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Abstract

The optimized compilation of Constraint Logic Pro-
gramming (CLP) languages can give rise to impres-
sive performance improvements, even more impressive
than the ones obtainable for the compilation of Pro-
log. On the other hand, the global analysis techniques
needed to derive the necessary information can be sig-
nificantly more complicated than in the case of Prolog.
The original contribution of the present work is the
integration of approximate inference techniques, well
known in the field of artificial intelligence (AI), with
an appropriate framework for the definition of non-
standard semantics of CLP. This integration turns
out to be particularly appropriate for the considered
case of the abstract interpretation of CLP programs
over numeric domains. One notable advantage of this
approach is that it allows to close the often existing
gap between the formalization of data-flow analysis in
terms of abstract interpretation and the possibility of
efficient implementations. Towards this aim we iden-
tified a class of approximate deduction techniques from
AI and a semantic framework general enough to ac-
commodate the corresponding approximate constraint
systems.

AI topic: automated reasoning, arithmetic reason-
ing.
Domain area: data-flow analysis, constraint pro-
gramming, optimized compilation of CLP programs.
Languages/Tools: CLP(R).
Status: implementation in progress.
Impact: the data-flow analysis we propose is: clean
(semantics based), efficient (techniques from AI), and
useful (a speed-up factor of 20 for the execution of
CLP(R) programs has been obtained in preliminary
tests [14]).

1 Introduction

Constraint satisfaction problems are a very gen-
eral and powerful formalism for knowledge represen-
tation, since many real situations can be conveniently
described by a set of objects, together with some re-
lationships among them. The recognition of this fact
has lead to much work in the fields of AI and of Logic
Programming.

In the last twenty years a number of AI researchers
have explored the use of constraints to solve difficult
problems [8, 20, 21, 22]. Most of the proposed sys-
tems were based on the technique of constraint prop-
agation over a declarative structure called constraint
network [7]. A constraint network consists of a num-
ber of nodes connected by constraints. A node repre-
sents an individual parameter of the problem at hand,
while a constraint represents a relation among the val-
ues of the nodes it connects. The constraint propaga-
tion technique amounts to deducing information from
a local group of constraints and nodes, recording this
new information as a change in the network, possi-
bly enabling further information to be inferred. These
systems employing constraints have been generally de-
veloped in an ad hoc fashion in order to explore specific
problems. Furthermore, as many problems of interest
in AI are intractable in general, many systems needed
to give up some degree of completeness, so to obtain
useful, though approximate, answers by means of fast
algorithms.

Over the last five years a new paradigm has
emerged in the field of Logic Programming, and is
generating much interest. Constraint Logic Program-
ming (CLP) is a generalization of the pure logic pro-
gramming paradigm, having similar model-theoretic,
fixpoint and operational semantics [10]. One of the
major aims of this scheme (class of languages) is
to provide declarative programming with constraints,
soundly based within a unified framework of formal se-
mantics. For this reason a correct implementation of



a CLP language needs a complete solver, that is a full
decision procedure for the satisfiability of constraints
in the language’s domain(s). The indiscriminate use
of such complete solvers in their full generality can
lead to severe inefficiencies. In a paper devoted to
compile-time optimizations for CLP(R), Jørgensen et
al. show that, by reducing the number of times the
system resorts to the full power of constraint solvers,
dramatic performance improvements can be obtained
[14]. These compile-time optimizations must be driven
by information about the run-time behaviour of pro-
grams. An important technique to derive this informa-
tion by data-flow analysis, is known under the name
of abstract interpretation [4, 5, 19]. The essential idea
is to “mimic” the program run-time behaviour by “ex-
ecuting” it, in a finite way, on an approximated (ab-
stract) domain.

The original contribution of the present work is the
integration of approximate inference techniques, well
known in the field of artificial intelligence (AI), with
an appropriate framework for the definition of non-
standard semantics of CLP (see [9]). This integration
turns out to be particularly appropriate for the con-
sidered case of the abstract interpretation of CLP pro-
grams over numeric domains. One notable advantage
of this approach is that it allows to close the often
existing gap between the formalization of data-flow
analysis in terms of abstract interpretation and the
possibility of efficient implementations.

The general technique we borrow from AI is con-
straint propagation, whose main advantages, for our
purposes, are: simplicity, incrementality and good
performance degradation when time limitations are
imposed. Our study on the applications to data-
flow analysis started with the definition of an ab-
stract interpretation for CLP(FD)1 [2, 3], following
the framework proposed in [9]. The objective was
to derive spatial approximations of the success set of
program predicates. The concrete interpretation of
a constraint, that is, a shape in k-dimensional space,
was abstracted by an enclosing bounding box . Bound-
ing boxes are rectangular regions with sides parallel to
the axes. Thus, a bounding box is univocally identified
by its projections (i.e. intervals) over the axes asso-
ciated to the variables. In order to derive bounding
boxes from sets of constraints we used the Waltz algo-
rithm [15, 16, 22] applying label refinement , where the
bounding box corresponding to a set of constraints is
gradually restricted [7]. The approximations obtained
by means of this analysis are important for achieving

1CLP(FD) is an instance of the CLP scheme over Finite
numeric Domains.

compile-time domain reduction (thus reducing the cost
of backtracking search inside the constraint solver of
a CLP(FD) system), and for the generation of (opti-
mized) code where unnecessary choicepoint creations
have been removed.

In this paper we present another application of con-
straint propagation (in its variant called constraint in-
ference) to data-flow analysis. The objective is to de-
tect a particular kind of constraints in CLP(<) pro-
grams, that are of great interest for efficient code gen-
eration. In the next section we describe briefly the
CLP(<) language, that was presented as an example
of the CLP scheme, and operates in the domain of real
numbers [10, 13]. Section 3 explains what particular
property of constraints we are interested in and why is
it so important. In Section 4 we present our data-flow
analysis for the optimized compilation of CLP(R)2

programs. Section 5 contains some final remarks and
conclusions.

2 The CLP(<) Language

A CLP program is a finite set of clauses of the form

H :− c 2 B.

where H is an atom, c is a (possibly empty) conjunc-
tion of constraints, and B is a (possibly empty) se-
quence of atoms. Syntactically speaking, a query is a
clause with no head, and is normally indicated with
the notation

?− c 2 B.

CLP(<) extends Prolog by adding constraint solving
over the real numbers. In CLP(<) constraints are
equalities and inequalities over arithmetic expressions
and equalities over symbolic expressions (terms). An
example will serve to illustrate the flavour of the lan-
guage.

mortgage(P,T,I,R,B) :-
T = 1,
B = P*(1+I/1200)-R 2.

mortgage(P,T,I,R,B) :-
T > 1,
T1 = T-1,
P >= 0,
P1 = P*(1+I/1200)-R 2

mortgage(P1,T1,I,R,B).

This is a declarative specification of the relationship in
2We denote by CLP(R) the CLP(<) (approximated) imple-

mentation described in [13].



a mortgage agreement between the principal (P), the
duration of the loan in months (T), the annual interest
rate (I), the monthly payment (R) and the outstand-
ing balance (B). The program can be queried in several
ways. For example the query

?− mortgage(P, 360, 12, 1025, 12625.9)

results in the answer constraint P = 100000, while the
query

?− R > 0 2 mortgage(P, 360, 12, R, B)

gives the ”symbolic output”

R > 0 ∧ P = 0.0278 ∗B + 97.22 ∗R.

The operational semantics of CLP languages are
given by query evaluation. We can describe it by
means of a transition system whose configurations are
just the queries described above. Terminal configu-
rations are queries with an empty sequence of atoms.
Let P be a CLP program and :: denote sequence con-
catenation. A query ?− C 2 A :: G is rewritten, in
the context of P , as follows. A (renamed apart) clause
H :− c 2 B is selected from P to resolve against A.
In case more than one clause is a candidate for selec-
tion, a choicepoint is created for later consideration.
The constraint C ′ ≡ C ∧ A = H ∧ c is then checked
for satisfiability. If C ′ is satisfiable then the above
query is rewritten to ?− C ′ 2 B :: G. If C ′ is unsat-
isfiable execution backtracks to the most recently cre-
ated choicepoint, and an alternative clause is chosen to
resolve against A. A query is repeatedly rewritten un-
til a terminal configuration is reached. The resulting
constraint, simplified and projected onto the variables
of the original query, is the answer constraint for the
original query in the context of the program.

As far as the implementation is concerned, the
CLP(R) interpreter [11, 13] consists of a logical engine,
an interface, and a constraint solver. The engine per-
forms traditional Prolog-like operation such as clause
search and backtracking. The interface classifies and
solves trivial constraints. The constraint solver han-
dles arithmetic constraints. It uses Gaussian elimina-
tion to process equalities and an incremental version
of the first phase of the Simplex algorithm to process
inequalities.

3 Future Redundant Constraints

The Simplex algorithm is computationally expen-
sive and the cost is proportional to the number of

constraints and the number of variables it must take
care of. The operational semantics given in the pre-
vious section indicates that the execution process of
a CLP(R) program amounts to constraint accumula-
tion and checking. This accumulation can give rise to
conjunctions where some (maybe many) of the con-
straints are redundant, that is implied by other con-
straints in the conjunction. For instance the constrain
T > 1 is redundant in the conjunction T > 1 ∧ T1 =
1 ∧ T1 = T − 1. Since the running time of the Sim-
plex algorithm strongly depends on the number of con-
straints, redundant constraints cause a net loss in per-
formance. This problem does not arise for equality
constraints, as Gaussian elimination, like unification,
has the property that redundant equations are auto-
matically removed as a byproduct of keeping equalities
in solved form. The Simplex algorithm does not have
this property and a run-time mechanism for redun-
dant constraint elimination is too much computation-
ally expensive to be worth it.

For the above reasons in [14] the notion of fu-
ture redundant constraint is introduced. Consider the
mortgage program introduced in Section 2. The con-
straint T > 1 in the second clause is “future redun-
dant”. This means that after checking the constraint
for satisfiability, adding or not adding the constraint
to the current constraint (the one accumulated so far
in the computation) will not affect the subsequent op-
erational behaviour. In fact, at the next step in any
reduction a stronger constraint will be encountered:
either T1 = T − 1 ∧ T1 = 1 (if the first clause is se-
lected) or T1 = T − 1 ∧ T1 > 1 (if the second clause is
selected), so T > 1 will be redundant (implied by other
constraints) in any future current constraint. Now, if
T is a variable, not adding the future redundant con-
straint reduces the size of the current one, and con-
sequently reduces the cost of the satisfiability check
in any subsequent reduction step. The preliminary
test results given in [14] suggest that this may give a
dramatic speed up (i.e. a factor of 20 for non-trivial
queries to the mortgage program).

The optimization associated with future redundant
constraints [14] is obtained by slightly modifying the
operational semantics so that future redundant con-
straints are just checked for satisfiability, but not
added to the current constraint. This is handled
by special instructions in the abstract machine for
CLP(R) presented in [12]. In the next section we
propose a data-flow analysis based on abstract inter-
pretation aimed at the detection of future redundant
constraints.



4 Detection of Future Redundant Con-
straints

Our analysis is based on constraint inference (a
variant of constraint propagation) [7]. This technique,
developed in the field of AI, has been applied to tem-
poral and spatial reasoning [1, 17, 18]. Let us focus our
attention to arithmetic domains (e.g. the reals or the
floating-point numbers), where the constraints are bi-
nary relations over expressions. We abstract them by
means of labelled digraphs. Nodes are called quanti-
ties and are labeled with the corresponding arithmetic
formula (and possibly a variation interval). Arcs are
labelled with relation symbols. More precisely, let

C = {(e11 ./1 e12), . . . , (en1 ./n en2)},

where the eij are terms of the constraint language (as-
sume linear expressions for simplicity) and ./i∈ {=, 6=
,≤, >,≥, <}, denote a conjunction of constraints. Let
T = {eij | i = 1, . . . n, j = 1, 2} be the set (mod-
ulo syntactical identity) of terms appearing in C, and
let k = |T |, where | . | denotes set cardinality. The
abstraction of C is G = (N, ln, E, le), where:

N = {n1, . . . , nk}
ln is any bijection between N and T

E = {(n1, n2) | ∃m ∈ {1, . . . n}
(ln(n1) ./m ln(n2)) ∈ C}

le
(
(n1, n2)

)
= {./m| (ln(n1) ./m ln(n2)) ∈ C}

Disjunctions of constraints are represented by unions
of digraphs, while conjunction is handled by connect-
ing digraphs in the obvious way, merging the nodes
having equal labels.

Let us consider a digraph representing a conjunc-
tion of constraints. We can enrich it by either adding
new arcs to it or by adding (stronger) relations to
the labels of existing arcs (these two operations col-
lapse into just one if you consider that a missing arc is
equivalent with one labelled with the always-true re-
lation). Of course, since we are interested in approx-
imate but sound deduction, we are interested only in
correct enrichments. The addition of an arc (n1, n2)
with label ./ to the digraph abstracting C is correct
iff C |=R ln(n1) ./ ln(n2)3.

Sound enrichment of our graphs can be easily ob-
tained by use of constraint inference techniques. In
[17, 18] an arithmetic reasoning system, called the

3This means R |=
(
C ⇒ ln(n1) ./ ln(n2)

)
, where R is the

structure that interprets the constraints.

< ≤ > ≥ = 6=
< < < ?? ?? < ??
≤ < ≤ ?? ?? ≤ ??
> ?? ?? > > > ??
≥ ?? ?? > ≥ ≥ ??
= < ≤ > ≥ = 6=
6= ?? ?? ?? ?? 6= ??

Figure 1: Transitivity table for the graph search technique.

Quantity Lattice, is described. The Quantity Lat-
tices supports, in a computationally efficient way, vari-
ous qualitative and quantitative reasoning techniques.
All these techniques are integrated, that is, inference
made with one technique can trigger further inferences
by the other ones. As a result the range of arithmetic
inferences the system is able to perform is quite wide
and suitable for our application. Given one of the
above mentioned digraphs the Quantity Lattice can
apply five different inference techniques:

1. Determining new relationships using graph
search.

2. Determining new relationships using numeric
constraint propagation.

3. Constraining the value of arithmetic expressions
using interval arithmetic.

4. Constraining the value of arithmetic expressions
using relational arithmetic.

5. Constraining the value of arithmetic expressions
using constant elimination arithmetic.

Previous inference results are cached by adding arcs
or refining their labels (and possibly by restricting the
intervals associated with quantities). In our work we
currently use only the inference techniques 1 (but com-
puting the full transitive closure, as in [1]) and 4. The
resulting system is still powerful enough to perform
useful deductions for our purposes. Furthermore these
techniques, as reported in [1, 18], can be implemented
by efficient algorithms having linear complexity in the
number of arcs. For example, technique 1 makes use
of a slight modification of the standard breadth-first
search. Relationships are found by using the simple
transitivity table of Figure 1. The relational arith-
metic technique is encoded by a certain number of
axioms. These axioms capture some simple forms of
reasoning, for example they allow the system to infer
that T > T − 1. All the inferences made are recorded



along with their justifications (i.e. sets of arcs). This
is important, as we will see shortly.

Coming back to our application, namely data-flow
analysis of CLP programs, consider the following ex-
ample:

mg(T ) : − T = 1.
mg(T ) : − T > 1, T1 = T − 1 2mg(T1).

The behaviour of the above program with respect to
T is the same as the mortgage well known example.

In the model obtained by our abstract interpreta-
tion for the mg/2 predicate there are two four–nodes
digraphs associated with the second clause (see Fig-
ure 2).
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Figure 2: Portions of the two digraphs for the second clause of

mg/2.Textual arcs have thick lines and are labelled with = and

>. Induced arcs have thin lines and are labelled with = and >.

The nodes (quantities) are labelled with the for-
mulas T , T − 1, T1 and 1. Both the digraphs con-
tain the textual arcs (that is arcs coming from the
program’s text) T > 1 and T1 = T − 1. The first
digraph contains also the textual arc T1 = 1, and
the induced arcs T > T − 1 (inferred by technique
4. above), T > T1 (inferred by 1. and justified by
{T > T − 1, T1 = T − 1}), T − 1 = 1 (inferred by
1. and justified by {T1 = T − 1, T1 = 1}). Now by

technique 1. we are able to parallel the textual arc
T > 1 with an induced arc T > 1 with justification
{T > T − 1, T − 1 = 1}. Similarly, considering the
second digraph, we end up with an induced arc T > 1
with justification {T > T − 1, T − 1 > 1}. Since in
both cases the induced arc T > 1 does not have the
textual arc T > 1 into its justification, the textual arc
T > 1 is future redundant. In general a textual arc
(constraint) is future redundant if it can be doubled by
an induced arc labelled with an equal or stronger rela-
tion and if this induced arc does not have the textual
arc into its justification.

Future redundant constraint detection can be for-
malized in a slightly different way by considering de-
ductions on interval arithmetics.

Let P be a CLP(R) program and ρ be an upper
closure operator 4 on the domain of (linear) constraints
on R, ordered by entailment (logic implication). Let

C = p(t) :− c ∧ c′ 2 B.

be a clause defining the predicate p in P . Consider
the modified program

P ′ = (P \ {C}) ∪ {p(t) :− c′ 2 B}

and the query G =?− c0 2 p(x). If for any answer
constraint cp for G in P ′ we have cp ∧ c 6≡ False
and ρ(cp) ⇒ c, then c is future redundant in C. To
prove this claim we just note that by ρ-extensivity, for
each constraint c we have c ⇒ ρ(c), thus c does not
contribute to any of the answer constraints because
cp ⇒ c.

A suitable choice of closure operators on the do-
main of linear constraints is provided by approximat-
ing each space region defined by a conjunction of linear
constraints (i.e. a convex polytope) with a correspond-
ing bounding-box. Similar techniques have been used
[4] in for static array bound checking. This quanti-
tative technique (contrasted to the qualitative one de-
scribed above) allows for detection of future redun-
dancy of constraints. To this end we can extend the
work done in [2, 3] for CLP(FD), that is we can use
constraint propagation with label refinement [7] to de-
rive an enclosing bounding box for a given set of con-
straints. Even though this technique alone is not guar-
anteed to terminate when variables on the reals are
concerned5 [7], it is possible to provide external ter-
mination without prejudice for soundness. To force

4An upper closure operator on a poset (A,�) is a mapping
ρ:A → A which is idempotent (ρ(ρ(c)) = ρ(c)), extensive (c �
ρ(c)), and monotonic.

5Or, better, it can converge very slowly when floating-point
variables are concerned.



termination in the abstract answer constraint compu-
tation we can use fixpoint-acceleration techniques such
as widening/narrowing proposed in [4, 6].

20

40

Q1 Q2 Q3 Q4

Figure 3: Run time improvement from future redundancy opti-
mization, reproduced from [14]. The queries are:

• Q1 :?− mortgage(100000, 360, 12, 1025, B)

• Q2 :?− mortgage(P, 360, 12, 1025, 12625.9)

• Q3 :?− R > 0 2 mortgage(P, 360, 12, R, B)

• Q4 :?− 0 ≤ B, B ≤ 1030 2

mortgage(100000, T, 12, 1030, B).

“The figure shows the effect of the future redundancy optimiza-

tions when applied to the four queries, in before/after pairs.

Note that there is no change for Q1 since the inequalities are

ground. [. . . ] All times are in CPU seconds. All measurements

were obtained using a Sun 3/60 workstation with a 68881 float-

ing point accelerator. To help factor out the cost of floating

point arithmetic, measurements were taken using both the ac-

celerator and software emulated floating point. The times using

a floating point accelerator are shown as the [black] part of each

bar, since they are uniformly shorter as expected” [14].

5 Conclusions

We have presented an application of constraint
propagation to data-flow analysis of constraint logic
programs. This application is of great importance for
the optimized compilation of CLP programs, as its
result are of immediate use, producing dramatic per-
formance improvements such as the ones depicted in
Figure 3.

This work, together with a previous one, confirms
the starting hypothesis of our research: AI can give
much to CLP in terms of techniques and knowledge,

enabling (among other things) the generation of effi-
cient code by means of data-flow analysis.
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