
Introduzione ai sistemi
multi-agente basati su logica

computazionale

Paolo Torroni
DEIS, Università di Bologna

CILC 2004 Tutorial Parma, 16 Giu 2004 2

Outline

1. Introduction to multi-agent systems and
their applications

2. Logic (programming)-based agent
languages, architectures, and
frameworks

Part One

Introduction to multi-agent
systems and their applications

CILC 2004 Tutorial Parma, 16 Giu 2004 4

Overview
• Agent research: theory and practice

– difficult even to define the overloaded concept of
‘agent’

– many industrial/commercial applications already exist
which directly or indirectly refer to the agent paradigm

• Part One: application perspective
– to motivate the use of agents in concrete scenarios,
– to single out a set of characteristics that distinguish

agents from other computational paradigms
• Discuss about the use and importance of logics

in the development of agent applications

Virtually integrated Distributed DBs
(Format-X, Fujitsu, 1998)

• Environments where
databases are
necessarily distributed:
– security
– management
– sharing maintenance

• E.g.: Steel Plant : a
steel making company
can quickly find parts to
repair equipment
– from within the company
– from equipment

manufacturers
– from plants of other steel-

making companies
facilitation

agent

database
agent

user
agent

facilitator

CILC 2004 Tutorial Parma, 16 Giu 2004 6

• Each agent has a set of rules {condition} → {agent}, e.g.:
[Bay area] and [motors] → bay.area@tcals.or.jp

• When a user sends a request to the user agent, a
database navigation phase is started, based on the
conditions of requests

• If the conditions are consistent with the conditions of a
rule (no contradiction): fwd

• Advantages:
– load balance
– agent-local maintenance
– distribution of maintenance and management
– agent-based security
– scalability
– robustness

CILC 2004 Tutorial Parma, 16 Giu 2004 7

Scenario #1: knowledge integration

• Fujitsu’s Format-X is an example of knowledge
integration based on agents

• Some other experiences:
– Information and Knowledge intergration (SAGE and

FIND Future), Fujitsu (2000)
– Web-linked Integration of Network-based Knowledge

(WINK), GFormula (2001)
– Distributed Information Systems and Intelligent

Information Integration, ITC-IRST (Trento)
– Oracle Intelligent Agents (2000)
– Business Process Management, Agentis Software

• Advantages of an agent-based architecture

Baggage Handling System
(Flavors Technology Inc.,)

• Denver Int’l Airport
– 4000 telecarts that

carry bags at 28 kmph,
servicing 20 airlines
along 32 km of track

– control handled by 64
PCs, hooked to 5,800
electric eyes, 315
radio receivers, 182
switches, and at least
60 bar code scanners

– it didn’t work!! 1 year
delay, $500K per day

T

T

main
transport
system

check-in counters

airplane
docking

area
bulk input from

City Air Terminal

claim
area

CILC 2004 Tutorial Parma, 16 Giu 2004 9

Problems with a centralized control

• Dimension of the problem
• Complexity of the solution (controller

programs and mainframe)
• Chaos (performance or several

components depending on many factors)
• Maintenance
• Difficulty in tracking problems
• Real-time scheduling

CILC 2004 Tutorial Parma, 16 Giu 2004 11

Scenario #2: distributed scheduling
• Motivation:

– uncertainty in the availability of resources
– multi-objective optimization problem
– accuracy of data (better if optimization is solved at the source)
– sub-optimal solutions are often enough
– information persistence, self-configurability, inter-

operability of software call for the need of distribution of
information processing and integration of planning and execution

• Advantages:
– scalability (time taken to get to a sub-optimal solution)
– modelling (agents can model resources and their constraints)

• Other experiences:
– ANTS (Agent Network for Task Scheduling and Execution),

Deneb robotics, SRI Int.
– IntelliDiary, Distributed Schedule Management System, Fujitsu

CILC 2004 Tutorial Parma, 16 Giu 2004 12

Similar problems: supply chain
management and manufacturing

• GM Paint System, Flavors Technology Inc.
• Distributed control, Rockwell Automation
• Manufacturing Agility Server, Flavors

Technology Inc.
• Holonic Manufacturing Systems (HMS),

consortium including: Hitachi, Toshiba, Softing
GmbH, Aitec, Anca, Broken Hill, Mandrelli SpA,
Nestlé, Yaskawa, Rockwell/Allen Bradley

• Supply chain planning, Lost wax

CILC 2004 Tutorial Parma, 16 Giu 2004 13

IBUNDLER AGENCY

Market based resource allocation
• IBundler: negotiation service

for buying agents and winner
determination service for
reverse combinatorial auctions
with side constraints (iSOCO)

– negotiate over multiple markets
– offer aggregation
– business sharing constraints
– constraints over single items
– constraints over multiple items
– specification of providers’

capacities
– multiple bids over each item
– combinatorial offers
– multi-unit offering
– packing constraints
– complementary and exclusive

offers provider
#1

provider
#2

provider
#3

buyer manager

solver

REQUEST
(RFQ)

filtered RFQ

offers

translator

FIPA problem

XML problem

XML
solution

FIPA solution
INFORM

best offers

AWARD

CILC 2004 Tutorial Parma, 16 Giu 2004 14

Scenario #3: e-procurement
• Advantages for the buyer:

– reduced time and cost of the whole sourcing process
– simplified decision-making and supplier selection

process
– process automation
– quality improvement and time to market reduction

• Advantages for the seller:
– companies can access new markets
– selling process cost reduced
– competitive advantage for the buyer

• Which parts can be automated, and how?

CILC 2004 Tutorial Parma, 16 Giu 2004 15

Scenario #4:
Distribution and logistics

• Highly dynamic domain:
– weather
– work stoppages due to

funds/material shortages
– congested traffic
– …

• What can be done?
– trucks ↔ agents
– automatic negotiation (e.g.,

Contract Net Protocol)
– find similar orders
– transportation management

and just-in-time vehicle re-
routing,

CILC 2004 Tutorial Parma, 16 Giu 2004 16

• High diversity of
customers:
– needs
– knowledge
– constraints
– priority

• E.g. U.S. State Public
Housing Authority
(Agentis)
– tear down and rebuild

public housing for 160,000
families

– off-the-shelf solutions are
no good: highly customized
management required

– traditional approach 1 year

Scenario #5:
customer-oriented services More scenarios

• Agents for armed forces, Cambridge Consultants W.P.,
• Health care (information selection and filtering, proactive

monitoring), Cambridge Consultants W.P.
• Crawling agents, iSOCO, GruSMA
• Games and film industry (The Lord of The Rings)
• Mission critical unmanned vehicle piloting, agent-software
• PDA-oriented services: virtual secretaries and

recommender systems, travel planners, …, see Siemens
MOTIV and AgentCities projects

• Human-Machine Interfaces: humanoid cartoon characters,
Fujitsu (1999) and Animation systems for interface agents,
Fraunhofer IGD

• Network management, Fujitsu (2001)
• Simulation: Central JR Shinkhansen, Flavors Technology

Inc., (1998), Air traffic management, Intelligent Automation
Inc., Multi-modal transportation, Ketensimulator, TNO

CILC 2004 Tutorial Parma, 16 Giu 2004 18

Why agents?
1. Agents don’t get tired or frustrated with negotiation
2. Agent negotiation can happen more often
3. In complex negotiation settings, automated agents will

be more successful at obtaining better deals because
they can keep track of more options (K. Woghiren,
LostWax)

• …this allows for:
– Market searching, sorting, monitoring, and negotiation
– Dynamic solutions
– Customer-oriented solutions

• Other experiences:
– Living markets, living systems AG (2001; now Whitestain

Technologies)
– Lost wax
– Adaptive Deal Flow Optimization, living systems AG (2002)

CILC 2004 Tutorial Parma, 16 Giu 2004 19

What challenges
• buyers/market owners need to trust agents
• users need be able to specify the behaviour of agents
• infrastructures / interoperability !!

– CUSTOMERS do not have the financial or technical clout to
force the development of interoperable solutions, or to test
products to ensure that they really are interoperable

– USERS and IT staff in large business may want interoperability,
but will have a difficult time justifying the possible long-term
savings vs. the short-term costs (O. Omidvar, ATP PM)

• agents must be intelligent in order to be able to
negotiate effectively

• agents need to be able to adapt to new scenaria
→ role of logic?

CILC 2004 Tutorial Parma, 16 Giu 2004 20

Summary: you should consider
looking at agent architectures…

• When the metaphor is appropriate (customer modelling,
recommender systems, interfaces)

• When there is a decision to take based on multiple sources, on
large amounts of data, and in a dynamic environment (e-
markets, logistics)

• For complex control tasks, when it is not possible to use a
centralized controller and decentralized problem solving is
needed (supply chain management, manufacturing)

• For simulation of populations of proactive individuals, when a
mathematical model is not available (traffic, games, cinema)

• When it is necessary to integrate and share knowledge from
multiple sources (databases, business support)

• Where autonomous problem solving is needed (electronic
trading, space crafts)

• With high run-time uncertainty, or incomplete or complex
information (telecom services across multiple providers)

CILC 2004 Tutorial Parma, 16 Giu 2004 21

…what is an agent…?
• Basic components:

– Data structures (mental state)
– Control structure (life cycle)
– I/O (communication language & protocols)

• Design choices
– Pro-active (goal-oriented) vs. reactive (swarm

intelligence)
– Standard (inter-platform) vs. proprietary (intra-

platform)
– Cooperation vs. competition
– Adaptive vs. static
– …

CILC 2004 Tutorial Parma, 16 Giu 2004 22

Domain-dependent categories

?

?
P

ro-activeness

A
daptability

C
ooperation

P
roperties

R
obustness

S
tandards

?Service composition
?Distribution & logistics

E-procurement
Distributed scheduling

??Knowledge integration

CILC 2004 Tutorial Parma, 16 Giu 2004 23

Is agent technology mature enough?
• A number of applications for “closed” domains
• Open domains: importance of fundings by State
• Some problems to sort out:

– trust, security (monitoring, mobile agents)
– user-interface
– extensive testing
– availability of standards and general-purpose

development framework
• New challenges
• Logics?

– For prototyping (AOSE)
– For intelligence (reasoning, goals, consistency)
– For verification (individuals, interactions)

CILC 2004 Tutorial Parma, 16 Giu 2004 24

Where do we use logics?

protocols
and norms

emerging
behaviour

rationality and
pro-activeness

reactivity to
external stimuli

agent
society

strongly
logic-based

approach

weakly logic-based
approach

formal results?

efficiency?
easy integration?
legacy systems?

Part Two

Logic (programming)-based agent
languages, architectures, and

frameworks

CILC 2004 Tutorial Parma, 16 Giu 2004 26

Developing agent-based
applications

• Basic elements
– Agents:

• Knowledge representation
• Control structure

– Agent systems:
• Agent Communication Languages
• Ontologies
• Protocols
• Institutions and norms

CILC 2004 Tutorial Parma, 16 Giu 2004 27

OOP vs. AOP [Sho93]
• Basic unit:

– object
• Parameters defining state of

basic unit:
– unconstrained

• Process of computation:
– message passing and

response methods
• Types of message:

– unconstrained
• Constraints on methods:

– none

• Basic unit:
– agent

• Parameters defining state of
basic unit:
– beliefs, commitments,

capabilities, choices, …
• Process of computation:

– message passing and
response methods

• Types of message:
– inform, request, offer,

promise, decline, …
• Constraints on methods:

– honesty, consistency, …

CILC 2004 Tutorial Parma, 16 Giu 2004 28

BDI logics
• Software Agent: a system that enjoy the properties of

– Autonomy: make decisions based on an internal state
– Reactivity: perceive the environment and respond in a timely

fashion to changes that occur in it
– Pro-activeness: take the initiative to achieve goals
– Social ability: interact with other agents via an ACL

• Beliefs: information about the state of the environment
(informative state)

• Desires: objectives to be accomplished (motivational
state). Adopted desires are often called Goals

• Intentions: currently chosen course of action
(deliberative component)

CILC 2004 Tutorial Parma, 16 Giu 2004 29

BDI architecture

• BDI formalization has 2 main objectives:
– To build practical systems
– To build formally verifiable systems

• Building blocks:
– Interpreter and cycle theory
– Logics
– Semantics

CILC 2004 Tutorial Parma, 16 Giu 2004 30

BDI interpreter (cycle)
Initialize-state();
repeat

options := option-generator (event-queue);
selected-options := deliberate (options);
update-intentions (selected-options);
execute();
get-new-external-events();
drop-successful-attitudes();
drop-impossible-attitudes();

end repeat

CILC 2004 Tutorial Parma, 16 Giu 2004 31

BDI architecture

revision

beliefs

generate
options

filter intentions

desires

action

sensors

actuators

CILC 2004 Tutorial Parma, 16 Giu 2004 32

Temporal reasoning: Time trees

• Inevitably always s
• Inevitably eventually q
• Optionally always r
• Optionally eventually p

• Time tree: temporal structure with
– Branching time future
– Single past

• A particular time point is called situation
• Standard temporal operators operate over

state and path formulas

s s

s ss

s s

r rr

q

q

q

p

CILC 2004 Tutorial Parma, 16 Giu 2004 33

Example [RG92]
• John acquires a goal to quench its thirst. He believes

that he can satisfy it in one of two ways:
– (a1) open the tap, (a2) fill the glass, (a3) drink water from the

glass
– (b1) get to a state where he has soda, (b2) fill the glass, (b3)

drink soda from the glass
• (b1) is a sub-goal, the remaining parts of its plans are

atomic actions
• To get to the state where he has soda, John has to (c1)

open the fridge, and (c2) remove the soda bottle
• John’s beliefs:

– about the effects of atomic actions
– about the possibility of carrying them out successfully
– about the possible failure of his plan to obtain soda

BEL (inevitable □(have-soda; fill-glass; drink) ⊃quenched-thirst)
BEL (inevitable □(open-tap; fill-glass; drink) ⊃quenched-thirst)
BEL (inevitable □(open-fridge; remove-soda) ⊃have-soda)
BEL (optional ◊(have-soda; fill-glass; drink))
BEL (optional ◊(open-tap; fill-glass; drink))
BEL (optional ◊(open-fridge; remove-soda))
BEL (inevitable □(¬ (soda-in-fridge) ⊃inevitable ¬ ◊(remove-soda))
GOAL (inevitable ◊(quenched-thirst))

succeededdoneINTENDGOALBEL
---◊(quenched-thirst)B

open-fridgeopen-fridge-idem¬◊(remove-soda)
open-tapopen-tapfill-glass; drinkidemidem
fill-glassfill-glassdrinkidemidem

drinkdrink--quenched-thirst

John is not blindly committed ⇒ he can choose an alternative plan CILC 2004 Tutorial Parma, 16 Giu 2004 35

Is BDI logic implemented in
practical systems?

• Many implemented systems are inspired to BDI
concepts…

• Problem: the time taken by agents to reason is
potentially unbounded !!

• The abstract architecture is an idealization that
faithfully captures the theory, not a practical
system for rational reasoning

• Solution: some important ‘choices of
representation’ (simplifications) must be made…

CILC 2004 Tutorial Parma, 16 Giu 2004 36

BDI operationalized (PRS, dMARS)

• Only beliefs about the current state of the world are
explicitly represented

• Only ground sets of literals with no disjunctions or
implications

• The information about the means of achieving certain
future world state is coded in a plan library (special
beliefs)

• Intentions are represented implicitly using a conventional
run-time stack of hierarchically related plans

• Each plan consists of:
– a trigger (invocation condition)
– a context (precondition)
– a maintenance condition (to hold true during the execution)
– a body (course of goals / primitive actions)

CILC 2004 Tutorial Parma, 16 Giu 2004 37

PRS components [PRS01]
1. A database containing

current Beliefs
2. A set of current Goals to

be realized
3. A set of plans (Acts)

• goal achievement
• reaction to situations

4. Intentions containing
chosen plans

5. An Interpreter

ACT Library

Interpreter

Goals

Database Intentions

world

user interface ACT editor

CILC 2004 Tutorial Parma, 16 Giu 2004 40

An Agent Oriented Programming
computational framework: AGENT-0
• More or less contemporary to BDI
• Builds on work by Cohen and Levesque
• A different set of modalities

– Beliefs
– Capabilities
– Choices
– Commitments

• Stress on the social aspect
(Commitments)

CILC 2004 Tutorial Parma, 16 Giu 2004 41

Components of an AOP system
1. A restricted formal language with clear syntax

and semantics for describing mental state;
2. An interpreted programming language in

which to define and program agents, with
primitive commands such as REQUEST and
INFORM;
– the semantics of the programming language will be

required to be faithful to the semantics of the mental
state;

3. An “agentifier”, converting neutral devices into
programmable languages

CILC 2004 Tutorial Parma, 16 Giu 2004 42

Agent programs
• A program is constituted by:

– a definition of capabilities and initial beliefs + fixing of
time grain, and

– a sequence of conditions under which the agent
will enter into new commitments (commitment
rules)

• Example (commitment rule):
(COMMIT (?a REQUEST ?action)

(B (now (myfriend ?a)))
(?a ?action)).

• Syntax:
(COMMIT msgcond mntlcond (agent action)*)

CILC 2004 Tutorial Parma, 16 Giu 2004 43

Communicative acts

• 3 types of communicative actions:
– INFORM
– REQUEST
– UNREQUEST (to cancel a request)

• Example:
(REQUEST 1 a

(REQUEST 5 b
(INFORM 10 c fact))).

CILC 2004 Tutorial Parma, 16 Giu 2004 44

Agent Communication Languages
• Two major proposals

– KQML (1993 - ~1998)
– FIPA ACL (1996 - now)

• Define a number of communicative actions /
performatives

• Semantics based on mental states (KQML):
1. An intuition given in natural language
2. An expression describing the illocutionary act
3. Pre-conditions for sender and receiver
4. Post-conditions in case of successful receipt
5. Completion condition (final state of a conversation)
6. Any comments

CILC 2004 Tutorial Parma, 16 Giu 2004 45

KQML: semantics for tell [LF98]
1. A states to B that A believes the content to be true.
2. BEL(A,X)
3. Pre(A): BEL(A,X) ∧KNOW(A,WANT(B,KNOW(B,S)))

Pre(B): INT(B,KNOW(B,S)),
where S may be any of BEL(B,X), or ¬(BEL(B,X)).

4. Post(A): KNOW(A,KNOW(B,BEL(A,X)))
Post(B): KNOW(B,BEL(A,X))

5. Completion: KNOW(B,BEL(A,X))
6. The completion condition holds, unless a sorry or

error suggests B’s inability to acknowledge the tell
properly, as is the case with any other performative.

CILC 2004 Tutorial Parma, 16 Giu 2004 46

FIPA ACL semantics for inform
[FIP01]

• Semantic Language
• Feasibility Preconditions (FP) for a CA:

– Ability preconditions
– Context-relevant preconditions

• Rational Effect (RE)
<i, inform (j, φ)>

FP : Bi φ ∧ ¬ Bi(Bifj φ ∨ Uifj φ)
RE : Bj φ

Where Bifj ≡ Bj φ ∨ Bj ¬ φ; U means uncertainty

CILC 2004 Tutorial Parma, 16 Giu 2004 47

Social semantics of ACL
• Some questions…

– Why constrain agents’ social acts?
– Why refer to a particular agent architecture?
– How to verify communication?
– How to approach openness and heterogeneity?

• Other approaches!
• Semantics based on social commitments

– Singh & Yolum [Sin98,YS02]
– Colombetti, Fornara & Verdicchio [CFV02,FC02,…]

• Semantics based on expectations [SOCS]

CILC 2004 Tutorial Parma, 16 Giu 2004 48

The SOCS social model [AGM+*]

• Perspective: openness = no information about
internals of agents

• Focus: different aspects of interaction (ACL,
interaction protocols, properties of interaction)

• Aim: Declarative representation + operational
model
– Possibility to verify interactions and prove properties
– ACL semantics, interaction protocols, and properties

specified using the same formalism!

CILC 2004 Tutorial Parma, 16 Giu 2004 49

Protocols
• Agents behave according to their own policies
• Social expectations can be used:

– to check the correct functioning of the society
– to suggest to the agents a course of actions

• Protocols are defined through Social Integrity Constraints:
• The society generates expectations out of protocols &

events

Policies?

Agents

Behaviour

Social Infrastructure
Fulfilment

Violation
Protocols

CILC 2004 Tutorial Parma, 16 Giu 2004 52

Social Integrity Constraints (SICs)

• SICs ::= [χ → ϕ]*
χ ::= (¬)H(Event [,Time])
ϕ ::= ∨ { ∧ (¬)E/NE(Event [,Time]) / constraints }

• Examples
1. ¬H(tell(A,B,propose),T),T<T1 → NE(tell(B,A,accept),T1)
2. H(tell(X,Y,ask,D),T) →

E(tell(Y,X,yes,D),T’), T’>T ∨ E(tell(Y,X,no,D),T’)
3. H(tell(X,Y,yes,D),T) → NE(tell(Y,X,no,D),T’)
4. H(tell(X,Y,no,D),T) → NE(tell(Y,X,yes,D),T’)
5. H(tell(X,Y,S,D),T) → NE(tell(Y,X,S,D),T’), T > T’

CILC 2004 Tutorial Parma, 16 Giu 2004 54

SIC-based ACL semantics and
Interaction Protocol specification
• The semantics of communicative acts can

be recovered into the SIC formalism:
• E.g.: semantics of promise
H(promise(Sender,Receiver,P,Context),Tp)
→ E(do(Sender,Receiver,P,Context),Td):

Td≤ Tp+τ
• Similar to the idea of commitment
• Verifiable!

CILC 2004 Tutorial Parma, 16 Giu 2004 57

Declarative Semantics
Given a society and a set HAP of events…

1. a set of expectations EXP is admissible iif
SOKB ∪ HAP ∪ EXP ⊨ SICs

2. a set of expectations EXP is coherent iif
{ E(p), NE(p) } ⊈ EXP

3. a set of expectations EXP is consistent iif
{ E(p), ¬E(p) } ⊈ EXP

{ NE(p), ¬NE(p) } ⊈ EXP
4. a coherent, consistent, and admissible EXP is fulfilled iif

HAP ∪ EXP ⊨ {E(p) → H(p)} ∪ {NE(p) → ¬H(p)}
5. if each coherent and consistent admissible set of

expectations is not fulfilled, HAP produces a violation in
the society

Agents in logic
• Agent architectures

BDI
Agent-0

– KS-agents, STT, …
– ALIAS
– Speculative Computation
– MINERVA
– Kakas et al., KGP, …
– 3APL
– IMPACT
– Linear Logics
– MetateM
– ConGolog
– Dylog
– …

• Agent interaction
KQML, FIPA
Yolum & Singh /
Fornara, Colombetti &
Verdicchio
SOCS social
infrastructure

– norms / institutions (deontic
logic-based approaches)

CILC 2004 Tutorial Parma, 16 Giu 2004 60

KS-agents [KS99]
The observe-think-act cycle

• To cycle at time T
• observe any inputs

at time T
• think
• select one or more

actions to perform
• act
• cycle at time T+n

observe

act

incoming
messages

outgoing
messages

T

T+n-1

CILC 2004 Tutorial Parma, 16 Giu 2004 61

Thinking component
• Backward reasoning (ALP) combined with

forward reasoning (ICs): IFF proof-procedure
[FK97]

• The set of predicates is partitioned into:
– closed predicates (iff definitions)
– open representing actions of the agent
– open representing events in the environment
– “constraint” predicates

• Internal state:
– Beliefs which are iff-definitions
– Beliefs which are observations
– Goals in if-then form

CILC 2004 Tutorial Parma, 16 Giu 2004 62

Goals
• Queries to database:

– for-all E [if employee (E) then exists M manager (M,E)]
• Obligations:

– if true then co-operate
• Prohibitions:

– for-all Time [if do (steal, Time) then false]
• Reaction:

– for-all Agent, Act, T1, T2
if happens (ask (Agent, do (Act, T2)), T1)
then exists T, T’

[confirm (can-do (Act, T2), [T, T’])] &
do (Act, T2) & T1 < T < T’ < T2

CILC 2004 Tutorial Parma, 16 Giu 2004 63

Observations

• Positive observations:
– simple, variable-free atomic predicates
e.g.: employee (mary)

• Negative observations:
– variable-free implications with conclusion

false
e.g.: if employee (bob) then false

CILC 2004 Tutorial Parma, 16 Giu 2004 64

The unified agent cycle
To cycle at time T,
• record any observations at time T,
• resume the proof procedure, giving priority to forward

reasoning with the new observations,
• evaluate to false any disjuncts containing subgoals that

are not marked as observations but are atomic actions to
be performed at an earlier time,

• select subgoals, that are not marked as observations,
from among those that are atomic actions to be
performed at times consistent with the current time,

• attempt to perform the selected actions,
• record the success or failure of the performed actions

and mark them as observations,
• cycle at time T + n.

Example
happens (become-thirsty, T)
→ holds (quench-thirst, [T1, T2]) & T ≤ T1 ≤ T2 ≤ T+10

holds (quench-thirst, [T1, T2]) ↔ holds (drink-soda, [T1, T2]) or
holds (drink-water, [T1, T2])

holds (drink-soda, [T1, T2]) ↔ holds (have-glass, [T1, T']) &
holds (have-soda, [T'',T2]) &
do (drink, T2) &
T1 <T"<T2 ≤ T'

holds (have-soda, [T1, T2]) ↔ do (open-fridge, T1) &
do (get-soda, T2) &
T1 ≤ T2

holds (drink-water, [T1, T2]) ↔ holds (have-glass, [T1, T']) &
do (open-tap, T'') &
do (drink, T2) &
T1<T"<T2 ≤ T'

KS-agents vs. BDI• Similarities:
– cycle
– both distinguish goals and beliefs as separate components

of an agent’s internal state
– both have two kinds of beliefs: facts and plans

• Differences:
– BDI: distinguishes intentions as a separate component,

KS: intentions are treated as goals that represent the
actions to be performed in the future

– BDI: goals are conjunctions of literals; KS: goals are
more general implications

– BDI: uses two languages (modal logic specifications /
procedural implementation); KS: uses the same language
for specification and implementation

– BDI: implicit representation of time in the implementation
(modal operators in the specifications); KS: explicit
representation of time (which allows for historical record of
past observations) CILC 2004 Tutorial Parma, 16 Giu 2004 67

Extensions

• Communication & Updates:
– Dell’Acqua, Sadri & Toni [DST98 & 99]
– Dell’Acqua, Nilsson & Pereira [DNP02]

• KS agents for resource sharing (Sadri,
Toni and Torroni) [STT*]
– social interactions; protocols & policies
– results on termination, “completeness”

CILC 2004 Tutorial Parma, 16 Giu 2004 68

Argumentation-based negotiation
(Sadri, Toni and Torroni)

• A model of agent which puts together
– declarative specification
– an operational counterpart

• Tools:
– abductive logic programming
– agent cycle inspired by KS-agent
– social interaction by way of dialogues

• Scenario: negotiation for resource sharing
• Results:

– general properties and
– application-specific properties

CILC 2004 Tutorial Parma, 16 Giu 2004 69

Negotiation Policies
• Policies are part of the agent Beliefs. They are dialogue

constraints
• Policies can be used used to decide how to reply to requests
• Example of dialogue constraint:

tell(Y, x, request(give(R, (Ts,Te))), D, T)
∧ have(R, (Ts,Te), T) ∧ not need(R, (Ts, Te), T)

⇒ ∃ T’ | (tell(x, Y,
accept(request(give(R, (Ts, Te)))), D, T’), T’ > T)

CILC 2004 Tutorial Parma, 16 Giu 2004 70

Mapping onto ALP

Abductive Logic Program =
Logic Program (P)
+ Integrity Constraints (IC)
+ Set of abducible predicates (A)

〈 P, IC , A 〉
beliefs + past
dialogues (K)

negotiation policies (in B)

negotiation language

CILC 2004 Tutorial Parma, 16 Giu 2004 73

Coordination of agent reasoning:
the ALIAS architecture [CLMT*]

• Problem solving in open worlds:
– Incomplete knowledge
– Multiple knowledge

• Definition and implementation of an architecture
based on multiple intelligent agents:
– Reasoning capabilities
– Coordination of reasoning among agents

• Agent social behaviour
– Collaborative vs. competitive

CILC 2004 Tutorial Parma, 16 Giu 2004 74

The Architecture of an agent

• Agent Behaviour Module + KB (LAILA,
Language for AbductIve Logic Agents)

↓ (down reflection)
ABMKB

LAILA-meta-
interpreter

ARMKB Kakas-
Mancarella

• Abductive Reasoning Module + KB
(abductive program)

CILC 2004 Tutorial Parma, 16 Giu 2004 76

An Example: Distributed Diagnosis
• distributed diagnosis is a popular application domain of

agents
• in ALIAS, we can have diverse specialised agents with

local domain knowledge (e.g. different kinds of
vehicles, or parts of vehicles)
– problem: observed symptoms s1, s2, … (→ query)
– agents: diagnosis (abducibles d1, d2, ...)

• collaboration: when there is a problem, agents of
different areas produce explanations of the symptoms,
they must be coherent with each other

• competition: several agents specialized in different
areas (with different KBs) produce different alternative
explanations of the same symptoms

• Advantage: maintenance of local knowledge,
specialization of tasks

CILC 2004 Tutorial Parma, 16 Giu 2004 77

An Example

• A0 :
? (A1 > s1; A2 > s1) & A2 > s2

• A1 and A2 represent two diagnostic agents
• A1 and A2 are asked to solve s1 competitively;

a δ1 is selected
• A2 is asked to solve s2; a δ2 is obtained;
• δ1 and δ2 must be consistent (possible

backtracking)
CILC 2004 Tutorial Parma, 16 Giu 2004 78

? (A1 > s1; A2 > s1) & A2 > s2

s1 ↓ s1

A1
s1 m1

m1, s2

s1 ↓ s1
s2 ↓ s2

A2
s1 m3
s2 m2

? (A1 > s1; A2 > s1)
& A2 > s2

A0

∅

s1

s1

? (A1 > s1; A2 > s1)
& A2 > s2

? (A1 > s1; A2 > s1)
& A2 > s2

s2

δ1 = {m1,¬s2}

δ2 = {m3}

δ3 = {m2}

δ1 = { m1,¬s2}

δ1 ∪ δ3 ={ m1,¬s2, m2 }

inconsistent!

CILC 2004 Tutorial Parma, 16 Giu 2004 79

? (A1 > s1; A2 > s1) & A2 > s2

s1 ↓ s1

A1
s1 m1

m1, s2

s1 ↓ s1
s2 ↓ s2

A2
s1 m3
s2 m2

? (A1 > s1; A2 > s1)
& A2 > s2

A0

∅

s1

δ1 = {m1,¬s2}

s1

s2

δ2 = {m3}

δ3 = {m2}

δ2 = { m3}

δ2 ∪ δ3 ={ m3, m2 }

backtracking…

CILC 2004 Tutorial Parma, 16 Giu 2004 80

Logics for Kiga-kiku computing:
Speculative Computation [SIIS00]

• Another approach to coordination of reasoning
• Idea of “Kiga-kiku”: computers understand a

situation and take an appropriate action for the
situation without being told explicitly what to do

• What do we need:
– situation-awareness
– understanding user intention without much interaction
– learning user’s preference
– handling incompleteness and a mechanism of back-

up in the “kiga-kiku” action is not appropriate
→ Speculative computation by abduction

CILC 2004 Tutorial Parma, 16 Giu 2004 81

Meeting room reservation
• A, B, and C to attend the meeting.
• If a person is available, then he will attend the meeting.
• We ask a person whether he is free or not.
• If all the persons are available, we reserve a big room.
• If only two persons are available, we reserve a small

room.

Suppose we have answers from A and B that they are
free but we do not have an answer from C.

Then, non-''kiga-kiku'' computer (or person) cannot
decide a room reservation since the answers from C are
not obtained.

CILC 2004 Tutorial Parma, 16 Giu 2004 82

Solution
• We can decide a room reservation based on a plausible

answer whether C is usually busy or not.
(“kiga-kiku” reservation)

• If the answers C is an exception, then we cancel
the room and make a new reservation.

(backing-up for failure of “kiga-kiku” action)

This process is called speculative computation.
• need to have a set of default answers
• operational semantics given in terms of process

activation/suspension
• a set of assumptions of the form (not) Q@S is maintained

CILC 2004 Tutorial Parma, 16 Giu 2004 83

Ordinary computation

start

QUERY
to Other
Agent

suspend

ANSWER
from Other
Agent

branch by
ANSWER

CILC 2004 Tutorial Parma, 16 Giu 2004 84

Speculative computation

start

QUERY
to Other
Agentsuspend

ANSWER
from Other
Agent

continue
by default
value

continue

…when the returned answer is
consistent with a default, we just
continue the computation…

Speculative computation

start

QUERY
to Other
Agentsuspend

ANSWER
from Other
Agent

continue
by default
value

…when the returned answer
contradicts a default…
…we resume the other alternative
computation.

ANSWER
from Other
Agent

resume alternative computation

MINERVA - A Dynamic Logic
Programming based Agent

Architecture [Lei03, LAP02a]
• An architecture to represent the epistemic

states of agents and its evolution.
• It employs:

– Multi-dimensional Dynamic Logic
Programming (MDLP) [ALP+*, LAP01a,
Lei03];

– Knowledge And Behaviour Update Language
(KABUL) [Lei03]

CILC 2004 Tutorial Parma, 16 Giu 2004 87

Multi-Dimensional Dynamic Logic
Programming (MLDP)

• Knowledge is given by a set of Generalized
Logic Programs related according to a Directed
Acyclic Graph (DAG)

• The DAG can encode several aspects e.g.,
temporal relations, hierarchy relations, etc.
[LAP01b]

• MDLP assigns semantics to such knowledge
representations

• The semantics of MDLP is a generalization of
the answer-sets semantics

CILC 2004 Tutorial Parma, 16 Giu 2004 88

KABUL

• MDLP: the declarative representation of
knowledge states,

• KABUL: declarative representation of state
transitions i.e. behaviours.

• A program in KABUL is a set of statements
• Statements allow the specification of updates

(e.g., assertions, retractions, …), both
– to the MDLP (knowledge)
– and to the KABUL program itself (behaviour),

thus allowing for its own evolution.

CILC 2004 Tutorial Parma, 16 Giu 2004 89

MINERVA – modular agent
architecture

• Every agent is composed of specialized sub-agents that
execute special tasks, e.g., reactivity, planning,
scheduling, belief revision, action execution

• A common internal KB (one or more MDLP), concurrently
manipulated by its specialized sub-agents

• The MDLPs may encode
– object level knowledge,
– knowledge about goals, plans, intentions, etc…

• KABUL used to encode specification and evolution of the
epistemic state of each sub-agent

MDLP
KABUL
⊕

CILC 2004 Tutorial Parma, 16 Giu 2004 91

Argumentation & decision making
[KM02,KM03a]

• Uniform method of Decision Making via
argumentation-based decision policies for:

– “Professional” policies, related to the different
agent’s capabilities (i.e. problem solving,
cooperation, communication, etc.)

– “Personality” policies, on needs and motivations

• Deliberation to be sensitive to Roles & Context

Argumentation with
Roles and Context

Specific Context
High season, sales season

Example Agent theory: T=(T, PR , PC)
R1: h-p(r1(Prd, Ag), r3(Prd, Ag))
R2: h-p(r3(Prd, Ag), r1(Prd, Ag)) ← regular (Ag), buy-2 (Ag, Prd)
R3: h-p(r3(Prd, Ag), r1(Prd, Ag)) ← regular (Ag), late-del (Ag, Prd)
C1: h-p(R1(Prd, Ag), R2(Prd, Ag)) ← high-season
C2: h-p(R1(Prd, Ag), R3(Prd, Ag)) ← high-season
C3: h-p(R2(Prd, Ag), R3(Prd, Ag))

Default Context↔definition of roles
Market: normal, regular customer

Capabilities and Personality
• The Personality can influence the decision making of the agent associated

to his different capabilities

• Example: Decide within the problem solving module which requested task
to perform according to his “professional” policy and his personality

Professional Policy
r1(A, T1, A1): perform (A, T1, A1) ← ask (A1, T1, A)
r2 (A, T1, T2, A1): ¬perform(A, T1, A1) ← perform (A, T2, self)
R1: h-p (r1(A, T1, A1), r2(A, T1, T2, A1)) ←higher-rank (A1, A)
R2: h-p (r2(A, T1, T2, A1), r1(A, T1, A1)) ← competitor (A1, A)
C1: h-p (R1(A, T1, T2, A1), R2(A, T1, T2, A1)) ← common-project (A, T1, A1)
C2: h-p (R2(A, T1, T2, A1), R1(A, T1, T2, A1)) ← urgent (A, T2)

Personality Policy: The case of a selfish agent (3 = social needs; 4 = ego)
R2

43: h-p (G4, G3) ← ¬S4, ¬N3
R2

34: h-p (G3, G4) ← ¬S3, ¬N4
H2

43: h-p (R2
43, R2

34) ← true (basic hierarchy)
E2

34: h-p (R2
34, R2

43) ← dangerous-for-company (G4) (exception policy)
C2

34: h-p (E2
34, H2

43) ← true

CILC 2004 Tutorial Parma, 16 Giu 2004 94

The KGP model of agency [KMS+*]

• An internal (mental) state;
• A set of reasoning capabilities for performing

– planning,
– temporal reasoning,
– identification of preconditions of actions,
– reactivity, and
– goal decision;

• A sensing capability;
• A set of formal state transition rules;
• A set of selection functions;
• A cycle theory.

CILC 2004 Tutorial Parma, 16 Giu 2004 95 CILC 2004 Tutorial Parma, 16 Giu 2004 96

Mental state of a computee

< KB, Goals, Plans >

• KB consists of different modules
(KBplan , KBreact , …), supporting
different capabilities

• KB0 contains the state of the
environment

• Goals can be mental / sensing
• Plan is a concrete set of (physical /

communicative / sensing) actions

Knowledge

Goals

Plans

CILC 2004 Tutorial Parma, 16 Giu 2004 99

Selection functions & cycle
• 4 core selection

functions
– Action, Goal, Fluent,

Precondition

• 4 heuristic selection
functions

• Cycle theory
determines the
sequences of
transitions

• Cycle patterns and
profiles of behaviour

execute
transaction

execute actions

sensing

incoming
messages

outgoing
messages

(1)

(2)

select action / goal /
fluent / precond.

Cycle
theory

CILC 2004 Tutorial Parma, 16 Giu 2004 100

Goal Decision based on LPwNF
• Taken from work by Kakas and Moraïtis
• KBGD is composed of two main parts:

– lower-level: rules that generate goals
L ← L1, …, Ln (0 ≤ n)

where L1, …, Ln are either time-dependent conditions
of the form holds-at (l,t), or time-independent
conditions or temporal constraints

– higher-level: rules that specify prioritites between
other rules of the theory

h-p (rule1,rule2) ← L1, …, Ln, Tc
• rule1, rule2 are names of other rules in KBGD
• KBGD ∪ KBTR is used to evaluate the conditions

CILC 2004 Tutorial Parma, 16 Giu 2004

Cycle theories
• A cycle theory is a logic program Tcycle with priorities reasoning

on the whole state of the computee (meta-program)
• 4 components:

– Tinitial (initialization), containing rules of the form:
r 0 | k (S0,X) : Tk (S0,X) ← Tik(S0, τ, X))
– a basic part Tbasic (basic steps of iteration), of rules:
r i | k (S’,X’) : Tk (S’,X’) ← Ti (S,X,S’), Ci | k (S’, τ, X’))
– an interrupt part Tinterrupt (cycle steps that can follow a POI):
r POI | k (S’,X) : Tk (S’,X) ← TPOI (S,S’), CPOI | k (S’, τ, X))
– a behaviour part Tbehaviour (computee’s characteristics):
Ri

k | l : h-p(r i | k (S,X k), r i | k (S,X l)) ← BCi
k | l (S,Xk,Xl, τ))

CILC 2004 Tutorial Parma, 16 Giu 2004 102

Cycle theories

• Example:
R POI

AE|* : h-p(rPOI|AE (S,As’), rPOI|* (S)) ←
h uAS (S,τ) = As’, As’ ≠ ∅,
very-urgent (As’, τ)

meaning that : we do not want to carry out any
of the interrupt cycle-steps at the expense of
delaying the execution of very urgent
actions

CILC 2004 Tutorial Parma, 16 Giu 2004 104

Cycle theory as control
• The cycle theory of an agent provides a form

of declarative and flexible control
• Cycle theories with special features (namely

inducing a total ordering on the transitions)
give a more conventional fixed control, namely
whose operational trace is given by

T1, …, Tn, T1, …, Tn, T1, …,Tn, …
(e.g. Plan, Execute, Observe, React, Plan…)

• Control via cycle theories can in principle be
adopted via any agent architecture

Agents in logic
• Agent architectures

BDI
Agent-0
KS-agents, STT, …
ALIAS
Speculative
Computation
MINERVA
Kakas et al., KGP, …

– 3APL
– IMPACT
– Linear Logics
– MetateM
– ConGolog
– Dylog
– …

• Agent interaction
KQML, FIPA
Yolum & Singh /
Fornara, Colombetti &
Verdicchio
SOCS social
infrastructure

– norms / institutions (deontic
logic-based approaches)

CILC 2004 Tutorial Parma, 16 Giu 2004 106

3APL: a combination of declarative
and imperative programming

• Agent programming language, primarily concerned with
the dynamics of an agent’s mental life [HBHM99a]
– representation of beliefs
– belief updating
– goal updating, to facilitate practical reasoning
– no communication/social aspects involved

• Beliefs: entailment relation for 1st ord. logic, ⊧, and CWA
• Goals: procedural notion (goals-to-do). Basic actions

affect the mental state of the agent
• Basic goals: basic actions, achievement goals, test goals
• (static) practical reasoning rules:

– to build a plan library
– to revise and monitor goals of the agent

CILC 2004 Tutorial Parma, 16 Giu 2004 107

Practical reasoning rules
• The set Rule of p.r.r. is defined by:

• πh ← ϕ | πb ∈Rule s.t. any goal variable X occurring in
πb also occurs in πh (ϕ = guard)

• ← ϕ | πb ∈Rule s.t. no goal variables occur in πb , i.e.,
πh ∈Goal

• πh ← ϕ ∈Rule
πh ← ϕ | πb states that if the agent has adopted
some goal or plan πh and believes that ϕ is the
case, then it may consider adopting πb as a new
goal.

→ (sub-)goals in the head are replaced by those
body, when the guard is believed true.

CILC 2004 Tutorial Parma, 16 Giu 2004 108

Programming agents in 3APL
• Agent defined as a tuple: < Π, σ, Γ > (goals, beliefs, p.r.r)
• Classification of rules (ordering)

– Failure rules (highest proprity)
– Reactive rules
– Plan rules
– Optimization rules (lowest priority)

• Selection mechanisms (to reduce the non-determinism
of the language): a meta-language for programming
control structures.

• Basic actions:
– rule selection, selap (r,g,R,G)
– application of a number of rules, apply (R,G,G’)
– goal selection, selex (g,G)
– execution of a set of goals, ex (G,G’)

CILC 2004 Tutorial Parma, 16 Giu 2004 109

Update-Act cycle

1. Select a rule R to fire
2. Update goal base by

firing R
3. Select a goal G
4. Execute (part of) G
5. Goto 1

while Π ≠∅ do
begin
selap (R∪ P ∪ O, Π,R,G)
apply (R,G,_)
repeat
selex (Π, G)
selap (F, G, R, _)
apply (R, G, _)

until R = ∅
ex (G, _)
end

F, R, P, and O
are the 4 sets
of rules

planning

filtering

execution

CILC 2004 Tutorial Parma, 16 Giu 2004 110

IMPACT: the Interactive Maryland
Platform for Agents Collaborating

Together [SBD+00]
• Motivations:

– Agentize arbitrary Legacy Code (à la Shoham)
– Code-calls to access distributed and heterogeneous

knowledge
– Clear semantics to agent activity

• Data access
• Architecture
• Programs
• Semantics based on deontic operators

CILC 2004 Tutorial Parma, 16 Giu 2004 111

IMPACT Architecture & Cycle

evaluate msgs

execute actions

incoming
messages

actions

compute
semantics

• networked architecture
• IMPACT servers

CILC 2004 Tutorial Parma, 16 Giu 2004 112

Agent Program
• A program P is a Set of rules of the form

Op a(arg1,…,argn)<--- <code call condition> &
Op1 a1(<args>) & … & Op an(<args>)

• Op is a “deontic modality” and is either
→ P - permitted
→ F - forbidden
→ O - obligatory
→ W - waived
→ Do - execute

• If code call condition is true and the deontic
modalities in the rule body are true, then
Op a(arg1,…,argn) is true.

CILC 2004 Tutorial Parma, 16 Giu 2004 113

Example: select driving lane

F(drive(r-lane)),
in(l-lane,status:free-lanes())

←Do(drive(l-lane))

not-in(L, status:free-lanes())←F(drive(L))

Do(go-rightmost),
in(r-lane, status:free-lanes())

←O(drive(r-lane))
←O(go-rightmost)

CILC 2004 Tutorial Parma, 16 Giu 2004 114

Semantics: Status Set
• A status set is a collection of ground action

status atoms Op α. Status set S is feasible on
an agent state, if

1. S is closed under rules of P,
2. S satisfies deontic and action consistency,
3. S is deontically and action closed,
4. executing Do(S) = { α | Do(α) ∈ S } leads to a

consistent new state.
• Example (both lanes free):

S = {O(go-rightmost), Do(go-rightmost),
P(go-rightmost), Do(drive(r-lane),
P(drive(r-lane)))}

CILC 2004 Tutorial Parma, 16 Giu 2004 116

Deontic Logic for
Agents and for Societies

• IMPACT uses deontic concepts to define
feasible status sets: stress on the
behaviour of the individual agent

• Deontic logic used to represent and
reason about rules and norms in a society

• ALFEBIITE project
– Legal Aspects of Inter-Agent Communication
– Open societies
– Formal approach to trust

CILC 2004 Tutorial Parma, 16 Giu 2004 117

Linear Logics
• Logic of occurrences: two copies of a formula are not

equivalent to one copy of it !!
• Suitable for agents because resources are usually

bounded
• Two forms of conjunction:

– cumulative: p ⊗ p not equivalent to p
– not cumulative: p & p ≡ p

• Potentially infinite amount of a resource: !p
– classical reasoning: formulae beginning by !

• Classical disjunction: p ⊕ q
• Negation: F⊥

• Derivation (and consumption): p ⎯o q
– once the formula is used, p is no longer available, but q is

CILC 2004 Tutorial Parma, 16 Giu 2004 119

Agents in Linear Logic
• Harland & Winikoff [HW02,THH03]
• Küngas & Matskin [KM03b,KM04]
• Mascardi et al. [MMZI], using Delzanno’s Ehhf

– linear logic language that can be used to specify
• concrete agent architectures,
• agent program and
• state.

– Specifications in Ehhf [Del97] are executable, so it is
possible to directly interpret the given specification.

– Ehhf can be used to characterize an agent
architecture under a semantic point of view.

CILC 2004 Tutorial Parma, 16 Giu 2004 120

Designing Agent Programming
Systems using Linear Logics

(Harland & Winikoff)
• An agent can be represented by the sequent:

E, A, B, !P |- G
where

• B are the beliefs of the agent (which are linear
since they change)

• P are the program clauses (i.e. goal-plan
decompositions)

• G are the agent’s goals (intentions)
• E are events
• A are actions

CILC 2004 Tutorial Parma, 16 Giu 2004 121

Agent programs in LL
P can include action descriptions:

“to achieve (have-lemonade)
try do (open-fridge) then do (get-lemonade)”

!(do (get-lemonade) ⊗ fridge (open) ⎯o
fridge (open) ⊗ have-lemonade)

!(do (open-fridge) ⊗ fridge (closed) ⎯o
fridge (open))

…and in case of failure:
!(do (get-lemonade) ⊗ fridge (closed) ⎯o

fridge (closed) ⊗ fails (get-lemonade))

CILC 2004 Tutorial Parma, 16 Giu 2004 122

Linear Logic for rapid prototyping
(Mascardi et al.)

• CaseLP (Complex Application Specification
Environment based on Logic Programming) is:
– a set of tools for the specification of MAS,
– a set of tools for describing the behaviour of agents,
– a set of tools for the integration of legacy

systems/data
– a set of simulation tools for animation of MAS

• Ehhf is the language used for high-level
specification of MAS

CILC 2004 Tutorial Parma, 16 Giu 2004 123

Other approaches
using other logics

• Many other approaches in literature!!
– Temporal Logic – Concurrent MetateM

(Fisher)
– Situation Calculus – ConGolog (De Giacomo,

Lespérance, Levesque)
– Dynamic Logic – DyLOG (Patti)
– BOID (Dastani et al.)
– …

Wrap-up
• Given insights on (pointers to)

– application domains of multi-agent systems
– basic categories of agent programming
– logic based construct to model

• internals (state + thinking)
• interactions

• Identified links and similarities in the literature
• Logic useful for

– modelling & specification
– operational model ⇒ implementation/prototyping
– identification and verification of properties

CILC 2004 Tutorial Parma, 16 Giu 2004 125

What properties
• Properties are important!
• “Classical” properties of computational systems (e.g.,

termination, absence of inconsistency, …)
• “Classical” properties of distributed systems (e.g.,

robustness, modularity, scalability, openness, …)
• Properties related to interaction

– conformance to protocols / social norms
– competent use of protocols
– properties of interaction mechanisms

• Properties of “agency”
– social attitudes (altruistic, selfish, malicious, rational..)
– profiles of individual behaviour (impatient, focussed, risk-averse,

…)

Final remarks
• Computational logic used to tackle several

different aspects of agent-based programming
• Important link from specification to

implementation (including verification): Theory
and practice can work together

• Need to make tools understood and accessible
by industry (connection with standards, mapping
onto existing formalisms)

• Watch the SOCS website
• Submit your work to CLIMA-V by June 22nd

• attend DALT2004
CILC 2004 Tutorial Parma, 16 Giu 2004 127

Pointers
• Web sites:

– AgentLink II: http://www.agentlink.org
– UMBC Agent WEB: http://agents.umbc.edu/
– Agent Based Systems: http://www.agentbase.com/survey.html
– Agent Construction Tools:

http://www.agentbuilder.com/AgentTools/
• Journals

– Journal of Autonomous Agents and Multi-Agent Systems
• Conferences and Workshops

– International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS) – next in New York, deadline: 16
January 2004

– Past events: ATAL, ICMAS, AA and related WS (LNAI, IEEE,
and ACM Press)

CILC 2004 Tutorial Parma, 16 Giu 2004 128

Pointers
• Journals

– Artificial Intelligence
– Journal of Logic and Computation
– Annals of Mathematics and Artificial Intelligence
– The Knowledge Engineering Review
– Journal of Group Decision and Negotiation
– Theory and Practice of Logic Programming
– Journal of Cooperative Information Systems

• Conferences and Workshops
– Workshop on Computational Logics in Multi-Agent

Systems (CLIMA) – next in Lisbon, Sep. 29-30, 2004
deadline: next week!!

– Declarative Agent Languages and Technologies (DALT) –
New York, July 19th, 2004, together with AAMAS’04

CILC 2004 Tutorial Parma, 16 Giu 2004 129

Research groups & projects
• SOCS, EU Project, http://lia.deis.unibo.it/research/socs
• MASSiVE, MIUR Project, http://www.di.unito.it/massive
• DyLOG: DI, Università di Torino, http://www.di.unito.it/~alice/
• CaseLP: DISI, Università di Genova, http://www.disi.unige.it/index.php?research/ai-mas
• ALIAS: DEIS, Università di Bologna, http://lia.deis.unibo.it/research/ALIAS/
• ALFEBIITE, EU Project, http://www.iis.ee.ic.ac.uk/~alfebiite/
• 3APL: Intelligent Systems Group, University of Utrecht,

http://www.cs.uu.nl/groups/IS/agents/agents.html
• xGOLOG: Cognitive Robotics Group, University of Toronto,

http://www.cs.toronto.edu/cogrobo/
• IMPACT: University of Maryland, http://www.cs.umd.edu/projects/impact/
• MetateM: Logic and Computation Group, University of Liverpool,

http://www.csc.liv.ac.uk/~michael/
• DESIRE: http://www.cs.vu.nl/vakgroepen/ai/projects/desire/
• JACK: The Agent Oriented Software Group, http://www.agent-software.com/
• BOID: http://boid.info/
• RMIT: http://www.cs.rmit.edu.au/agents/
• Dagstuhl seminar 02481 on logic based MAS:

http://www.cs.man.ac.uk/~zhangy/dagstuhl/

CILC 2004 Tutorial Parma, 16 Giu 2004 130

Pointers
• Surveys on multi-agent systems

[JSW98] N. Jennings, K. Sycara, and M. Wooldridge, A Roadmap
of Agent Research and Development. AAMASJ 1998.

[WC00] M. Wooldridge and P. Ciancarini, Agent-Oriented Software
Engineering: The State of the Art. In Proc. First Int. Workshop on
Agent-Oriented Software Engineering, LNCS, 2000

[LMP03] M. Luck, P. McBurney, C. Preist, Agent Technology
Roadmap. 2003. Available electronically
http://www.agentlink.org/roadmap/

• Books
[Wei99] G. Weiss (ed.), Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence. MIT Press, 1999
[Woo02] M. Wooldridge, Introduction to Multi-Agent Systems. John

Wiley & Sons, 2002.

CILC 2004 Tutorial Parma, 16 Giu 2004 131

Pointers
• Some surveys on logic-based multi-agent systems

[ST99] F. Sadri and F. Toni, Computational Logic and Multi-Agent
Systems: a roadmap. COMPULOG (1999), electronic version
available at http://www2.ags.uni-
sb.de/net/Forum/CL_and_MAS.ps

[Hoe01] W. van der Hoek, Logical Foundations of Agent-Based
Computing. In Multi-Agent Systems and Applications, LNAI
2086, pp. 50-73 (2001)

[MMS] M. Martelli, V. Mascardi, and L. Sterling, Logic-Based
Specification Languages for Intelligent Software Agents. To
appear in TPLP. Electronic version available via
ftp://ftp.disi.unige.it/pub/person/MascardiV/Papers/
(TPLP03.ps.gz)

CILC 2004 Tutorial Parma, 16 Giu 2004 132

Pointers

• SOCS home page:
[SOC] http://lia.deis.unibo.it/research/socs/

• Publications:
– SOCS deliverables (contact me)
– Conferences: ECAI’03, AAMAS’04, IJCAI’03,

AI*IA’03, CEEMAS’03, AAMAS’03, JELIA’02,
UKMAS’02, …

– Workshops: DALT’04, TAPOCS’04, AT2AI-4, ACM
SAC2004, CLIMA-IV, DALT’03, CLIMA’02, ESAW’03,
LCMAS’03, FAMAS’03, MFI’03, PSE’03, …

