables using ROBDDs. We first propose an easy, even though not completely
satisfactory, solution. We then take a different approach where we represent Pos
functions in a hybrid way: ground variables are represented explicitly, while ROB-
DDs come into play only for dependency and disjunctive information. This solu-
tion uses the more efficient representation for each kind of information: “surely
ground variables” are best represented by means of sets (bit-vectors, at the im-
plementation level), whereas ROBDDs are used only for “conditional” and “dis-
junctive” information. In such a way, besides making the information about
ground variables readily available, we can keep the ROBDDs generated during
the analysis as small as possible. This promises to be a win, given that most real
programs (together with their typical call-patterns) exhibit a high percentage of
variables which are ground at the program points of interest. Notice that Boolean
functions are used in the more general context of dependency analysis, includ-
ing finiteness analysis for deductive database languages and suspension analysis
for concurrent (constraint) logic programming languages [1]. The techniques we
propose might be useful also in these contexts. However, this is something we
have not studied yet. In Sect. 2 we briefly review the usage of Boolean functions
for groundness analysis of (constraint) logic programs (even though we assume

familiarity on this subject). Sect. 3 presents the main motivations of this work.
Binary-decision trees and diagrams, and the problem of extracting sure ground-
ness information from them are introduced in Sects. 4 and 5. In Sect. 6 we show
a first non-trivial solution to the problem, while Sect. 7 introduces the hybrid do-
main. The results of the experimental evaluation are reported in Sect. 8. Sect. 9
concludes with some final remarks.

2 Boolean Functions for Groundness Analysis

After the early approaches to groundness analysis [17, 15], which suffered from
serious precision drawbacks, using Boolean functions has become customary in
the field. The reason is that Boolean functions allow to capture in a very precise
way the groundness dependencies which are implicit in unification constraints
such as z = f(g(x), y): the corresponding Boolean function is (x∧y)↔z, meaning
that z is ground if and only if x and y are so. They also capture dependencies
arising from other constraint domains: for instance, x + 2y + z = 4 can be
abstracted as ((x ∧ y)→ z) ∧ ((x ∧ z)→ y) ∧ ((y ∧ z)→ x). We now introduce
Boolean valuations and functions in a way which is suitable for what follows.
Vars is a fixed denumerable set of variable’s symbols.

Definition 1. (Boolean valuations.) The set of Boolean valuations over Vars
is given by A def= Vars → {0, 1}. For each a ∈ A, each x ∈ Vars, and each
c ∈ {0, 1} the valuation a[c/x] ∈ A is given, for each y ∈ Vars, by

a[c/x](y) def=
{
c, if x = y;
a(y), otherwise.

For X = {x1, x2, . . . } ⊆ Vars, we write a[c/X] for a[c/x1][c/x2] · · · .

Definition 2. (Boolean functions.) The set of Boolean function over Vars is
F def= A→{0, 1}. The distinguished elements >,⊥ ∈ F are the functions defined
by > def= λa ∈ A . 1 and ⊥ def= λa ∈ A . 0. For f ∈ F , x ∈ Vars, and c ∈ {0, 1},
the function f [c/x] ∈ F is given, for each a ∈ A, by f [c/x](a) def= f

(
a[c/x]

)
.

When X ⊆ Vars, f [c/X] is defined in the obvious way.

The question whether a Boolean function f forces a particular variable x to be
true (which is what, in the context of groundness analysis, we call sure groundness
information) is equivalent to the question whether f→x is a tautology (namely,
f → x = >). In the sequel we will also need the notion of dependent variables of
a function.

Definition 3. (Dependent and true variables.) For f ∈ F , the set of vari-
ables on which f depends and the set of variables necessarily true for f are given,
respectively, by

vars(f) def=
{
x ∈ Vars

∣∣ ∃a ∈ A . f
(
a[0/x]

)
6= f

(
a[1/x]

) }
,

true(f) def=
{
x ∈ vars(f)

∣∣ ∀a ∈ A : f(a) = 1 =⇒ a(x) = 1
}
.

Two classes of Boolean functions which are suitable for groundness analysis are
known under the names of Def and Pos (see [1] for details). Pos consists pre-
cisely of those functions assuming the true value under the everything-is-true
assignment (i.e., f ∈ Pos iff f ∈ F and f [1/Vars] = >). Pos is strictly more
precise than Def for groundness analysis [1]. The reason is that the elements of
Pos allow to maintain disjunctive information which is, instead, lost in Def.

3 Combination of Domains and Reactivity

It is well known that different data-flow analyses can be combined together. In
the framework of abstract interpretation this can be achieved by means of stan-
dard constructions such as reduced product and down-set completion [10, 11].
The key point is that the combined analysis can be more precise than each of the
component ones for they can mutually improve each other. However, the degree
of cross-fertilization is highly dependent on the degree and quality of interaction
taking place among the component domains. For the limited purpose of this
paper, when we talk about combination of domains we refer to the following
situation: we have several distinct (both conceptually and at the implementation
level) analysis’ domains and, for the sake of ensuring correctness or improving
precision, there must be a flow of information between them. This can be formal-
ized in different ways. A methodology for the combination of abstract domains
has been proposed in [9]. It is based onto low level actions such as tests and
queries. Basically, the component domains have the ability of querying other
domains for some kind of information. Of course, they must also be able to re-
spond to queries from other domains. For instance, the operations of a domain
for numerical information might ask a domain for groundness whether a certain
variable is guaranteed to be ground or not. Another way of describing this kind
of interaction is the one proposed in [3]. Here the interaction among domains is
asynchronous in that it can occur at any time, or, in other words, it is not syn-
chronized with the domain’s operations. This is achieved by considering so called
ask-and-tell constraint systems built over product constraint systems. These con-
straint systems allow to express communication among domains in a very simple
way. They also inherit all the semantic elegance of concurrent constraint pro-
gramming languages [18], which provide the basis for their construction. We
will now see, staying on an intuitive level and following the approach of [3] for
simplicity, examples of how these combinations look like.

In the CLP(R) system [14] non-linear constraints (like X = Y ∗Z) are delayed
(i.e., not treated by the constraint solver) until they become linear (e.g., until
either Y or Z are constrained to take a single value). Obviously, this cannot be
forgotten in abstract constraint systems intended to formalize correct data-flow
analyses of CLP(R). When the abstract constraint system is able to extract
information from non-linear constraints (such as the one proposed in [4]), you
cannot simply let X = Y ∗ Z, or better, its abstraction α(X = Y ∗ Z) stand
by itself. By doing this you would incur the risk of overshooting the concrete
constraint system (thus loosing soundness), which is unable to deduce anything
from non-linear constraints. The right thing to do is to combine the numeric

abstract constraint system with one for groundness and using, instead of the
abstraction α(X = Y ∗ Z), the agent

A
def= ask

(
ground(Y); ground(Z)

)
→ α(X = Y ∗ Z).

The intuitive reading is that the abstract constraint system is not allowed to do
anything with X = Y ∗Z until Y or (this is the intuitive reading of the semicolon)
Z are ground. In this way, all the abstractions of non-linear constraints are
“disabled” until their wake-up conditions are met (in the abstract, which, given
a sound groundness analysis, implies that these conditions are met also at the
concrete level). The need for interaction between groundness and numerical
domains does not end here. Consider again the constraint X = Y ∗Z: clearly X
is definite if Y and Z are so. But we cannot conclude that the groundness of Y
follows from the one of X and Z, as we need also the condition Z 6= 0. Similarly,
we would like to conclude that X is definite if Y or Z have a zero value. Thus we
need approximations of the concrete values of variables (i.e., bounds analysis),
something which is not captured by common groundness analyses while being
crucial when dealing with non-linear constraints. In the approach of [3] X = Y ∗Z
would be abstractly compiled into an agent of the form1

A ‖ ask
(
ground(Y) ∧ ground(Z)

)
→ tell

(
ground(X)

)
‖ ask(Y = 0;Z = 0)→ tell

(
ground(X)

)
‖ ask

(
ground(X) ∧ ground(Z) ∧ Z 6= 0

)
→ tell

(
ground(Y)

)
‖ ask

(
ground(X) ∧ ground(Y) ∧ Y 6= 0

)
→ tell

(
ground(Z)

)
.

Of course, this is much more precise than the Pos formula X ← Y ∧ Z, which
is all you can say about the groundness dependencies of X = Y ∗ Z if you
do not have any numerical information. It is clear from these examples that,
when analyzing CLP(R) programs there is a bidirectional flow of information:
groundness information is required for a correct handling of delayed constraints
and thus for deriving more precise numerical patterns which, in turn, are used to
provide more precise groundness information. Indeed, we are requiring a quite
complicated interaction between domains.

Another application of groundness analysis with fast access to ground vari-
ables is for aliasing analysis. The most popular domain for this kind of analysis
is Sharing [13]. Without going into details, its strength over the previous ap-
proaches [15, 12] comes from the fact that it keeps track of groundness depen-
dencies. In fact, Sharing has, as far as groundness information is concerned, the
same power of Def. When Pos is used for groundness, using Sharing for aliasing
at the same time is a waste: Sharing spends time and space for keeping track
of groundness, which is already done, and more precisely, by Pos. A possible
solution is to adopt a variation of the domains proposed in [15, 12] (which are
1 We choose this form of presentation for clarity. It is clear that this agent will be

itself compiled to something different. For instance, the second agent of the parallel
composition will “live” in the groundness component, if the latter is able to capture
the indicated dependency.

much less computationally expensive than Sharing) and to combine it with Pos.
We are currently working along this line. This, however, is beyond the scope of
this paper.

Whatever conceptual methodology you follow to realize the combination of
any domain with one for groundness, a key component for the efficiency is that
the implementation of the latter must be reactive. By this we mean that: (a)
it must react quickly to external queries about the groundness of variables; and,
(b) it must absorb quickly groundness notifications coming from other domains.

4 Binary Decision Trees and Diagrams

Binary decision trees (BDTs) and diagrams (BDDs) are well-known abstract
representations of Boolean functions [5, 6]. Binary decision trees, such as the
ones presented in Fig. 1 are binary trees where non-terminal nodes are labeled

(a) x����

y����

z����

1
�
�� L
LL

0

�
�� \

\\
? z����

0
�
�� L
LL

1

,
,
,, l

l
ll

z ?����

0
�
�� L
LL

1

(b) x����

y����

z����

1
�
�� L
LL

0

�
�� A

AA
0

�
�
� @

@
@

y����

z����

0
�
�� L
LL

1

�
�� A

AA
0

Figure 1. OBDTs for (x ∧ y)↔ z (a) and (x↔ z) ∧ y (b).

with variable names, while terminal nodes are labeled with the Boolean constants
0 or 1. The value of the represented function, for a given assignment of Boolean
values to variables, can be recovered by following a particular path from the root:
at any non-terminal node labeled with a variable v, the thick branch is taken if v
is assigned to 1, otherwise the thin branch is taken. The terminal node reached
by this walk on the tree is the function value. For a non-terminal node n, we
will call the node connected to n by means of the thick (resp. thin) edge the
true (resp. false) successor of n. A BDD is a directed acyclic graph which can
be thought of as obtained from a BDT by collapsing identical subtrees. With
reference to Fig. 1 (a), the subtrees marked with ‘?’ can be collapsed, as well as
all the terminal nodes having the same label. The action of collapsing identical
subtrees does not change the represented function. Given a total ordering on the
variable symbols, an ordered binary decision tree (OBDT) is a BDT where the
sequence of variables (associated to non-terminals) encountered in any path from

the root is strictly increasing. The trees depicted in Fig. 1 are indeed OBDTs
where the ordering is such that x ≺ y ≺ z. Applying the very same restriction
to BDDs we obtain the notion of ordered binary decision diagram, or OBDD.

Definition 4. (BDTs and OBDTs.) A binary decision tree is any string
generated by the grammar

BDT ::= 0 | 1 | ite(v,BDT,BDT)

where v ∈ Vars. The set of all BDTs is denoted by B. The semantics of BDTs
is expressed by the function [[·]] : B → F , defined as follows:

[[0]] def= ⊥, [[1]] def= >, [[ite(v, b1, b0)]] def= ite
(
v, [[b1]], [[b0]]

)
,

where for each w ∈ Vars, f1, f0 ∈ F , and each a ∈ A,

ite(w, f1, f0)(a) def=
{
f1(a), if a(w) = 1;
f0(a), if a(w) = 0.

The subset Bo ⊆ B of ordered BDTs (OBDTs) is defined be the following recur-
rent equation:

Bo
def= {0,1} ∪

 ite(v, b1, b0)

∣∣∣∣∣∣
∀i = 0, 1 : bi ∈ Bo ∧
∃w ∈ Vars . ∃b′1, b′0 ∈ Bo .
bi = ite(w, b′1, b

′
0)⇒ v ≺ w

 .

In the sequel we will deliberately confuse a BDT with the boolean function it
represents. In particular, for b ∈ B, when we write vars(b) or true(b) what we
really mean is vars([[b]]) or true([[b]]). This convention of referring to the semantics
simplifies the presentation and should not cause problems.

A reduced ordered binary decision diagram, or ROBDD, is an OBDD such
that:

1. there are no duplicate terminal nodes;
2. there are no duplicate non-terminal nodes (i.e., nodes having the same label

and the same true and false successors);
3. there are no redundant tests, that is each non-terminal node has distinct true

and false successors.

Any OBDD can be converted into a ROBDD by repeatedly applying the re-
duction rules corresponding to the above properties: collapsing all the duplicate
nodes into one and removing all the redundant tests, redirecting edges in the
obvious way. Application of these rules does not change the represented func-
tions. ROBDDs have one very important property: they are canonical. This
means that, for each fixed variables’ ordering, two ROBDDs represent the same
function if and only if they are identical.

The nice computational features of ROBDDs make them suitable for imple-
menting Pos (see, e.g., [16, 1]), even though ROBDDs are clearly able to represent
any Boolean function. In this paper we deal formally only with OBDTs, since our
results do not need all the properties of ROBDDs. Indeed, since every OBDT
is an OBDD and the reduction rules do not change the represented Boolean
function, everything we say about OBDTs is true also for ROBDDs.

5 Is x Ground?

Capturing dependency and disjunctive information is essential for precise ground-
ness analysis. However, this kind of information is only needed for maintaining
precise intermediate results during the analysis. Instead, the only information
which is relevant for the user of the analysis’ results is whether a certain variable
is guaranteed to be ground at a certain point or not. When combinations of
domains are considered, as explained in Sect. 3, it is vital to recover the set of
ground variables quickly even inside the analysis. The problem of deriving this
sure groundness information from ROBDDS has not been tackled in previous
works [7, 16, 1]. Basically we know about five ways of doing that:

1. Given x ∈ Vars and a ROBDD representation b of a boolean function f , use
the ROBDD package to test whether f → x is a tautology, that is, whether
f → x is equivalent to >. This test can be performed in O(|b|) time. The
main advantage of this solution is that it does not require any change to the
ROBDD package. One of the drawbacks is that the reduction of f→x causes
the creation and disposal of “spurious” nodes.

2. Given x ∈ Vars and a ROBDD representation b of a boolean function f ,
the information whether x is forced to 1 by f is obtained by visiting b. The
answer is affirmative if (a) there is at least one node in b labeled with x;
and, (b) each node in b labeled with x has its false branch equal to 0. This
method has still linear complexity, requires the incorporation of the visit into
the ROBDD package, and does not involve the creation of any node.

3. Another possibility is to visit the ROBDD representation b to derive, in one
shot, the set G of all the variables which are forced to 1. We will see how
this can be done in Sect. 6.

4. A variation of the previous method consists in avoiding visiting b, while
obtaining exactly the same information, by modifying ROBDD’s nodes so
that every node records the set of variables which are forced to true by the
boolean function it represents. Sect. 6 explains how this method of keeping
explicit the information about true variables can be easily implemented.

5. The last method is based on a quite radical, though very simple, solution.
Intuitively, it is based on the idea of keeping the information about true vari-
ables totally separate from dependency and disjunctive information. True
variables are represented naturally by means of sets whereas only the depen-
dency and disjunctive information is maintained by means of ROBDDs. This
will be explained in Sect. 7.

6 Extracting Sure Groundness from ROBDDs

Here is the only property of OBDTs (and thus of ROBDDs) we need.

Definition 5. (Weak normal form.) A BDT b ∈ B is said to be in weak
normal form if and only if either b = 0 or b = 1, or there exist b1, b0 ∈ B such
that b = ite(v, b1, b0), v /∈ vars(b1) ∪ vars(b0), and both b1 and b0 are in weak
normal form.

Proposition 6. Each OBDT b ∈ Bo is in weak normal form.

This is indeed the distinctive property of “free BDDs” or “1-time branching
programs”, where no ordering is required but each path from the root is allowed
to test a variable only once [6].

Theorem 7. Let b = ite(v, b1, b0) be in weak normal form. Then we have

true(b) =

 true(b0), if b1 = 0;
{v} ∪ true(b1), if b1 6= 0 and b0 = 0;
true(b1) ∩ true(b0), otherwise.

This theorem gives us at least two ways of deriving sure groundness informa-
tion from ROBDDs. One is by implementing a post-order visit, collecting true
variables as indicated. Another one, which is more in the spirit of a reactive
implementation, is based on a modification of the node structure which is used
to represent ROBDDs. In standard implementations, a non-terminal node n has
one field n.V which holds the test variable, plus two fields n.T and n.F which
are references to the nodes which are the roots of the true and false branch, re-
spectively. All the nodes are created by means of a function create(v,@n1,@n0),
taking a variable’s symbol and two references to (already created) nodes, and re-
turning a reference to the newly created node. We can modify this state of things
by adding to the node structure a field n.G, containing the set of true variables
for the function represented by the ROBDD rooted at n, and by modifying the
creation function to initialize n.G as indicated by Theorem 7.

7 A New, Hybrid Implementation for Pos

The observation of many constraint logic programs shows that the percentage of
variables which are found to be ground during the analysis, for typical invoca-
tions, is as high as 80%. This suggests that representing Pos elements simply by
means of ROBDDs, as in [16, 1], is probably not the best thing we can do. Here
we propose a hybrid implementation where each Pos element is represented by
a pair: the first component is the set of true variables (just as in the domain
used in early groundness analyzers [17, 15]); the second component is a ROBDD.
In each element of this new representation there is no redundancy: the ROBDD
component does not contain any information about true variables. In fact, as
we will see, the hybrid representation has the property that ROBDDs are used
only in what they are good for: keeping track of dependencies and disjunctive
information. True variables, instead are more efficiently represented by means
of sets. The hybrid representation has two major advantages: (a) it is reactive
in the sense of Sect. 3; and, (b) it allows for keeping the ROBDDs small, during
the analysis, when many variables come out to be true, as it is often the case.
Consider Fig. 1 (b): the information about y being a true variable (besides not
being readily available) requires two nodes. In more involved cases, the informa-
tion about trueness of a variable coming late in the ordering can be scattered
over a large number of nodes. Notice that, while having many true variables, in

a straight ROBDD implementation, means that the final ROBDDs will be very
similar to a linear chain of nodes, the intermediate steps still require the creation
(and disposal) of complex (and costly) ROBDDs. This phenomenon is avoided
as much as possible in the hybrid implementation.
(By ℘f (Vars) we denote the set of all finite subsets of Vars.)

Definition 8. (Hybrid repr.) The hybrid representation for Pos is

G def=
{
〈G, b〉

∣∣ G ∈ ℘f (Vars), b ∈ Bo, vars(b) ∩G = true(b) = ∅
}
.

The meaning of G’s elements is given by the overloading [[·]] : G → F :[[
〈G, b〉

]] def=
∧

(G) ∧ [[b]],

where
∧
{x1, . . . , xn}

def= x1 ∧ · · · ∧ xn and
∧
∅ def= >.

Now, we briefly review the operations we need over Pos (and thus over G) for
the purpose of groundness analysis. The constraint accumulation process re-
quires computing the logical conjunction of two functions, the merge over differ-
ent computation paths amounts to logical disjunction, whereas projection onto
a designated set of variables is handled through existential quantification. Func-
tions of the kind x↔ (y1, . . . , ym), for m ≥ 0, accommodate both abstract mgus
and the combination operation in domains like Pat(Pos) [9]. Before introducing

Bo op Complexity Meaning G op

b1 ∧̈ b2 O(|b1||b2|) [[b1]] ∧ [[b2]] g1 ⊗ g2

b1 ∨̈ b2 O(|b1||b2|) [[b1]] ∨ [[b2]] g1 ⊕ g2

∃̈V̄ b O
(
|b|2|V |

)
∃V̄ [[b]] ∃∃V̄ g Note: V ⊆ vars(b).∧̈

(V) O(|V |)
∧

(V) Note: V 6= ∅.
x ↔̈ V O(|V |) x↔

∧
(V) Note: x /∈ V .

b[1/V] O(|b|) [[b]][1/V]
Table 1. Operations defined over Bo and G.

the G’s operations we introduce, by means of Table 1, the needed operations
over OBDTs and ROBDDs, their complexity and semantics, as well as the cor-
respondent operations over G. In the sequel we will refer to some operations on
OBDTs whose meaning and complexity is specified in the table. The restriction
operation b[1/V] (also called valuation or co-factoring) is used for maintaining
the invariant specified in Definition 8. In the definition of the abstract operators
used in groundness analysis, the functions of the form x↔ (y1, . . . , ym) are al-
ways conjuncted with some other function. For this reason we provide a family
of specialized operations (x, V)

↔
⊗ : G → G, indexed over variables and finite sets

of variables. The operation (x, V)
↔
⊗ builds a representation for

(
x↔

∧
(V)
)
∧ f ,

given one for f .

Definition 9. (Operations over G.) The operation ⊗ : G × G → G is defined,
for each 〈G1, b1〉, 〈G2, b2〉 ∈ G, as follows:

〈G1, b1〉 ⊗ 〈G2, b2〉
def= η

(
G1 ∪G2, b1

[
1/(G2 \G1)

]
∧̈ b2

[
1/(G1 \G2)

])
,

where, for each G ∈ ℘f (Vars) and b ∈ Bo such that G ∩ vars(b) = ∅,

η(G, b) def=

{
〈G, b〉, if true(b) = ∅;
η
(
G ∪ true(b), b

[
1/ true(b)

])
, otherwise.

The join operation ⊕ : G × G → G is given by

〈G1, b1〉 ⊕ 〈G2, b2〉
def=
〈
G1 ∩G2,

(
b1 ∧̈

∧̈
(G1 \G2)

)
∨̈
(
b2 ∧̈

∧̈
(G2 \G1)

)〉
.

For each 〈G, b〉 ∈ G, each V ∈ ℘f (Vars), and x ∈ V ars, the unary operations

∃∃V̄ : G → G and (x, V)
↔
⊗ : G → G are given by

∃∃V̄ 〈G, b〉
def=
〈
G \ V, ∃̈V̄ b

〉
; and

(x, V)
↔
⊗〈G, b〉 def=

η
(
G ∪ V, b

[
1/(V \G)

])
, if x ∈ G;

η
(
G ∪ {x}, b[1/x]

)
, if V ⊆ G;

η
(
G, b ∧̈

(
x ↔̈ (V \G)

))
, if x /∈ G and V * G.

The following result holds almost by definition.

Theorem 10. The operations of Definition 9 are well-defined. Moreover, for
each g, g1, g2 ∈ G, each V ∈ ℘f (Vars), and x ∈ Vars,

[[g1 ⊗ g2]] = [[g1]] ∧ [[g2]], [[g1 ⊕ g2]] = [[g1]] ∨ [[g2]],[[
∃∃V̄ g

]]
= ∃V̄ [[g]],

[[
(x, V)

↔
⊗ g
]]

=
(
x↔

∧
(V)
)
∧ [[g]].

Notice that G operations make use of the Bo (ROBDD) operations only when
strictly necessary. When this happens, expensive operations like ∧̈ and ∨̈ are
invoked with operands of the smallest possible size. In particular, we exploit
the fact that the restriction operation is relatively cheap. However, we cannot
avoid searching for true variables, as the ⊗ and (x, V)

↔
⊗ operators need that. For

this purpose, the procedure implicit in Theorem 7 comes in handy. In programs
where many variables are ground the ROBDDs generated will be kept small,
and so also the cost of searching will be diminished. As a final remark, observe
that in a real implementation the operations which are executed can be further
optimized. Without entering into details, the basic analysis step, for what con-
cerns groundness and in a bottom-up framework, generates macro-operations of

the form (x1, V1)
↔
⊗
(
(x2, V2)

↔
⊗
(
· · · ((xn, Vn)

↔
⊗(g1 ⊗ g2 ⊗ · · · ⊗ gm)) · · ·

))
. These

operations can be greatly simplified by first collecting all the true variables in the
gi’s in one sweep (a bunch of set unions) and iterating through the (xi, Vi)

↔
⊗ in-

dexes for collecting further true variables. Then the ROBDDs which occur in the
macro-operation are restricted using the collected true variables and, at the end
of this process, the ROBDD package is invoked over the simplified arguments.
Only then we search for further true variables in the resulting ROBDD.

8 Experimental Evaluation

The ideas presented in this paper have been experimentally validated in the
context of the development of the China analyzer [2]. China is a data-flow
analyzer for CLP(H, N) languages (i.e. Prolog, CLP(R), clp(FD) and so forth)
written in Prolog and C++. It performs bottom-up analysis deriving information
on both call and success patterns by means of program transformations and
optimized fixpoint computation techniques.

The assessment of the hybrid domain has been done in a quite radical way.
In fact, we have compared the standard, pure ROBDD-based implementation
of Pos against the hybrid domain on the following problem: deriving, once for
each clause’s evaluation, a boolean vector indicating which variables are known to
be ground and which are not. This is a very minimal demand for each analysis
requiring the knowledge about definitely ground variables during the analysis.
We have thus performed the analysis of a number of programs on a domain
similar to Pat(Pos) [9], switching off all the other domains currently supported
by China

2. Pat(<) is a generic structural domain which is parametric with
respect to any abstract domain <. Roughly speaking, Pat(<) associates to each
variable the following information:

– a pattern, that is to say, the principal functor and subterms which are bound
to the variable;

– the “properties” of the variable, which are delegated to the < domain (the
two implementations of Pos, in our case).

As reported in [8], Pat(Pos) is a very precise domain for groundness analysis.
The experimental results are reported in Table 2. The table gives, for each

program, the analysis times and the number of ROBDD nodes allocated for
the standard implementation (STD) and the hybrid one (HYB), respectively.
It also shows the ratio STD/HYB for the above mentioned figures (S/H). The
computation times have been taken on a 80486DX4 machine with 32 MB of
RAM running Linux 1.3.64. The tested programs have become standard for
the evaluation of data-flow analyzers. They are a cutting-stock program CS, the
generate and test version of a disjunctive scheduling program Disj, a program
to put boolean formulas in disjunctive normal form DNF, the Browse program
Gabriel taken from Gabriel benchmark, an alpha-beta procedure Kalah, the
2 Namely, numerical bounds and relations, aliasing, and polymorphic types

Analysis time (sec) N. of BDD nodes

Program STD HYB S/H STD HYB S/H

CS 1.06 0.6 1.77 12387 391 31.7
Disj 1.06 0.6 1.77 72918 176 414.3
DNF 5.17 4.4 1.18 5782 111 52.1
Gabriel 1.13 0.74 1.53 28634 10472 2.73
Kalah 3.92 2.02 1.94 43522 645 67.5
Peep 6.13 5.52 1.11 176402 128332 1.37
PG 0.37 0.25 1.48 3732 86 43.4
Plan 0.59 0.5 1.18 1736 65 26.7

Table 2. Experimental results obtained with the China analyzer.

peephole optimizer of SB-Prolog Peep, a program PG written by W. Older to
solve a particular mathematical problem, and the famous planning program Plan
by D.H.D. Warren.

The results indicate that the hybrid implementation outperforms the standard
one in both time and space efficiency. The systematic speed-up obtained was not
expected. Indeed, we were prepared to content ourselves with a moderate slow-
down which would have been recovered in the reactive combinations. The space
figures show that we have achieved significant (and sometimes huge) savings in the
number of allocated ROBDD nodes. With the hybrid domain we are thus able to
keep the ROBDDs which are created and traversed during the analysis as small as
possible. This phenomenon is responsible for the speed-up. It seems that, even for
programs characterized by not-so-many ground variables, there are always enough
ground variables to make the hybrid implementation competitive. This can be
observed, for instance, in the case of the Peep program, which was analyzed with
a non-ground, most-general input pattern. The following additional observations
are important for a full understanding of Table 2:

1. we are not comparing against a poor standard implementation of Pos, as
can be seen by comparing the analysis times with those of [8]. The ROBDD
package we are using is fine-tuned: it employs separate caches for the main
operations (with hit-rates in the range 95%–99% for almost all programs),
specialized and optimized versions of the important operations over ROB-
DDs, as well as aggressive memory allocation strategies. Indeed, we were led
to the present work by the apparent impossibility of further optimizing the
standard implementation. Moreover, the hybrid implementation has room
for improvement, especially for what concerns the handling of bit-vectors.

2. We are not taking into account the cost of garbage-collection for ROBDD
nodes. In particular, the sizes of the relevant data-structures were chosen so
that the analysis of the tested programs could run to completion without any
node deallocation or reallocation.

3. The boolean vectors computed during our test analyses are what is necessary
for, say, the quick handling of delayed constraints and goals, and the efficient
simplification of aliasing information. However, the experiment does not take
into account the inevitable gains which are a consequence of the fast access
to ground variables. Furthermore, in a truly reactive combination, the set of
ground variables is not needed only at the end of each clause’s evaluation (this
is the optimistic hypothesis under which we conducted the experimentation),
but at each body-atom evaluation for each clause. In this context the hybrid
implementation, due to its incrementality, is even more favored with respect
to the standard one (which is not incremental at all).

9 Conclusion

We have studied the problem, given an implementation of Pos based on ROBDDs,
of determining as efficiently as possible the set of variables which are forced to true
in the abstract representation. We have explained why, for the sake of realizing
reactive combinations of domains, it is important to detect these variables (which
correspond to ground ones at the concrete level) as quickly as possible. This
problem has not been treated before in the literature [16, 1, 19]. After reviewing
the näıf approaches, we have presented a simple method of detecting all the true
variables in a ROBDD representation at once. We have then proposed a novel
hybrid representation for Boolean functions. This representation is designed in a
way to take advantage from the observation that most programs (together with
their typical queries) have a high percentage of variables which are deemed to be
ground at the program points of interest. With the new representation, not only
the information about true (ground) variables is always readily available (instead
of being scattered all over the ROBDDs), but we are also able to keep the usage
of (expensive) ROBDDs at a minimum. This is clearly important for efficiency
reasons. In fact, we have presented the experimental results obtained with a
prototype implementation of the hybrid domain which outperforms, from any
point of view, the standard implementation based on ROBDDs only. Surprisingly
enough, we have thus been able to assess the superiority of the hybrid domain
even for those cases where fast access to ground variables is not important.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Sondergaard. Two classes of
boolean functions for dependency analysis. Technical Report 94/211, Dept. Com-
puter Science, Monash University, Melbourne, 1994.

2. R. Bagnara. On the detection of implicit and redundant numeric constraints in
CLP programs. In M. Alpuente, R. Barbuti, and I. Ramos, editors, Proceedings
of the “1994 Joint Conference on Declarative Programming (GULP-PRODE ’94)”,
pages 312–326, Peñ́ıscola, Spain, September 1994.

3. R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint
logic-based languages. Technical Report TR-96-10, Dipartimento di Informatica,
Università di Pisa, 1996. To appear on a special issue of “Science of Computer
Programming”.

4. R. Bagnara, R. Giacobazzi, and G. Levi. An application of constraint propagation
to data-flow analysis. In Proceedings of “The Ninth Conference on Artificial In-
telligence for Applications”, pages 270–276, Orlando, Florida, March 1993. IEEE
Computer Society Press, Los Alamitos, CA.

5. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

6. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318, September 1992.

7. A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional formula
as abstract domain for groundness analysis. In Proc. Sixth IEEE Symp. on Logic
In Computer Science, pages 322–327. IEEE Computer Society Press, 1991.

8. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and software sup-
port for abstract domain design: Generic structural domain and open product.
Technical Report CS-93-13, Brown University, Providence, RI, 1993.

9. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming. In Conference Record of POPL ’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
227–239, Portland, Oregon, January 1994.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–282,
1979.

11. P. Cousot and R. Cousot. Abstract interpretation and applications to logic pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

12. S. K. Debray. Static Inference of Modes and Data Dependencies in Logic Pro-
grams. ACM Transactions on Programming Languages and Systems (TOPLAS),
11(3):418–450, 1989.

13. D. Jacobs and A. Langen. Accurate and efficient approximation of variable aliasing
in logic programs. In E. Lusk and R. Overbeek, editors, Proc. North American Conf.
on Logic Programming’89, pages 154–165. The MIT Press, Cambridge, Mass., 1989.

14. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

15. N. D. Jones and H. Søndergaard. A semantics-based framework for the abstract
interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Inter-
pretation of Declarative Languages, pages 123–142. Ellis Horwood Ltd, 1987.

16. B. Le Charlier and P. Van Hentenryck. Groundness analysis for Prolog: Imple-
mentation and evaluation of the domain prop. In Proceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion, pages 99–110. ACM Press, 1993.

17. C. Mellish. Some global optimizations for a Prolog compiler. Journal of Logic
Programming, 2:43–66, 1985.

18. V. A. Saraswat. Concurrent Constraint Programming. MIT Press Cambridge,
Mass., 1993.

19. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the domain PROP.
Journal of Logic Programming, 23(3):237–278, June 1995. Extended version of [16].

