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@® Complexity Analysis and Symbolic Computation

@ Classes of Recurrence Relations

® Solving and Approximating Recurrence Relations

@ Symbolic Manipulation of Solutions and Approximations
® The PURRS Library

PLAN OF THE TALK



What?

=» We are interested in those properties of complex systems that deal with
resource usage:
e computation time,
e required memory space,
e network bandwidth used, ...

Why?
=» verifying that the deadlines of hard real-time systems are met;
=» deciding whether a mobile agent should be allowed to run in a certain
context;
=» guiding the application of optimizing program transformations;

=» assisting the programmer in reasoning on programs:
— particularly useful with high level languages where introducing

efficiency bugs is very easy.

TRACKING THE USAGE OF RESOURCES



AUTOMATIC COMPLEXITY ANALYSIS: THE DOMAIN OF DISCOURSE

- p(RE‘O): (possibly infinite) sets of (infinite) sequences of real numbers.

=» A sequence expresses the cost of one process in terms of some input
measure:

e cost may be in terms of clock cycles, number of statements
executed, memory used, number of packets exchanged over the
network, ...;

e a process may be a piece of software but also a communication
protocol;

e the input measure can be any metric of the input of a
program/procedure, or, say, the number of participants to some
synchronization protocol.

=» We have sets of sequences to capture approximation.
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THE NEED FOR POWERFUL SYmMBoOLIC COMPUTATION

Elements of p(R%,) are generated by:
=» imposing a recurrence relation that a sequence must satisfy to capture
recursion;
=» computing additions in order to approximate sequential composition;
=» computing approximations of set union in order to capture conditionals;
- ...
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Elements of p(RRY,) are generated by:
=» imposing a recurrence relation that a sequence must satisfy to capture
recursion;
=» computing additions in order to approximate sequential composition;
=» computing approximations of set union in order to capture conditionals;
- ...

Approximations based on lower and upper bounds
- Chosen a class of boundary functions B € p(Ry,),
- we may represent the subset of p(R:,) defined by

§E{Fcp®y)|[UueB.VfeF:l<f<u}.

=> Given b1, b2 € B, we need to approximate, within 8, max{b1, b2} from
above and min{b1, b2} from below.
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

=» Linear recurrences of finite order with constant coefficients

2
Ty = DTp—1 —6Tn_2+n
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients

1
Ln — Eﬂjn—l + 2
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients
Tn = %azn_l + 2

=» Linear recurrences of infinite order
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
=» Linear recurrences of finite order with constant coefficients
Tr, = 5Tn_1 — 6Tp_o + n?
=» Linear recurrences of finite order with variable coefficients

1
Ln — %xn—l + 2

=» Linear recurrences of infinite order

=> Non-linear recurrences of finite order

2
Tn = 3T5,_1
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CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

=» Linear recurrences of finite order with constant coefficients
Trn = B5Tn_1 — 6Xn_o + N>

=» Linear recurrences of finite order with variable coefficients
Ty = %CL‘n_l + 2

=» Linear recurrences of infinite order
tn=n+ 2307 ok

=» Non-linear recurrences of finite order
Ty = 3:(:7%_1

=» Divide-et-impera recurrences

Tn = 2Tp;2+n—1

CLASSES OF RECURRENCE RELATIONS
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LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap )\ + ay.

=» Roots of equation 4+ symbolic summations — exact solution.
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LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap )\ + ay.

=» Roots of equation 4+ symbolic summations — exact solution.
=» Finding the roots is feasible in many cases:
=» order-reduction transformation;
=» square-free factorization;
=¥ identification of “small” rational roots;
=» direct algebraic solution (up to 4th order);
=» other factorization methods ...
=» Computing symbolic summations is also feasible in many cases:
=» linear combinations of polynomials and exponential, their products;
=» other special classes of functions.
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LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

Ne=a Nt ap )\ + ay.

Roots of equation + symbolic summations — exact solution.
Finding the roots is feasible in many cases:

=» order-reduction transformation;

=» square-free factorization;

=» identification of “small” rational roots;

=» direct algebraic solution (up to 4th order);

=» other factorization methods ...

=» Computing symbolic summations is also feasible in many cases:
=» linear combinations of polynomials and exponential, their products;

=» other special classes of functions.
=» Approximating the roots and the summations in the remaining cases.

4
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LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.
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LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

=» A solution method is available for the 1st order case (possibly after the
order-reduction step). Let II(n) = [[,_, a(k):

zn=II(n)yn n
Tn = a(n)xn—1 + p(n) Yn = Yn—1 + 11‘9[((71))

lsolve
Y oz

n k) \7" T TI(n) k:
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LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

=» A solution method is available for the 1st order case (possibly after the
order-reduction step). Let II(n) = [[,_, a(k):

xn:H(n)yn n
Ty = oz(n):z_:n_l + p(n) Yn = Yn—1 + ﬁ((n))

lsolve
Y -~

n k) )77 ) n k
Tn = II(n) (:Eo + > b1 ﬁ((k))> Yn = Yo + D p_q %

=» Other methods (e.g., Zeilberger’s algorithm) can be applied to find
polynomial and hypergeometric solutions for higher-order recurrences.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.



LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0
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LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number
of them.
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LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number

of them.
=» All values have the same weight 2/n: therefore = also satisfies

1 1
Ln = <1—|—_) xn—1+2_—,
n n

which is a 1st order linear recurrence with variable coefficients.
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LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

n—1
2
Ty =N+ — E Tk .
n
k=0

=» Here z,, depends on all previous values, and not only on a fixed number
of them.
=» All values have the same weight 2/n: therefore = also satisfies

1 1
Ln = <1—|—_) xn—1+2_—,
n n

which is a 1st order linear recurrence with variable coefficients.
=» By applying the solution method above plus approximations, we obtain

Tn =2(n+1)logn + n(zo — 3+ 27) + €(n),

where ~ is Euler’s constant and ¢(n) € O(1).

LINEAR RECURRENCES OF INFINITE ORDER
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NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.

NON-LINEAR RECURRENCES OF FINITE ORDER
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NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.

=» Handling special cases:
=» by means of so-called range transformation, some recurrences can

be linearized and previous methods become applicable.

lo
Tn = 312 4 ° Yn = 2Yn—1 + log, 3

\L solve
Y

exp

Tp = 32n_133%n <~——yn =2"yo + (2" — 1) log, 3
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DIVIDE-ET-IMPERA RECURRENCES

=» Closed-form solutions may not exist =—- must use approximations.
=» Upper and lower bounds: valid for each n € N for which the

recurrence is well-defined.

DIVIDE-ET-IMPERA RECURRENCES
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DIVIDE-ET-IMPERA RECURRENCES

=» Closed-form solutions may not exist =—- must use approximations.
=» Upper and lower bounds: valid for each n € N for which the

recurrence is well-defined.
=»> Recurrences of rank 1

z(n) = az( %) + g(n),
5
where a > 0, 3 > 1 and g(n) is a non-negative, non-decreasing

function.
=» Special cases for g: less generality but more efficiency for

combinations of polynomials, exponentials, logarithms and factorials.
=» Recurrences of higher rank

x(n) = alx(%) -+ 06233‘(%) + g(n)

=» Other techniques may be used in some cases.
=» Otherwise we may resort to further approximations.
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DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera

Recurrences.

7

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —247?, < ( ) < ?nlow —247?, + ?n—S
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DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera

Recurrences.

7

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —247?, < ( ) < ?nlogZ —247?, + ?n—S

=» Example (mergesort algorithm): z(n) = 2z(n/2) +n — 1

h(n) — 2n+ 1 < 2(n) < h(n) + %ma),

where h(n) = {=losn 4 1yp1) 41,

log 2
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DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera”

Recurrences.

establish very precise lower and upper bounds.
-» Example (Strassen’s algorithm): z(n) = Tz(n/2) + 18n?
24 log7 351 loz7 144

7’7?,103?2 —24n < ( ) < ?nlogZ —247?, + ?n—S

=» Example (mergesort algorithm): z(n) = 2z(n/2) +n — 1

h(n) — 2n+ 1 < 2(n) < h(n) + %ma),

where h(n) = 20080 4 Lng(1) + 1.
—> We thus determined the asymptotic formula z(n) ~ %25k,
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MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

MANIPULATION OF INFINITE SEQUENCES (I)
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MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.
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MANIPULATION OF INFINITE SEQUENCES (I)

Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.

Find approximations of max{by, b2} and min{by, b2} from below.
=» This is needed to compute upper bounds on §.
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Do we have Vn € N: f(n) =07
=» This is needed in order to verify the solver itsel.

Find simple u,l: N — R, approximating f: N — R, from above and
from below.
=» This is needed because exact solutions may be too complex.

Find approximations of max{by, b2} and min{b;, by} from below.
=» This is needed to compute upper bounds on §.

Do we have Vn € N: f(n) < g(n)?
=» Useful to provide better lower and upper bounds.
=» Useful to check that they are indeed lower and upper bounds.

=» Useful for the applications: e.g., for an optimizing program transformer
to automatically decide whether a candidate transformation resulted into

an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I)
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MANIPULATION OF INFINITE SEQUENCES (Il)
=» Already obtained some results about these problems:

R. Bagnara and A. Zaccagnini, 2003.
Checking and Bounding the Solutions of Some Recurrence Relations.
=» The problems are reduced to testing a finite (and usually very small)
set of conditions;
=¥ in several cases these conditions are simple comparisons between
integers.
=» The proposed techniques share some aspects:
=» identification of dominant terms;
=>» exploitation of the properties of restricted classes of functions
(polynomials times exponentials, sums of these functions, factorials);
=» divide-et-impera and tests by inductions: break down expressions
and evaluate the pieces at a small number of consecutive integers.
-» Upper bound computed by replacing terms of the form an”\™ with
la|n®A™, where A is an upper bound for the value of |)|.

MANIPULATION OF INFINITE SEQUENCES (II) 14



EXAMPLE: CHECK THE FORMULA FOR THE FIBONAcCCI NUMBERS

p
Tp = Tp-1 1+ Tp—2,
§ o =0, — T, = . with
A1 — A )\2:%(1—\/5).
\131 = 1,

=» Compute x¢ and z; by means of the formula, and check that they agree
with data.
=» Compute z,, — rn—1 — zn—2 and check that it is 0 for n > 2.
-> We have to verify that AT — A7~' — A772 = A2 + A0~ 4 A2 2 = 0 for all
integers n > 2.
— It can be proved that if this happens for any 6 consecutive integers,
then it is true for all integers.

EXAMPLE: CHECK THE FORMULA FOR THE FIBONACCI NUMBERS

15



PURRS: A POWERFUL RECURRENCE RELATION SOLVER

=» A system implementing these ideas being developed at the University of
Parma, Italy.

=» Written in C++, but easily interfaceable with other programming
languages.

PURRS: A POWERFUL RECURRENCE RELATION SOLVER
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=» A system implementing these ideas being developed at the University of
Parma, Italy.

=» Written in C++, but easily interfaceable with other programming
languages.

Main components:

=» a package providing basic computer algebra services;
several rewriting systems providing specialized simplifications;
an algebraic equation solver;

$d 4 d

modules to compute closed formulas for symbolic summations (with
different efficiency/power ratios);

2

modules implementing verification and comparisons.
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=» Asking for exact solutions:

$ rrs_driver -E -R "2*x(n-1) + 2°(n-1) + n + 1"

x(n) = -3+3*2"n+1/2*x2"n*n+2"n*x(0) -n.

$ rrs_driver -E -R "2*x(n-1) + 2°(n-1) + n + 1" -T "x(0) = 1"
x(n) = -3+4*x2°n+1/2*2"n*n-n.

$ rrs_driver -E -R "2 =~ x(n-1) + x(n-2)" -I "x(0) = 1"

exact (too_complex) .

=» Asking for upper and lower bounds:

$ rrs_driver -UL -R "2*xx(n/2) + log(n)"

x(n) >= log(2)*n+1/2*x(1)*n-log(2)-log(n).

x(n) =< 3*log(2)*n+x(1)*n-2*log(2)+log(n)*n-log(n).

$ rrs_driver -UL -R "2*x(n/2) + log(n)" -I"x(1) = 2*xp + q"
x(n) >= log(2)*n-log(2)+1/2*q*n-log(n)+p*n.

x(n) =< 3*log(2)*n-2*%log(2)+g*n+log(n)*n-log(n)+2*p*n.

USING THE PURRS TEST DRIVER
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=» Research and implementation work is ongoing.

=» The aim is to provide complete symbolic computation support for fully

automatic complexity analysis.
—> Even going beyond the language of (generalized) recurrences:

Tn = max (Tp_1-k+ Tk)+ 2n.
0<k<n—1

=» Collaborations have been started
=>» University of Réunion (France);

=» University of Leeds (U.K.);
- UPM?

=» A demo of the recurrence relation solver is online at
http://www.cs.unipr.it/purrs/.

CONCLUSION
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