Symbolic Computation Support
for Complexity Analysis
and the PURRS Project

Roberto BAGNARA, Alessandro ZACCAGNINI,
Enea ZAFFANELLA, and Tatiana ZOLO
Department of Mathematics
University of Parma, ltaly

http://www.cs.unipr.it/purrs/

Adela Tour 2003, Madrid, Spain, May 2003

@® Complexity Analysis and Symbolic Computation

@ Classes of Recurrence Relations

® Solving and Approximating Recurrence Relations

@ Symbolic Manipulation of Solutions and Approximations
® The PURRS Library

PLAN OF THE TALK

What?

=» We are interested in those properties of complex systems that deal with
resource usage:
e computation time,
e required memory space,
e network bandwidth used, ...

Why?
=» verifying that the deadlines of hard real-time systems are met;
=» deciding whether a mobile agent should be allowed to run in a certain
context;
=» guiding the application of optimizing program transformations;

=» assisting the programmer in reasoning on programs:
— particularly useful with high level languages where introducing

efficiency bugs is very easy.

TRACKING THE USAGE OF RESOURCES

AUTOMATIC COMPLEXITY ANALYSIS: THE DOMAIN OF DISCOURSE

- p(RE‘O): (possibly infinite) sets of (infinite) sequences of real numbers.

=» A sequence expresses the cost of one process in terms of some input
measure:

e cost may be in terms of clock cycles, number of statements
executed, memory used, number of packets exchanged over the
network, ...;

e a process may be a piece of software but also a communication
protocol;

e the input measure can be any metric of the input of a
program/procedure, or, say, the number of participants to some
synchronization protocol.

=» We have sets of sequences to capture approximation.

AUTOMATIC COMPLEXITY ANALYSIS: THE DOMAIN OF DISCOURSE

THE NEED FOR POWERFUL SYmMBoOLIC COMPUTATION

Elements of p(R%,) are generated by:
=» imposing a recurrence relation that a sequence must satisfy to capture
recursion;
=» computing additions in order to approximate sequential composition;
=» computing approximations of set union in order to capture conditionals;
- ...

THE NEED FOR POWERFUL SymBoOLIC COMPUTATION

Elements of p(RRY,) are generated by:
=» imposing a recurrence relation that a sequence must satisfy to capture
recursion;
=» computing additions in order to approximate sequential composition;
=» computing approximations of set union in order to capture conditionals;
- ...

Approximations based on lower and upper bounds
- Chosen a class of boundary functions B € p(Ry,),
- we may represent the subset of p(R:,) defined by

§E{Fcp®y)|[UueB.VfeF:l<f<u}.

=> Given b1, b2 € B, we need to approximate, within 8, max{b1, b2} from
above and min{b1, b2} from below.

THE NEED FOR POWERFUL SymBOLIC COMPUTATION 5-A

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

CLASSES OF RECURRENCE RELATIONS

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

=» Linear recurrences of finite order with constant coefficients

2
Ty = DTp—1 —6Tn_2+n

CLASSES OF RECURRENCE RELATIONS

6-A

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients

1
Ln — Eﬂjn—l + 2

CLASSES OF RECURRENCE RELATIONS

6-B

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients
Tn = %azn_l + 2

=» Linear recurrences of infinite order

CLASSES OF RECURRENCE RELATIONS

6-C

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients

1
Ln — %xn—l + 2

=» Linear recurrences of infinite order

=> Non-linear recurrences of finite order

2
Tn = 3T5,_1

CLASSES OF RECURRENCE RELATIONS

6-D

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

=» Linear recurrences of finite order with constant coefficients
Trn = B5Tn_1 — 6Xn_o + N>

=» Linear recurrences of finite order with variable coefficients
Ty = %CL‘n_l + 2

=» Linear recurrences of infinite order
tn=n+ 2307 ok

=» Non-linear recurrences of finite order
Ty = 3:(:7%_1

=» Divide-et-impera recurrences

Tn = 2Tp;2+n—1

CLASSES OF RECURRENCE RELATIONS

6-E

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap)\ + ay.

=» Roots of equation 4+ symbolic summations — exact solution.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap)\ + ay.

=» Roots of equation 4+ symbolic summations — exact solution.
=» Finding the roots is feasible in many cases:
=» order-reduction transformation;
=» square-free factorization;
=¥ identification of “small” rational roots;
=» direct algebraic solution (up to 4th order);
=» other factorization methods ...
=» Computing symbolic summations is also feasible in many cases:
=» linear combinations of polynomials and exponential, their products;
=» other special classes of functions.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

7-A

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap)\ + ay.

Roots of equation + symbolic summations — exact solution.
Finding the roots is feasible in many cases:

=» order-reduction transformation;

=» square-free factorization;

=» identification of “small” rational roots;

=» direct algebraic solution (up to 4th order);

=» other factorization methods ...

=» Computing symbolic summations is also feasible in many cases:
=» linear combinations of polynomials and exponential, their products;

=» other special classes of functions.
=» Approximating the roots and the summations in the remaining cases.

4

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

=» A solution method is available for the 1st order case (possibly after the
order-reduction step). Let II(n) = [[,_, a(k):

zn=II(n)yn n
Tn = a(n)xn—1 + p(n) Yn = Yn—1 + 11‘9[((71))

lsolve
Y oz

n k) \7" T TI(n) k:

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF. 8-A

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

=» A solution method is available for the 1st order case (possibly after the
order-reduction step). Let II(n) = [[,_, a(k):

xn:H(n)yn n
Ty = oz(n):z_:n_l + p(n) Yn = Yn—1 + ﬁ((n))

lsolve
Y -~

n k))77) n k
Tn = II(n) (:Eo + > b1 ﬁ((k))> Yn = Yo + D p_q %

=» Other methods (e.g., Zeilberger’s algorithm) can be applied to find
polynomial and hypergeometric solutions for higher-order recurrences.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

LINEAR RECURRENCES OF INFINITE ORDER

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number
of them.

LINEAR RECURRENCES OF INFINITE ORDER

9-A

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number

of them.
=» All values have the same weight 2/n: therefore = also satisfies

1 1
Ln = <1—|—_) xn—1+2_—,
n n

which is a 1st order linear recurrence with variable coefficients.

LINEAR RECURRENCES OF INFINITE ORDER

9-B

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number
of them.
=» All values have the same weight 2/n: therefore = also satisfies

1 1
Ln = <1—|—_) xn—1+2_—,
n n

which is a 1st order linear recurrence with variable coefficients.
=» By applying the solution method above plus approximations, we obtain

Tn =2(n+1)logn + n(zo — 3+ 27) + €(n),

where ~ is Euler’s constant and ¢(n) € O(1).

LINEAR RECURRENCES OF INFINITE ORDER

9-Cc

NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.

NON-LINEAR RECURRENCES OF FINITE ORDER

10

NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.

=» Handling special cases:
=» by means of so-called range transformation, some recurrences can

be linearized and previous methods become applicable.

lo
Tn = 312 4 ° Yn = 2Yn—1 + log, 3

\L solve
Y

exp

Tp = 32n_133%n <~——yn =2"yo + (2" — 1) log, 3

NON-LINEAR RECURRENCES OF FINITE ORDER 10-A

DIVIDE-ET-IMPERA RECURRENCES

=» Closed-form solutions may not exist =—- must use approximations.
=» Upper and lower bounds: valid for each n € N for which the

recurrence is well-defined.

DIVIDE-ET-IMPERA RECURRENCES

11

DIVIDE-ET-IMPERA RECURRENCES

=» Closed-form solutions may not exist =—- must use approximations.
=» Upper and lower bounds: valid for each n € N for which the

recurrence is well-defined.
=»> Recurrences of rank 1

z(n) = az(%) + g(n),
5
where a > 0, 3 > 1 and g(n) is a non-negative, non-decreasing

function.
=» Special cases for g: less generality but more efficiency for

combinations of polynomials, exponentials, logarithms and factorials.
=» Recurrences of higher rank

x(n) = alx(%) -+ 06233‘(%) + g(n)

=» Other techniques may be used in some cases.
=» Otherwise we may resort to further approximations.

DIVIDE-ET-IMPERA RECURRENCES 11-A

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera

Recurrences.

7

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —247?, < () < ?nlow —247?, + ?n—S

DIVIDE-ET-IMPERA RECURRENCES

12

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera

Recurrences.

7

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —247?, < () < ?nlogZ —247?, + ?n—S

=» Example (mergesort algorithm): z(n) = 2z(n/2) +n — 1

h(n) — 2n+ 1 < 2(n) < h(n) + %ma),

where h(n) = {=losn 4 1yp1) 41,

log 2

DIVIDE-ET-IMPERA RECURRENCES

12-A

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera”

Recurrences.

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —24n < () < ?nlogZ —247?, + ?n—S

=» Example (mergesort algorithm): z(n) = 2z(n/2) +n — 1

h(n) — 2n+ 1 < 2(n) < h(n) + %ma),

where h(n) = 20080 4 Lng(1) + 1.
—> We thus determined the asymptotic formula z(n) ~ %25k,

DIVIDE-ET-IMPERA RECURRENCES 12-B

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

MANIPULATION OF INFINITE SEQUENCES (I)

13

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.

MANIPULATION OF INFINITE SEQUENCES (I) 13-A

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.

Find approximations of max{by, b2} and min{by, b2} from below.
=» This is needed to compute upper bounds on §.

MANIPULATION OF INFINITE SEQUENCES (I) 13-B

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.

Find approximations of max{by, b2} and min{b;, by} from below.
=» This is needed to compute upper bounds on §.

Do we have Vn € N: f(n) < g(n)?
=» Useful to provide better lower and upper bounds.
=» Useful to check that they are indeed lower and upper bounds.

=» Useful for the applications: e.g., for an optimizing program transformer
to automatically decide whether a candidate transformation resulted into

an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I)

13-C

MANIPULATION OF INFINITE SEQUENCES (Il)
=» Already obtained some results about these problems:

R. Bagnara and A. Zaccagnini, 2003.
Checking and Bounding the Solutions of Some Recurrence Relations.
=» The problems are reduced to testing a finite (and usually very small)
set of conditions;
=¥ in several cases these conditions are simple comparisons between
integers.
=» The proposed techniques share some aspects:
=» identification of dominant terms;
=>» exploitation of the properties of restricted classes of functions
(polynomials times exponentials, sums of these functions, factorials);
=» divide-et-impera and tests by inductions: break down expressions
and evaluate the pieces at a small number of consecutive integers.
-» Upper bound computed by replacing terms of the form an”\™ with
la|n®A™, where A is an upper bound for the value of |)|.

MANIPULATION OF INFINITE SEQUENCES (II) 14

EXAMPLE: CHECK THE FORMULA FOR THE FIBONAcCCI NUMBERS

p
Tp = Tp-1 1+ Tp—2,
§ o =0, — T, = . with
A1 — A)\2:%(1—\/5).
\131 = 1,

=» Compute x¢ and z; by means of the formula, and check that they agree
with data.
=» Compute z,, — rn—1 — zn—2 and check that it is 0 for n > 2.
-> We have to verify that AT — A7~' — A772 = A2 + A0~ 4 A2 2 = 0 for all
integers n > 2.
— It can be proved that if this happens for any 6 consecutive integers,
then it is true for all integers.

EXAMPLE: CHECK THE FORMULA FOR THE FIBONACCI NUMBERS

15

PURRS: A POWERFUL RECURRENCE RELATION SOLVER

=» A system implementing these ideas being developed at the University of
Parma, Italy.

=» Written in C++, but easily interfaceable with other programming
languages.

PURRS: A POWERFUL RECURRENCE RELATION SOLVER

16

=» A system implementing these ideas being developed at the University of
Parma, Italy.

=» Written in C++, but easily interfaceable with other programming
languages.

Main components:

=» a package providing basic computer algebra services;
several rewriting systems providing specialized simplifications;
an algebraic equation solver;

$d 4 d

modules to compute closed formulas for symbolic summations (with
different efficiency/power ratios);

2

modules implementing verification and comparisons.

PURRS: A POWERFUL RECURRENCE RELATION SOLVER 16-A

=» Asking for exact solutions:

$ rrs_driver -E -R "2*x(n-1) + 2°(n-1) + n + 1"

x(n) = -3+3*2"n+1/2*x2"n*n+2"n*x(0) -n.

$ rrs_driver -E -R "2*x(n-1) + 2°(n-1) + n + 1" -T "x(0) = 1"
x(n) = -3+4*x2°n+1/2*2"n*n-n.

$ rrs_driver -E -R "2 =~ x(n-1) + x(n-2)" -I "x(0) = 1"

exact (too_complex) .

=» Asking for upper and lower bounds:

$ rrs_driver -UL -R "2*xx(n/2) + log(n)"

x(n) >= log(2)*n+1/2*x(1)*n-log(2)-log(n).

x(n) =< 3*log(2)*n+x(1)*n-2*log(2)+log(n)*n-log(n).

$ rrs_driver -UL -R "2*x(n/2) + log(n)" -I"x(1) = 2*xp + q"
x(n) >= log(2)*n-log(2)+1/2*q*n-log(n)+p*n.

x(n) =< 3*log(2)*n-2*%log(2)+g*n+log(n)*n-log(n)+2*p*n.

USING THE PURRS TEST DRIVER

17

=» Research and implementation work is ongoing.

=» The aim is to provide complete symbolic computation support for fully

automatic complexity analysis.
—> Even going beyond the language of (generalized) recurrences:

Tn = max (Tp_1-k+ Tk)+ 2n.
0<k<n—1

=» Collaborations have been started
=>» University of Réunion (France);

=» University of Leeds (U.K.);
- UPM?

=» A demo of the recurrence relation solver is online at
http://www.cs.unipr.it/purrs/.

CONCLUSION

18

