
Straight ROBDDS are not the Best for Pos

Roberto Bagnara (bagnara@di.unipi.it)
Dipartimento di Informatica, Università di Pisa,

Corso Italia 40, 56125 Pisa, Italy

1 Introduction

The subject of groundness analysis for (constraint) logic programs has been widely
studied, and interesting domains have been proposed. Pos has been recognized has
the most suitable domain for capturing the kind of dependencies arising in ground-
ness analysis. Its (by now standard) implementation is directly based on reduced
ordered binary-decision diagrams (ROBDDs), a well-known symbolic representation
for Boolean functions [4]. Even though several authors have reported positive experi-
ences using ROBDDs for groundness analysis, in the literature there is no reference to
the problem of the efficient detection of those variable which are deemed to be ground
(or true, at the abstract level) in the context of a ROBDD. This is not surprising, since
most currently implemented analyzers need to derive this information only at the end
of the analysis and only for presentation purposes. Things are much different when
this information is required during the analysis. This need arises when dealing with
languages which employ some sort of delay mechanism, which are typically based on
groundness conditions. In these cases, the näıf approaches are too inefficient, since
the abstract interpreter must quickly (and often) decide whether a constraint is de-
layed or not. Fast access to ground variables is also necessary when aliasing analysis
is performed using a domain not keeping track of ground dependencies.

We have shown that, by using an hybrid representation instead of the standard
(purely ROBDD-based) one, it is possible to have constant-time, fast access to ground
variables. Moreover, the new representation improves (not make worse, as it can be
expected) the overall efficiency (on both time and space) of groundness analysis. Due
to extreme space limitations we just give a rough idea of how the hybrid representation
and its operations look like. We also report on the experimental results we obtained
with the China analyzer. The interested reader is referred to [3] for a complete
account of this work.

2 A New, Hybrid Implementation for Pos

The observation of many constraint logic programs shows that the percentage of
variables which are found to be ground during the analysis, for typical invocations,



is as high as 80%. This suggests that representing Pos elements simply by means of
ROBDDs, as in [1, 8], is not the best thing we can do (whence the title).

Here we propose an hybrid implementation where each Pos element is represented
by a pair: the first component is the set of true variables (just as in the domain used
in early groundness analyzers [7, 6]); the second component is a ROBDD. In each
element of this new representation there is no redundancy: the ROBDD component
does not contain any information about true variables. This solution uses the more
efficient representation for each kind of information: “surely ground variables” are
best represented by means of sets (bit-vectors, at the implementation level), whereas
ROBDDs are used only for “conditional” and “disjunctive” information.

The hybrid representation has two major advantages: (a) it gives fast, constant-
time access to true variables; and, (b) allows for keeping the ROBDDs small, during
the analysis, when many variables come out to be true, as it is often the case. Notice
that, while having many true variables, in a straight ROBDD implementation, means
that the final ROBDDs will be very similar to linear chain of nodes, the intermediate
steps still require the creation (and disposal) of complex (and costly) ROBDDs. This
phenomenon is avoided as much as possible in the hybrid representation. In fact, the
operations on the hybrid representation make use of ROBDD’s operations only when
strictly necessary. When this happens, expensive operations like logical conjunction
and disjunction are invoked with operands of the smallest possible size. In particular,
we exploit the fact that the restriction operation (also called valuation or co-factoring)
is relatively cheap. However, we cannot avoid searching for true variables. In programs
where many variables are ground the ROBDDs generated will be kept small, and so
also the cost of searching will be diminished.

3 Experimental Evaluation

The ideas presented in this paper have been experimentally validated in the con-
text of the development of the China analyzer [2]. China is a data-flow analyzer
for CLP(H, N ) languages (i.e. Prolog, CLP(R), clp(FD) and so forth) written in
Prolog and C++. It performs bottom-up analysis deriving information on both call
and success patterns by means of program transformations and optimized fixpoint
computation techniques. The assessment of the hybrid domain has been done in a
quite radical way. In fact, we have compared the standard, pure BDD-based imple-
mentation of Pos against the hybrid domain on the following problem: deriving, once
for each clause’s evaluation, a boolean vector indicating which variables are ground
and which are not. This is a very minimal demand for each analysis requiring the
knowledge about definitely ground variable during the analysis. We have thus per-
formed the analysis of a number of programs on a domain similar to Pat(Pos) [5],
switching off all the other domains currently supported by China

1. Pat(<) is a
generic structural domain which is parametric with respect to any abstract domain
<. Roughly speaking, Pat(<) associates to each variable the following informaton:
(1) a pattern, that is to say, the principal functor and subterms which are bound to

1Namely, numerical bounds and relations, aliasing, and polymorphic types



Analysis time (sec) N. of BDD nodes

Program STD HYB S/H STD HYB S/H

CS 1.06 0.6 1.77 12387 391 31.7
Disj 1.06 0.6 1.77 72918 176 414.3
DNF 5.17 4.4 1.18 5782 111 52.1
Gabriel 1.13 0.74 1.53 28634 10472 2.73
Kalah 3.92 2.02 1.94 43522 645 67.5
Peep 6.13 5.52 1.11 176402 128332 1.37
PG 0.37 0.25 1.48 3732 86 43.4
Plan 0.59 0.5 1.18 1736 65 26.7

Table 1: Experimental results obtained with the China analyzer.

the variable; and (2) the “properties” of the variable, which are delegated to the <
domain (the two implementations of Pos, in our case). As reported in [8], Pat(Pos)
is a very precise domain for groundness analysis.

The experimental results are reported in Table 1. The table gives, for each pro-
gram, the analysis times and the number of ROBDD nodes allocated for the standard
implementation (STD) and the hybrid one (HYB), respectively. It also shows the
ratio STD/HYB for the above mentioned figures (S/H). The computation times have
been taken on a 80486DX4 machine running Linux 1.3.64. The tested programs have
become standard for the evaluation of data-flow analyzers. The results indicate that
the hybrid implementation outperforms the standard one in both time and space
efficiency. The systematic speed-up obtained was not expected. Indeed, we were
prepared to content ourselves with a moderate slow-down which would have been
recovered thanks to the fast access to ground variables. The space figures show that
we have achieved significant (and sometimes huge) savings in the number of allocated
ROBDD nodes. With the hybrid domain we are thus able to keep the ROBDDs which
are created and traversed during the analysis as small as possible. This phenomenon
is responsible for the speed-up. It seems that, even for programs characterized by
not-so-many ground variables, there are always enough ground variables to make
the hybrid implementation competitive. This can be observed, for instance, in the
case of the Peep program, which was analyzed with a non-ground, most-general input
pattern. The following observations are important for a full understanding of Table 1:

1. we are not comparing against a poor standard implementation of Pos, as can be
seen by comparing the analysis times with those of [8]. The ROBDD package
we are using is fine-tuned: it employs separate chaches for the main operations
(with hit-rates in the range 95%–99% for almost all the programs we have tried),
specialized and optimized versions of the important operations over ROBDDs,
as well as aggressive memory allocation strategies. Indeed, we were led to the
present work by the apparent impossibility of further optimizing the standard



implementation. Moreover, the hybrid implementation has room for improve-
ment, especially for what concerns the handling of bit-vectors.

2. We are not taking into account the cost of garbage-collection for ROBDD nodes.
In particular, the sizes of the relevant data-structures were chosen so that the
analysis of the tested programs can run to completion without any node deal-
location or reallocation.

3. In a truly reactive combination of domains, the set of ground variables is not
needed only at the end of each clause’s evaluation (this is the optimistic hypoth-
esis under which we conducted the experimentation), but at each body-atom
evaluation for each clause. In this context the hybrid implementation, due to its
incrementality, is even more favoured with respect to the standard one (which
is not incremental at all).

In conclusion, the experimental results indicate that the hybrid domain outper-
forms, from any point of view, the standard implementation based on ROBDDS only.
Surprisingly enough, we have thus been able to assess the superiority of the hybrid
domain even for those cases where fast access to ground variables is not important.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
boolean functions for dependency analysis. Technical Report 94/211, Dept. Com-
puter Science, Monash University, Melbourne, 1994.

[2] R. Bagnara. On the detection of implicit and redundant numeric constraints in
CLP programs. In Proceedings GULP-PRODE ’94, pages 312–326, Peñ́ıscola,
Spain, September 1994.

[3] R. Bagnara. A reactive implementation of Pos using ROBDDs. Technical Report
TR-96-19, Dipartimento di Informatica, Università di Pisa, 1996.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318, September 1992.

[5] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming. In Conference Record of POPL ’94, pages 227–
239, Portland, Oregon, January 1994.

[6] N. D. Jones and H. Søndergaard. A Semantics-based Framework for the Ab-
stract Interpretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract
Interpretation of Declarative Languages, pages 123–142. Ellis Horwood Ltd, 1987.

[7] C. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic
Programming, 2:43–66, 1985.

[8] P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Evaluation of the domain
PROP. Journal of Logic Programming, 23(3):237–278, June 1995.


