
Verification of C Programs Via Natural
Semantics and Abstract Interpretation

(Extended Abstract)

Roberto Bagnara1, Patricia M. Hill2, Andrea Pescetti1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,pescetti,zaffanella}@cs.unipr.it
2 School of Computing, University of Leeds, UK

hill@comp.leeds.ac.uk

We are witnessing a substantial lack of available tools able to verify the ab-
sence of relevant classes of run-time errors in code written in (reasonably rich
fragments of) C and C++. This is despite the progress made in recent years
in the fields of program analysis and verification, and despite the huge impact
such tools could have on the quality of a good portion of our software universe.
It is interesting to observe that, among the dozens of freely available software
development tools, hardly any, by analyzing the program semantics, are able to
certify the absence of important classes of run-time hazards such as, say, the
widely known buffer overflows in C code. The reason is, of course, that C and
C++ are complex languages and the techniques that can be used to dominate
this complexity still do not reduce tool development to simple, manageable tasks.
Our overall aim for this research is to investigate how known techniques based
on natural semantics and abstract interpretation can be extended so as to con-
veniently formalize and implement a range of analysis and verification tools for
modern imperative languages such as C and C++.

The language. With this aim in mind, in [2] we define a core language —called
CPM— that has much in common with C and includes several features that
are problematic from the point of view of the semantic analysis of C and C++

code: recursive functions, run-time system and user-defined exceptions, realis-
tic data and memory models, pointer types to both data objects and functions,
and non-structured control flow mechanisms. Note that the contradiction be-
tween targeting “real” imperative programming languages and choosing CPM,
an unreal one, is only apparent. As C misses exceptions and C++ is too hard
as a starter, choosing any one of these would not have allowed us to assess the
adequacy of the methodology described below with respect to the above goals.

Static analysis. Verification of many program properties using static program
analysis via abstract interpretation [9, 11] is now a well-researched area. Static
analysis is conducted by mimicking the concrete execution of the programs on an
abstract domain. This is a set of computable representations of program prop-
erties equipped with all the operations required to mirror, in an approximate
though correct way, the real, concrete executions of the program. Therefore, a
formal concrete semantics for the language to be analyzed that models all the



2 R. Bagnara, P. M. Hill, A. Pescetti, E. Zaffanella

aspects of executions that are relevant to the properties of interest must be pro-
vided. Of course, we need to work on a language that is completely defined.
For the C language, for instance, this can be achieved by converting the source
programs to some more constrained language —like CIL, the C Intermediate
Language described in [17]— where all ambiguities have been removed and by
fixing an ABI (Application Binary Interface) so as to conform to the C imple-
mentation of interest. The problem is then to define a concrete semantics for the
fully specified language so as to ensure that:

(i) this semantics is recognizable as a sound characterization of the language
at the intended level of abstraction;

(ii) this semantics observes the properties that are the subject of the verifica-
tion problems of interest;

(iii) this semantics allows for the computation of precise abstractions.

We now review the first two points; we will come back to the third point after
introducing the abstract semantics.

Concrete semantics. We need a formal semantics that can be recognized (without
requiring a strong mathematical background) as corresponding to the intuitive,
often involved and incomplete explanations provided by standardization docu-
ments. For this purpose, we adopted the G∞SOS approach of Cousot and Cousot
[12] which generalizes with infinite computations the natural semantics approach
by Kahn [16] which, in turn, is a “big-step” operational semantics defined by
structural induction on program structures in the style of Plotkin [18]. A seman-
tics for CPM is then expressed by means of a concise set of rather simple rules
that are quite readable and, most importantly, directly correspond to executable
Prolog clauses. What was not clear to us when we started this work is whether
the approach “scales” when applied to languages like C: for example, how can
run-time errors and non-structured control flow mechanisms be modeled in this
framework? We now know that the natural semantics is fit for the purpose:

– the formal semantics of CPM3 has been successfully explained to undergrad-
uate students in their 3rd year of Computer Science;

– the Prolog implementation of this formal semantics in the ECLAIR system4

(with the help of a C++ implementation of memory structures) is efficient
enough to allow the execution of non-trivial C programs, something that
enables everyone to build confidence on the fact that the concrete semantics
is faithful to the intuitive, informal semantics.

Concerning point (ii) above, we can only formally reason about properties if
they are observable in the chosen concrete semantics. For example, if we want to
3 Which includes CIL as a sublanguage in addition to the exception handling features

of C++ and Java.
4 The ‘Extended CLAIR’ system targets the analysis of mainstream programming lan-

guages by building upon CLAIR, the ‘Combined Language and Abstract Interpre-
tation Resource’, which was initially developed and used only in a teaching context
(see http://www.cs.unipr.it/clair/).



Verification of C Programs Via Natural Semantics and Abstr. Interpretation 3

prove that a program uses pointer arithmetic in a safe way, we need a concrete
semantics that allows us to observe all the unsafe uses. Such a concrete semantics
cannot simply model pointers as plain addresses, as more information is required
than that to detect the violations. In the concrete semantics for CPM, these vio-
lations are optionally reported as run-time exceptions so that, proving that such
an exception can never be thrown, amounts to proving the desired property.
All exceptional and undefined behaviors (such as divisions by zero, overflows of
signed integer variables and dangerous uses of the shift operators) are modeled
by exceptions. This, besides the need to deal with user-defined exceptions as
found in C++, Java and Python, is the reason for the inclusion in CPM of excep-
tion propagation and handling mechanisms. Note however that accommodating
exceptions impacts on the specification of the other components of the semantic
construction. For example, short-circuit evaluation of Boolean expressions can-
not be normalized as proposed in [8], because such a normalization process, by
influencing the order of evaluation of subexpressions, is unable to preserve the
concrete semantics as far as exceptional computation paths are concerned.

Abstract semantics. Following the abstract interpretation approach, we also re-
quire an abstract semantics that has a correlation with the concrete semantics.
In addition, we require that appropriate abstract domains are available that can
provide correct approximations for the values and all the operations that are
involved in the concrete computation [9–12]. For CPM we have formally defined
in [2] an abstract semantics framework that follows and extends the approach
outlined in the works by Schmidt [19–21]. We have proved that any semantics
within this framework will have a safe correlation with the concrete semantics
(a summarized version of this proof is available in [2]). Moreover, this frame-
work has been designed to be both modular and generic. It is modular because
the overall static analyzer is naturally partitioned into components with clearly
identified responsibilities and interfaces, something that greatly simplifies both
the proof of correctness and the implementation. It is generic, since it is designed
to be completely parametric on the analysis domains. In particular, and here we
come to point (iii) above, it provides —differently from all published propos-
als we know of— full support for relational domains (i.e., abstract domains that
can capture the relationships between different data objects). Achieving this goal
constrains the design of both the concrete and the abstract semantics. As was
the case for the concrete semantics, the abstract semantics rules for CPM are
almost directly translated to generic Prolog code that can be interfaced with spe-
cialized libraries implementing several abstract domains, including accurate ones
such as those provided by the Parma Polyhedra Library [3–5]. So this working
prototype, which is currently being extended with the pointer analysis described
in [13–15], demonstrates that the proposal of Schmidt can play a crucial role in
the development of reliable and precise analyzers for real imperative languages
including C, Java and, we believe, C++ and RPython (http://pypy.org/).

Further work. Although our framework is only fully specified for the core CPM
language, and this encompasses C but not C++, we do not have a definite answer



4 R. Bagnara, P. M. Hill, A. Pescetti, E. Zaffanella

concerning the appropriateness of our proposal for the verification of C++ pro-
grams. That said, we do not see what, in the current design, would prevent the
extension of the core language together with its concrete and abstract semantics
so as to handle any other features of mainstream, single-threaded imperative
programming languages.

Our proposed analysis framework is parametric on abstract memory struc-
tures. While the literature seems to provide all that is necessary to realize very
sophisticated ones, we can confidently predict that, among all the code out there
waiting to be analyzed, some will greatly exacerbate the complexity/precision
trade-off. The ability to analyze C programs will confront us with a huge vari-
ety of inputs and it is hardly likely that the same compromises will be able to
accommodate programs as diverse as the huge, pointer-free, synthesized loops
handled by ASTRÉE 5 and, say, libraries for manipulation of strings. However,
these are research problems for the future — now we have a formal design on
which analyzers can be built, our next goal is to complete the build and make
this technology truly available and deployable.

References

1. Proceedings of the ACM SIGPLAN’94 Conference on Programming Language De-
sign and Implementation, volume 29 of ACM SIGPLAN Notices, Orlando, Florida,
1994. Association for Computing Machinery.

2. R. Bagnara, P. M. Hill, A. Pescetti, and E. Zaffanella. On the design
of generic static analyzers for modern imperative languages. Technical Re-
port arXiv:cs.PL/0703116, Dipartimento di Matematica, Università di Parma,
Italy, 2007. Available from http://arxiv.org/.

3. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex polyhedra
and the double description method. Formal Aspects of Computing, 17(2):222–257,
2005.

5. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Quaderno 457, Dipartimento di Matematica, Università di
Parma, Italy, 2006. Available at http://www.cs.unipr.it/Publications/. Also
published as arXiv:cs.MS/0612085, available from http://arxiv.org/.

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In T. Æ. Mogensen, D. A.
Schmidt, and I. Hal Sudborough, editors, The Essence of Computation, Complex-
ity, Analysis, Transformation. Essays Dedicated to Neil D. Jones [on occasion of
his 60th birthday], volume 2566 of Lecture Notes in Computer Science, pages 85–
108. Springer-Verlag, Berlin, 2002.

7. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings of

5 The ASTRÉE analyzer can automatically verify the absence of some kinds of run-
time errors in large safety-critical embedded control/command codes [6, 7].



Verification of C Programs Via Natural Semantics and Abstr. Interpretation 5

the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (PLDI’03), pages 196–207, San Diego, California, USA, 2003. ACM
Press.

8. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, NL, 1999.

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

10. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pages 269–282, New York, 1979. ACM Press.

11. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

12. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Programming Languages, pages 83–94, Albuquerque, New Mexico, USA, 1992.
ACM Press.

13. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.
In Proceedings of the ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation [1], pages 230–241.

14. M. Emami. A practical inter-procedural alias analysis for an optimizing/paralleling
C compiler. Master’s thesis, School of Computer Science, McGill University, Mon-
treal, Canada, August 1993.

15. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-
to analysis in the presence of function pointers. In Proceedings of the ACM SIG-
PLAN’94 Conference on Programming Language Design and Implementation [1],
pages 242–256.

16. G. Kahn. Natural semantics. In F.-J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ing, editors, Proceedings of the 4th Annual Symposium on Theoretical Aspects of
Computer Science, volume 247 of Lecture Notes in Computer Science, pages 22–39,
Passau, Germany, 1987. Springer-Verlag, Berlin.

17. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. In R. N. Horspool,
editor, Compiler Construction: Proceedings of the 11th International Conference
(CC 2002), volume 2304 of Lecture Notes in Computer Science, pages 213–228,
Grenoble, France, 2002. Springer-Verlag, Berlin.

18. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60–61:17–139, 2004.

19. D. A. Schmidt. Natural-semantics-based abstract interpretation (preliminary ver-
sion). In A. Mycroft, editor, Static Analysis: Proceedings of the 2nd International
Symposium, volume 983 of Lecture Notes in Computer Science, pages 1–18, Glas-
gow, UK, 1995. Springer-Verlag, Berlin.

20. D. A. Schmidt. Abstract interpretation of small-step semantics. In M. Dam, ed-
itor, Analysis and Verification of Multiple-Agent Languages, volume 1192 of Lec-
ture Notes in Computer Science, pages 76–99. Springer-Verlag, Berlin, 1997. 5th
LOMAPS Workshop Stockholm, Sweden, June 24–26, 1996, Selected Papers.

21. D. A. Schmidt. Trace-based abstract interpretation of operational semantics. LISP
and Symbolic Computation, 10(3):237–271, 1998.


