
Symbolic Computation Support
for Complexity Analysis
and the PURRS Project

Roberto BAGNARA, Alessandro ZACCAGNINI,
Enea ZAFFANELLA, and Tatiana ZOLO

Department of Mathematics
University of Parma, Italy

� � � � � � �� � � � �� � 	
 � �
� � � � � � 	 � � � �
Adela Tour 2003, Madrid, Spain, May 2003 1

PLAN OF THE TALK

À Complexity Analysis and Symbolic Computation

Á Classes of Recurrence Relations

Â Solving and Approximating Recurrence Relations

Ã Symbolic Manipulation of Solutions and Approximations

Ä The PURRS Library

PLAN OF THE TALK 2

TRACKING THE USAGE OF RESOURCES

What?
Ü We are interested in those properties of complex systems that deal with

resource usage:

• computation time,
• required memory space,
• network bandwidth used, . . .

Why?
Ü verifying that the deadlines of hard real-time systems are met;
Ü deciding whether a mobile agent should be allowed to run in a certain

context;
Ü guiding the application of optimizing program transformations;
Ü assisting the programmer in reasoning on programs:

=⇒ particularly useful with high level languages where introducing
efficiency bugs is very easy.

TRACKING THE USAGE OF RESOURCES 3

AUTOMATIC COMPLEXITY ANALYSIS: THE DOMAIN OF DISCOURSE

Ü ℘
(

R
N

∞

)

: (possibly infinite) sets of (infinite) sequences of real numbers.

Ü A sequence expresses the cost of one process in terms of some input
measure:

• cost may be in terms of clock cycles, number of statements
executed, memory used, number of packets exchanged over the
network, . . . ;

• a process may be a piece of software but also a communication
protocol;

• the input measure can be any metric of the input of a
program/procedure, or, say, the number of participants to some
synchronization protocol.

Ü We have sets of sequences to capture approximation.

AUTOMATIC COMPLEXITY ANALYSIS: THE DOMAIN OF DISCOURSE 4

THE NEED FOR POWERFUL SYMBOLIC COMPUTATION

Elements of ℘
(

R
N
∞

)

are generated by:
Ü imposing a recurrence relation that a sequence must satisfy to capture

recursion;

Ü computing additions in order to approximate sequential composition;

Ü computing approximations of set union in order to capture conditionals;

Ü . . .

Approximations based on lower and upper bounds
Ü Chosen a class of boundary functions B ∈ ℘

(

R
N

∞

)

,

Ü we may represent the subset of ℘
(

R
N

∞

)

defined by

F
def
=

{

F ∈ ℘
(

R
N

∞

) ∣

∣ ∃l, u ∈ B . ∀f ∈ F : l ≤ f ≤ u
}

.

Ü Given b1, b2 ∈ B, we need to approximate, within B, max{b1, b2} from
above and min{b1, b2} from below.

THE NEED FOR POWERFUL SYMBOLIC COMPUTATION 5

THE NEED FOR POWERFUL SYMBOLIC COMPUTATION

Elements of ℘
(

R
N
∞

)

are generated by:
Ü imposing a recurrence relation that a sequence must satisfy to capture

recursion;

Ü computing additions in order to approximate sequential composition;

Ü computing approximations of set union in order to capture conditionals;

Ü . . .

Approximations based on lower and upper bounds
Ü Chosen a class of boundary functions B ∈ ℘

(

R
N

∞

)

,

Ü we may represent the subset of ℘
(

R
N

∞

)

defined by

F
def
=

{

F ∈ ℘
(

R
N

∞

) ∣

∣ ∃l, u ∈ B . ∀f ∈ F : l ≤ f ≤ u
}

.

Ü Given b1, b2 ∈ B, we need to approximate, within B, max{b1, b2} from
above and min{b1, b2} from below.

THE NEED FOR POWERFUL SYMBOLIC COMPUTATION 5-A

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.

Ü Linear recurrences of finite order with constant coefficients
xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
Ü Linear recurrences of finite order with constant coefficients

xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6-A

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
Ü Linear recurrences of finite order with constant coefficients

xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6-B

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
Ü Linear recurrences of finite order with constant coefficients

xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6-C

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
Ü Linear recurrences of finite order with constant coefficients

xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6-D

CLASSES OF RECURRENCE RELATIONS

For each class of recurrence relations a specific approach is chosen
for the computation or approximation of the solutions.
Ü Linear recurrences of finite order with constant coefficients

xn = 5xn−1 − 6xn−2 + n2

Ü Linear recurrences of finite order with variable coefficients
xn = 1

n
xn−1 + 2

Ü Linear recurrences of infinite order
xn = n + 2

n

∑n−1
k=0 xk

Ü Non-linear recurrences of finite order
xn = 3x2

n−1

Ü Divide-et-impera recurrences
xn = 2xn/2 + n − 1

CLASSES OF RECURRENCE RELATIONS 6-E

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

λk = a1λ
k−1 + · · · + ak−1λ + ak.

Ü Roots of equation + symbolic summations =⇒ exact solution.

Ü Finding the roots is feasible in many cases:
Ü order-reduction transformation;
Ü square-free factorization;
Ü identification of “small” rational roots;
Ü direct algebraic solution (up to 4th order);
Ü other factorization methods . . .

Ü Computing symbolic summations is also feasible in many cases:
Ü linear combinations of polynomials and exponential, their products;
Ü other special classes of functions.

Ü Approximating the roots and the summations in the remaining cases.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF. 7

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

λk = a1λ
k−1 + · · · + ak−1λ + ak.

Ü Roots of equation + symbolic summations =⇒ exact solution.
Ü Finding the roots is feasible in many cases:

Ü order-reduction transformation;
Ü square-free factorization;
Ü identification of “small” rational roots;
Ü direct algebraic solution (up to 4th order);
Ü other factorization methods . . .

Ü Computing symbolic summations is also feasible in many cases:
Ü linear combinations of polynomials and exponential, their products;
Ü other special classes of functions.

Ü Approximating the roots and the summations in the remaining cases.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF. 7-A

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF.

A general solution method is available, based on the characteristic
equation of the recurrence:

λk = a1λ
k−1 + · · · + ak−1λ + ak.

Ü Roots of equation + symbolic summations =⇒ exact solution.
Ü Finding the roots is feasible in many cases:

Ü order-reduction transformation;
Ü square-free factorization;
Ü identification of “small” rational roots;
Ü direct algebraic solution (up to 4th order);
Ü other factorization methods . . .

Ü Computing symbolic summations is also feasible in many cases:
Ü linear combinations of polynomials and exponential, their products;
Ü other special classes of functions.

Ü Approximating the roots and the summations in the remaining cases.

LINEAR REC. OF FINITE ORDER WITH CONSTANT COEFF. 7-B

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.

Ü A solution method is available for the 1st order case (possibly after the
order-reduction step). Let Π(n) =

∏n
k=1 α(k):

xn = α(n)xn−1 + p(n)
xn=Π(n)yn

//

��

yn = yn−1 + p(n)
Π(n)

solve

��

xn = Π(n)
(

x0 +
∑n

k=1
p(k)
Π(k)

)

yn = y0 +
∑n

k=1
p(k)
Π(k)

yn= xn

Π(n)
oo

Ü Other methods (e.g., Zeilberger’s algorithm) can be applied to find
polynomial and hypergeometric solutions for higher-order recurrences.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF. 8

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.
Ü A solution method is available for the 1st order case (possibly after the

order-reduction step). Let Π(n) =
∏n

k=1 α(k):

xn = α(n)xn−1 + p(n)
xn=Π(n)yn

//

��

yn = yn−1 + p(n)
Π(n)

solve

��

xn = Π(n)
(

x0 +
∑n

k=1
p(k)
Π(k)

)

yn = y0 +
∑n

k=1
p(k)
Π(k)

yn= xn

Π(n)
oo

Ü Other methods (e.g., Zeilberger’s algorithm) can be applied to find
polynomial and hypergeometric solutions for higher-order recurrences.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF. 8-A

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF.

No general solution method is known.
Ü A solution method is available for the 1st order case (possibly after the

order-reduction step). Let Π(n) =
∏n

k=1 α(k):

xn = α(n)xn−1 + p(n)
xn=Π(n)yn

//

��

yn = yn−1 + p(n)
Π(n)

solve

��

xn = Π(n)
(

x0 +
∑n

k=1
p(k)
Π(k)

)

yn = y0 +
∑n

k=1
p(k)
Π(k)

yn= xn

Π(n)
oo

Ü Other methods (e.g., Zeilberger’s algorithm) can be applied to find
polynomial and hypergeometric solutions for higher-order recurrences.

LINEAR REC. OF FINITE ORDER WITH VARIABLE COEFF. 8-B

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

xn = n +
2

n

n−1
∑

k=0

xk.

Ü Here xn depends on all previous values, and not only on a fixed number
of them.

Ü All values have the same weight 2/n: therefore x also satisfies

xn =

(

1 +
1

n

)

xn−1 + 2 −
1

n
,

which is a 1st order linear recurrence with variable coefficients.
Ü By applying the solution method above plus approximations, we obtain

xn = 2(n + 1) log n + n
(

x0 − 3 + 2γ
)

+ ε(n),

where γ is Euler’s constant and ε(n) ∈ O(1).

LINEAR RECURRENCES OF INFINITE ORDER 9

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

xn = n +
2

n

n−1
∑

k=0

xk.

Ü Here xn depends on all previous values, and not only on a fixed number
of them.

Ü All values have the same weight 2/n: therefore x also satisfies

xn =

(

1 +
1

n

)

xn−1 + 2 −
1

n
,

which is a 1st order linear recurrence with variable coefficients.
Ü By applying the solution method above plus approximations, we obtain

xn = 2(n + 1) log n + n
(

x0 − 3 + 2γ
)

+ ε(n),

where γ is Euler’s constant and ε(n) ∈ O(1).

LINEAR RECURRENCES OF INFINITE ORDER 9-A

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

xn = n +
2

n

n−1
∑

k=0

xk.

Ü Here xn depends on all previous values, and not only on a fixed number
of them.

Ü All values have the same weight 2/n: therefore x also satisfies

xn =

(

1 +
1

n

)

xn−1 + 2 −
1

n
,

which is a 1st order linear recurrence with variable coefficients.

Ü By applying the solution method above plus approximations, we obtain

xn = 2(n + 1) log n + n
(

x0 − 3 + 2γ
)

+ ε(n),

where γ is Euler’s constant and ε(n) ∈ O(1).

LINEAR RECURRENCES OF INFINITE ORDER 9-B

LINEAR RECURRENCES OF INFINITE ORDER

The analysis of the average case for quicksort leads to

xn = n +
2

n

n−1
∑

k=0

xk.

Ü Here xn depends on all previous values, and not only on a fixed number
of them.

Ü All values have the same weight 2/n: therefore x also satisfies

xn =

(

1 +
1

n

)

xn−1 + 2 −
1

n
,

which is a 1st order linear recurrence with variable coefficients.
Ü By applying the solution method above plus approximations, we obtain

xn = 2(n + 1) log n + n
(

x0 − 3 + 2γ
)

+ ε(n),

where γ is Euler’s constant and ε(n) ∈ O(1).

LINEAR RECURRENCES OF INFINITE ORDER 9-C

NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.

Ü Handling special cases:
Ü by means of so-called range transformation, some recurrences can

be linearized and previous methods become applicable.

xn = 3x2
n−1

log
//

��

yn = 2yn−1 + log2 3

solve

��

xn = 32n−1x2n

0 yn = 2ny0 + (2n − 1) log2 3
exp

oo

NON-LINEAR RECURRENCES OF FINITE ORDER 10

NON-LINEAR RECURRENCES OF FINITE ORDER

No general solution method is known.
Ü Handling special cases:

Ü by means of so-called range transformation, some recurrences can
be linearized and previous methods become applicable.

xn = 3x2
n−1

log
//

��

yn = 2yn−1 + log2 3

solve

��

xn = 32n−1x2n

0 yn = 2ny0 + (2n − 1) log2 3
exp

oo

NON-LINEAR RECURRENCES OF FINITE ORDER 10-A

DIVIDE-ET-IMPERA RECURRENCES

Ü Closed-form solutions may not exist =⇒ must use approximations.
Ü Upper and lower bounds: valid for each n ∈ N for which the

recurrence is well-defined.

Ü Recurrences of rank 1

x(n) = αx
(n

β

)

+ g(n),

where α > 0, β > 1 and g(n) is a non-negative, non-decreasing
function.
Ü Special cases for g: less generality but more efficiency for

combinations of polynomials, exponentials, logarithms and factorials.
Ü Recurrences of higher rank

x(n) = α1x
(n

β1

)

+ α2x
(n

β2

)

+ g(n)

Ü Other techniques may be used in some cases.
Ü Otherwise we may resort to further approximations.

DIVIDE-ET-IMPERA RECURRENCES 11

DIVIDE-ET-IMPERA RECURRENCES

Ü Closed-form solutions may not exist =⇒ must use approximations.
Ü Upper and lower bounds: valid for each n ∈ N for which the

recurrence is well-defined.
Ü Recurrences of rank 1

x(n) = αx
(n

β

)

+ g(n),

where α > 0, β > 1 and g(n) is a non-negative, non-decreasing
function.
Ü Special cases for g: less generality but more efficiency for

combinations of polynomials, exponentials, logarithms and factorials.
Ü Recurrences of higher rank

x(n) = α1x
(n

β1

)

+ α2x
(n

β2

)

+ g(n)

Ü Other techniques may be used in some cases.
Ü Otherwise we may resort to further approximations.

DIVIDE-ET-IMPERA RECURRENCES 11-A

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera”
Recurrences.

establish very precise lower and upper bounds.
Ü Example (Strassen’s algorithm): x(n) = 7x(n/2) + 18n2

24

7
n

log 7
log 2 − 24n2 ≤ x(n) ≤

351

5
n

log 7
log 2 − 24n2 +

144

5
n − 3.

Ü Example (mergesort algorithm): x(n) = 2x(n/2) + n − 1

h(n) − 2n + 1 ≤ x(n) ≤ h(n) +
1

2
nx(1),

where h(n) = (n−1) log n
log 2

+ 1
2
nx(1) + 1.

=⇒ We thus determined the asymptotic formula x(n) ∼ n log n
log 2

.

DIVIDE-ET-IMPERA RECURRENCES 12

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera”
Recurrences.

establish very precise lower and upper bounds.
Ü Example (Strassen’s algorithm): x(n) = 7x(n/2) + 18n2

24

7
n

log 7
log 2 − 24n2 ≤ x(n) ≤

351

5
n

log 7
log 2 − 24n2 +

144

5
n − 3.

Ü Example (mergesort algorithm): x(n) = 2x(n/2) + n − 1

h(n) − 2n + 1 ≤ x(n) ≤ h(n) +
1

2
nx(1),

where h(n) = (n−1) log n
log 2

+ 1
2
nx(1) + 1.

=⇒ We thus determined the asymptotic formula x(n) ∼ n log n
log 2

.

DIVIDE-ET-IMPERA RECURRENCES 12-A

DIVIDE-ET-IMPERA RECURRENCES

Results in

R. Bagnara, A. Zaccagnini, E. Zaffanella, and T. Zolo, 2003.
The Automatic Solution of Recurrence Relations: “Divide et Impera”
Recurrences.

establish very precise lower and upper bounds.
Ü Example (Strassen’s algorithm): x(n) = 7x(n/2) + 18n2

24

7
n

log 7
log 2 − 24n2 ≤ x(n) ≤

351

5
n

log 7
log 2 − 24n2 +

144

5
n − 3.

Ü Example (mergesort algorithm): x(n) = 2x(n/2) + n − 1

h(n) − 2n + 1 ≤ x(n) ≤ h(n) +
1

2
nx(1),

where h(n) = (n−1) log n
log 2

+ 1
2
nx(1) + 1.

=⇒ We thus determined the asymptotic formula x(n) ∼ n log n
log 2

.

DIVIDE-ET-IMPERA RECURRENCES 12-B

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have ∀n ∈ N : f(n) = 0?
Ü This is needed in order to verify the solver itself.

Find simple u, l : N → R∞ approximating f : N → R∞ from above and
from below.
Ü This is needed because exact solutions may be too complex.

Find approximations of max{b1, b2} and min{b1, b2} from below.
Ü This is needed to compute upper bounds on F.

Do we have ∀n ∈ N : f(n) ≤ g(n)?
Ü Useful to provide better lower and upper bounds.
Ü Useful to check that they are indeed lower and upper bounds.
Ü Useful for the applications: e.g., for an optimizing program transformer

to automatically decide whether a candidate transformation resulted into
an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I) 13

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have ∀n ∈ N : f(n) = 0?
Ü This is needed in order to verify the solver itself.

Find simple u, l : N → R∞ approximating f : N → R∞ from above and
from below.
Ü This is needed because exact solutions may be too complex.

Find approximations of max{b1, b2} and min{b1, b2} from below.
Ü This is needed to compute upper bounds on F.

Do we have ∀n ∈ N : f(n) ≤ g(n)?
Ü Useful to provide better lower and upper bounds.
Ü Useful to check that they are indeed lower and upper bounds.
Ü Useful for the applications: e.g., for an optimizing program transformer

to automatically decide whether a candidate transformation resulted into
an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I) 13-A

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have ∀n ∈ N : f(n) = 0?
Ü This is needed in order to verify the solver itself.

Find simple u, l : N → R∞ approximating f : N → R∞ from above and
from below.
Ü This is needed because exact solutions may be too complex.

Find approximations of max{b1, b2} and min{b1, b2} from below.
Ü This is needed to compute upper bounds on F.

Do we have ∀n ∈ N : f(n) ≤ g(n)?
Ü Useful to provide better lower and upper bounds.
Ü Useful to check that they are indeed lower and upper bounds.
Ü Useful for the applications: e.g., for an optimizing program transformer

to automatically decide whether a candidate transformation resulted into
an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I) 13-B

MANIPULATION OF INFINITE SEQUENCES (I)

Do we have ∀n ∈ N : f(n) = 0?
Ü This is needed in order to verify the solver itself.

Find simple u, l : N → R∞ approximating f : N → R∞ from above and
from below.
Ü This is needed because exact solutions may be too complex.

Find approximations of max{b1, b2} and min{b1, b2} from below.
Ü This is needed to compute upper bounds on F.

Do we have ∀n ∈ N : f(n) ≤ g(n)?
Ü Useful to provide better lower and upper bounds.
Ü Useful to check that they are indeed lower and upper bounds.
Ü Useful for the applications: e.g., for an optimizing program transformer

to automatically decide whether a candidate transformation resulted into
an actual improvement.

MANIPULATION OF INFINITE SEQUENCES (I) 13-C

MANIPULATION OF INFINITE SEQUENCES (II)
Ü Already obtained some results about these problems:

R. Bagnara and A. Zaccagnini, 2003.
Checking and Bounding the Solutions of Some Recurrence Relations.
Ü The problems are reduced to testing a finite (and usually very small)

set of conditions;
Ü in several cases these conditions are simple comparisons between

integers.
Ü The proposed techniques share some aspects:

Ü identification of dominant terms;
Ü exploitation of the properties of restricted classes of functions

(polynomials times exponentials, sums of these functions, factorials);
Ü divide-et-impera and tests by inductions: break down expressions

and evaluate the pieces at a small number of consecutive integers.
Ü Upper bound computed by replacing terms of the form ankλn with

|a|nkΛn, where Λ is an upper bound for the value of |λ|.

MANIPULATION OF INFINITE SEQUENCES (II) 14

EXAMPLE: CHECK THE FORMULA FOR THE FIBONACCI NUMBERS















xn = xn−1 + xn−2,

x0 = 0,

x1 = 1,

=⇒ xn =
λn

1
− λn

2

λ1 − λ2

, with







λ1 = 1

2
(1 +

√
5),

λ2 = 1

2
(1 −

√
5).

Ü Compute x0 and x1 by means of the formula, and check that they agree
with data.

Ü Compute xn − xn−1 − xn−2 and check that it is 0 for n ≥ 2.

Ü We have to verify that λn
1 − λn−1

1 − λn−2
1 − λn

2 + λn−1
2 + λn−2

2 = 0 for all
integers n ≥ 2.
=⇒ It can be proved that if this happens for any 6 consecutive integers,

then it is true for all integers.

EXAMPLE: CHECK THE FORMULA FOR THE FIBONACCI NUMBERS 15

PURRS: A POWERFUL RECURRENCE RELATION SOLVER

Ü A system implementing these ideas being developed at the University of
Parma, Italy.

Ü Written in C++, but easily interfaceable with other programming
languages.

Main components:
Ü a package providing basic computer algebra services;

Ü several rewriting systems providing specialized simplifications;

Ü an algebraic equation solver;

Ü modules to compute closed formulas for symbolic summations (with
different efficiency/power ratios);

Ü modules implementing verification and comparisons.

PURRS: A POWERFUL RECURRENCE RELATION SOLVER 16

PURRS: A POWERFUL RECURRENCE RELATION SOLVER

Ü A system implementing these ideas being developed at the University of
Parma, Italy.

Ü Written in C++, but easily interfaceable with other programming
languages.

Main components:
Ü a package providing basic computer algebra services;

Ü several rewriting systems providing specialized simplifications;

Ü an algebraic equation solver;

Ü modules to compute closed formulas for symbolic summations (with
different efficiency/power ratios);

Ü modules implementing verification and comparisons.

PURRS: A POWERFUL RECURRENCE RELATION SOLVER 16-A

USING THE PURRS TEST DRIVER

Ü Asking for exact solutions:
� � � � �� �� �� � � � � � � �� � �� � � ! �#" �� � � ! � ! � �

� � � $ � % ! %� �" � ! � & �� �" � � � ! �" � � � �' � � (

� � � � �� �� �� � � � � � � �� � �� � � ! �#" �� � � ! � ! � � �) � � �' $ � �

� � � $ � % ! * � �" � ! � & �� �" � � � � � (

� � � � �� �� �� � � � � � � � " � �� � � ! � �� � � � �) � � �' $ � �

� � +, - � -. . �, . / 021 � � (
Ü Asking for upper and lower bounds:

� � � � �� �� �� � � 34 � � � �� � � � & � ! 1 . 5 � � �

� � � 6 $ 1 . 5 � � � � ! � & �� � � � � � �1 . 5 � � �1 . 5 �� (

� � � $ 7 %� 1 . 5 � � � � ! � � � � � � �� 1 . 5 � � !1 . 5 �� � � �1 . 5 �� (

� � � � �� �� �� � � 34 � � � �� � � � & � ! 1 . 5 � � � �) � � � � $ �� 0 ! 8 �

� � � 6 $ 1 . 5 � � � � �1 . 5 � � ! � & �� 8 � � �1 . 5 � � ! 0 � � (

� � � $ 7 %� 1 . 5 � � � � � �� 1 . 5 � � ! 8 � � !1 . 5 � � � � �1 . 5 �� ! �� 0 � � (

USING THE PURRS TEST DRIVER 17

CONCLUSION

Ü Research and implementation work is ongoing.

Ü The aim is to provide complete symbolic computation support for fully
automatic complexity analysis.
=⇒ Even going beyond the language of (generalized) recurrences:

xn = max
0≤k≤n−1

(xn−1−k + xk) + 2n.

Ü Collaborations have been started
Ü University of Réunion (France);
Ü University of Leeds (U.K.);
Ü UPM?

Ü A demo of the recurrence relation solver is online at

9 - - 02: & &; ; ; (, � (< � � 0 � (� - & 0 < � � � & .

CONCLUSION 18

