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Abstract. This paper explores the abstract domain of grids, a domain
that is able to represent sets of equally spaced points and hyperplanes
over an n-dimensional vector space. Such a domain is useful for the static
analysis of the patterns of distribution of the values program variables
can take. We present the domain, its representation and the basic oper-
ations on grids necessary to define the abstract semantics. We show how
the definition of the domain and its operations exploit well-known tech-
niques from linear algebra as well as a dual representation that allows,
among other things, for a concise and efficient implementation.

1 Introduction

We distinguish between two kinds of numerical information about the values
program variables can take: outer limits (or bounds within which the values must
lie) and the pattern of distribution of these values. Both kinds of information
have important applications: in the field of automatic program verification, limit
information is crucial to ensure that array accesses are within bounds, while
distribution information is what is required to ensure that external memory
accesses obey the alignment restriction imposed by the host architecture. In
the field of program optimization, limit information can be used to compile
out various kinds of run-time tests, whereas distribution information enables
several transformations for efficient parallel execution as well as optimizations
that enhance cache behavior.

Both limit and distribution information often come in a relational form; for
instance, the outer limits or the pattern of possible values of one variable may
depend on the values of one or more other variables. Domains that can capture re-
lational information are generally much more complex than domains that do not
have this capability; in exchange they usually offer significantly more precision,
often important for the overall performance of the client application. Relational
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(a) The grid L
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(b) The grid L′

Fig. 1. Congruence and generator systems representing two grids in R2

limit information can be captured, among other possibilities, by means of poly-
hedral domains, that is, domains that represent regions of some n-dimensional
vector space bounded by a finite set of hyperplanes [10]. Although polyhedral do-
mains such as the domain of convex polyhedra have been thoroughly researched
and are widely used, relational domains for representing the (linear) distribu-
tion of numerical values have been less well researched. Moreover, as far as we
know and at the time of writing, there is no available implementation providing
all the basic operations needed by a relational abstract domain for distribution
information. This is in spite of the fact that previous research has shown that a
knowledge about the (discrete) distribution of numerical information, especially
when combined with that of the limit information, can significantly improve the
quality of the analysis results [1].

This paper closes this gap by providing a complete account of the relational
domain of grids ; a domain for capturing numerical distribution information. It
includes a detailed survey of previous work in this area; gives two representations
for the domain; outlines how these can be reduced and also how to convert
between them; and shows how this double description directly supports methods
for comparing, joining and intersecting elements of this domain. The paper also
outlines affine image and preimage operations and two new widenings for grids.

Grids in a Nutshell. Figure 1 illustrates two ways of describing a grid; either
by means of a finite set of congruence relations that all grid points must satisfy
(given by dashed lines) or by means of a finite set of generating vectors used for
constructing the grid points and lines (given by filled squares and thick lines).

The squares in Figure 1(a) illustrate a grid L indicating possible values of
integer variables x and y resulting from executing the program fragment in
Figure 2 for any value of m. The congruence relations x = 0 (mod 2) and x +
2y = 2 (mod 4) are represented by the vertical dashed lines and sloping lines,
respectively. The set of congruence relations C =

{

x = 0 (mod 2), x + 2y = 2

(mod 4)
}

, called a congruence system, is said to describe L. The filled squares
mark the points p1 = ( 2

0 ) , p2 = ( 6
0 ) and p3 = ( 4

1 ) while all the squares (both
filled and unfilled) mark points v = π1p1 + π2p2 + π3p3, where π1, π2, π3 ∈ Z
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and π1 + π2 + π3 = 1. The set of points P = {p1, p2, p3} is said to generate
L. Some of these generating points can be replaced by parameters that give the
gradient and distance between neighboring points. Specifically, by subtracting
the point p1 from each of the other two generating points p2 and p3, we obtain
the parameters q2 = ( 4

0 ) and q3 = ( 2
1 ) for L that are marked by the thick lines

between points p1 and p2 and points p1 and p3, respectively. It follows that each
point v ∈ L can be written as v = p1 + π2q2 + π3q3 for some π2, π3 ∈ Z.

The dashed line in Figure 1(b) illustrates

x := 2; y := 0; (P1)

for i := 1 to m (P2)

if ... then

x := x + 4 (P3)

else

x := x + 2;

y := y + 1 (P4)

endif (P5)

endfor

Fig. 2. Fragment based on an
example in [10]

the grid L′ defining the line x = y + 1 and
marks the vectors of values of the real vari-
ables x and y after an assignment x := y + 1,
assuming that nothing is known about the
value of y. As equalities are congruences mod-
ulo 0, the set C′ = {x−y = 1} is also called a
congruence system and describes L′. Observe
that the grid L′ consists of all points that can
be obtained as λℓ + p′, for any λ ∈ R, where
ℓ = ( 1

1 ) and p′ = ( 1
0 ) ; the vector ℓ, called

a line, defines a gradient and the vector p′ is
a generating point marking a position for the
line (illustrated in Figure 1(b) by the thick
line and the filled square, respectively).

From what we have just seen, any grid can be represented both by a congru-
ence system and by a generator system. The latter may consist of three compo-
nents: a set of lines, a set of parameters and a set of points. For instance, the
triples G1 =

(

∅, ∅, P
)

and G2 =
(

∅, {q2, q3}, {p1}
)

are both generator systems

for L while the triple G′ =
(

{ℓ}, ∅, {p′}
)

is a generator system for L′.

Contributions. The paper provides an account of the relational domain of
grids, fully implemented within the Parma Polyhedra Library [2, 4]. In this sec-
tion we provide the first comprehensive survey of the main research threads
concerning these and similar domains. The other contributions are given below.

Minimizing representations. Assuming the grid is represented by a congruence
and generator system in an n-dimensional vector space consisting of m congru-
ences or generators, then we outline algorithms for minimizing the representation
(based on the Hermite normal form algorithm [29]) that have worst-case com-
plexity O

(

n2m
)

. Note that previous proposals for minimization such as those
in [14, 23] have worse complexity bounds (see below).

Converting representations. The congruence and generator representations de-
scribed informally above form the two components of a double description method
for the grid domain very similar to that for convex polyhedra [20]. For a double
description method, conversion algorithms between the two systems are needed;
we show how conversion can be implemented using any matrix inversion al-
gorithm, inheriting the corresponding worst-case complexity. For instance, the
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complexity is O
(

n3
)

when adopting the standard Gaussian elimination method;
since matrix inversion has the same worst-case complexity as matrix multipli-
cation, better theoretical complexity bounds apply [5]. Previous proposals for
congruence to generator conversion have complexity no better than O

(

n4
)

[15].

Grid operations. For static analysis, it is useful to provide all the set-theoretic
lattice operations for grids (assuming the usual subset ordering) such as compar-
ison, join and meet. We show that these operations are straightforward given the
availability of the appropriate representation(s) in minimal form; and hence show
that some have complexities strictly better than that of previous proposals [14].
We also describe a grid difference operator which is new to this paper.

Affine transformation operators. Affine image and preimage operators can be
used to capture the effect of assignment statements in a program when the ex-
pression is linear although, as noted by Müller-Olm and Seidl in [21], analyses
that use affine spaces for approximating the semantics of procedures are not suf-
ficiently precise to detect all valid affine relations for programs with procedures.
Here we specify, for the domain of grids, the affine image and preimage operators
for a single update where only one dimension is modified.

Widenings. It was observed by Granger [15], that, if the grid generators can
be in the rationals, then the grid domain does not satisfy the ascending chain
condition; so, to guarantee termination of the analysis, a widening operation
is required. In [15, Proposition 10], a widening is given for non-relational grids
that returns a line parallel to an axis whenever the modulus for that dimension
changes. It is then proposed that a generalized form of this could be used as a
widening for relational grids; however, exactly how this is to be done is unclear.
In this paper, we define two possible generalizations which come with simple
syntactic checks that have efficient implementations.

Related Work. In [12], Granger shows how a static analysis can usefully em-
ploy a simple non-relational grid domain (that is a grid described by congruences
of the form x = c (mod f) where c and f are integers) and that this domain
can obtain more precise information for applications such as automatic vector-
ization. Larsen et al. [17] also developed a static analyzer over a non-relational
grid domain specifically designed to detect when dynamic memory addresses are
congruent with respect to a given modulus; they show that, this information
helps in the construction of a comprehensive set of program transformations for
saving energy on low-power architectures and improving performance on multi-
media processors. We note that these applications should carry over to the more
complex domain considered here. In addition, Miné has shown how to construct,
from the non-relational congruence domain in [12], a zone-congruence domain
(that is, a domain that only allows weakly relational congruences that have the
form x − y = a (mod b) where a and b are rationals) [19].

Concerning fully relational domains, note that the use of a domain of linear
equality relations for program analysis had already been studied by Karr [16].
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In [14], Granger generalized this to provide a domain of linear congruence re-
lations on an integral domain, i.e., a domain generated by integral vectors in
n-dimensions; and then, in [13, 15], generalizes the results to the full grid do-
main. In [13–15], domain elements are represented by congruence and generator
systems similar to the ones defined here. Standard algorithms for solving linear
equations are used in converting from generator to congruence systems; however,
a more complex O

(

n4
)

algorithm is provided for converting from congruence to
generator systems. Assuming the number of generators is n + 1, the algorithm
for minimizing the generator system has complexity O

(

n3 log2 n
)

. Operators for
comparing grids and computing the greatest lower and least upper bounds are
also described. In particular, the join operation defined in [14] has complexity
O

(

n4 log2 n
)

, since the generators of one grid are added, one at a time, to the
generators of the other; after each addition the minimization algorithm is ap-
plied to compute a new linearly independent set. The grid meet operation which
also minimizes the addition of one congruence at a time has complexity O

(

n4
)

.

The problem of how best to apply the grid domain in a program analyzer,
has been studied by Müller-Olm and Seidl in [23] also building on the work of
Karr [16]. Here, the prime focus is for the design of an interprocedural analysis
for programs containing assignment statements and procedure calls. The algo-
rithm has three stages: first, for each program point, a matrix M containing a
(minimized) set of generators (i.e., vectors of values that hold at that point) is
found; secondly, the determinant f of M is computed; thirdly, a congruence sys-
tem with modulo f that satisfies all the vectors in M is determined. Stage one
is similar to that proposed by Granger [14] for minimizing a set of generators.
Stages two and three differ from the conversion in [14] in that the modulus f is
computed separately and used to reduce the sizes of the coordinates. Note that
the framework described in [23] subsumes previous works by the same authors.

Following an independent stream of research, Ancourt [1] considered the
domain of Z-polyhedra; that is a domain of integral lattices intersected with
the domain of convex polyhedra (see also [24–26]). We are primarily interested
here in the “integral lattices” component which may be seen as a subdomain of
the domain of grids where the grid is full dimensional and all the grid points
are integral vectors. The representation of these integral lattices is a special case
of our generator representation where, for n dimensions, there must be exactly
one point and n linearly independent parameters, all of which must be integral.
There is no support for a congruence representation.

All the operations on Z-polyhedra (and therefore the lattices) require canonic
representations; hence Quinton et al. [25, 26] define a canonical form for these
lattices with a method for its computation. We note that the algorithm for
computing the canonic form has complexity O

(

n4
)

, where n is the number of
dimensions of the vector space. Other operations provided are those of lattice
intersection, affine image and affine preimage. As there is no congruence repre-
sentation, the intersection of two lattices is computed directly from the generator
representations [1]; a refined version of this method is provided in [25] which we
note that, as for computing the canonic form, has complexity O

(

n4
)

. The opera-
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tions of grid join and grid difference (as defined here) are not considered; instead
the union operator takes two lattices L1 and L2 and returns the set {L1,L2} un-
less one (say L1) is contained in the other, in which case they return the larger,
L2. Similarly the difference operation returns a set of lattices representing the
set difference L1 \ L2. The domain of integral lattices has been implemented in
PolyLib [18] following the approach in [25, 26]. This means that only the genera-
tor representation is supported and some operations return sets of lattices while
others manipulate and simplify these sets.

The homogeneous form of a representation given in Section 4, is required
by the conversion algorithm. This form is not new to this paper; in fact several
researchers have observed this. For instance, Granger [14] describes a map from a
linear congruence system in n variables to a homogeneous one in n+1 variables;
Nookala and Risset [24] explain that the PolyLib [18] adds a dimension to make
the (generator) representation homogeneous; while Müller-Olm and Seidl [23]
consider extended states where vectors have an extra 0’th component.

Plan of the Paper. Preliminary concepts and notation are given in Section 2.
Section 3 introduces a grid together with its congruence and generator repre-
sentations while Section 4 provides the main algorithms needed to support the
double description. Section 5 introduces grid widening and the paper concludes
in Section 6. A long version of the paper containing all proofs is available at
http://www.comp.leeds.ac.uk/hill/Papers/papers.html.

2 Preliminaries

The cardinality of a set S is denoted by #S. The set of integers is denoted by
Z, rationals by Q and reals by R. The complexities will assume a unit cost for
every arithmetic operation.

Matrices and Vectors. If H is a matrix in Rn×m, the transposition of H is
denoted by HT ∈ Rm×n. A vector v = (v1, . . . , vn) ∈ Rn is also regarded as a
matrix in Rn×1. The scalar product of vectors v and w ∈ Rn, denoted by 〈v, w〉,
is the real number vTw =

∑n

i=1
viwi. The vector ei ∈ Rn has 1 in the i-th

position and 0 in every other position. We let

piv<(v) :=

{

0 if v = 0

max{i | 1 ≤ i ≤ n, vi 6= 0} if v 6= 0

piv>(v) :=

{

n + 1 if v = 0

min{i | 1 ≤ i ≤ n, vi 6= 0} if v 6= 0.

We write v ⇑ v′, if piv<(v) = piv<(v′) = k and either k = 0 or vk = v′k and
v ⇓ v′, if piv>(v) = piv>(v′) = k and either k = n + 1 or vk = v′k.
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Integer Combinations. The set S = {v1, . . . , vk} ⊆ Rn is affinely independent

if, for all λ ∈ Rk, λ = 0 is the only solution of
{
∑k

i=1
λivi = 0,

∑k

i=1
λi = 0

}

.

For all λ ∈ Rk, the vector v =
∑k

j=1
λjvj is said to be a linear combination

of S. This combination is affine, if
∑k

j=1
λj = 1; and integral, if λ ∈ Zk. The

set of all linear (resp., affine, integral, integral and affine) combinations of S is
denoted by linear.hull (resp., affine.hull(S), int.hull(S), int.affine.hull(S)).

Congruences and Congruence Relations. For any a, b, f ∈ R, a ≡f b

denotes the congruence ∃µ ∈ Z . a − b = µf . Let S ∈ {Q, R}. For each vector
a ∈ Sn and scalars b, f ∈ S, the notation 〈a, x〉 ≡f b stands for the linear
congruence relation in Sn defined by the set

{

v ∈ Rn
∣

∣ ∃µ ∈ Z . 〈a, v〉 = b+µf
}

;
when f 6= 0, the relation is said to be proper ; 〈a, x〉 ≡0 b denotes the equality
〈a, x〉 = b. Thus, provided a 6= 0, the relation 〈a, x〉 ≡f b defines the set of affine
hyperplanes

{ (

〈a, x〉 = b + µf
)

∣

∣ µ ∈ Z
}

; when a = 0, we assume that b 6= 0;
if b ≡f 0, 〈0, x〉 ≡f b defines the universe Rn and the empty set, otherwise.

Any vector that satisfies 〈a, x〉 = b + µf for some µ ∈ Z is said to satisfy
the relation 〈a, x〉 ≡f b. Congruence relations in Sn, such as 〈a, x〉 ≡1 b and
〈2a, x〉 ≡2 2b, defining the same hyperplanes are considered equivalent.

The pivot notation for vectors is extended to congruences: if β =
(

〈a, x〉 ≡f

a0

)

then piv<(β) := piv<(a); if γ =
(

〈c, x〉 ≡g c0

)

and ga ⇑ fc, then we write
β ⇑ γ; so that β and γ are either both equalities or both proper congruences.

3 The Grid Domain

Here we introduce grids and their representation. Note that the use of the word
‘grid’ here is to avoid confusion with the meaning of ‘lattice’ (used previously
for elements similar to a grid) in its set-theoretic context (particularly relevant
when working in abstract interpretation).

Grids and the Congruence Representation. A congruence system in Qn

is a finite set of congruence relations C in Qn. As we do not distinguish be-
tween syntactically different congruences defining the same set of vectors, we
can assume that all proper congruences in C have modulus 1.

Definition 1. Let C be a congruence system in Rn. If L is the set of vectors in
Rn that satisfy all the congruences in C, we say that L is a grid described by
a congruence system C in Qn. We also say that C is a congruence system for L
and write L = gcon(C). If gcon(C) = ∅, then we say that C is inconsistent.

The grid domain Gn is the set of all grids in Rn ordered by the set inclusion
relation, so that ∅ and Rn are the bottom and top elements of Gn respectively.

The vector space Rn is called the universe grid. In set theoretical terms, Gn

is a lattice under set inclusion. Many algorithms given here will require the
congruence systems not only to have minimal cardinality but also such that the
coefficients of (a permutation of) the congruences can form a triangular matrix.
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Definition 2. Suppose C is a congruence system in Qn. Then we say that C is
in minimal form if either C = {〈0, x〉 ≡0 1} or C is consistent and, for each
congruence β =

(

〈a, x〉 ≡f b
)

∈ C, the following hold:

1. if piv<(β) = k, then k > 0 and ak > 0;
2. for all β′ ∈ C \ {β}, piv<(β′) 6= piv<(β).

Proposition 1. Let C be a congruence system in Qn and m = # C. Then there
exists an algorithm for finding a congruence system C′ in minimal form with
worst-case complexity O

(

n2m
)

such that gcon(C) = gcon(C′).

Note that the algorithm mentioned in Proposition 1, is based on the Hermite
normal form algorithm; details about the actual algorithm are given in the proof.
Note also, that when m < n, the complexity of this algorithm is just O

(

m2n
)

.

The Generator Representation. Let L be a grid in Gn. Then

– a vector p ∈ L is called a point of L;
– a vector q ∈ Rn \ {0} is called a parameter of L if L 6= ∅ and p + µq ∈ L,

for all points p ∈ L and all µ ∈ Z;
– a vector ℓ ∈ Rn \ {0} is called a line of L if L 6= ∅ and p + λℓ ∈ L, for all

points p ∈ L and all λ ∈ R.

If L, Q and P are finite sets of vecors in Rn and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P )

where the symbol ‘+’ denotes the Minkowski’s sum,3 then L ∈ Gn is a grid
(see [29, Section 4.4] and also Proposition 7). The 3-tuple (L, Q, P ), where L,
Q and P denote sets of lines, parameters and points, respectively, is said to
be a generator system in Qn for L and we write L = ggen

(

(L, Q, P )
)

. Note
that, for any grid L in Gn, there is a generator system (L, Q, P ) in Qn for L
(see again [29, Section 4.4] and also Proposition 6). Note also that the grid
L = ggen

(

(L, Q, P )
)

= ∅ if and only if the set of points P = ∅. If P 6= ∅, then

L = ggen
(

(L, ∅, Qp ∪ P )
)

where, for some p ∈ P , Qp = {p + q ∈ Rn | q ∈ Q }.
As for congruence systems, for many procedures in the implementation, it is

useful if the generator systems have a minimal number of elements.

Definition 3. Suppose G = (L, Q, P ) is a generator system in Qn. Then we say
that G is in minimal form if either L = Q = P = ∅ or # P = 1 and, for each
generator v ∈ L ∪ Q, the following hold:

1. if piv>(v) = k, then vk > 0;
2. for all v′ ∈ (L ∪ Q) \ {v}, piv>(v′) 6= piv>(v).

Proposition 2. Let G = (L, Q, P ) be a generator system in Qn and m = #L+
# Q + #P . Then there exists an algorithm for finding a generator system G′ in
minimal form with worst-case complexity O

(

n2m
)

such that ggen(G′) = ggen(G).

As for Proposition 1, the algorithm mentioned in Proposition 2 is based on the
Hermite normal form algorithm. Note also that, when m < n, the complexity of
this algorithm is again just O

(

m2n
)

.

3 This is defined, for each S, T ⊆ Rn, by S + T := { s + t ∈ Rn | s ∈ S, t ∈ T }.
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Double Description. We have shown that any grid L can be described by
using a congruence system C and also generated by a generator system G. For
the same reasons as for the polyhedral domain, it is useful to represent the grid
L by the double description (C,G). Just as for the double description method
for convex polyhedra, in order to maintain and exploit such a view of a grid, an
implementation must include algorithms for converting a representation of one
kind into a representation of the other kind and for minimizing both represen-
tations. Note that having easy access to both representations is assumed in the
implementation of many grid operators including those described here.

Suppose we have a double description
(

C,G
)

of a grid L ∈ Gn, where both C
and G are in minimal form. Then, it follows from the definition of minimal form
that # C ≤ n + 1 and #L + #Q ≤ n. In fact, we have a stronger result.

Proposition 3. Let (C,G) be a double description where both C and G are in
minimal form. Letting C = E∪F , where E and F are sets of equalities and proper
congruences, respectively, and G = (L, Q, P ), then #F = #Q = n−# L−# E .

Example 1. Consider the grids L and L′ in Figure 1. The congruence systems
C and C′ are in minimal form and the generator systems G2 and G′ are also in
minimal form; however, G1 is not in minimal form as it contains more than one
point. Furthermore, for i = 1, 2, the pairs (C,Gi) are double descriptions for L
while (C′,G′) is a double description for L′.

Comparing Grids. For any pair of grids L1 = ggen
(

(L, Q, P )
)

, L2 = gcon(C)
in Gn, we can decide whether L1 ⊆ L2 by checking if every generator in (L, Q, P )
satisfies every congruence in C. Note that a parameter or line v satisfies a con-
gruence 〈a, x〉 ≡f b if 〈a, v〉 ≡f 0. Therefore, assuming the systems C and G are
already in minimal form, the complexity of comparison is O

(

n3
)

.
Given that it is known that one grid is a subset of another, there are quicker

tests for checking equality - the following definition is used in their specification.

Definition 4. Let C1, C2 be congruence systems in minimal form. Then C1, C2

are said to be pivot equivalent if, for each i, j ∈ {1, 2} where i 6= j, for each
β ∈ Ci, there exists γ ∈ Cj such that β ⇑ γ.

Let G1 =
(

L1, Q1, {p1}
)

and G2 =
(

L2, Q2, {p2}
)

be generator systems in
minimal form. Then G1,G2 are said to be pivot equivalent if, for each i, j ∈ {1, 2}
where i 6= j: for each qi ∈ Qi, there exists qj ∈ Qj such that qi ⇓ qj; and, for
each ℓi ∈ Li, there exists ℓj ∈ Lj such that piv>(ℓi) = piv>(ℓj).

Proposition 4. Let L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2)
be non-empty grids in Gn such that L1 ⊆ L2. If C1 and C2 are pivot equivalent
congruence systems in minimal form or G1 and G2 are pivot equivalent generator
systems in minimal form, then L1 = L2.

It follows from Proposition 4, that provided L1 ⊆ L2 and L1 and L2 have
both their generator or congruence systems already in minimal form, then the
complexity of checking if L1 = L2 is just O

(

n
)

. Moreover, if it is found that
one pair of corresponding pivot elements of the congruence or generator systems
differ, then we can immediately deduce that the grids they describe also differ.
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Intersection and Grid Join. For grids L1,L2 ∈ Gn, the intersection of L1 and
L2, defined as the set intersection L1∩L2, is the largest grid included in both L1

and L2; similarly, the grid join of L1 and L2, denoted by L1 ⊕ L2, is the smallest
grid that includes both L1 and L2. In theoretical terms, the intersection and grid
join operators are the binary meet and join operators on the lattice Gn. They can
easily be computed; if L1 = gcon(C1) = ggen(G1) and L2 = gcon(C2) = ggen(G2),
then L1 ∩ L2 = gcon(C1 ∪ C2) and L1 ⊕ L2 = ggen(G1 ∪ G2).

In practice, the cost of computing the grid intersection and join depends on a
number of factors: if generator systems G1 and G2 for L1 and L2 are known, then
the complexity of computing L1 ⊕ L2 is linear in either #G1 or #G2; if, however,
only congruence systems C1 and C2 for L1 and L2 (not necessarily in minimal
form) are known, then the complexity is that of minimizing and converting
them which is, at worst, O

(

n2 max(# C1, # C2, n)
)

. A similar argument applies
to the complexities of the meet operation. However, the above operations are
not directly comparable with the meet and join operations given in [14]. For
such a comparison, for instance for the join operation, we assume that generator
systems for L1 and L2 in minimal form are available (i.e., each with at most
n+1 generators) and the operation returns a generator system in minimal form
for L1 ⊕ L2. Then the complexity is O

(

n3
)

, the complexity of minimizing a
generator system with at most 2n + 2 generators, which is strictly better than
O

(

n4 log2 n
)

, the complexity of the equivalent operation in [14].

Example 2. Consider the grids L1 = gcon(C1) and L2 = gcon(C2) in G2 where
C1 := {x ≡2 0, −x + y ≡3 0} and C2 := {x ≡4 0, −x + 2y ≡6 0}. Then the
grid intersection is L1 ∩ L2 = gcon(C1 ∪ C2); thus, as C = {x ≡12 0, y ≡3 0} is a
reduced form of C1 ∪ C2, we have L1 ∩ L2 = gcon(C).

Consider L1 = ggen
(

(∅, ∅, P1)
)

and L2 = ggen
(

(∅, ∅, P2)
)

in G2, where
P1 := ( 2 0 0

2 3 0 ) and P2 := ( 4 0 0
2 3 0 ) . Then the grid join L1 ⊕ L2 is generated by

(∅, ∅, P1∪P2); thus, the generator system G :=
(

∅, ( 2 0
0 1 ) , ( 0

0 )
)

is a minimal form
of (∅, ∅, P1 ∪ P2) and L1 ⊕ L2 = ggen(G). Note that here L1 ⊕ L2 6= L1 ∪ L2.

Grid Difference. For grids L1,L2 ∈ Gn, the grid difference L1 ⊖ L2 of L1 and
L2 is the smallest grid containing the set-theoretic difference of L1 and L2.

Proposition 5. The grid L1 ⊖ L2 is returned by the algorithm in Figure 3.

Assuming C1 and C2 are available and in minimal form, it follows from the
complexities of minimization, conversion and comparison operations that the
grid difference algorithm in Figure 3 has worst-case complexity O

(

n4
)

.

Affine Images and Preimages. Affine transformations for the vector space
Rn will map hyperplanes to hyperplanes and preserve intersection properties
between hyperplanes; such transformations can be represented by matrices in
Rn×n. It follows that the set Gn is closed under the set of all affine transfor-
mations for Rn. Simple and useful linear affine transformations for numerical
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Input: Nonempty grids L1 = gcon(C1) and L2 = gcon(C2) in Gn.
Output: A grid in Gn.
(1) L′ := ∅
(2) while ∃β = (e ≡f 0) ∈ C2

(3) C2 := C2 \ {β}
(4) if L1 * gcon

`

{β}
´

(5) if L1 ⊆ gcon
`

{2e ≡f 0}
´

(6) Lβ := gcon
`

C1 ∪ {2e − f ≡2f 0}
´

(7) L′ := L′ ⊕ Lβ

(8) else

(9) return L1

(10) return L′

Fig. 3. The grid difference algorithm

domains, including the grids, are provided by the ‘single update’ affine image
and affine preimage operators.

Given a grid L ∈ Gn, a variable xk and linear expression e = 〈a, x〉+ b with
coefficients in Q, the affine image operator φ(L, xk, e) maps the grid L to

{

(

p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T
∈ Rn

∣

∣

∣ p ∈ L
}

.

Conversely, the affine preimage operator φ−1(L, xk, e) maps the grid L to

{

p ∈ Rn
∣

∣

∣

(

p1, . . . , pk−1, 〈a, p〉 + b, pk+1, . . . , pn

)T
∈ L

}

.

Observe that the affine image φ(L, xk, e) and preimage φ−1(L, xk, e) are invert-
ible if and only if the coefficient ak in the vector a is non-zero.

Program Analysis Using Grids. We show how the grid domain can be used
to find properties of the program variables not found using the polyhedra do-
main [10], constraint-based analysis [28] or polynomial invariants [27].

Example 3. The program fragment in Figure 2 is annotated with program points
Pj, for j = 1, . . . , 5. Let Li

j ∈ G2 denote the grid computed at the i-th iteration

executed by the point Pj. Initially, L0
j = ∅ = gcon

(

{1 = 0}
)

, for j = 1, . . . , 5.
After one and two iterations of the loop we have:

L1
1 = gcon

(

{x = 2, y = 0}
)

, L1
2 = gcon

(

{x = 2, y = 0}
)

,

L1
3 = gcon

(

{x = 6, y = 0}
)

, L1
4 = gcon

(

{x = 4, y = 1}
)

,

L1
5 = gcon

(

{x = 4, y = 1}
)

⊕ gcon
(

{x = 6, y = 0}
)

= gcon
(

{x + 2y = 6, x ≡2 0}
)

,

L2
2 = gcon

(

{x = 2, y = 0}
)

⊕ gcon
(

{x + 2y = 6, x ≡2 0}
)

= gcon
(

{x + 2y ≡4 2, x ≡2 0}
)

.

11



Subsequent computation steps show that an invariant for P2 has already been
computed since L2

3 = L1
3, L

2
4 = L1

4, L
2
5 = L1

5 so that L3
2 = L2

2. Thus at the end
of the program, the congruences x + 2y ≡4 2 and x ≡2 0 hold.

Observe that, using convex polyhedra, a similar analysis will find instead
that the inequalities x − 2y ≥ 2, x + 2y ≥ 6 and y ≥ 0 hold [10].

4 Implementation

In this section, we describe convenient internal representations of the congruence
and generator systems in terms of arrays (i.e., matrices) and show how matrix
inversion provides a basis for converting between these representations.

Homogeneous Representations. A congruence system C is homogeneous if,
for all

(

〈a, x〉 ≡f b
)

∈ C, we have b = 0. Similarly, a generator system (L, Q, P )
is homogeneous if 0 ∈ P . For the implementation, it is convenient to work with a
homogeneous system. Thus we first convert any congruence or generator system
in Qn to a homogeneous system in Qn+1. The extra dimension is denoted with
a 0 subscript; the vector x̂ = (x0, . . . , xn)T; and e0 denotes the vector (1,0T)T.

Consider the congruence system C = E∪F in Qn, where E is a set of equalities
and F is a set of proper congruences. Then the homogeneous form for C is the
congruence system Ĉ = Ê ∪ F̂ in Qn+1 defined by:

Ê :=
{

〈

(−b, aT)T, x̂
〉

= 0
∣

∣

∣

(

〈a, x〉 = b
)

∈ E
}

,

F̂ :=
{

〈

f−1(−b, aT)T, x̂
〉

≡1 0
∣

∣

∣

(

〈a, x〉 ≡f b
)

∈ F
}

∪
{

〈e0, x̂〉 ≡1 0
}

.

The congruence 〈e0, x̂〉 ≡1 0 expresses the fact that 1 ≡1 0. By writing Ê =
(ETx = 0) and F̂ = (FTx ≡1 0), where E, F ⊆ Qn+1, it can be seen that the
pair (F, E), called the matrix form of Ĉ, is sufficient to determine C.

Consider next a generator system G = (L, Q, P ) in Qn. Then the homoge-
neous form for G is the generator system Ĝ :=

(

L̂, Q̂ ∪ P̂ , {0}
)

in Qn+1 where

L̂ :=
{

(0, ℓT)T
∣

∣ ℓ ∈ L
}

, Q̂ :=
{

(0, qT)T
∣

∣ q ∈ Q
}

, P̂ :=
{

(1, pT)T
∣

∣ p ∈ P
}

.

The original grid L = gcon(C) (resp., L = ggen(G)) can be recovered from
the grid L̂ = gcon(Ĉ) (resp., L̂ = ggen(Ĝ)) since L =

{

v ∈ Rn
∣

∣ (1, vT)T ∈ L̂)
}

.

Note that, if (C,G) is a double description for a grid and Ĉ and Ĝ are homogeneous
forms for C and G, then (Ĉ, Ĝ) is also a double description.

Converting Representations. By considering the matrix forms of the (homo-
geneous forms of the) representations, we can build the conversion algorithms on
top of those for matrix inversion. For an informal explanation why this is appro-
priate, suppose that the generator system G =

(

∅, Q, {0}
)

in Qn is in minimal
form and Q is a non-singular square matrix. Letting L = ggen(G) = {Qπ |

12



π ∈ Zn }, then we also have L = {v ∈ Rn | Q−1v ≡1 0 }, so that (Q−1, ∅) is
the matrix form of a congruence system for the same grid L. Similarly we can
use matrix inversion to convert the matrix form of a homogeneous congruence
system in minimal form consisting of n proper congruences for a grid L to a gen-
erator system for L. When the matrices to be inverted have less than n linearly
independent columns, the algorithms first add vectors ei where 1 ≤ i ≤ n, as
necessary, so as to make the matrices non-singular and hence invertible.

Proposition 6. Let C be a congruence system in Qn in minimal form; (F, E)
the matrix form of the homogeneous form for C; N a matrix in Zn+1 whose
vectors are of the form ei, i ∈ {0, . . . , n}, and such that (N, F̂ , Ê) is square and

nonsingular; and (L̂, Q̂, M) :=
(

(N, F̂ , Ê)−1
)T

where # L̂ = #N , # Q̂ = # F̂

and # M = # Ê. Then Ĝ =
(

L̂, Q̂, {0}
)

is the homogeneous form for a generator
system G in minimal form and ggen(G) = gcon(C).

Proposition 7. Let G be a generator system in Qn in minimal form; Ĝ =
(

L̂, Q̂, {0}
)

the homogeneous form for G; M a matrix in Zn+1 whose vectors

are of the form ei, i ∈ {0, . . . , n}, and such that (L̂, Q̂, M) is square and non-

singular; and (N, F̂ , Ê) :=
(

(L̂, Q̂, M)−1
)T

where # N = # L̂, # F̂ = # Q̂ and

# Ê = #M . Then (F̂ , Ê) is the matrix form of the homogeneous form for a
congruence system C in minimal form and gcon(C) = ggen(G).

Both algorithms just perform matrix inversion; so their complexity depends on
the inversion algorithm adopted in the implementation. As far as we know, the
current best theoretical worst-case complexity is O

(

n2.376
)

[5]. Note that, in the
current implementation in the PPL, the conversion algorithm is based on the
Gaussian elimination method, which has complexity O

(

n3
)

.

5 Grid Widening

A simple and general characterization of a widening for enforcing and acceler-
ating convergence of an upward iteration sequence is given in [6–9]. We assume
here a minor variation of this classical definition (see footnote 6 in [9, p. 275]).

Definition 5. (Widening.) Let 〈D,⊢,0,⊕〉 be a join-semilattice. The partial
operator ∇ : D × D  D is a widening if

1. for each d1, d2 ∈ D, d1 ⊢ d2 implies that d1 ∇ d2 is defined and d2 ⊢ d1 ∇ d2;
2. for each increasing chain d0 ⊢ d1 ⊢ · · · , the increasing chain defined by

d′0 := d0 and d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

In addition to the formal requirements in Definition 5, it is also important to have
a widening that has an efficient implementation, preferably, one that depends
on a simple syntactic mapping of the representations. At the same time, so that
the widening is well-defined, the result of this operation should be independent
of the actual representation used. For this reason, the two widenings we propose
assume specific minimal forms for the congruence and generator systems.
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Definition 6. A congruence system C is in strong minimal form if, for each pair
of distinct proper congruences, 〈a, x〉 ≡1 b and 〈c, x〉 ≡1 d in C, if piv<(c) =
k > 0, then −ck < 2ak ≤ ck. A generator system G =

(

(L, Q, P )
)

in Qn is
in strong minimal form if G is in minimal form and, for each pair of distinct
parameters u, v ∈ Q, if piv>(v) = k ≤ n, then −vk < 2uk ≤ vk.

Proposition 8. There exists an algorithm with complexity O
(

n3
)

for convert-
ing a congruence system C (resp., generator system G) in minimal form to a
congruence system C′ (resp., generator system G′) in strong minimal form such
that gcon(C) = gcon(C′) (resp., ggen(G) = ggen(G′)).

The widenings defined below use either the congruence or the generator systems.

Definition 7. Let L1 = gcon(C1) and L2 = gcon(C2) be two grids in Gn such
that L1 ⊆ L2, C1 is in minimal form and C2 is in strong minimal form. Then
the grid widening L1 ∇C L2 is defined by

L1 ∇C L2 :=

{

L2, if L1 = ∅ or dim(L1) < dim(L2),

gcon(CS), otherwise,

where CS := { γ ∈ C2 | ∃β ∈ C1 . β ⇑ γ }.

Definition 8. Let L1 = ggen(G1) and L2 = ggen(G2) be two grids in Gn such
that L1 ⊆ L2, G1 = (L1, Q1, P1) is in minimal form and G2 = (L2, Q2, P2) is in
strong minimal form. Then the grid widening L1 ∇G L2 is defined by

L1 ∇G L2 :=

{

L2, if L1 = ∅ or dim(L1) < dim(L2);

ggen(GS), otherwise,

where GS :=
(

L2 ∪ (Q2 \ QS), QS, P2

)

and QS := {v ∈ Q2 | ∃u ∈ Q1 . u ⇓ v }.

Proposition 9. The operators ‘∇C’ and ‘∇G’ are both widenings on Gn.

In Definition 7, it is required that C2 is in strong minimal form. The following
example shows that this is necessary for the operator ‘∇C’ to be well-defined.

Example 4. Let L1 := gcon(C1), L2 := gcon(C2) and L′

2 := gcon(C′

2) where
C1 = {x ≡2 0, y ≡2 0}, C2 = {x ≡1 0, x + y ≡2 0}, C′

2 = {x ≡1 0, 3x + y ≡2 0};
then L2 = L′

2. Note that only C1 and C2 are in strong minimal form. Therefore,
assuming CS (resp., CS

′) is defined as in Definition 7 using C1 and C2 (resp.,
C1 and C′

2), we have CS = {x + y ≡2 0} and CS

′ = {3x + y ≡2 0}. Thus
L1 ∇C L2 = gcon(CS) 6= gcon(CS

′).

Example 5. To see that the widenings depend on the variable ordering, consider
the grids L1 = gcon(C1) = gcon(C′

1) and L2 = gcon(C2) = gcon(C′

2) in G2, where

C1 := {5x + y ≡1 0, 22x ≡1 0}, C2 := {5x + y ≡1 0, 44x ≡1 0},

C′

1 := {9y + x ≡1 0, 22y ≡1 0}, C′

2 := {9y + x ≡1 0, 44y ≡1 0}.
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Assume for C1 and C2 that the variables are ordered so that x precedes y, as in
the vector (x, y)T; then, C1 and C2 are in strong minimal form and, according
to Definition 7, we obtain L1 ∇C L2 = gcon

(

{5x + y ≡1 0}
)

. On the other hand,
C′

1 and C′

2 are in strong minimal form when taking the variable order where y

precedes x. In this case, by Definition 7, L1 ∇C L2 = gcon
(

{9y + x ≡1 0}
)

.

6 Conclusion

We have defined a domain of grids and shown that any element may be repre-
sented either by a congruence system which is a finite set of congruences (either
equalities or proper congruences); or a generator system which is a triple of fi-
nite sets of vectors (denoting sets of lines, parameters and points). Assuming
such a system in Qn has m congruences or generators, then the minimization
algorithms have worst-case complexity O

(

n2m
)

. It is shown that any matrix

inversion algorithms such as Gaussian elimination which has complexity O
(

n3
)

,
can be used for converting between generator and congruence systems in mini-
mal form. Thus, the complexity of converting any system with m elements is no
worse than O

(

n2m
)

if m > n and O
(

n3
)

, otherwise.

The minimization and conversion algorithms, form the basis for a double de-
scription method for grids so that any generator or congruence systems, possibly
in minimal form, can be provided on demand; the complexity of such a provision
being as stated above. Assuming this method, we have shown that operations
for comparison, intersection and grid join are straightforward. The complexity of
comparing two grids is O

(

n3
)

but, for just checking equality when it is already
known that one of the grids is a subset of the other, we have described sim-
pler procedures with complexity O

(

n
)

. The intersection and grid join just take
the union of the congruence or generator systems, respectively, so that, from
a theoretical perspective, these have complexity O

(

n
)

. However, in the imple-
mentation, we assume a common divisor for all the coordinates or coefficients in
the system; hence, combining the systems requires changing the denominators
of both components to their least common multiple with a consequential need
to scale all the numerators in the representation; giving a worst-case complexity
of O

(

n2
)

. We have also described an algorithm for computing the grid difference

with complexity O
(

n4
)

. Observe that this operator is useful in the specification
of the certificate-based widening for the grid powerset domain [3].

The grid domain is implemented in the PPL [2, 4] following the approach
described in this paper. Among the tests available in the PPL are the examples
in this paper and implementations of the running examples in [22, 23]. The PPL
provides full support for lifting any domain to the powerset of that domain, so
that a user of the PPL can experiment with powersets of grids and the extra
precision this provides. An interesting line of research is the combination of the
grids domain with the polyhedral domains provided by the PPL: not only the
Z-polyhedra domain, but also many variations such as the grid-polyhedra, grid-
octagon, grid-bounded-difference, grid-interval domains and their powersets.
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à Mémoires Locales. PhD thesis, Université de Paris VI, March 1991.
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