
CICLOPS 2012

12th International Colloquium on Implementation of

Constraint and LOgic Programming Systems

Workshop of the 28th International Conference on

Logic Programming

4th September 2012

Budapest, Hungary

1

Editors

Nicos Angelopoulos

Roberto Bagnara

Published by the ICLP committee

1Polyphemus, by Johann Heinrich Wilhelm Tischbein, 1802

Preface

This volume contains the papers presented at CICLOPS’12: 12th International Col-
loquium on Implementation of Constraint and LOgic Programming Systems held on
September 3, 2012 in Budapest.

The program includes 1 invited talk. There were 9 papers accepted, each reviewed
by 3 reviewers.

CICLOPS’12 continues a tradition of successful workshops on Implementations of
Logic Programming Systems, previously held in Budapest (1993) and Ithaca (1994),
the Compulog Net workshops on Parallelism and Implementation Technologies held in
Madrid (1993 and 1994), Utrecht (1995) and Bonn (1996), the Workshop on Parallelism
and Implementation Technology for (Constraint) Logic Programming Languages held
in Port Jefferson (1997), Manchester (1998), Las Cruces (1999), and London (2000),
and more recently the Colloquium on Implementation of Constraint and LOgic Pro-
gramming Systems in Paphos (2001), Copenhagen (2002), Mumbai (2003), Saint Malo
(2004), Sitges (2005), Seattle (2006), Porto (2007), Udine (2008), Pasadena (2009),
Edinburgh (2010) - together with WLPE, Lexington (2011).

We would like to thank all the authors of submitted papers, the programme com-
mittee members, the ICLP 2012 organisers for support and the EasyChair conference
management team.

August 4, 2012 Nicos Angelopoulos
Roberto Bagnara

i

Program Committee

Nicos Angelopoulos Netherlands Cancer Institute, The Netherlands
Roberto Bagnara University of Parma, Italy
Miguel Calejo Declarativa, Portugal
Mats Carlsson SICS, Sweden
Daniel Diaz University of Paris, France
Rémy Haemmerlé Universidad Politécnica de Madrid, Spain
Günter Kniesel University of Bonn, Germany
Paulo Moura CRACS - INESC Porto and University of Beira Interior,

Portugal
Ricardo Rocha University of Porto, Portugal
Guido Tack Monash University, Australia
Paul Tarau University of North Texas, USA
Markus Triska Vienna University of Technology, Austria
Jan Wielemaker SWI Prolog, Free University of Amsterdam, The Nether-

lands
Neng-Fa Zhou Brooklyn College, USA

ii

Author Index

A

Abreu, Salvador 101
D

Diaz, Daniel 101
Drey, Zoé 86
F

Fruhman, Jonathan 2
G

Gallego, Emilio 118
H

Haemmerlé, Rémy 118
Hermenegildo, Manuel 86, 118
M

Machado, Rui 101
Monnet, Anthony 26
Morales, Jose F. 86, 118
R

Rocha, Ricardo 41, 71
S

Santos, João 41
Schrijvers, Tom 1
Silva, Fernando 71
Swift, Terrance 56
V

Vieira, Rui 71
Villemaire, Roger 26
W

Wielemaker, Jan 17
Z

Zhou, Neng-Fa 2

iii

Table of Contents

Tor: Modular Search in Prolog . 1
Thom Schrijvers

Toward a Dynamic Programming Solution for the 4-peg Tower of Hanoi
Problem with Configurations . 2

Neng-Fa Zhou and Jonathan Fruhman

Extending the logical update view with transaction support 17
Jan Wielemaker

Efficient Partial Order CDCL Using Assertion Level Choice Heuristics 26
Anthony Monnet and Roger Villemaire

Efficient Support for Mode-Directed Tabling in the YapTab Tabling System 41
João Santos and Ricardo Rocha

Profiling Large Tabled Computations using Forest Logging 56
Terrance Swift

On Comparing Alternative Splitting Strategies for Or-Parallel Prolog
Execution on Multicores . 57

Rui Vieira, Ricardo Rocha, and Fernando Silva

Reversible Language Extensions and their Application in Debugging 72
Zoé Drey, José F. Morales, and Manuel V. Hermenegildo

Parallel Local Search: Experiments with a PGAS-based programming model . . . 86
Rui Machado, Salvador Abreu, and Daniel Diaz

The Ciao CLP(FD) Library A Modular CLP Extension for Prolog 102
Emilio Jesús Gallego Arias, Rémy Haemmerlé, Manuel V. Hermenegildo,

and José F. Morales

Tor: Modular Search in Prolog

Thom Schrijvers

University of Ghent, Belgium
tom.schrijvers@ugent.be

Abstract. Prolog has a depth-first procedural semantics. Unfortunately, this pro-
cedural semantics is ineffective for many programs. Instead, to compute useful
solutions, it is necessary to modify the search method that explores the alternative
execution branches. Tor is a well-defined hook into Prolog disjunction that pro-
vides this ability. It is general enough to mimic search-modifying predicates like
ECLiPSe’s search/6. Tor’s light-weight library-based approach puts these search
methods at the fingertips of every programmer in any program. Moreover, Tor
supports modular composition of search methods and other hooks, and obtains
efficiency through program transformation. The Tor library is currently available
for SWI-Prolog and B-Prolog.

Toward a Dynamic Programming Solution

for the 4-peg Tower of Hanoi Problem

with Configurations

Neng-Fa Zhou and Jonathan Fruhman

Department of Computer and Information Science, Brooklyn College
The City University of New York
New York, NY 11210-2889, USA

Abstract. The Frame-Stewart algorithm for the 4-peg variant of the Tower of
Hanoi, introduced in 1941, partitions disks into intermediate towers before mov-
ing the remaining disks to their destination. Algorithms that partition the disks
have not been proven to be optimal, although they have been verified for up to 30
disks. This paper presents a dynamic programming approach to this algorithm,
using tabling in B-Prolog. This study uses a variation of the problem, involv-
ing configurations of disks, in order to contrast the tabling approach with the
approaches utilized by other solvers. A comparison of different partitioning loca-
tions for the Frame-Stewart algorithm indicates that, although certain partitions
are optimal for the classic problem, they need to be modified for certain configu-
rations, and that random configurations might require an entirely new algorithm.

1 Introduction

The classic 4-peg Tower of Hanoi problem is posed as follows:
Given: Four pegs, and n disks of differing sizes stacked in increasing size order on

one of the pegs, with the smallest disk on top.
Goal: Stack the n disks on a different one of the four pegs, using the following rules:

1. Only one disk can be moved at a time.
2. Only the top disk on any peg can be moved.
3. Larger disks cannot be stacked above smaller disks [15].

A number of authors have created algorithms to try to solve both this puzzle and
the related puzzle involving an arbitrary number of k pegs. Frame and Stewart provided
the first documented algorithms for the k-peg problem [4] [15]. Their algorithms in-
volved partitioning the disks into intermediate sub-towers. Since the time that Frame
and Stewart published their results, others have analyzed algorithms in order to either
attempt to solve the 4-peg and k-peg Tower of Hanoi puzzles using a minimal number
of moves, or to try to prove the optimality of the number of moves generated by Frame’s
and Stewart’s algorithms. Section 2 discusses the Frame-Stewart algorithm.

The goal of this paper is to make steps toward an efficient dynamic programming so-
lution for the 4-peg tower of Hanoi puzzle. The solution is presented using the B-Prolog

programming language [24], and uses tabling, a technique similar to pattern databases
[7], in order to decrease the number of necessary computations. The program will be
non-deterministic, in order to extend the Frame-Stewart algorithm to variants of the 4-
peg problem that involve disk configurations. In order to reduce the non-determinism,
this paper examines different partition locations for the intermediate sub-towers, in or-
der to find the most efficient one to use for the configuration problem. Although there is
no guarantee that the 4-peg Frame-Stewart algorithm is optimal [10], the dynamic pro-
gramming solution utilizes this algorithm, as it has been proven to generate the optimal
solution for up to 30 disks [7].

In Sect. 3, the configuration problem is examined, as posed by the 2011 ASP Com-
petition [19]. The focus is team BPSolver’s program [28], which uses Prolog together
with tabling [27]. BPSolver’s results are compared with those of the other teams: team
Fast Downward, which used PDDL, and teams EZCSP, IDP, Potassco, and Aclasp,
which used SAT solvers and grounders1. The comparison will concentrate on Potassco’s
program, which had the second-best performance for the Hanoi benchmarks. Sect.
3.3 compares dynamic programming approaches for splitting the problem into sub-
problems, finding one that seems optimal.

Section 4.1 studies the seemingly optimal solution when applied to random con-
figurations that do not extend from Frame’s and Stewart’s algorithms. Then, in Sect.
4.2, the dynamic programming approaches are applied to the classic problem for up to
30 disks, getting a different result than Sect. 3.3. Finally, Sect. 5 describes alternative
approaches to solving the 4-peg and k-peg problems.

2 The Frame-Stewart Algorithm

When the k-peg Hanoi problem was posed in 1941, two authors provided solutions. One
algorithm, provided by J. S. Frame, is iterative. The other, written by B. M. Stewart, the
proposer, is recursive. Both authors claim that their algorithms generate the minimum
number of moves, while Frame admits that other methods might also be able to provide
the same minimum number.

Following is Stewart’s algorithm for the 4-peg problem:

1. Move the Mid topmost disks to another, intermediate, peg (which is not the desti-
nation peg), using all 4 pegs.

2. Move the n − Mid remaining disks to the destination peg using the 3 remaining
pegs.

3. Move the Mid disks from their current peg to the destination peg, using all 4 pegs
[15].

Frame’s algorithm is similar to Stewart’s. According to Frame, for the k-peg prob-
lem, a series of towers needs to be created. The smallest tower will consist of the largest
disks, and the largest tower will consist of the smallest disks. Only the largest disk re-
mains on the start peg. Once the towers are created, the largest disk is moved directly
from the start peg to the destination peg. Then, the tower of the next-largest disks can be

1 https://www.mat.unical.it/aspcomp2011/Participants/

3

moved to the destination peg using three pegs. Each intermediate tower is then moved
to the destination peg using one more empty peg than the previous tower [4].

If the goal is to minimize the number of disk movements, then this algorithm
presents two problems. One problem is to find the optimal number of disks, Mid, to
place on the intermediate peg. This paper examines the partitioning issue in Sect. 3.3,
using Stewart’s recursive algorithm. The other issue is that Frame and Stewart do not
provide evidence that an optimal aglorithm involves the creation of intermediate sub-
towers [10]. However, as mentioned above, since Korf has verified the optimality of
this algorithm for 4 pegs and up to 30 disks [7], the Frame-Stewart algorithm is a good
estimate.

3 The ASP Competition Problem

3.1 The 4-Peg Problem with Configurations

One of the ASP Competition’s problems modifies the 4-peg puzzle to include configu-
rations. This problem follows the same rules as the classic problem, but differs in regard
to how the puzzle is initially arranged, and regarding the goal of the puzzle. Instead of
all the disks beginning and ending on the same peg, this problem provides two config-

urations. The first configuration is the start state, a distribution of the disks over any
combination of all four pegs. The second configuration is the goal state, a different dis-
tribution of the disks over the four pegs. These configurations were created based on
the moves that the Frame-Stewart algorithm would perform. The problem is to generate
the disk moves needed to get the disks from the first configuration to the second. In
addition, there is a bound on the number of moves that could be generated [19].

The BPSolver team used B-Prolog to generate solutions for the given configura-
tions. The following is the relevant code:

:-table plan4(+,+,+,-,min).

plan4(N,_CState,_GState,Plan,Len):-N=:=0,!,Plan=[],Len=0.

plan4(N,CState,GState,Plan,Len):-

remove_largest_disk_if_in_place(

N,CState,GState,CState1,GState1),!,

N1 is N-1,

plan4(N1,CState1,GState1,Plan,Len).

plan4(N,CState,GState,Plan,Len):-

% split disks into two groups

partition_disks(N,CState,GState,ItState,Mid,Peg),

% sub-problem1

remove_larger_disks(CState,Mid,CState1),

plan4(Mid,CState1,ItState,Plan1,Len1),

% sub-problem2

remove_smaller_or_equal_disks(CState,Mid,CState2),

remove_smaller_or_equal_disks(GState,Mid,GState2),

N1 is N-Mid,

plan3(N1,CState2,GState2,Peg,Plan2,Len2),

4

% sub-problem3

remove_larger_disks(GState,Mid,GState1),

plan4(Mid,ItState,GState1,Plan3,Len3),

%

append(Plan1,Plan2,Plan3,Plan),

Len is Len1+Len2+Len3.

Instead of focusing on the given upper-bound of moves, this program attempts to
find the smallest number of moves required to get from the start configuration to the
goal configuration. Each configuration is represented by a single state, consisting of
four lists. Each list represents a single peg, and stores the disks that are currently located
on the peg. This is an improvement on the BPSolver team’s prior attempts to represent
configurations using Boolean expressions. Prolog lends itself to list operations, and the
number of disks on a peg is simply the length of the list.

The predicate plan4 is defined with three clauses. The first clause is the termina-
tion condition. When the number of disks to be removed is zero, the problem has been
solved. The second clause determines whether the current largest disk is currently in
place. If so, it simplifies the problem by logically removing the disk.

The third clause uses a modified form of Stewart’s approach to solve the configu-
ration problem. The disks are split into two sub-groups, one of which is placed in an
intermediate tower. The problem is separated into three sub-problems:

1. The smallest Mid disks are placed on an intermediate peg, Peg, by calling plan4
recursively.

2. The larger disks are moved from their current pegs to their destination positions by
using the deterministic 3-peg algorithm on all of the pegs except for Peg2.

3. The small disks in the sub-tower are moved from the intermediate peg to their
destination positions by calling the plan4 predicate recursively [27].

Another important line of code is :-table plan4(+,+,+,-,min). This uses
tabling to store information about each state in memory. The purpose of tabling is to
store answers to sub-goals, and to utilize the answers for future variant sub-goals. This
is a useful tool for dynamic programming, which reuses solutions to overlapping sub-
problems. B-Prolog uses linear tabling, lets variant sub-goals share answers, and uses
the local, or lazy, strategy to return answers [25]. The most recent version of B-Prolog
replies on hash-consing to let tabled subgoals and answers share ground structed terms
[26].

There are two benefits to using tabling. The first benefit is that tabling prevents in-
finite loops. Once a state is visited, it should not be revisited. If states are visited more
than once, the program could be stuck cycling between multiple states, possibly by just
repeatedly moving a single disk between two pegs. By storing states in memory, the
program can check the table to see if a state has already been encountered. The other
benefit of using tabling is that it reduces the number of calculations. Once the program
knows how to move p disks between two pegs, it can check the table to determine how

2 The 3-peg Tower of Hanoi is deterministic, as it has been proven to have a minimum solution
of 2n − 1 moves for n disks [1].

5

to move any other set of p disks between any two pegs. Sub-problems are represented
in such a way that the same problem has the same representation and can share answers
through tabling. It does not matter what the sizes of the p disks are, nor does it matter
which pegs are being used as the current start and destination pegs, assuming the in-
termediate and destination pegs are logically empty, meaning that they do not contain
disks smaller than the largest one being moved. This decreases the number of opera-
tions used during the recursive calls, and is helpful when backtracking to test a different
solution.

The line :-table plan4(+,+,+,-,min) goes together with the line defining
the predicate plan4(N,CState,GState,Plan,Len). A plus-sign (+) indicates
that the corresponding arguments (N - the number of disks, CState - the current state,
and GState - the goal state) are input. A minus-sign (-) indicates that the correspond-
ing arguments (Plan - the sequence of disk moves) are output. The last part, min
indicates that Len, the length of the plan of disk moves, should be minimized. By mini-
mizing the plan length, the number of moves will clearly be within the bounds provided
in the given problems; otherwise, the problems would be unsolvable.

Since the predicate plan4 is non-deterministic, it presents a few interesting issues.
Like the classic algorithm, this program must determine optimal sizes of the disk sub-
towers. A new problem that arises is that the program must determine which peg to use
to store each sub-tower. In the classic 4-peg problem, there is one peg that never has to
be used to store a sub-tower [9] [20]. However, the same is not true for the configuration
problem. The start and destination pegs can change for each disk, meaning that any peg
might need to be used to store a sub-tower. For further discussion of these issues, see
Sect. 3.3.

Tabling is also used for plan3, defined below for the 3-peg problem.

:-table plan3(+,+,+,+,-,min).

plan3(0,_CState,_GState,_UnusedPeg,Plan,Len):-!,Plan=[],Len=0.

plan3(N,CState,GState,UnusedPeg,Plan,Len):-

remove_largest_disk_if_in_place(N,CState,

GState,CState1,GState1),!,

N1 is N-1,

plan3(N1,CState1,GState1,UnusedPeg,Plan,Len).

plan3(1,CState,GState,_UnusedPeg,Plan,Len):-!,

Plan=[(Peg1,Peg2)],Len=1,

btm_disk_on_peg(1,CState,Peg1),

btm_disk_on_peg(1,GState,Peg2).

plan3(N,CState,GState,UnusedPeg,Plan,Len):-

btm_disk_on_peg(N,CState,Peg1),

btm_disk_on_peg(N,GState,Peg2),

other_two_pegs(Peg1,Peg2,Peg3,Peg4),

(UnusedPeg==Peg3->TmpPeg=Peg4;TmpPeg=Peg3),

N1 is N-1,

remove_bottom_disk(CState,Peg1,CState1),

ItState=s(_,_,_,_),

Tower @= [I : I in N1..(-1)..1],

6

foreach(I in 1..4,

(I==TmpPeg->arg(I,ItState,Tower);

arg(I,ItState,[])

)

),

plan3(N1,CState1,ItState,UnusedPeg,Plan1,Len1),

remove_bottom_disk(GState,Peg2,GState1),

plan3(N1,ItState,GState1,UnusedPeg,Plan2,Len2),

append(Plan1,[(Peg1,Peg2)|Plan2],Plan),

Len is Len1+Len2+1.

Like plan4, the predicate plan3 has a clause for the termination condition and a
clause for reducing the problem when the latest disk is in place. When the number of
disks to be moved is one, it takes one step to solve it. Otherwise, the problem is divided
into three sub-tasks: the first sub-task is to move N-1 disks except for the largest one
from the current peg to a temporary peg; the second sub-task is to move the largest disk
to the destination peg; the third task is to move the N-1 disks from the temporary peg to
the destination peg. Unlike plan4, plan3 is deterministic.

3.2 Competition Results

The ASP Competition had six participants, including BPSolver3. FastDownward used
Planning Domain Definition Language to represent the problems, and utilized A*
search with the selective-max and landmark-cut heuristics, using the input to bound
the maximum solution length, in order to solve the Hanoi problem. The IDP team de-
scribed the problems by using First Order Logic with Inductive Definitions, translated
the problems into Extended Conjunctive Normal Form by using the Gidl grounder, and
solved the problems with the MINISAT(ID) solver. The remaining three teams solved
the Hanoi problem by using the grounder Gringo, which translates input programs into
equivalent, variable-free programs, and the solver Clasp, which focuses on answer set
programming together with nogood learning, checking for violated constraints. While
EZCSP ran Clasp on its default settings, Aclasp utilized a modified restart strategy,
which, as described by the team, “depends on the average decision-level on which con-
flicts occurred.” In order to solve the Hanoi problem, the final team, Potassco, specified
that Clasp should use the Variable State Independent Decaying Sum decision heuristic,
and limited the amount of preprocessing and the initial database size.

The ASP Competition programs were graded based on two criteria: the correctness
of the solution and the amount of time that it took for each program to find the so-
lution. The competition organizers had sixty instances4 that could have been used to
test the Hanoi solvers. Only fifteen of those instances were actually used to grade the

3 The following implementation details, and the participants’ programs, can be obtained at the
team description pages, located at https://www.mat.unical.it/aspcomp2011/Participants/. Fur-
ther details can be found at the solvers’ websites, as listed in the teams’ descriptions online.

4 http://www.mat.unical.it/aspcomp2011/files/HanoiTower/hanoi_

tower-full_package.zip

7

solvers. Based on those fifteen instances, the BPSolver team scored highest, followed
by Potassco, AClasp, and IDP. EZCSP and Fast Downward tied for the lowest score.

BPSolver’s program was the only one that actively used the Frame-Stewart algo-
rithm to limit the size of the search space. Every other program defined legal moves
for the tower of Hanoi problem, and used the definition as input to their solvers. There-
fore, the other teams’ scores were a result of the solvers they used and the heuristics
that the solvers employed to trim the search space. The active use of the Frame-Stewart
algorithm contributed to the speed of BPSolver’s program. Although some of the other
teams used heuristics, and added rules in order to improve the search, such as EZCSP
specifying that no disk should be moved twice in a row, they still had a larger search
space. As will be shown in Sect. 3.3, BPSolver used a mathematical function to parti-
tion the disks, which limited the possible moves at any given time. In addition, tabling
reduced the number of repeated calculations, causing BPSolver’s program to run faster
than all the other programs.

In the competition, BPSolver’s Hanoi program scored 94, while Potassco’s scored
81. However, an analysis of their performances on all 60 instances, summarized in
Table 1, shows that the margin would not be as large. BPSolver still scores higher
than Potassco, but that is primarily due to the speed of B-Prolog, as opposed to the
correctness of the program.

Table 1: Comparing B-Prolog’s original program with Potassco’s program

Sys AVG Seconds MAX Seconds Num Solved SSolve STime Score

BPSolver 0.022883333 0.047 54 45 45 90
Potassco 10.61766667 102.867 60 50 37 87

BPSolver’s program printed a result of “UNKNOWN” for 6 of the instances, while
Potassco’s was able to solve all instances. Four of those six instances are a result of
an error5, in which the program printed “UNKNOWN” after finding a solution. Only
one of these instances was run during the competition. The remaining two unsolved
instances, which are illustrated in Fig. 1, and which were not run during the competition,
are indicative of a larger problem. Team BPSolver mistakenly believed that there was a
known optimal guide for partitioning the disks when creating intermediate sub-towers
[27]. The B-Prolog program’s partitioning guide was not always able to find an optimal
solution.

3.3 Partitions

There have been a number of different estimates for determining the optimal size of the
intermediate sub-tower when given n disks.

5 When a sub-tower is built, it should be built on a logically empty peg. The original program
did not test if the peg was empty, causing the error.

8

Fig. 1: Instances 17 and 22, the unsolved instances

For the ASP competition, BPSolver used the following code to determine the opti-
mal partition location:

partition_disks(N,CState,GState,ItState,Mid,Peg) :-

btm_disk_on_peg(N,CState,Peg1),

btm_disk_on_peg(N,GState,Peg2),

other_two_pegs(Peg1,Peg2,Peg3,Peg4),

(Peg=Peg3;Peg=Peg4),

arg(Peg,CState,CDisks),

arg(Peg,GState,GDisks),

PN is N-integer(sqrt(2*N)+0.5),

Low is max(PN-2,1),

Up is min(PN+2,N-1),

between(Low,Up,Mid),

(CDisks=[CBDisk|_],CBDisk=<Mid; CDisks=[]),

(GDisks=[GBDisk|_],GBDisk=<Mid; GDisks=[]),

Tower @= [I : I in Mid..(-1)..1],

ItState=s(_,_,_,_),

foreach(I in 1..4,

(I==Peg->arg(I,ItState,Tower);

arg(I,ItState,[])

)

).

The arguments are similar to the ones in the plan4 predicate, except ItState
defines the intermediate state with the sub-tower, and Peg is the peg on which the
sub-tower will be placed.

9

As mentioned above, there is an additional issue about where to place the sub-tower,
based on the configurations. The program solves it in one of two ways. If the current
configuration has a pre-existing sub-tower, a new one does not need to be created. Other-
wise, the program non-deterministically tests both of the pegs that are currently serving
as intermediate pegs for the optimal sub-tower location.

Given n disks, the program uses Rand’s estimate of n − ⌊
√
2n + 0.5⌋ for the sub-

tower size. As discovered after the ASP Competition, this does not always generate the
optimal solution. Therefore, the program was tested using different partition estimates.
Table 2 shows the results6.

Table 2: Partitions

Partition Source AVG Seconds AVG Table Used (Bytes) MAX Seconds MAX Table Used (Bytes) UNKNOWN

N − ⌊
√
2 ∗N + 0.5⌋ [12] 0.0234 121135.4 0.047 207724 2

N − ⌈
√
2 ∗N + 0.25− 0.5⌉ [20] 0.0209 121135.4 0.032 207724 2

N − ⌊
√
8∗N+1−1

2
⌋ [1] [13] [22] 0.023 141369.4 0.032 206728 0

N −K, where K is the smallest integer [23] 0.021566667 122005.1333 0.032 208868 2
such that TK ≥ N (with tabling of results).
N −K, where K is the largest integer [1] 0.02285 142401.9333 0.032 207960 0

such that TK ≤ N (with tabling of results).
N −K, if N = TK for some K [17] 0.025833333 162988.3333 0.047 237360 0
Otherwise, N - K, or N - (K + 1),

where K is the largest integer
such that TK < N (with tabling of results).

Program Decides Without a Guide 0.039466667 4457510.067 0.124 16884172 0

For Table 2, two types of estimates were used. One type is a formula stated in terms
of the number of disks. The other type relates the 4-peg Hanoi problem to the triangular

numbers, which are of the form Tk = k∗(k+1)
2 [13], by finding the triangular number

that is closest to the number of disks. The estimates of the first type explicitly state the
relation between the number of disks and the triangular numbers found by the second
type [1]. In the final row of Table 2, the program was not given a guide for where to
partition the disks. Instead, it tested every number between 1 and n− 1, where n is the
number of disks.

There are a number of other guides for partitioning the disks [6] [9] [11] [17], but
these were not tested. Some, such as [9], are too closely related to specific algorithms.
Others, like [6], are too mathematically complex to test in terms of this program. Some
of the remaining, like [11], are for specific cases. Some alternative partitions are clearly
incorrect, as shown by Stockmeyer [17]. Instead of including Frame’s and Stewart’s es-
timates, this study incorpates Stockmeyer’s estimate, which is based on those of Frame
and Stewart [17].

The B-Prolog program allows for an error in the number, PN , returned by the
estimates. It checks all values between PN − 2 and PN + 2 for an optimal partition
number. If this error bound is removed, and the program uses the exact number that
is found, or if the error bound is decreased to PN − 1 and PN + 1, then none of

6 All of the tests described in this paper used B-Prolog version 7.5, which is the version used for
the competition. Later versions of B-Prolog perform tabling in a different manner, decreasing
the amounts of used table memory in some cases, and increasing the amounts used in other
cases.

10

the functions in Table 2 solve all of the instances. It should be noted that three of the
estimates in Table 2 fail for two of the instances, 17 and 22, even when the error is
allowed.

The different approximations were tested for time and the amount of table mem-
ory that they used. On average, the explicit functions almost always used less memory
than the partitions that calculated each triangular number until a certain condition was
met. The maximum memory used was always smaller for the explicit functions than
for the repeated calculations. One reason for this is that tabling was incorporated into
the calculations of the triangular numbers in order to reduce the number of required
calculations. As shown in Table 2, if the program tests every possible partition number,
then it is guaranteed to find the optimal solution. However, the time and memory costs
are much higher than they are if the program is given a partitioning guide.

Table 2 indicates that the best guide to use for the competition is the one originally
provided by Rohl and Gedeon (as shown in row 3). It should be noted that, if floor and
ceiling operations are removed, Liefvoort’s solution (row 2) is mathematically equiva-
lent to theirs. Since Rohl and Gedeon use the floor operation, while Liefvoort uses the
ceiling operation, their solutions differ.

After the original program’s error was removed, and the partitioning estimate was
changed to that of Rohl and Gedeon, BPSolver’s modified program was run on all 60
instances. Table 3 shows the results of these tests, as compared to Potassco’s results.
The results show that Rohl’s and Gedeon’s numbers are better than Rand’s, because
BPSolver now scores 100, instead of 94.

Table 3: Comparing B-Prolog’s modified program with Potassco’s program

Sys AVG Seconds MAX Seconds Num Solved SSolve STime Score

BPSolver 0.023 0.032 60 50 50 100
Potassco 10.61766667 102.867 60 50 37 87

4 Random Configurations and the Classic Problem

Each of the sixty instances generated for the 2011 ASP Competition consisted of con-
figurations that would be created during the execution of the Frame-Stewart algorithm
on the classic 4-peg problem. The configurations included pre-created sub-towers that
the Frame-Stewart algorithm would have generated. This section will show that, al-
though a certain partition number is shown to work on the ASP configurations, it is not
guaranteed to solve every possible random configuration.

BPSolver’s modified program was tested in two additional ways. It was run on ran-
domly generated configurations, some of which might not be created during the execu-
tion of the Frame-Stewart algorithm, and it was run on the classic 4-peg problem.

11

4.1 Random Configurations

The first test was running the BPSolver program on randomly generated configurations.
They were generated to match the ASP Competition’s input files, which consisted of
five sets of predicates [19]. The BPSolver program was tested on twenty random config-
urations. Since the configurations were random, some appeared to contain pre-existing
intermediate sub-towers, while others did not. Two versions of BPSolver’s program
were tested. One version created the sub-towers using the formula originally posed by
Rohl and Gedeon [13] with an error bound of two, and the other did not use any guide
for where to partition the disks.

These tests had varied results. Only twelve of the twenty instances were solved
by both programs. These instances had between 18 and 20 disks, while their solutions
required between 120 and 257 steps. Another five instances were only solved by the
program that did not use a partitioning guide. These instances had between 21 and 23
disks, and required between 387 and 408 steps. One instance, with 25 disks, was solved
in 533 steps by the program that used a formula, while the program that did not use
a guide ran out of memory. The remaining two instances, which had 24 and 25 disks,
were solved by neither program.

The results appear to indicate that the 4-peg problem with random configurations
requires a different approach than that of the Frame-Stewart algorithm. Due to the vary-
ing sizes of the disks on any peg in the starting configuration, it might not be easy to
derive a mathematical formula for the creation of an intermediate sub-tower. If a guide
is not used, it can be too computationally complex to test every possible set of moves.
Disks may need to be repeatedly moved between the four pegs before a condition arises
in which it is possible to create an intermediate sub-tower. Configurations such as those
found in Fig. 2 might not be encountered during the regular execution of the Frame-
Stewart algorithm. Therefore, unless modifications are introduced to the algorithm, the
Frame-Stewart algorithm might not be the best to solve random configurations.

Fig. 2: Start and end configurations of an unsolved random instance

4.2 The Classic 4-peg Problem

The classic 4-peg problem was used to test the same two programs that were tested on
the random configurations. For this problem, the programs were tested using an input
of 30 disks. The program that used a formula was able to solve the problem using the

12

optimum possible number of moves, 1025 [7]. The one that had no guide ran out of
memory.

Since the program that used Rohl’s and Gedeon’s guide was able to solve the 30-
disk problem, it was tested on the classic problem using every number of disks between
one and thirty. When these tests were run, the partitioning error bounds of +2 and -
2 were removed. For each of the thirty instances, the program was able to solve the
problem using the optimum possible number of moves, as proven by [7] and [8].

After these tests were performed, the classic 4-peg problem was used to test the
same six partition estimates that were examined using the ASP problem in Table 2.
Each estimate was tested on every number of disks between one and thirty. As opposed
to the prior tests, these tests did not allow any error bound when calculating the partition
number. Although three of the estimates failed to solve every single ASP Competition
configuration, all six estimates generated optimal solutions for every instance of the
classic problem. Korf has verified the minimum possible number of moves for any
algorithm using inputs of up to 30 disks. By using the Frame-Stewart algorithm with
any of the six partition estimates on the regular 4-peg Hanoi problem, a solution is
obtained that is the optimal solution of any possible algorithm. Tabling and testing
every partition number can be too computationally complex, but Rohl’s and Gedeon’s
formula provides a good guide.

5 Alternative Approaches

Many authors have tried to solve the 4-peg and k-peg problems using their own algo-
rithms. Although most of the approaches are not used in this paper, it is important to
note their contributions. Following is a subset of the algorithms:

5.0.1 Rohl’s and Gedeon’s Algorithm. Rohl and Gedeon created recursive algo-
rithms for both the 4-peg and the k-peg problems, using a form of Stewart’s algorithm.
This paper will focus on the algorithm for four pegs, wherein each recursive call builds
a single sub-tower. If the current ordering of the pegs is (1, 2, 3, 4), the 4-peg algorithm
is called to create a sub-tower with ordering (1, 4, 3, 2), the 3-peg algorithm is called on
(1, 2, 3) to move the remaining pegs, and the 4-peg algorithm is called on (4, 3, 2, 1) to
move the sub-tower to the destination peg [13]. This algorithm provided the partitioning
guide utilized by BPSolver’s modified program.

5.0.2 Lu’s Algorithm. Lu produced an iterative approach for the 4-peg problem. Lu’s
algorithm shows a correlation between the disk moves and binary numbers. It inserts a
number of logical fake disks at pre-determined locations in order to map the disk moves
to the binary numbers [9].

5.0.3 Sarkar’s Algorithm. Sarkar used a recursive algorithm for the k-peg problem
that is similar to Frame’s algorithm. The algorithm deterministically decides how to
distribute the topmost disks over intermediate pegs, using summation functions, before
distributing any disks. It then recursively calls itself to distribute the disks. Sarkar posed

13

the serialization conjecture, stating that an optimal algorithm will distribute disks onto
pegs such that disks on each peg have consecutive sizes, and the size of the top disk on
a peg is consecutive with the size of the bottom disk on the next peg. If this conjecture
is valid, then Sarkar’s algorithm is optimal [14]. Although this distribution method is
efficient, this paper does not use it, because it does not easily extend to the configuration
problem.

5.0.4 Wang’s, Liu’s, Yue’s, Shao’s, and Lu’s Algorithm. Another iterative algo-
rithm for the 4-peg puzzle involves arranging the disk numbers into an upper-triangular
array. Based on this array, there is a “cross-correlation” between the solution of the
problem represented by location (i, j) and the problems represented by locations (i,
j+1), and (i+1, j+1). This correlation decreases the number of necessary calculations
[22]. This is another efficient algorithm, although there is no clear way to extend it to
the configuration problem.

6 Summary

For configurations directly based on the Frame-Stewart algorithm, Rohl’s and Gedeon’s
partitioning estimate of N − ⌊

√
8∗N+1−1

2 ⌋ appears to be an optimal guide, even if it re-
quires error bounds. Although all of the estimates in Table 2 generate optimal solutions
for the regular 4-peg puzzle for up to 30 disks without using error bounds, their correct-
ness does not seem to extend to the configuration problem. Perhaps the nature of the
configuration problem changes the optimal partition location.

Testing BPSolver’s program on random configurations further clarifies the issue. It
appears that there are some configurations for which creating intermediate sub-towers
may not be optimal. Unlike the problem as studied by Frame and Stewart, it is not clear
where to place the intermediate sub-towers. The non-determinism involved can cause
the computation problem to be too computationally complex. However, BPSolver’s pro-
gram with Rohl’s and Gedeon’s estimates runs quickly, and uses tabling to reduce the
number of calculations. Therefore, it is a good guide for a dynamic programming solu-
tion for modified forms of the 4-peg Tower of Hanoi problem where non-determinism
is required.

The B-Prolog program demonstrates the importance of tabling for declarative de-
scription of dynamic programming solutions. Like use of pattern databases in state-
space search and conflict-driven clause learning and memoization in SAT solvers,
tabling is a great technique for avoiding repeated exploration of the same states dur-
ing search.

Acknowledgements

This research was supported in part by NSF (No.1018006)

14

References

1. Chu, I-Ping, and Richard Johnsonbaugh. The Four-Peg Tower of Hanoi Puzzle. ACM

SIGCSE Bulletin Vol. 23, No. 3 (1991), 2-4.
2. Dunkel, Otto. Editorial Note Concerning Advanced Problem 3918. The American Mathe-

matical Monthly Vol. 48, No. 3 (1941), 219.
3. Er, M. C. A Note on the Optimality of a Reve Algorithm. The Computer Journal Vol. 34,

No. 6 (1991), 513.
4. Frame, J. S. Solution for Advanced Problem 3918. The American Mathematical Monthly

Vol. 48, No. 3 (1941), 216-217.
5. Kaykobad, M, Rahman, S. T.-U., Bakhtiar, R.-A., and A. A. K. Majumdar. A Recursive

Algorithm for the Multi-Peg Tower of Hanoi Problem. International Journal of Computer

Mathematics Vol. 57, No. 1-2 (1995), 67-73.
6. Klavžar, Sandi, and Uroš Milutinović. Simple Explicit Formulas for the Frame-Stewart’s

Numbers. Annals of Combinatorics Vol. 6, No. 2 (2002), 157-167.
7. Korf, Richard E., and Ariel Felner. Recent Progress in Heuristic Search: A Case Study of the

Four-Peg Towers of Hanoi Problem. Proceedings of the 20th International Joint Conference

on Artificial Intelligence (2007), 2324-2329.
8. Korf, Richard E., Zhang, Weixiong, Thayer, Ignacio, and Heath Hohwald. Frontier Search.

Journal of the ACM Vol. 52, No. 5 (2005), 715-748.
9. Lu, Xue-Miao. An Iterative Solution for the 4-peg Towers of Hanoi. The Computer Journal

Vol. 32, No. 2 (1989), 187-189.
10. Lunnon, W. F. The Reve’s Puzzle. The Computer Journal Vol. 29, No. 5 (1986), 478.
11. Majumdar, A. A. K. Generalized Multi-peg Tower of Hanoi Problem. Journal of the Aus-

tralian Mathematical Society, Series B-Applied Mathematics Vol. 38, No. 2 (1996), 201-208.
12. Rand, Michael. On the Frame-Stewart Algorithm for the Tower of Hanoi. Technical Report,

Boston College (2009). Available via https://www2.bc.edu/~grigsbyj/Rand_

Final.pdf.
13. Rohl, J. S., and T. D. Gedeon. The Reve’s Puzzle. The Computer Journal Vol. 29, No. 2

(1986), 187-188.
14. Sarkar, U. K. On the Design of a Constructive Algorithm to Solve the Multi-peg Towers of

Hanoi Problem. Theoretical Computer Science Vol. 237, No. 1-2 (2000), 407-421.
15. Stewart, B. M. Solution for Advanced Problem 3918. The American Mathematical Monthly

Vol. 48, No. 3 (1941), 217-219.
16. Stockmeyer, P. K. The Tower of Hanoi: A Bibliography. Version 2.2 (2005). Available via

http://www.cs.wm.edu/~pkstoc/biblio2.pdf.
17. Stockmeyer, Paul K. Variations on the Four-Post Tower of Hanoi Puzzle. Proceedings of the

25th Southeastern International Conference on Combinatorics, Graph Theory, and Comput-

ing. Congressus Numerantium Vol. 102 (1994), 3-12.
18. Third ASP Competition Detailed Scoring Regulations. ASP Competition 2011 Organizing

Committee. Available via https://www.mat.unical.it/aspcomp2011/files/
scoringdetails.pdf.

19. Truszczynski, Miroslaw, Smith, Shaden, and Alex Westlund. Tower of Hanoi: Problem
Description. ASP Competition 2011. Available via https://www.mat.unical.it/
aspcomp2011/FinalProblemDescriptions/HanoiTower.

20. van de Liefvoort, A. An Iterative Algorithm for the Reve’s Puzzle. The Computer Journal

Vol. 35, No. 1 (1992), 91-92.
21. van de Liefvoort, Appie. An Iterative Solution to the Four-Peg Tower of Hanoi Problem.

Proceedings of the 1990 ACM Annual Conference on Cooperation (1990), 70-75.

15

22. Wang, Jun, Liu, Junpeng, Yue, Guoying, Shao, Liangshan, and Sukui Lu. A Non-recursive
Algorithm for 4-Peg Hanoi Tower. 2007 International Conference on Intelligent Systems and

Knowledge Engineering (2007).
23. Zhang, Andrew. A Stratification of the Hanoi Graph for 4 Pegs. Technical Report,

Columbia University (2008). Available via http://www.math.columbia.edu/

~jason/THreu.Zhang.pdf.
24. Zhou, Neng-Fa. The language features and architecture of B-Prolog. Theory and Practice of

Logic Programming, Special Issue on Prolog Systems Vol.12, No. 1-2 (2012), 189-218.
25. Zhou, Neng-Fa, Sato, Taisuke, and Yi-Dong Shen. Linear tabling strategies and optimiza-

tions. Theory and Practice of Logic Programming Vol. 8, No. 1 (2008), 81-109.
26. Zhou, Neng-Fa, and Christian Theil Have. Efficient Tabling of Structured Data with En-

hanced Hash-Consing. ICLP, 2012.
27. Zhou, Neng-Fa, Dovier, Agostino, and Yuanlin Zhang. BPSolver’s Solutions to the Third

ASP Competition Problems. ALP Newsletter (June 2011). Available via http://www.

cs.nmsu.edu/ALP/wp-content/uploads/2011/06/Bprolog.pdf.
28. Zhou, Neng-Fa, Fruhman, Jonathan, and Ligon Liu. Program for Solving the 4-peg Tower

of Hanoi Problem. ASP Competition 2011. Available via http://www.probp.com/

asp11/hanoi.pl.

16

Extending the logical update view with transaction

support

Jan Wielemaker

Web and Media group, VU University Amsterdam,
De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands,
J.Wielemaker@vu.nl

Abstract. Since the database update view was standardised in the Prolog ISO
standard, the so called logical update view is available in all actively maintained
Prolog systems. While this update view provided a well defined update semantics
and allows for efficient handling of dynamic code, it does not help in maintaining
consistency of the dynamic database. With the introduction of multiple threads
and deployment of Prolog in continuously running server applications, consis-
tency of the dynamic database becomes important.
In this article, we propose an extension to the generation-based implementation
of the logical update view that supports transactions. Generation-based transac-
tions have been implemented according to this description in the SWI-Prolog
RDF store. The aim of this paper is to motivate transactions, outline an imple-
mentation and generate discussion on the desirable semantics and interface prior
to implementation.

1 Introduction

Although Prolog can be considered a deductive database system, its practice with regard
to database update semantics is rather poor. Old systems typically implemented the
immediate update view, where changes to the clause-set become immediately visible to
all goals on backtracking. This update view implies that a call to a dynamic predicate
must leave a choice point to anticipate the possibility that a clause is added that matches
the current goal. Quintus introduced1 the notion of the logical update view [4], where
the set of visible clauses for a goal is frozen at the start of the goal, which allows for
pruning the choice-point on a dynamic predicate if no more clauses match the current
goal. Through the ISO standard (section 7.5.4 of ISO/IEC 1321 l-l), the logical update
view is adopted by all actively maintained implementations of the Prolog language.

The logical update view helps to realise efficient programs that depend on the dy-
namic database, but does not guarantee consistency of the database if multiple changes
of the database are required to realise a transition from one consistent state to the next.
A typical example is an application that realises a transfer between two accounts as
shown below.

1 http://dtai.cs.kuleuven.be/projects/ALP/newsletter/archive_93_

96/net/systems/update.html

transfer(From, To, Amount) :-

retract(balance(From, FromBalanceStart)),

retract(balance(To, ToBalanceStart)),

FromBalance is FromBalanceStart - Amount,

ToBalance is ToBalanceStart + Amount,

asserta(balance(From, FromBalance)),

asserta(balance(To, ToBalance)).

Even in a single threaded environment, this code may be subject to timeouts, (resource-
)exceptions and exceptions due to programming errors that result in an inconsistent
database. Many Prolog programs contain a predicate to clean the dynamic database to
avoid the need to restart the program during development. Still, such a predicate needs
to be kept consistent with the used set of dynamic predicates and provides no easy
solution if the database is not empty at the start.

Obviously, in concurrent applications we need additional measures to guarantee
consistency with concurrent transfer requests and enquiries for the current balance. Be-
low we give a possible solution based on mutexes. Another solution is to introduce a
bank thread and realise transfer as well as enquiries with message passing to the bank
thread.

mt_transfer(From, To, Amount) :-

with_mutex(bank, transfer(From, To, Amount)).

mt_balance(Account, Balance) :-

with_mutex(bank, balance(Account, Balance)).

As we need to serialise update operations in a multi threaded context, update operations
that require significant time to complete seriously harm concurrency.

With transactions, we can rewrite the above using the code below, where we do
not need any precautions for reading the current balance.2 Consistency is guaranteed
because, as we will explain later, two transactions that retract the same clause are con-
sidered to conflict.

mt_transfer(From, To, Amount) :-

transaction(transfer(From, To, Amount), true, [restart(true)]).

In the remainder of this article, we first describe related work. Next, we define the
desired semantics of transactions in Prolog, followed by a description how these se-
mantics can be realised using generations. In section 5, we propose a concrete set of
predicates to make transactions available to the Prolog programmer. We conclude with
implementation experience in the SWI-Prolog RDF store and a discussion section.

2 Reading multiple values from a single consistent view still requires a transaction. See sec-
tion 3.1.

18

2 Related work

The most comprehensive overview of transactions in relation to Prolog we found is
[2], which introduces “Transaction logic”. Transaction logic has been implemented as a
prototype for XSB Prolog [3]. This is a much more fundamental solution in dealing with
update semantics than what we propose in this article. In [2], we also find descriptions
of related work, notably Dynamic Prolog and an extension to Datalog by Naqvi and
Krishnamurthy. These systems too introduce additional logic and are not targeted to
deal with concurrency.

Contrary to these systems, we propose something that is easy to implement on en-
gines that already provide the logical update view and is easy to understand and use for a
typical Prolog programmer. What we do learn from these systems is that a backtrackable
dynamic database has promising applications. We not propose to support backtracking
modifications to the dynamic database yet, but our proposal simplifies later implemen-
tation thereof, while the transaction interface may provide an adequate way to scope
backtracking. See transaction/3 described in section 5.

3 Transaction semantics

Commonly seen properties of transactions are known by the term ACID,3 summarised
below. We want to realise all these properties, except for Durability.

Atomic Either all modifications in the transaction persist or none of the modifications.
Consistency A successful transaction brings the system from one consistent state into

the next.
Isolation The modifications made inside a transaction are not visible to the outside

world before the transaction is committed. Concurrent access always sees a consis-
tent database.

Durability The effects of a committed transaction remain permanently visible.

In addition, code that is executed in the context of a transaction should behave ac-
cording to the traditional Prolog (logical view) update semantics and it must be possible
to nest transactions, such that code that creates a transaction can be called from any con-
text, both outside and inside a transaction.

An obvious baseline interface for dealing with transactions is to introduce a meta-
predicate transaction(:Goal). If Goal succeeds, the transaction is committed. If
Goal fails or throws an exception, the transaction is rolled back and transaction/1 fails
or re-throws the exception. In our view, transaction/1 is logically equivalent to on-

ce/1 (i.e., it prunes possibly remaining choice points) because database actions are still
considered side-effects. Too much real-world code is intended to be deterministic, but
leaves unwanted choice points. This is also the reason why with_mutex/2 prunes choice
points.

Note that it is easy to see useful application scenarios for non-deterministic trans-
actions. For example, generate-and-test applications that use the database could be im-
plemented using the skeleton code below. To support this style of programming, failing

3 http://en.wikipedia.org/wiki/ACID

19

into a transaction should atomically make the changes invisible to the outside and all
changes after the last choice point inside the transaction must be discarded. This can
be implemented by extending each choice point with a reference into the change-log
maintained by the current transaction.

generate_and_test :-

transaction(generate_world),

satisfying_world,

!.

Given our proposed once-based semantics, we can still improve considerably on this
use-case compared to traditional Prolog using a side-effect free generator. This results
in the following skeleton:

generate_and_test :-

generate_world(World),

transaction((assert_world(World),

satisfying_world

)),

!.

3.1 Snapshots

We can exploit the isolation feature of transactions to realise snapshots. A predicate
snapshot(:Goal) executes Goal as once/1 without globally visible affects on the dy-
namic database. This feature is a supplement to SWI-Prolog’s thread local predicates,
predicates that have a different set of clauses in each thread. Snapshots provide a com-
fortable primitive for computations that make temporary use of the dynamic database.
At the same time they make such code thread-safe as well as safe for failed or incom-
plete cleanup due to exceptions or programming errors.

Snapshots also form a natural abstraction to read multiple values from a consistent
state of the dynamic database. For example, the summed balance of a list of accounts
can be computed using the code below. The snapshot isolation guarantees that the result
correctly represents that summed balance at the time that the snapshot was started.

summed_balance(Accounts, Sum) :-

snapshot(maplist(balance, Accounts, Balances)),

sum_list(Balances, Sum).

Note that this sum may be outdated before the isolated goal finishes. Still, it represents
a figure that was true at a particular point in time, while unprotected execution can
compute a value that was never correct. For example, consider the sequence of events
below, where to summed balance is 10$ too high.

1. The ‘summer’ fetches the balance of A
2. A concurrent operation transfers 10$ from A to B
3. The ‘summer’ fetches the balance of B

20

4 Generation based transactions

A common technique used to implement the Prolog logical update view is to tag each
clause with two integers: the generation in which it was born and the generation in
which it died. A new goal saves the current generation and only considers clauses cre-
ated before and not died before its generation. This is clearly described in [1]. Below,
we outline the steps to add transactions to this picture.

First, we split the generation range into two areas: the low values, 0..G_TBASE
(transaction base generation) are used for globally visible clauses. Generations above
G_TBASE are used for generations, where we split the space further by thread-id. E.g.,
the generation for the 10th modification inside a transaction executed by thread 3 is
G_TBASE+3*G_TMAX+10.

Isolation Isolated behaviour inside a transaction is achieved by setting the modifica-
tion generation to the next thread write generation. Code operating outside a trans-
action does not see these modifications because they are time-stamped ‘in the fu-
ture’. Code operating inside the transaction combines the global view at the start of
the transaction with changes made inside the transaction, i.e., changes in the range
G_TBASE+〈tid〉*G_TMAX..G_TBASE+(〈tid〉+1)*G_TMAX.

Atomic Committing a transaction renumbers all modifications to the current global
write generation and then increments the generation. This implies that commit oper-
ations must be serialised (locked). All modifications become atomically visible at the
moment that the global generation is incremented. If a transaction is discarded, all as-
serted clauses are made available for garbage collection and the generation of all re-
tracted clauses is reset to infinity.

Consistency The above does not provide consistency guarantees. We add a global con-
sistency check by disallowing multiple retracts of the same clause. This implies that
an attempt to retract an already retracted clause inside a transaction or while the trans-
action commits causes the transaction to be aborted. This constraint ensures that code
that updates the database by retracting a value, computing the new value and assert-
ing this becomes safe. For example, this deals efficiently with global counters or the
balance example from section 1. Note that disallowing multiple retracts is also needed
because there is only one placeholder to store the ‘died generation’. Similar to rela-
tional databases, we can add an integrity constraint, introducing transaction(:Goal,

:Constraint), where Constraint is executed while the global commit lock is held.

Nesting Where we need distinct generation ranges for concurrently executing transac-
tions, we can use the generation range of the parent transaction for a nested transaction
because execution as once/1 guarantees strict nesting. Nested transactions merely need
to remember where the nested transaction started. Committing is a no-op, while dis-
carding is the same as discarding an outer transaction, but only affecting modifications
after the start of the nested transaction.

21

Implication for visibility rules The logic to decide that a clause is visible does not
change for queries outside transactions because manipulations inside transactions are
‘in the future’. Inside a transaction, we must exclude globally visible clauses that have
died inside the transaction (i.e., between the transaction start generation and the current
generation) and include clauses that are created and not yet retracted in the transaction.

5 Proposed predicates

We propose to add the following three predicates to Prolog. In the description below,
predicate arguments are prefixed with a mode annotation. The : annotation means that
the argument is module-sensitive, e.g., :Goal means that Goal is called in the module
that calls the transaction interface predicate. The modes +, - and ? specifies that the
argument is ‘input’, ‘output’ and ‘either input or output’.

transaction(:Goal)

Execute Goal in a transaction. Goal is executed as by once/1. Changes to the
dynamic database become visible atomically when Goal succeeds. Changes are
discarded if Goal does not succeed.

transaction(:Goal, :Constraint)

Run Goal as transaction/1. If Goal succeeds, execute Constraint while holding the
transaction mutex (see with_mutex/24). If Constraint succeeds, the transac-
tion is committed. Otherwise, the transaction is discarded. If Constraint fails, throw
the error error(transaction_error(constraint, failed), _). If
Constraint throws an exception, rethrow this exception.

transaction(:Goal, :Constraint, +Options)

As transaction/3, processing the following options:
restart(+Boolean)

If true, catch errors that unify with
error(transaction_error(_,_), _) and restart the transaction.

id(Term)

Give the transaction an identifier. This identifier is made available through
transaction_property/2. There are no restrictions on the type or instantiation
of Term.

snapshot(:Goal)

Execute Goal as once/1, isolating changes to the dynamic database and discarding
these changes when Goal completes, regardless how.

transaction_property(?Transaction, ?Property)

True when this goal is executing inside a transaction identified by the opaque
ground term Transaction and has given Property. Defined properties are:
level(-Level)

Transaction is nested at this level. The outermost transaction has level 1. This
property is always present.

modified(-Boolean)

True if the transaction has modified the dynamic database.

4 http://www.swi-prolog.org/pldoc/doc_for?object=with_mutex/2

22

modifications(-List)

List expresses all modifications executed inside the transaction. Each element
is either a term retract(Term),asserta(Term) or assertz(Term).
Clauses that are both asserted and erased inside the transaction are omitted.

id(?Id)

Transaction has been given the current Id using transaction/3.

If any of these predicate encounters a conflicting retract operation, the exception
error(transaction_error(conflict, PredicateIndicator), _)

is generated.

6 Implementation results: the SWI-Prolog RDF-DB

The SWI-Prolog RDF database [5] is a dedicated C-based implementation of a single
dynamic predicate rdf(?Subject, ?Predicate, ?Object). The dedicated implementation
was introduced to reduce memory usage and improve performance by exploiting known
features of this predicate. For example, all arguments are ground, and Subject and Pred-

icate are know to be atoms. Also, all ‘clauses’ are unit clauses (i.e., there are no rules).
Quite early in the development of the RDF store we added transactions to provide better
consistency and grouping of modifications. These features were crucial for robustness
and ‘undo’ support in the graphical triple editor Triple20 [6]. Initially, the RDF store
did not support concurrency. Later, this was added based on ‘read/write locks’, i.e.,
multiple readers or one writer may access the database at any point in time.

With version 35 of the RDF store, developed last year, we realised the logical update
view also for the external rdf/3 predicate and we implemented transactions following
this article. In addition, we realised concurrent garbage collection of dead triples. The
garbage collector examines the running queries and transactions to find the oldest active
generation and walks the linked lists of the index hash-tables, removing dead triples
from these lists. Actual reclaiming of the dead triples is left to the Boehm-Demers-
Weiser conservative garbage collector.6

7 Discussion

We have described an extension to the generation-based logical update view available
in todays Prolog system that realises transactions. There is no additional memory us-
age needed for clauses. The engine (each engine in multi threaded Prolog systems) is
required to maintain a stack of transaction records, where each transaction remembers
the global generation in which is was created and set of affected clauses (either asserted
or retracted). The visibility test of a clause for goals outside transactions is equal to the
test required for realising the logical update view and requires an additional test of the
same cost if a transaction is in progress.

5 Available from http://www.swi-prolog.org/git/packages/semweb.git,
branch version3.

6 http://www.hpl.hp.com/personal/Hans_Boehm/gc/

23

The described implementation of transactions realises ACI of the ACID model
(atomic, consistency and isolation, but not durability). Durability can be realised by
using a constraint goal that uses transaction_property/2 to examine the modifications
and write the modifications to a journal file or external persistent store.

Our implementation has two limitations: (1) goals in a transaction are executed as
once/1 (pruning choice-points) and (2) it is not possible for multiple transactions to
retract the same clause. Supporting non-deterministic transactions requires additional
changes to Prolog choice points, but transactions already maintain a list of modifica-
tions to realise commit and rollback and transaction/3 already provides an extensible
interface to activate this behaviour. Supporting multiple retracts is possible by using a
list to represent the ‘died’ generations of the clause. This is hardly useful for transac-
tions because multiple concurrent retracts indicate a conflicting update. However, this
limitation is a serious restriction for snapshots (section 3.1).

We have implemented this transaction system for the SWI-Prolog RDF store, where
it functions as expected. We believe that transactions will greatly simplify the imple-
mentation of concurrent programs that use the dynamic database as a shared store. At
the same time it eliminates the need for serialisation of code, improving concurrent per-
formance. In our experience with Triple20, transactions are useful in single threaded
applications to maintain consistency of the database. Notably, consistency of the dy-
namic storage is maintained when an edit operation fails due to a programming error
or an abort initiated from the debugger. This allows for fixing the problem and retrying
the operation without restarting the application.

We plan to implement the outlined features in SWI-Prolog in the near future.

Acknowledgements

This research was partly performed in the context of the COMBINE project supported
by the ONR Global NICOP grant N62909-11-1-7060. This publication was supported
by the Dutch national program COMMIT.

I would like to thank Jacco van Ossenbruggen, Michiel Hildebrand and Willem van
Hage for their feedback in redesigning the transaction support for the SWI-Prolog RDF
store.

References

1. Egon Boerger and Bart Demoen. A framework to specify database update views for pro-
log. In Jan Maluszynski and Martin Wirsing, editors, Programming Language Implementation

and Logic Programming, volume 528 of Lecture Notes in Computer Science, pages 147–158.
Springer Berlin / Heidelberg, 1991. 10.1007/3-540-54444-5_95.

2. Anthony J. Bonner, Michael Kifer, and Mariano Consens. Database programming in trans-
action logic. In In Proc. 4th Int. Workshop on Database Programming Languages, pages
309–337, 1993.

3. Samuel Y.K. Hung. Implementation and performance of transaction logic in prolog. Master’s
thesis, Department of Computer Science, University of Toronto, 1996.

4. Timothy G. Lindholm and Richard A. O’Keefe. Efficient implementation of a defensible
semantics for dynamic prolog code. In ICLP, pages 21–39, 1987.

24

5. Jan Wielemaker, Guus Schreiber, and Bob J. Wielinga. Prolog-based infrastructure for rdf:
Scalability and performance. In Dieter Fensel, Katia P. Sycara, and John Mylopoulos, editors,
International Semantic Web Conference, volume 2870 of Lecture Notes in Computer Science,
pages 644–658. Springer, 2003.

6. Jan Wielemaker, Guus Schreiber, and Bob J. Wielinga. Using triples for implementation: The
triple20 ontology-manipulation tool. In Yolanda Gil, Enrico Motta, V. Richard Benjamins,
and Mark A. Musen, editors, International Semantic Web Conference, volume 3729 of Lecture

Notes in Computer Science, pages 773–785. Springer, 2005.

25

Efficient Partial Order CDCL Using Assertion Level

Choice Heuristics⋆

Anthony Monnet and Roger Villemaire

Université du Québec á Montréal, Montreal, Canada
anthonymonnet@aol.fr

villemaire.roger@uqam.ca

Abstract. We previously designed Partial Order Conflict Driven Clause Learn-
ing (PO-CDCL), a variation of the satisfiability solving CDCL algorithm with
a partial order on decision levels, and showed that it can speed up the solving
on problems with a high independence between decision levels. In this paper, we
more thoroughly analyze the reasons of the efficiency of PO-CDCL. Of particular
importance is that the partial order introduces several candidates for the assertion
level. By evaluating different heuristics for this choice, we show that the assertion
level selection has an important impact on solving and that a carefully designed
heuristic can significantly improve performances on relevant benchmarks.

1 Introduction

The SAT problem consists in deciding if a given propositional formula expressed in
conjunctive normal form is satisfiable, i.e. if there exists a truth assignment that makes
the formula true. Furthermore, a satisfying assignment, or model, has to be returned if
the formula is satisfiable. Many decision problems can be encoded using a propositional
formula, such that this formula is satisfiable iff the considered problem has a solution.

Conflict-driven clause learning (CDCL) [9] is the algorithm used by the most ef-
ficient complete SAT solvers. Unlike basic depth-first search that only undoes the last
decision when a conflict is reached, CDCL is able to analyze the reasons for this con-
flict and to define the assertion level, which is the second to last decision level involved
in this conflict. It then backtracks directly to this assertion level, often undoing sev-
eral decision levels at once, in order to ensure that this conflict will not be encountered
again in this branch of the search. It therefore performs a much more efficient pruning
of the search space than regular depth-first search, often leading to a significantly faster
solving of problems.

CDCL has however the negative side-effect of destroying parts of the current par-
tial assignment not directly related to the conflict. Indeed, by returning straight to the
assertion level, it entirely destroys all instantiations in subsequent decision levels. By
definition, none of them were directly involved in the conflict, except for the decision
level where the conflict was discovered. In the worst case, these instantiations may even

⋆ We gratefully acknowledge the financial support of the Natural Sciences and Engineering Re-
search Council of Canada on this research.

belong to a different connected component of the problem and couldn’t possibly be af-
fected by the conflict resolution, even indirectly. CDCL thus can cause the unnecessary
deletion of previous parts of the search, which may prevent the detection of some con-
flicts or the completion of a satisfying assignment, ultimately slowing down the solving
process.

This deletion of unrelated parts of the search is caused by the implicit total ordering
on successive decisions during the search, and this total order can be relaxed without
damaging the correctness, completeness and termination of the algorithm. We there-
fore designed partial order CDCL (PO-CDCL) [11], a variant of CDCL maintaining a
partial order between decision levels, which allows to locally undo less instantiations
during a conflict-directed backtrack. In practice, some SAT problems (for instance en-
codings from the formal verification of superscalar microprocessors [17]) have a rela-
tively sparse dependency between decision levels during solving, and we showed that
PO-CDCL significantly decreases the solving time on these instances.

The aim of this paper is twofold. First, we show that the efficiency of PO-CDCL is
due to the fact that it dramatically reduces the search efforts needed to reach successive
conflicts and hence prune the search space. Secondly, we consider a new parameter of
the algorithm introduced by the partial order: unlike in a regular CDCL, the assertion
level of a conflict clause is not uniquely defined and can be chosen using various heuris-
tics. We show that this choice has a significant impact on the search, and that heuristics
affecting the average amount of instantiations undone by conflicts can further signifi-
cantly improve the performance of PO-CDCL. Interestingly, the solving of satisfiable
problems is improved when this average amount of undone instantiations increases,
while unsatisfiability is proved faster when it decreases. Moreover, this quantity is most
efficiently controlled indirectly by choosing assertion levels that maximize or minimize
the number of additional dependencies they would introduce between decision levels.

The remainder of this paper is organized as follows: Section 2 introduces the PO-
CDCL algorithm. Section 3 reviews related methods seeking to reduce the amount of
instantiations deleted during a non-chronological backtracking algorithm in CSP and
SAT. Finally, section 4 presents experimental results obtained with the implementation
of PO-CDCL in a state-of-the-art CDCL solver using various heuristics for the choice
of the assertion level. These results are used to analyze the causes of the efficiency of
PO-CDCL with various assertion level heuristics on satisfiable and unsatisfiable SAT
instances with low level interdependencies.

2 PO-CDCL

CDCL [9] is a satisfiability solving algorithm based on the older depth-first search
DPLL [3], enhanced with conflict-directed backtracking and clause learning. It succes-
sively assigns arbitrary values to variables (it takes decisions) until either a clause is
violated or all variables are assigned. After each decision, an exhaustive round of unit
propagation is performed to deduce all possible consequences of the current assign-
ment using this inference rule. A decision level is the set formed by a decision and all
the propagations it entails.

27

Algorithm 1 PO-CDCL
1: σ ← ∅ { begin with the empty assignment }
2: λ = 0 { λ is the current decision level }
3: loop

4: c←PROPAGATE /* propagate new instantiations */
5: if c 6= NIL then { a conflict was found during propagations }
6: if λ = 0 then { conflict at decision level 0 }
7: return false { unsatisfiable problem }
8: else

9: γ ← ANALYZE(c) { infer the conflict clause γ }
10: candidates← all ∆-maximal elements in levels(γ) \ {λ}
11: choose a in candidates { a is the assertion level }
12: for l >∆ a do

13: delete level l
14: λ← a { a becomes the current level }
15: LEARN(γ)
16: PROPAGATEASSERTION(γ)
17: else { no conflict during propagations }
18: if all variables are instantiated then

19: return σ { σ is a model }
20: else

21: λ← NEWLEVEL

22: DECIDE(λ)

Algorithm 2 PROPAGATE

1: Π ←{instantiations not yet propagated}
2: while {Π 6= ∅} do

3: choose l ∈ Π

4: for all clauses c s.t. ¬l is watched in c do

5: w ← the second watched literal in c

6: if σ(w) = true then

7: set level(w) <∆ λ

8: else

9: Ω ← {l′ ∈ c |σ(l′) 6= false} \ {w}
10: { Ω is the set of literals that could replace ¬l }
11: if Ω = ∅ then { no other literal in c can be watched }
12: if σ(w) = undef then { c is unit }
13: σ(w)← true { w is propagated by c }
14: for l ∈ levels(c) \ {λ} do

15: set l <∆ λ

16: Π ← Π ∪ {w}
17: else

18: return c { c is a conflict }
19: else

20: choose w′∈Ω
21: ω(c)← {w,w′} { w′ is watched instead of ¬l }
22: Π ← Π \ {l}
23: return NIL { no conflict occured }

28

Unit clauses are efficiently detected using watched literals [13], a method keeping
track of two not instantiated literals in each clause that isn’t already satisfied. When a
literal l is instantiated, a clause c cannot become unit unless it contains the opposite
literal ¬l and this literal is watched in c. The algorithm thus only has to check clauses
containing ¬l as a watched literal for possible unit propagations.

A conflict occurs when all literals in a clause are false. CDCL then infers a conflict
clause γ, which is a logical consequence of the original formula, is also false under the
current assignment and has only one literal instantiated at the current decision level. The
second largest decision level represented in γ is called the assertion level. The conflict
is resolved by undoing all decision levels above the assertion level. γ becomes unit, it
is propagated and the search continues at the assertion level. The algorithm terminates
either when all variables are assigned without causing any conflict (the formula is sat-
isfied by this assignment) or when a conflict occurs at decision level 0 (the formula is
unsatisfiable).

The pseudocode of PO-CDCL is given in Alg. 1. It consists in a few modifications
of the regular CDCL algorithm. A partial order ∆ keeps track of dependencies between
decision levels and is used to determine the assertion level and the levels to delete during
conflicts. Dependencies are added during the unit propagation phase detailed in Alg. 2.
A level i depends on a level j (noted j <∆ i) when level j had an influence on unit
propagations at level i. This can happen in two cases.

First, when a variable l is propagated by a unit clause c, this propagation obviously
depends of all other literals in c. For all literals l′ ∈ c \ {l} whose decision level is
different from the current decision level λ, the dependency level(l′) <∆ λ is added to
∆. This case is handled by lines 14 and 15 of Alg. 2.

Secondly, when a false watched literal ¬l at level λ doesn’t need to be replaced in a
clause c because w, the second watched literal in c, is true, the dependency level(w) <∆

λ is added (line 7 of Alg. 2). Intuitively, this dependency means that the true watched
literal w avoided a watched literal replacement at level λ and therefore had an impact
on the unit propagations at this level. More technically, this dependency ensures that the
clause will remain correctly watched by forbidding to uninstantiate w while keeping ¬l
instantiated.

With a partial order on decision levels, the backtrack phase only requires to delete
levels that depend on the assertion level (and of course the conflict level itself). This
deletion (at lines 12 and 13 of Alg. 1) is necessary to keep the consistency of the algo-
rithm by preventing circular dependencies between levels.

Finally, the last modification affects the definition of the assertion level. This level
has to be involved in the conflict clause, and the conflict clause must become unit after
the backtrack. This implies that no decision level occuring in the conflict clause must
be undone by the backtrack, except for the conflict level λ. In a total order CDCL, the
assertion level is uniquely defined as the second largest decision level in the conflict
clause. With a partial order, however, any decision level in the conflict clause can be
chosen as the assertion level, provided that no other level involved in the conflict, except
λ, depends on it. In other words, the assertion level can be any maximal element of <∆

restricted to the set of conflict clause levels different from λ (lines 10 and 11 of Alg. 1).

29

Similarly to the original CDCL algorithm, PO-CDCL is complete, correct and al-
ways terminates [11].

3 Related Works

PO-CDCL is conceptually related to some variations of the Conflict-Direct Backjump-
ing (CBJ) algorithm for CSP solving which, similarly to CDCL for SAT, resolves con-
flicts by computing a nogood (equivalent of the conflict clause) and deleting the entire
search progress starting at the culprit variable decision (roughly equivalent of the de-
cision at the conflict level). In the case of CSPs, search progress consists not only of
variable assignments, but also of values eliminated from domains of variables.

Dynamic Backtracking (DB) [5], in contrast with CBJ, only undoes the culprit vari-
able and restores only eliminated values for which the culprit variable was part of the
nogood. This strategy is equivalent to dynamically moving the culprit variable to the
end of the search branch before undoing it, provided a limited amount of search infor-
mation is deleted. It has the advantage of only partially undoing the work made after
the culprit variable. Similarly to PO-CDCL, it minimizes the quantity of undone search
progress by relaxing the strict total order on variable decisions. The main difference is
that DB is defined as a search-only algorithm without any inference; therefore the con-
flict can always be resolved without undoing any other decision than the culprit variable.
Also note that the usual total order is considered during the analysis phase; unlike the
assertion level in PO-CDCL, the culprit variable in DB remains thus uniquely defined.

Partial Order Backtracking (POB) [10] similarly only uninstantiates the culprit vari-
able for each conflict and only restores values whose elimination depended on it. The
difference is that it initially allows to choose the culprit variable amongst all variables in
the nogood, but progressively sets precedence constraints between variables in order to
ensure termination. This freedom in the choice of the culprit variable is stronger than the
freedom PO-CDCL offers for choosing the assertion level. It however however comes
with a strong permanent and increasing constraint on decision heuristics, whereas con-
straints set by PO-CDCL between decision levels only apply until these decision levels
are undone, and hence have no impact on the choice of decision variables.

Tree decompositions methods integrated within CDCL [6,8,4,12] and CBJ [7]
solvers also indirectly limit the quantity of unrelated instantiations undone during a
backtrack. Decompositions [16] are used to compute recursive separators of the in-
stance, i.e. sets of variables whose instantiation breaks the problem in several connected
components. These methods start the search by instantiating all separator variables, and
then completely instantiate a connected component before making any decision in an-
other component. When a conflict occurs in a connected component, the resulting back-
track then can’t destroy any part of the search in other components thanks to this con-
strained ordering. Besides scalability issues which make it very difficult to efficiently
compute useful decompositions on large SAT problems [12], tree decompositions only
capture the static connectivity of a problem and therefore can’t take into account the po-
larity of instantiations and the many propagations they cause. At any point of the search,
the actual connectivity is likely to be much more sparse than predicted by decomposi-
tions. Therefore, a conflict in a connected component may actually delete instantiations

30

in another component. PO-CDCL, on the other hand, considers the exact connectivity at
any time of the search. It also distinguishes sets of variables that haven’t interacted yet
in the current search branch even if they belong to the same connected component; it
considers actual interactions between already instantiated variables rather than potential
interactions between still unassigned variables.

Finally, phase saving [15], in contrast with tree decompositions, is a very
lightweight approach. It simply memorizes the last polarity assigned to a variable and
reuses it if the variable is picked for a decision. Phase saving actually doesn’t prevent
instantiations from being undone, but makes it possible to rediscover the deleted in-
stantiations later. It thus allows to recover search progress that was lost during a conflict
resolution. However, unlike partial order CDCL, this recovery doesn’t save the com-
putational cost of repeating the time-consuming propagation phase. Also, phase sav-
ing memorizes the polarity of all variables, even if they were actually involved in the
conflict. This side effect sometimes decreases solving performance, as reported by the
authors [15].

Note that, at the opposite, some strategies have been designed to enhance SAT solv-
ing by increasing the quantity of instantiations undone during conflict-directed back-
tracks [14,2].

4 PO-CDCL Analysis and Assertion Level Heuristics

The PO-CDCL algorithm was implemented by introducing a partial order on
decision levels in the state-of-the-art CDCL solver GLUCOSE 1.0 [1]. The re-
sulting PO-CDCL solver is named PO-GLUCOSE and its source code is avail-
able at http://www.info2.uqam.ca/~villemaire_r/Recherche/SAT/
120619generalized_glucose.tar.gz. In this implementation, level depen-
dencies are stored in three structures: two directed adjacency lists, representing the
relation in both directions, and one boolean matrix. The combination of these structures
allows to perform efficiently all operations on the partial relation: somes cases require
to check the relation between a precise pair of decision levels, which can be done in
constant time using the matrix. At the opposite, the algorithm sometimes requires to
list of all levels depending on a given level, in which case using the adjacency list is
obviously more efficiently, particularly when there are many active decision levels with
little interdependence. Note that only direct dependencies are stored; transitive depen-
dencies are only needed during conflict resolution on a small subset of variables and it
is much more efficient to compute this partial transitive closure when it is required than
to enforce and store transitivity during the entire algorithm.

As the size of the matrix grows quadratically with the number of decision levels, our
implementation disables it if this number reaches a predefinite threshold. The algorithm
then proceeds using only adjacency lists, which is slightly less efficient but significantly
better than exhausting primary memory. Theoretically, the size of adjacency lists could
also grow quadratically in the case of dense dependencies between decision levels;
however, it seems that in practice the number of decision levels tends to decrease when
this density grows. The memory requirement of adjacency lists thus remains relatively
moderate.

31

The remaining of this section presents and compares experimental results obtained
with this implementation and with the original GLUCOSE solver. We will more partic-
ularly focus on the impact of assertion level choice heuristics on the overall behaviour
and performance of the algorithm. All tests were run on a 3.16 GHz Intel Core 2 Duo
CPU with 3 GB of RAM, running a Ubuntu 11.10 OS, with a time limit of 1 hour for
each execution (not including the preprocessing phase, which is identical for all tested
variants).

We previously noticed [11] that since PO-CDCL is designed to take advantage of
the independence between decision levels during solving, it performs best on problems
where this independence is relatively high. If we consider the partial order ∆ as a set
of ordered pairs of decision levels, such that the first level in each pair depends of the
second level of the pair, the cardinality of ∆ can be used as a measure of this indepen-
dence. Benchmarks from formal verification of superscalar microprocessors [17] are an
example of problems with a very sparse relationship between levels, possibly because
of the high parallelism in verified models. Therefore, the following experiments were
conducted on 6 series of these benchmarks:

– pipe_unsat_1.0 and pipe_unsat_1.1 verify correct specifications of various-
sized superscalar microprocessors with two different encoding variants;

– pipe_sat_1.0 and pipe_sat_1.1 represent ten different buggy variants of the size
12 case, again encoded in two different ways;

– pipe_ooo_unsat_1.0 and pipe_ooo_unsat_1.1 are two different encodings ver-
ifying the correctness of various-sized superscalar microprocessors handling out-
of-order execution of instructions.

Benchmarks verifying correct and buggy specifications are respectively unsatisfiable
and satisfiable.

GLUCOSE implements the phase saving strategy mentioned in section 3. We dis-
abled phase saving in PO-GLUCOSE because partial order CDCL was partly designed as
an alternative to phase saving. Moreover, preliminary tests indicated that PO-GLUCOSE

often performs significantly better with phase saving disabled. To make sure the perfor-
mance differences we observe are not simply caused by the presence or abscence of
phase saving rather than by the partial order, we compared PO-GLUCOSE with the
original GLUCOSE, but also with a variant in which phase saving is disabled.

In PO-GLUCOSE, the partial order management causes a significant calculation
overhead during solving. Indeed, each propagation requires to check and possibly add
several level dependencies. As a result, given the same execution time on the same in-
stance, PO-Glucose performs on average about 40% less clause checks (i.e. the number
of executions of the innermost for loop at lines 4 to 21 of Alg. 2) than GLUCOSE. We
think this overhead can’t be significantly reduced unless we find some lazy strategy to
manage dependencies. Therefore, besides the CPU time used to solve each instance,
we also report the number of clauses checked for possible propagations during solving.
This quantity gives some insight about which proportion of the PO-GLUCOSE solv-
ing time is spent in the search itself and to what extent this time is due to dependency
management.

32

family #inst
TO TO-phase PO PO-least-undos PO-most-undos PO-least-deps PO-most-deps

#to time #to time #to time #to time #to time #to time #to time

pipe_sat_1.0 10 6 25 364 0 6 887 0 6 601 0 7 334 0 2 042 0 1 264 2 10 399

pipe_sat_1.1 10 1 7 258 0 1 182 1 3 766 1 4 010 0 186 0 185 1 3 820

pipe_unsat_1.0 13 5 23 172 7 25 627 5 19 456 5 19 697 5 19 192 5 20 338 4 17 742

pipe_unsat_1.1 14 5 20 706 7 28 460 6 23 591 6 23 130 6 22 837 6 23 149 6 22 198

pipe_ooo_unsat_1.0 9 2 10 757 1 6 989 2 11 670 3 13 321 2 10 613 2 10 799 2 10 420

pipe_ooo_unsat_1.1 10 1 11 457 4 30 563 1 12 153 2 16 185 2 15 909 2 16 485 1 11 592

total 66 20 98 714 19 99 708 15 77 237 17 83 677 15 70 870 15 72 236 16 76 196

Table 1: Compared performances of GLUCOSE without (TO) and with (TO-phase) phase saving, PO-GLUCOSE with the default chronological assertion
level heuristic (PO) and with 4 other heuristics based on the amount of instantiations undone by the backtrack (PO-least-undos, PO-most-undos) or on the
number of level dependencies added (PO-least-deps, PO-most-deps). For each series of benchmarks, containing #inst instances, the number of timeouts
(#to) and the total solving time in seconds (time) is given.

series #inst
TO TO-phase PO PO-least-undos PO-most-undos PO-least-deps PO-most-deps

#to checks #to checks #to checks #to checks #to checks #to checks #to checks

pipe_sat_1.0 10 6 60 962 0 174 962 0 74 034 0 104 876 0 23 970 0 12 816 2 45 065

pipe_sat_1.1 10 1 257 229 0 38 492 1 1 438 1 4 542 0 1 361 0 1 123 1 1 938

pipe_unsat_1.0 13 5 204 171 7 336 799 5 34 804 5 39 208 5 23 256 5 52 394 4 58 161

pipe_unsat_1.1 14 5 95 137 7 384 249 6 51 028 6 35 829 6 26 370 6 34 717 6 11 874

pipe_ooo_unsat_1.0 9 2 124 488 1 107 063 2 75 783 3 48 229 2 55 363 2 56 183 2 51 501

pipe_ooo_unsat_1.1 10 1 141 491 4 57 129 1 76 962 2 31 329 2 25 691 2 35 458 1 66 023

total 66 20 740 730 19 1 098 693 15 314 050 17 264 013 15 156 011 15 192 692 16 234 562

Table 2: Compared performances of the same GLUCOSE and PO-GLUCOSE variations on the same series of benchmarks. For each series, besides the
number of timeouts (#to), the total number of clause checks performed (checks, given in millions) is listed. When several solvers timed out on the same
instance, they were considered as having all needed the same amount of clause checks (the smallest amount amongst timed out solvers).

33

4.1 Analyzing efficiency of PO-CDCL

In this subsection, we will consider the default version of PO-GLUCOSE as described
in [11] with a choice of the assertion level similar to its definition in a total order CDCL:
amongst all candidate assertion levels, the most recently created one is picked. This
default version is named PO in all tables and figures of this paper. Results of GLUCOSE

with and without phase saving are labelled as TO-phase and TO respectively, TO-phase

being the default GLUCOSE setting.
As expected, when a conflict occurs during a CDCL solving, there is in practice

often a non-negligible quantity of instantiations between the assertion level and the
conflict level. Therefore, on our formal verification instances, PO-GLUCOSE locally
saves on average 15% of instantiations that would be deleted by a regular CDCL algo-
rithm (they are located in decision levels instantiated after the assertion level but not
depending on it). If we consider an entire solving trace, it however deletes on average
approximately the same number of instantiations per conflict than the original GLU-
COSE, as shown in Table 3. The efficiency of PO-GLUCOSE is thus not obtained by
accumulating instantiations faster than with a total order; saved instantiations are likely
to be deleted later. However, we will show that although instantiations are only saved
temporarily, they can have a significant impact on the overall search.

Tables 1 and 2 show respectively the total time and clause checks needed to solve
each benchmark family with this chronological heuristic, compared with performances
of the two total order variants. Both versions of GLUCOSE have very contrasted results:
the default version with phase saving clearly outperforms the version without phase sav-
ing on both satisfiable series, but conversely the version without phase saving performs
better on 3 of the 4 unsatisfiable families.

When comparing solving time for each series separately, the performance of PO-
GLUCOSE is generally close to the best performing GLUCOSE version and significantly
better than the other (except on pipe_ooo_unsat_1.0, where it requires a little more
time than the slowest GLUCOSE variant). It also never causes more than one additional
timeout than the best performing GLUCOSE version. Thanks to this more balanced be-
haviour, it significantly outperforms both GLUCOSE with and without phase saving
when considering the total solving time on all benchmarks, and manages to solve 4 to
5 more instances in the given time limit.

The cactus plots of Fig. 1 give a better view of the performances on individual in-
stances. Top figures show how many satisfiable and unsatisfiable instances respectively
can be solved within a given time limit. The top left figure indicates that PO-GLUCOSE

manages to solve many instances very quickly (13 out of 20 are solved in less than 30
seconds each). When the time limit increases, it is eventually beaten by the default setup
of GLUCOSE which is able to solve the 3 most difficult instances in a little less than 30
minutes while PO-GLUCOSE needs more time and fails to solve one of them within one
hour. It however easily outperforms GLUCOSE without phase saving.

On unsatisfiable instances (top right figure), PO-Glucose considerably outperforms
the default version of GLUCOSE with phase saving enabled, no matter what time limit is
considered. Within one hour, it solves 5 more instances than default GLUCOSE. GLU-
COSE without phase saving is however more efficient and slightly outperforms PO-

34

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500

#
 s

o
lv

e
d

time limit (s)

Time on satisfiable instances

TO
TO-phase

PO
PO-least-deps
PO-most-deps

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 s

o
lv

e
d

time limit (s)

Time on unsatisfiable instances

TO
TO-phase

PO
PO-least-deps
PO-most-deps

 0

 5

 10

 15

 20

 0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10 7e+10 8e+10

#
 s

o
lv

e
d

clause checks limit (M)

Clause checks on satisfiable instances

TO
TO-phase

PO
PO-least-deps
PO-most-deps

 0

 5

 10

 15

 20

 25

 30

 35

 0 2e+10 4e+10 6e+10 8e+10 1e+11 1.2e+11 1.4e+11

#
 s

o
lv

e
d

clause checks limit (M)

Clause checks on unsatisfiable instances

TO
TO-phase

PO
PO-least-deps
PO-most-deps

Fig. 1: Four cactus plots comparing the performances of two variants of GLUCOSE, without (TO) and with (TO-phase) phase saving, with the default
PO-CDCL (PO) and PO-CDCL with two dependency-counting heuristics (PO-least-deps, PO-most-deps). Left plots compare the algorithms on the 20
satisfiable instances, right plots on the 46 unsatisfiable instances. x-axis measures the solving time on top plots and the clause checks performed on bottom
plots.

35

GLUCOSE on high time limits, although the latter manages to solve more instances in
500 seconds or less.

Since about 40% of the solving time is an overhead due to handling level dependen-
cies, the performance of PO-GLUCOSE is even better when the number of clause checks
is considered. Bottom plots of Fig. 1 indicate that PO-GLUCOSE significantly outper-
forms both versions of GLUCOSE on most satisfiable and unsatisfiable instances. This
observation is confirmed by Table 2, which shows that PO-GLUCOSE often requires
dramatically less clause checks to solve the same amount of instances than GLUCOSE.
Overall, PO-GLUCOSE solves more instances than both GLUCOSE implementations
with twice to thrice less clause checks.

This efficiency can be explained by the effect of saved instantiations on the search.
Table 4 shows the average amount of clause checks necessary to reach a conflict for vari-
ous GLUCOSE and PO-GLUCOSE versions. This quantity is almost always dramatically
lowered by PO-GLUCOSE, no matter what assertion heuristic is used. The instantiations
saved by partial order backtracks, even if they are eventually deleted, seem to be often
relevant and help reaching conflicts much faster. As each conflict prunes a part of the
search space, partial order thus apparently dramatically improves this pruning, which
obviously should help in proving unsatisfiability faster, but in also guiding the search in
satisfiable instances towards branches of the search space containing models.

4.2 Assertion level heuristics

The default chronological assertion level choice used in the previous subsection was de-
signed to remain as close as possible to the original CDCL algorithm and evaluate the
efficiency gain that can be obtained solely by removing less instantiations during back-
tracks, without further modifying the search. However, we will show that this choice can
significantly modify the way the search space is explored, and that particular heuristics
can be used to further improve performances of PO-GLUCOSE.

Tests with the chronological assertion level choice showed that in 31% of the con-
flicts, there are several candidate assertion levels, and when it happens there are on av-
erage about 10 distinct candidate levels. The strategy used to choose the assertion level
thus can potentially have a significant impact on the entire search. Since the primary
goal of PO-CDCL is to save instantiations during backtracks, a straightforward local
heuristic (named PO-less-undos in tables) consists in picking the candidate assertion
level that will undo the least instantiations, i.e. that minimizes the quantity of variables
located in decision levels depending on the candidate assertion level. However, accord-
ing to Table 3, this strategy almost doesn’t modify the average number of undos per
conflict. Consequently, performances obtained with this heuristic are relatively close to
results of the default chronological heuristic, as shown in Tables 1 and 2. This seems
to indicate that the chronological heuristic already often picks assertion levels causing
few uninstantiations.

Surprisingly, the opposite heuristic of picking the assertion level that will cause the
most deletions (PO-most-undos) is much more interesting. Its performances on unsatis-
fiable instances are very close to performances of the chronological heuristic. However,
as shown in Tables 1 and 2, it dramatically reduces the time and clause checks needed
to solve satisfiable instances. pipe_sat_1.0 is solved about 3 times faster and with 7

36

family #inst TO TO-phase PO PO-least-undos PO-most-undos PO-least-deps PO-most-deps
pipe_sat_1.0 10 1 226 2 053 1 751 1 698 3 680 4 602 1 972
pipe_sat_1.1 10 1 099 1 726 1 957 1 599 3 834 4 983 1 691

pipe_unsat_1.0 13 885 968 1 050 1 046 1 241 1 244 970
pipe_unsat_1.1 14 1 124 1 054 1 096 1 066 1 284 1 316 974

pipe_ooo_unsat_1.0 9 648 679 660 648 685 693 624
pipe_ooo_unsat_1.1 10 784 610 749 718 781 755 741

average 11 972 1 172 1 204 1 129 1 867 2 185 1 151

Table 3: Comparison of the average number of instantiations undone at each backtrack by various solvers on some benchmark series. Solvers and
benchmarks tested are the same as in Table 1.

series #inst TO TO-phase PO PO-least-undos PO-most-undos PO-least-deps PO-most-deps
pipe_sat_1.0 10 5 164 276 18 23 13 9 37
pipe_sat_1.1 10 2 999 16 11 17 6 10 25

pipe_unsat_1.0 13 1 214 1 499 21 28 18 10 39
pipe_unsat_1.1 14 203 1 271 19 21 13 9 19

pipe_ooo_unsat_1.0 9 99 13 7 8 5 4 7
pipe_ooo_unsat_1.1 10 25 1 283 9 9 6 6 8

average 11 1 546 805 14 19 11 8 23

Table 4: Comparison of the average number of clause checks (in millions) needed to reach a conflict by various solvers on some benchmark series. Solvers
and benchmarks tested are the same as in Table 1. Note that the correlation between solving performances and the number of clause checks per conflict
can be confirmed by comparing both total order versions TO and TO-phase: the best performing version on a benchmark series is always the one with the
least checks per conflict.

37

times less clause checks than the best performing GLUCOSE version. pipe_sat_1.1 is
solved more than 6 times faster and with 28 times less clause checks.

On these satisfiable series, as indicated by Table 3, the most undos heuristic deletes
about twice more instantiations than default PO-GLUCOSE and both total order GLU-
COSE implementations. The performance of this heuristic is likely due to this large
amount of deletions, coupled to the frequent conflicts caused by partial order CDCL.
Our intuition was that keeping as many instantiations as possible would help building a
model of the instance faster, but apparently undoing as many instantiations as possible
is more useful. It indeed certainly allows to skip unsatisfiable parts of the search space
more quickly and to explore more various parts of this space.

Heuristics based on counting instantiations to be undone during the conflict have
the drawback to be highly local, and consequently they generally don’t reach their goal
globally. Indeed, the choice of the assertion level doesn’t only affect the current back-
track: dependencies are added between this level and all other levels involved in the
conflict. These additional dependencies increase the likelihood for the chosen assertion
level to be deleted in future conflicts. If the conflict clause involves n decision levels
(not including the conflict level), the assertion level will have to depend on all other
n − 1 levels, but some of these dependencies may already exist. Intuitively, picking
the candidate assertion level which will entail the least new dependencies should tend
to globally lower the average quantity of instantiations undone during a conflict. Con-
versely, we expect the opposite heuristic to delete more instantiations per conflict.

For some unexplained reason, it is exactly the opposite that happens. The least

dependencies strategy causes even more uninstantiations than the most undos heuris-
tic, causing a slight increase of solving time on unsatisfiable instances, but a further
improvement of performances on satisfiable instances. Figure 1 shows that with this
heuristic 17 of the 20 satisfiable instances are solved within 70 seconds, the 3 remain-
ing instances being solved in less than 500 seconds each. In contrast, 11 instances re-
quire more than 100 seconds and 3 more than 1 500 seconds with the best performing
GLUCOSE version.

On the other hand, the most dependencies heuristic performs poorly on satisfiable
instances but very well on unsatisfiable instances. Figure 1 shows that it is by far the
best tested solver in terms of checked clauses and that it even steadily outperforms the
best GLUCOSE version on all time limits.

This performance is explained by a sensible decrease of the average number of
undone instantiations per conflict compared to other PO-Glucose implementations, as
shown in Table 3. In the case of unsatisfiable instances, undoing less instantiations
seems to help focussing the search on the currently active part of the search space.
Favorizing successive conflicts in related parts of the search space results in a more
efficient pruning and ultimately requires less conflicts to prove unsatisfiability: regular
GLUCOSE with and without phase saving need on average about 7 and 4,6 millions
of conflicts respectively for solving unsatisfiable benchmarks. This number drops to
between 2 and 2,7 millions of conflicts for previous PO-GLUCOSE variants, and down
to 1,75 million with the most dependencies heuristic.

These dependencies-oriented heuristics and their contrasted efficiency suggest that
on SAT problems with low decision level interdependencies, satisfiability solving can

38

be significantly improved by using totally different strategies depending on the actual
satisfiability of the instance: if a model exists, it can be found easier if backtracks undo
many instantiations, which helps exploring the search space more dynamically. In the
unsatisfiable case, backtracks should at the opposite undo less instantiations to help
focus the search on the currently active search space and prove unsatisfiability with less
conflicts. Moreover, both types of strategies can be carried out by an appropriate choice
of assertion levels in a partial order CDCL search.

Satisfiability of instances with sparse level dependencies can thus be very efficiently
checked with PO-CDCL if the answer is known or speculated prior to solving. We think
it should be possible to design a more balanced intermediate strategy that would per-
form significantly better than total order CDCL regardless of the instance satisfiability.

5 Conclusion

In this paper, we further analyzed the partial order CDCL algorithm and its behaviour
on instances with sparse dependencies between decision levels. We showed that the in-
stantiations saved by the less destructive backtrack of PO-CDCL often allow to discover
conflicts dramatically faster, which helps to prune the search space more efficiently.
This behaviour explains the good solving performances observed on tested instances.
Moreover, we noticed the significant impact of the assertion level choice on the search
and designed several heuristics for this choice. According to our observations, opposite
strategies are relevant depending on whether the solved instance is or isn’t satisfiable. A
satisfying model of the problem can be found faster if the backtrack generally undoes
large parts of the assignment, allowing quicker moves in the search space. Conversely,
undoing a smaller average quantity of instantiations helps the solver to focus on the
currently active part of the search space and leads faster to a proof of unsatisfiability.
Finally, we showed that trying to locally control the amount of instantiations undone
by each individual backtrack is not the most efficient method; heuristics that choose
the assertion level according to the amount of level dependencies it introduces have a
stronger influence on the average quantity of assignment deletions.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI
2009. pp. 399–404

2. Bhalla, A., Lynce, I., de Sousa, J.T., Marques-Silva, J.: Heuristic-based backtracking relax-
ation for propositional satisfiability. Journal of Automated Reasoning 35(1–3), 3–24 (2005)

3. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM 5(7), 394–397 (1962)

4. Durairaj, V., Kalla, P.: Exploiting hypergraph partitioning for efficient boolean satisfiability.
In: HLDVT 2004. pp. 141–146

5. Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research 1, 25–46
(1993)

6. Huang, J., Darwiche, A.: A structure-based variable ordering heuristic for SAT. In: IJCAI-03.
pp. 1167–1172

39

7. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence 146(1), 43–75 (2003)

8. Li, W., van Beek, P.: Guiding real-world SAT solving with dynamic hypergraph separator
decomposition. In: ICTAI 2004. pp. 542–548

9. Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48(5), 506–521 (1999)

10. McAllester, D.A.: Partial order backtracking. Research note, MIT (1993)
11. Monnet, A., Villemaire, R.: CDCL with less destructive backtracking through partial order-

ing. In: PAAR 2012. pp. 124–138
12. Monnet, A., Villemaire, R.: Scalable formula decomposition for propositional satisfiability.

In: C3S2E 2010. pp. 43–52
13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an

efficient SAT solver. In: DAC 2001. pp. 530–535
14. Nadel, A., Ryvchin, V.: Assignment stack shrinking. In: SAT 2010. pp. 375–381
15. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability

solvers. In: SAT 2007. pp. 294–299
16. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal

of Algorithms 7(3), 309–322 (1986)
17. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal

verification of superscalar and VLIW microprocessors. Journal of Symbolic Computation
35(2), 73–106 (2003)

40

Efficient Support for Mode-Directed Tabling in the

YapTab Tabling System

João Santos and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jsantos,ricroc}@dcc.fc.up.pt

Abstract. Mode-directed tabling is an extension to the tabling technique that
supports the definition of mode operators for specifying how answers are inserted
into the table space. In this paper, we focus our discussion on the efficient support
for mode directed-tabling in the YapTab tabling system. We discuss 7 different
mode operators and explain how we have extended and optimized YapTab’s table
space organization to support them. Initial experimental results show that our
implementation compares favorably with the B-Prolog and XSB state-of-the-art
Prolog tabling systems.

1 Introduction

Tabling [1] is a recognized and powerful implementation technique that solves some
limitations of Prolog’s operational semantics in dealing with recursion and redundant
sub-computations. Tabling based models are able to reduce the search space, avoid loop-
ing, and always terminate for programs with the bounded term-size property. Tabling
consists of saving and reusing the results of sub-computations during the execution of a
program and, for that, the calls and the answers to tabled subgoals are stored in a proper
data structure called the table space. In a traditional tabling system, all the arguments
of a tabled subgoal call are considered when storing answers into the table space. When
a new answer is not a variant1 of any answer that is already in the table space, then it is
always considered for insertion. Therefore, traditional tabling systems are very good for
problems that require storing all answers. Mode-directed tabling [2] is an extension to
the tabling technique that supports the definition of selective criteria for specifying how
answers are inserted into the table space. The idea of mode-directed tabling is to use
mode operators to define what arguments should be used in variant checking in order
to select what answers should be tabled.

In a traditional tabling system, to evaluate a predicate p/n using tabling, we just
need to declare it as ‘table p/n’. With mode-directed tabling, tabled predicates are de-
clared using statements of the form ‘table p(m1, ...,mn)’, where the mi’s are mode op-
erators for the arguments. Implementations of mode-directed tabling are already avail-
able in systems like ALS-Prolog [2] and B-Prolog [3], and a restricted form of mode-
directed tabling can be also recreated in XSB Prolog by using answer subsumption [4].

1 Two (answer or subgoal) terms are considered to be variant if they are the same up to variable
renaming.

In this paper, we focus our discussion on the efficient implementation of mode
directed-tabling in the YapTab tabling system [5], which uses tries [6] to implement
the table space. Our implementation uses a more general approach to the declaration
and use of mode operators and, currently, it supports 7 different modes: index, first,
last, min, max, sum and all. To the best of our knowledge, no other tabling system sup-
ports all these modes and, in particular, the sum mode is not supported by any other
system. Experimental results, using a set of benchmarks that take advantage of mode-
directed tabling, show that our implementation compares favorably with the B-Prolog
and XSB state-of-the-art Prolog tabling systems.

The remainder of the paper is organized as follows. First, we introduce some back-
ground concepts about tabling. Next, we describe the mode operators that we propose
and we show some small examples of their use. Then, we introduce YapTab’s table
space organization and describe how we have extended it to efficiently support mode-
directed tabling. At last, we present some experimental results and we end by outlining
some conclusions.

2 Tabled Evaluation

In a traditional tabling system, programs are evaluated by storing answers for tabled
subgoals in an appropriate data structure called the table space. Similar calls to tabled
subgoals are not re-evaluated against the program clauses, instead they are resolved
by consuming the answers already stored in the corresponding table entries. During
this process, as further new answers are found, they are stored in their tables and later
returned to all similar calls.

Figure 1 illustrates the execution of a tabled program. The top left corner of the
figure shows the program code and the top right corner shows the final state of the table
space. The program defines a small directed graph, represented by two edge/2 facts,
with a relation of reachability, defined by a path/2 tabled predicate. The bottom of the
figure shows the evaluation sequence for the query goal path(a,Z). Note that traditional
Prolog would immediately enter an infinite loop because the first clause of path/2 leads
to a variant call to path(a,Z).

First calls to tabled subgoals correspond to generator nodes (nodes depicted by
white oval boxes) and, for first calls, a new entry, representing the subgoal, is added to
the table space (step 0). Next, path(a,Z) is resolved against the first matching clause call-
ing, in the continuation, path(a,Y) (step 1). Since path(a,Y) is a variant call to path(a,Z),
we do not evaluate the subgoal against the program clauses, instead we consume an-
swers from the table space. Such nodes are called consumer nodes (nodes depicted by
black oval boxes). However, at this point, the table does not have answers for this call,
so the computation is suspended.

The only possible move after suspending is to backtrack and try the second match-
ing clause for path(a,Z) (step 2). This originates the answer {Z=b}, which is then stored
in the table space (step 3). At this point, the computation at node 1 can be resumed with
the newly found answer (step 4), giving rise to one more answer, {Z=a} (step 5). This
second answer is then also inserted in the table space and propagated to the consumer
node (step 6), which originates the answer {Z=b} (step 7). This answer had already

42

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z)

1. path(a,Y), edge(Y,Z) 2. edge(a,Z)

3. Z=b

subgoals answers

0. path(a,Z)
3. Z=b
5. Z=a

Table

4. edge(b,Z) 6. edge(a,Z)

5. Z=a 7. Z=b
(fail)

Fig. 1: An example of a tabled evaluation

been found at step 3. Tabling does not store duplicate answers in the table space and,
instead, repeated answers fail. This is how tabling avoids unnecessary computations,
and even looping in some cases. A new answer is inserted in table space only if it is not
a variant of any answer that is already there. Since there are no more answers to con-
sume nor more clauses left to try, the evaluation ends and the table entry for path(a,Z)

can be marked as completed.

3 Mode-Directed Tabling

With mode-directed tabling, tabled predicates are declared using statements of the form
‘table p(m1, ...,mn)’, where the mi’s are mode operators for the arguments. We have
defined 7 different mode operators: index, first, last, min, max, sum and all. Arguments
with modes first, last, min, max, sum or all are assumed to be output arguments and only
index arguments are considered for variant checking. After an answer be generated, the
system tables the answer only if it is preferable, accordingly to the meaning of the
output arguments, than some existing variant answer. Next, we describe in more detail
how these modes work and we show some examples of their use in the YapTab system.

3.1 Index/First/Last Mode Operators

Starting from the example in Fig. 1, consider now that we modify the program so that
it also calculates the number of edges that are traversed in a path. Figure 2 illustrates
the execution of this new program. As we can see, even with tabling, the program does
not terminates. Such behavior occurs because there is a path with an infinite number of
edges starting from a, thus not verifying the bounded term-size property necessary to
ensure termination. In particular, the answers found at steps 3 and 7 and at steps 5 and
9 have the same answer for variable Z ({Z=b} and {Z=a}, respectively), but they are
both inserted in the table space because they are not variants for variable N.

43

2. edge(a,Z)

3. Z=b, N=1

0. path(a,Z,N)

...
(infinite answers)

4. edge(b,Z),
 N is 1+1

6. edge(a,Z),
 N is 2+1

5. Z=a, N=2 7. Z=b, N=3

1. path(a,Y,N1), edge(Y,Z), N is N1 + 1

8. edge(b,Z),
 N is 3+1

9. Z=a, N=4

:- table path/3.

path(X,Z,N) :- path(X,Y,N1), edge(Y,Z),
 N is N1+1.
path(X,Z,1) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z,N)

3. Z=b, N=1
5. Z=a, N=2
7. Z=b, N=3
9. Z=a, N=4
 ...

N = 1

Table

subgoals answers

Fig. 2: A tabled evaluation with an infinite number of answers

Knowing that the problem with the program in Fig. 2 resides on the fact that the third
argument generates an infinite number of answers, we can thus define the path/3 pred-
icate to have mode path(index,index,first). The index mode means that only the given
arguments must be considered for variant checking. The first mode means that only the
first answer must be stored. By considering this declaration, the answer {Z=b, N=3} is
no longer inserted in the table and execution fails. That happens because, with the first

mode on the third argument, the answer {Z=b, N=1} found at step 3 is considered a
variant of the answer {Z=b, N=3} found at step 7.

The last mode implements the opposite behavior of the first mode, i.e., it always
stores the last answer being found and deletes the previous one, if any. The last mode
has shown to be very useful for implementing problems involving Preferences [7] and
Answer Subsumption [8].

3.2 Min/Max Mode Operators

The min and max modes allow to specify a selective criteria that stores, respectively,
the minimal and maximal answers found for an argument. To better understand their
behavior, Fig. 3 shows an example using the min mode. The program’s goal is to com-
pute the paths with the shortest distances. To do that, the path/3 predicate is declared as
path(index,index,min), meaning that the third argument should store only the minimal
answers for the first two arguments.

By observing the example in Fig. 3, we can see that the execution tree follows the
normal evaluation of a tabled program and that the answers are stored as they are found.
The most interesting part happens at step 8, where the answer {Z=d, C=3} is found.
This answer is a variant of the answer {Z=d, C=5} found at step 6. In the previous
example, with the first mode, the old answer would have been kept in the table. Here,
as the new answer is minimal on the third argument, the old answer is replaced by the
new answer.

44

5. Z=c, C=2 6. Z=d, C=5

2. edge(a,Z,C)

3. Z=b, C=1

0. path(a,Z,C)

4. edge(b,Z,C2),
 C is 1+C2

7. edge(c,Z,C2),
 C is 2+C2

8. Z=d, C=3

1. path(a,Y,C1), edge(Y,Z,C2), C is C1+C2

9. edge(d,Z,C2),
 C is 3+C2

10. Z=c, C=4
(fail)

:- table path(index,index,min).

path(X,Z,C) :- path(X,Y,C1), edge(Y,Z,C2),
 C is C1+C2.
path(X,Z,C) :- edge(X,Z,C).

edge(a,b,1).
edge(b,c,1).
edge(b,d,4).
edge(c,d,1).
edge(d,c,1).

0. path(a,Z,C)

3. Z=b, C=1
5. Z=c, C=2
6. Z=d, C=5
8. Z=d, C=3

Table

subgoals answers

Fig. 3: Using the min mode to compute the paths with the shortest distances

The max mode works similarly, but stores the maximal answer instead. In any case,
we must be careful when using these two modes as they may not ensure termination for
programs without the bounded term-size property. For instance, this would be the case
if, in the example of Fig.3, we used the max mode instead of the min mode.

3.3 Sum/All Mode Operators

Two other modes that can be useful are the sum and the all. The sum mode allows to sum
all the answers for a given argument and the all mode allows to store all the answers
for a given argument. Consider, for example, the program in Fig. 4 where the path/3

predicate is declared as path(index,index,min,all) meaning that, for each path, we want
to store the shortest distance of the path (the third argument) and, at the same time,
we want to store the number of edges traversed, for all paths with the same minimal
distances (the fourth argument).

The execution tree for the program in Fig. 4 is similar to the previous ones. The
most interesting part happens when the answer {Z=b, C=2, N=2} is found at step 8.
This answer is a variant of the answer found at step 3 and although both have the same
minimal value (C=2), the new answer is still inserted in the table space since the number
of edges (fourth argument) is different.

Notice that when the sum or all modes are used in conjunction with another mode,
like the min mode in the example, it is important to keep in mind that the aggregation
of answers made for the sum or all argument depends on the corresponding answer for
the min argument. Consider, for example, that in the previous example we had found
one more answer {Z=b, C=1, N=4}. In this case, the new answer would be inserted
and the answers {Z=b, C=2, N=1} and {Z=b, C=2, N=2} would be deleted because
the new answer corresponds to a shorter distance, as defined by the value C=1 in the
min argument.

45

N = 1

:- table path(index,index,min,all).

path(X,Z,C,N) :- path(X,Y,C1,N1),
 edge(Y,Z,C2),
 C is C1+C2, N is N1+1.
path(X,Z,C,1) :- edge(X,Z,C).

edge(a,b,2).
edge(a,c,1).
edge(c,b,1).

0. path(a,Z,C,N)
3. Z=b, C=2, N=1
4. Z=c, C=1, N=1
8. Z=b, C=2, N=2

Table

subgoals answers

3. Z=b, C=2 4. Z=c, C=1

2. edge(a,Z,C)

0. path(a,Z,C,N)

5. edge(b,Z,C2),
 C is 2+C2,
 N is 1+1

7. edge(c,Z,C2),
 C is 1+C2,
 N is 1+1

8. Z=b, C=2, N=2

1. path(a,Y,C1,N1), edge(Y,Z,C2), C is C1+C2, N is N1+1

9. edge(b,Z,C2),
 C is 2+C2,
 N is 2+1

10. fail6. fail

Fig. 4: Using the all mode to compute the paths with the shortest distances together with the
number of edges traversed

3.4 Related Work

The ALS-Prolog [2] and B-Prolog [3] systems also implement mode-directed tabling
using a very similar syntax. However, some mode operators have different names in
those systems. For example, the index, first and all modes are known as +, - and @,
respectively. The sum mode is not supported by any other system and B-Prolog also
does not implement the last and all modes. The + (index) mode in B-Prolog is assumed
to be an input argument, which means that it can only be called with ground terms.
On the other hand, B-Prolog includes an extra mode, named nt, to indicate that a given
argument should not be tabled and, thus, not considered to be inserted in the table space.
B-Prolog also extends the mode-directed tabling declaration to include a cardinality

limit that allows to define the maximum number of answers to be stored in the table
space [3].

Mode-directed tabling can also be recreated in the XSB Prolog system by using an-

swer subsumption [4]. XSB Prolog has two answer subsumption mechanisms. One is
called partial order answer subsumption and can be used to mimic, in terms of func-
tionality, the min and max modes. Consider that we want to use it with the program in
Fig. 3 that computes the paths with the shortest distances. Then, we should declare the
path/3 predicate as path(_, _, po(< /2)) meaning that the third argument will be evalu-
ated using partial order answer subsumption, where the predicate < /2 implements the
partial order relation. The other two arguments are considered to be index arguments.

The other XSB’s mechanism, called lattice answer subsumption, is more pow-
erful and can be used to mimic, in terms of functionality, the other modes. To
use it with the same example, we only need to change the path/3 declaration to
path(_, _, lattice(min/3)). Note that the min/3 predicate must have three arguments.
This is necessary since, with this mechanism, we can generate a third answer starting

46

from the new answer and from the answer stored in the table. For example, for the
shortest path problem, the predicate min/3 could be something like:

min(Old,New,Res) : − Old < New → Res = Old ; Res = New.

4 Implementation

In this subsection, we describe the changes made to YapTab in order to support mode-
directed tabling. We start by briefly presenting some background concepts about the
table space organization in YapTab and then we discuss in more detail how we have
extended it to efficiently support mode-directed tabling.

4.1 YapTab’s Table Space Organization

Like we have seen, during the execution of a program, the table space may be accessed
in a number of ways: (i) to find out if a subgoal is in the table and, if not, insert it; (ii)
to verify whether a newly or preferable answer is already in the table and, if not, insert
it; and (iii) to load answers from the tables.

With these requirements, a careful design of the table space is critical to achieve
an efficient implementation. YapTab uses tries which is regarded as a very efficient
way to implement the table space [6]. A trie is a tree structure where each different
path through the trie nodes corresponds to a term described by the tokens labeling
the traversed nodes. For example, the tokenized form of the term path(X, 1, f(Y)) is
the sequence of 5 tokens path/3, V AR0, 1, f/1 and V AR1, where each variable is
represented as a distinct V ARi constant [9]. Two terms with common prefixes will
branch off from each other at the first distinguishing token. Consider, for example, a
second term path(Z, 1, b), represented by the sequence of 4 tokens path/3, V AR0, 1
and b. Since the main functor, token path/3, and the first two arguments, tokens V AR0

and 1, are common to both terms, only one node will be required to fully represent this
second term in the trie, thus allowing to save three nodes in this case.

YapTab’s table design implements tables using two levels of tries. The first level,
named subgoal trie, stores the tabled subgoal calls and the second level, named an-

swer trie, stores the computed answers for a given call. More specifically, each tabled
predicate has a table entry data structure assigned to it, acting as the entry point for the
predicate’s subgoal trie. Each different subgoal call is then represented as a unique path
in the subgoal trie, starting at the predicate’s table entry and ending in a subgoal frame

data structure, with the argument terms being stored within the path’s nodes. The sub-
goal frame data structure acts as an entry point to the answer trie. Contrary to subgoal
tries, answer trie paths hold just the substitution terms for the free variables that exist in
the argument terms of the corresponding subgoal call [6].

f/1

VAR1

VAR0

1

VAR1

subgoal
trie

subgoal frame for
p(VAR0,1,VAR1)

VAR0

b

answer
trie

1st
argument

2nd
argument

3rd
argument

substitution
term for

1st argument

substitution
term for

3rd argument

table entry for
p/3

An example for a tabled predicate p/3 is
shown in Fig. 5. Initially, the table entry for p/3
points to an empty subgoal trie. Then, the sub-
goal p(X, 1, Y) is called and three trie nodes are
inserted to represent the arguments in the call:

47

one for variable X (V AR0), a second for inte-
ger 1, and a last one for variable Y (V AR1).
Since the predicate’s functor term is already rep-
resented by its table entry, we can avoid in-
serting an explicit node for p/3 in the subgoal
trie. Then, the leaf node is set to point to a
subgoal frame, from where the answers for the
call will be stored. The example shows two an-
swers for p(X, 1, Y): {X=V AR0, Y=f(V AR1)}
and {X=V AR0, Y=b}. Since both answers have
the same substitution term for argument X , they
share the top node in the answer trie (V AR0). For
argument Y , each answer has a different substi-
tution term and, thus, a different path is used to
represent each.

When adding answers, the leaf nodes are chained in a linked list in insertion time
order, so that the recovery may happen the same way. In Fig. 5, we can observe that the
leaf node for the first answer (node V AR1) points (dashed arrow) to the leaf node of
the second answer (node b). To maintain this list, two fields in the subgoal frame data
structure point, respectively, to the first and last answer of this list (for simplicity of
illustration, these pointers are not shown in Fig. 5). When consuming answers, a con-
sumer node only needs to keep a pointer to the leaf node of its last loaded answer, and
consumes more answers just by following the chain. Answers are loaded by travers-
ing the trie nodes bottom-up (again, for simplicity of illustration, such pointers are not
shown in Fig. 5).

4.2 Mode-Directed Tabled Subgoal Calls

In YapTab, mode-directed tabled predicates are compiled by extending the table entry
data structure to include a mode array, where the information about the modes is stored.
In this mode array, the modes appear in the order in which the arguments are accessed,
which can be different from their position in the original declaration. For example,
index arguments must be considered first, irrespective of their position. Or, if using the
all and min modes in a declaration, all min arguments must be considered before any all

argument, since the all means that all answers must be stored, making meaningless the
notion of being minimal in this case. As we will see in Section 4.3, changing the order
is also strictly necessary to achieve an efficient implementation. In YapTab, the mode
information is thus stored in the order mentioned below, together with the argument’s
position:

1. arguments with index mode;
2. arguments with max or min mode;
3. arguments with all mode;
4. argument (only one is allowed) with sum or last mode;
5. arguments with first mode.

48

Figure 6 shows an example for a p(all,index,min) mode-directed tabled predicate.
The index mode is placed first in the mode array, then the min mode and last the all

mode.

index

min

all

2

3

1

table entry for
p(all,index,min)

Fig. 6: Mode array

During tabled evaluation, new tabled sub-
goal calls are inserted in their own subgoal tries
by following the order of the arguments in the
call. With mode-directed tabling, we follow the
order defined in the corresponding mode array.
For example, consider again the mode-directed
tabled predicate p/3 as declared in Fig. 6 and the subgoal call p(X,1,Y). Figure 7 shows
the difference between the resulting subgoal tries with and without mode-directed
tabling. The values in the mode array indicate that we should start by inserting first
the second argument of the subgoal call (1), then the third argument (Y or V AR0) and
last the first argument (X or V AR1).

(b)(a)

VAR0

1

VAR1

subgoal
trie

1

VAR0

VAR1

subgoal
trie

table entry for
p/3

table entry for
p(all,index,min)

Fig. 7: Subgoal tries for p(X,1,Y) considering
p/3 declared (a) with and (b) without mode-
directed tabling

The mode information is used when
creating the subgoal frame associated
with the subgoal call at hand. With
mode-directed tabling, subgoal frames
were extended to include a new array,
named substitution array, where the
mode information is stored, together
with the number of free variables asso-
ciated with each argument in the sub-
goal call. The argument’s order is the
same as in the mode array.

Figure 8 shows the substitution ar-
ray for the subgoal call p(X,1,Y). The
first position, corresponding to the ar-
gument with the constant 1, has no free variables and thus we store a 0 in the substi-
tution array. The other two arguments are free variables and, thus, they have a 1 in the
substitution array. It is possible to optimize the array by removing entries that have 0
variables and by joining contiguous entries with the same mode. As we will see next,
the substitution array plays an important role in the process of inserting answers in the
answer trie.

4.3 Mode-Directed Tabled Answers

index

min

all

0

1

1

subgoal frame for
p(1,VAR0,VAR1)

Fig. 8: Substitution array

Like in traditional tabling, tabled answers are
only represented by the substitution terms for
the free variables in the arguments of the cor-
responding subgoal call. However, for mode-
directed tabling, when we are considering the
substitution terms individually, it is important
to know beforehand which mode applies to each, and for that, we use the information
stored in the corresponding substitution array. Moreover, the substitutions must be con-

49

sidered in the same order that the variables they substitute have been inserted in the
subgoal trie.

Consider again the substitution array for the subgoal call p(X,1,Y). Now, if we find
the answer {X=f(a), Y=5}, the first binding to be considered is {Y=5} with min mode
and then {X=f(a)} with all mode. Since the answer trie is initially empty, both terms
can be inserted as usual. Later, if another answer is found, for example, {X=b, Y=3},
we begin the insertion process by considering the binding {Y=3} with min mode. As
there is already an answer in the table, we must compare both accordingly to the min

mode. Since the new answer is preferable (3 < 5), the old answer must be invalidated

and the new one inserted in the table. The invalidation process consists in: (a) deleting
all intermediate nodes corresponding to the answers being invalidated; and (b) tagging
the leaf nodes of such answers as invalid nodes. Invalid nodes are only deleted when
the table is later completed or abolished. Figure 9 illustrates the aspect of the answer
trie before and after the invalidation process.

subgoal frame for
p(1,VAR0,VAR1)

5

f/1

aanswer
trie

5

f/1

subgoal frame for
p(1,VAR0,VAR1)

3

b

a

(b)(a)

3

Fig. 9: Invalidating answers for p(X,1,Y) (a)
before and (b) after the invalidation process

Invalid nodes are opaque to subse-
quent subgoal calls, but can be still vis-
ible from the consumer calls already
in evaluation. Hence, when invalidating
a node, we may have consumers still
pointing to it. By deleting leaf nodes,
this would make consumers unable to
follow the chain of answers. An alter-
native would be to traverse the stacks
and update the consumers pointing to
invalidated answers, but this could be a
very costly operation.

Notice also that the mode’s order in the substitution array is crucial for the simplicity
and efficiency of the invalidation process. When, at a given node N , we decide that
an answer should be invalidated, the substitution array’s order ensures that all nodes
below node N (including N) are the ones we want to invalidate and that the upper
nodes are the ones we want to keep. This might not be the case if we used the original
order. For example, consider again the call p(X,1,Y) and the answers {X=f(a), Y=5} and
{X=b, Y=3}. Figure 10 illustrates the invalidation process of these answers, if using the
original declaration.

(b)(a)

subgoal frame for
p(VAR0,1,VAR1)

f/1

a

5answer
trie

f/1

a

subgoal frame for
p(VAR0,1,VAR1)

b

3

5

b

3

Fig. 10: Invalidating answers, without chang-
ing the insertion order, for p(X,1,Y) (a) before
and (b) after the invalidation process

To detect that the second answer is
preferable (3 < 5), we need to navi-
gate in the trie until reaching the leaf
node 5 for the first answer. Thus, the in-
validation process may require deleting
upper nodes (as the example in Fig. 10
shows) and/or traverse several paths to
fully detect all preferable answers (this
would be the case if we had two inter-
mediate answers with the same mini-
mal values, for instance {X=f(a), Y=5}

50

and {X=h(c), Y=5}), making therefore
the invalidation process much more
complex and costly.

4.4 Scheduling and Mode-Directed Tabling

In a tabled evaluation, there are several points where we may have to choose between
continuing forward execution, backtracking, consuming answers, or completing sub-
goals. The decision on which operation to perform is determined by the scheduling
strategy. The two most successful strategies are batched scheduling and local schedul-

ing [10].
Batched scheduling evaluates programs in a depth-first manner as does the WAM.

When new answers are found for a particular tabled subgoal, they are added to the table
space and the evaluation continues with forward execution. Only when all clauses have
been resolved, the newly found answers will be forwarded to the consumers. Batched
scheduling thus tries to delay the need to move around the search tree by batching the
consumption of answers.

Local scheduling is an alternative scheduling strategy that tries to complete subgoals
as soon as possible. The key idea is that whenever new answers are found, they are
added to the table space, as usual, but execution fails. Local scheduling thus explores
the whole search space for a tabled predicate before returning answers for forward
execution.

To the best of our knowledge, YapTab is the only tabling system that supports the
dynamic mixed-strategy evaluation of batched and local scheduling within the same
evaluation [11]. This is very important, because for mode-directed tabled predicates, the
ability of being able to use local evaluation can be crucial to correctly and/or efficiently
support some modes.

: − table num_links(index, sum).
num_links(A, 0) : − edge(_, A).
num_links(A, 1) : − edge(A, _).

: − table num_nodes(sum).
num_nodes(0).
num_nodes(1) : − num_links(_, _).

edge(a, b). edge(a, c). edge(b, c).

Fig. 11: A cascade of two mode-directed
tabled predicates using the sum mode

This is the case for the sum mode.
As it sums all the answers for a
given argument, we might end with
wrong results if we return partial
results instead of aggregating them
and only returning the aggregated
result. Consider, for example, the
two mode-directed tabled predicates
num_links/2 and num_nodes/1
in Fig. 11 and the query goal
num_nodes(N). If num_links/2
is evaluated using local scheduling,
we get the right result (N=3) but,
with batched scheduling, we end with
a wrong result (N=6). This occurs
because, with batched evaluation, the num_links(_, _) call in the second clause of
num_nodes/2 succeeds 2 times for each edge/2 fact.

51

preferable/aggregated
answer

batched
evaluation

mode-directed
tabled predicate

Fig. 12: Useless computations with
batched evaluation

Batched evaluation can also yield
useless computations for mode-directed
tabled predicates (see Fig. 12). Consider,
for example, a mode-directed tabled pred-
icate p/1 declared as p(max) and the
query goal:

: − p(Max), do_work(Max,Res).

With batched evaluation, the call to
do_work(Max,Res) will be executed
for each Max partial result computed by
p(Max), hence originating as many use-
less computations as the number of non-maximal results.

5 Experimental Results

In this section, we present some experimental results for a set of benchmarks that take
advantage of mode-directed tabling. The environment for our experiment was a ma-
chine with a AMD FX(tm)-8150 8-core processor with 32 GBytes of main memory
and running the Linux kernel 64 bits version 3.2.0. To put our results in perspective,
we compare our implementation, on top of Yap Prolog (development version 6.3), with
the B-Prolog (version 7.8 beta-6) and the XSB (version 3.3.6) systems, both using local
scheduling. For XSB, we adapted the benchmarks to use lattice answer subsumption (as
discussed in Section 3.4)2. For benchmarking, we used the following set of programs:

shortest(N) uses the min mode to determine all-pairs shortest paths in a graph repre-
senting the flight connections between the N busiest commercial airports in US3.

shortest_first(N) uses the first mode to extend the all-pairs shortest paths program to
also include the first justification for each shortest path.

shortest_all(N) uses the all mode to extend the all-pairs shortest paths program to also
include all the justifications for each shortest path.

shortest_pref(N) uses the last mode to solve the all-pairs shortest paths program using
Preferences [8].

knapsack(N) uses the max mode to determine the maximum number of items to in-
clude in a collection, from N weighted items, so that the total weight is equal to a
given value.

lcs(N) uses the max mode to find the longest subsequence common to two different
sequences of size N.

matrix(N) uses the min mode to implement the matrix chain multiplication problem
that determines the most efficient way to multiply a sequence of N matrices.

2 For programs using min/max modes, we also tried with partial order answer subsumption but,
unexpectedly, we got worst results.

3 http://toreopsahl.com/datasets

52

Table 1: Execution times, in milliseconds, for YapTab, B-Prolog and XSB and the respective
overhead ratios when compared with YapTab’s local evaluation

Programs
YapTab

B-Prolog XSB
Local Batched

shortest(300) 1,088 1,261 (1.16) 2.990 (2.37) 2,922 (2.69)
shortest(400) 1,544 1,785 (1.16) 4,216 (2.36) 4,321 (2.80)
shortest(500) 2,170 2,472 (1.14) 5,792 (2.34) 6,218 (2.87)
shortest_first(300) 1,394 2,641 (1.89) 3,225 (1.22) 5,013 (3.60)
shortest_first(400) 2,052 3,432 (1.67) 4,614 (1.34) 7,257 (3.54)
shortest_first(500) 2,866 4,228 (1.57) 7,400 (1.42) 10,328 (3.60)
shortest_all(300) 4,324 8,383 (1.94) n.a. (—) 61,803 (—)
shortest_all(400) 5,861 10,590 (1.81) n.a. (—) 122,985 (—)
shortest_all(500) 8,337 13,598 (1.63) n.a. (—) 239,451 (—)
shortest_pref(300) 2,882 4,241 (1.47) n.a. (—) 6,666 (2.31)
shortest_pref(400) 4,152 5,621 (1.35) n.a. (—) 9,932 (2.39)
shortest_pref(500) 5,773 7,473 (1.29) n.a. (—) 14,129 (2.45)
knapsack(1000) 1,013 998 (0.99) 837 (0.84) 2,684 (2.65)
knapsack(1500) 1,581 1,561 (0.99) 1,229 (0.79) 3,977 (2.52)
knapsack(2000) 2,037 2,040 (1.00) 1,582 (0.78) 5,473 (2.69)
lcs(1000) 1,196 1,416 (0.98) 2,900 (2.48) 3,060 (2.56)
lcs(1500) 2,768 3,560 (0.98) 5,784 (2.12) 7,128 (2.58)
lcs(2000) 4,864 6,053 (0.99) 10,116 (2.11) 13,338 (2.74)
matrix(100) 192 224 (1.17) 582 (2.60) 396 (2.06)
matrix(150) 925 1,076 (1.16) 2,549 (2.37) 1,610 (1.74)
matrix(200) 3,005 3,534 (1.18) 7,816 (2.21) 4,688 (1.56)
pagerank(1) 365 n.a. (—) n.a. (—) 128,377 (—)
pagerank(16) 813 n.a. (—) n.a. (—) > 10 min (—)
pagerank(36) 1,260 n.a. (—) n.a. (—) > 10 min (—)
Average (1.29) (1.82) (2.49)

pagerank(N) uses the sum mode to measure the rank values of web pages in a realistic
dataset of web links called search engines4, using N iterations.

Table 1 shows the execution times, in milliseconds, for running the benchmarks with
YapTab, B-Prolog and XSB. In parentheses, it also shows the overhead ratios against
YapTab with local evaluation. The execution times are the average of 3 runs. The entries
marked with n.a. correspond to programs using modes not available in B-Prolog. The
ratios marked with (—) mean that we are not considering them in the average results
(they correspond either to n.a. entries or to execution times much higher than YapTab).

In general, the results show that, for all combinations of experiments and systems,
there is no clear tendency showing that the overhead ratios increase or decrease as we
increase the size of the corresponding set of programs.

Comparing the results for local and batched evaluation, they show that, on average,
batched evaluation is around 29% worse than local evaluation. Batched evaluation gets

4 http://www.cs.toronto.edu/~tsap/experiments/download/download.

html

53

worse the more answers are inserted into the table space. This affects in particular the
shortest_first(), shortest_all() and shortest_pref() set of programs, which confirms
our discussion regarding the fact that batched evaluation is more suitable to useless
computations.

Regarding the comparison with the other systems, the results obtained for YapTab
clearly outperform those of B-Prolog and XSB. On average, B-Prolog and XSB are,
respectively, around 1.82 and 2.49 times worse than YapTab using local evaluation.

Please note that for B-Prolog and XSB we do not include the performance of some
programs into the average results. For B-Prolog, this is because these programs use the
all, last and sum modes, which are not supported in B-Prolog. For XSB, the execution
times for the shortest_all() and pagerank() are much higher than YapTab and including
them would have distorted the comparison between the three systems. To the best of our
knowledge, YapTab is thus the only system that supports the all, last and sum modes
and handles them efficiently.

6 Conclusions

We discussed how we have extended and optimized YapTab’s table space organization
to provide engine support for mode-directed tabling. In particular, we presented how we
deal with mode-directed tabled subgoal calls and answers and we discussed the role of
scheduling in mode-directed tabled evaluations. Our implementation uses a more gen-
eral approach to the declaration and use of mode operators and, currently, it supports 7
different modes. To the best of our knowledge, no other tabling system supports all these
modes and, in particular, the sum mode is not supported by any other system. Experi-
mental results on benchmarks that take advantage of mode-directed tabling, showed that
our implementation clearly outperforms the B-Prolog and XSB state-of-the-art Prolog
tabling systems. In particular, YapTab is the only system that efficiently handles pro-
grams that use the all mode. Further work will include extending our implementation
to support multi-threaded mode-directed tabling.

Acknowledgments

This work is partially funded by the ERDF (European Regional Development Fund)
through the COMPETE Programme and by FCT (Portuguese Foundation for Sci-
ence and Technology) within projects PEst (FCOMP-01-0124-FEDER-022701), HO-
RUS (PTDC/EIA-EIA/100897/2008) and LEAP (PTDC/EIA-CCO /112158/2009).
João Santos is funded by the FCT grant SFRH/BD/76307/2011.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM 43(1) (1996) 20–74

2. Guo, H.F., Gupta, G.: Simplifying Dynamic Programming via Mode-directed Tabling. Soft-
ware Practice and Experience 38(1) (2008) 75–94

54

3. Zhou, N.F., Kameya, Y., Sato, T.: Mode-Directed Tabling for Dynamic Programming, Ma-
chine Learning, and Constraint Solving. In: IEEE International Conference on Tools with
Artificial Intelligence. Volume 2., IEEE Computer Society (2010) 213–218

4. Swift, T., Warren, D.S.: Tabling with Answer Subsumption: Implementation, Applications
and Performance. In: European Conference on Logics in Artificial Intelligence. Number
6341 in LNAI, Springer-Verlag (2010) 300–312

5. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to logic pro-
grams. Theory and Practice of Logic Programming 5(1 & 2) (2005) 161–205

6. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access Mecha-
nisms for Tabled Logic Programs. Journal of Logic Programming 38(1) (1999) 31–54

7. Guo, H.F., Jayaraman, B., Gupta, G., Liu, M.: Optimization with Mode-Directed Pref-
erences. In: 7th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, ACM (2005) 242–251

8. Santos, J., Rocha, R.: Mode-Directed Tabling and Applications in the YapTab System. In:
Symposium on Languages, Applications and Technologies. (2012) 25–40

9. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimination Nets.
In: International Joint Conference on Theory and Practice of Software Development. Number
668 in LNCS, Springer-Verlag (1993) 61–74

10. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic Programs
through Alternative Scheduling Strategies. In: International Symposium on Programming
Language Implementation and Logic Programming. Number 1140 in LNCS, Springer-Verlag
(1996) 243–258

11. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of Tabled Logic
Programs. In: International Conference on Logic Programming. Number 3668 in LNCS,
Springer-Verlag (2005) 250–264

55

Profiling Large Tabled Computations using Forest

Logging

Terrance Swift

CENTRIA, Departamento de Informática, Faculdade de Ciencia e Tecnologia, Universidade
Nova de Lisboa, Portugal ⋆⋆.

Abstract. Knowledge representation systems that are based on the well-founded
semantics make use of HiLog, frame-based reasoning, defeasibility theories and
other expressive features. These constructs can be compiled into Prologs that have
good support for tabling, indexing and other extensions. However, the resources
used for query evaluation by such systems can be unpredictable, due both to the
power of the semantic features and to the declarative style typical of knowledge
representation rules. In such a situation, users need to understand the overall
structure of a computation and examine problematic portions of it. This prob-
lem, of profiling a computation, differs from debugging and justification which
address why a given answer was or wasn’t derived, and so profiling requires dif-
ferent techniques. In this paper we present a new technique called forest logging

which has been used to profile large, heavily tabled computations. In forest log-
ging, critical aspects of a tabled computation are logged; afterwards the log is
loaded and analyzed. As implemented in XSB, forest logging slows down execu-
tion of practical programs by a small constant factor, and logs of tens or hundreds
of millions of facts can be loaded and analyzed in minutes.

⋆⋆ Only abstract included in this version due to copyright restrictions.

On Comparing Alternative Splitting Strategies for

Or-Parallel Prolog Execution on Multicores

Rui Vieira, Ricardo Rocha, and Fernando Silva

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{revs,ricroc,fds}@dcc.fc.up.pt

Abstract. Many or-parallel Prolog models exploiting implicit parallelism have
been proposed in the past. Arguably, one of the most successful models is envi-

ronment copying for shared memory architectures. With the increasing availabil-
ity and popularity of multicore architectures, it makes sense to recover the body
of knowledge there is in this area and re-engineer prior computational models to
evaluate their performance on newer architectures. In this work, we focus on the
implementation of splitting strategies for or-parallel Prolog execution on multi-
cores and, for that, we develop a framework, on top of the YapOr system, that
integrates and supports five alternative splitting strategies. Our implementation
shares the underlying execution environment and most of the data structures used
to implement or-parallelism in YapOr. In particular, we took advantage of Ya-
pOr’s infrastructure for incremental copying and scheduling support, which we
used with minimal modifications. We thus argue that all these common support
features allow us to make a first and fair comparison between these five alter-
native splitting strategies and, therefore, better understand their advantages and
weaknesses.

1 Introduction

Detecting parallelism is far from a simple task, specially in the presence of irregular
parallelism, but it is commonly left to programmers. Research effort has been made
towards making specialized run-time systems more capable of transparently exploring
available parallelism, thus freeing programmers from such cumbersome details. Pro-
log programs naturally exhibit implicit parallelism and are thus highly amenable for
automatic exploitation.

One of the most noticeable sources of parallelism in Prolog programs is called or-

parallelism. Or-parallelism arises from the simultaneous evaluation of a subgoal call
against the clauses that match that call. When implementing or-parallelism, a main
difficulty is how to efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses. One of the most
successful models is environment copying [1,2], that has been efficiently used in the
implementation of or-parallel Prolog systems on shared memory architectures. Recent
advances in computer architectures have made our personal computers parallel with
multiple cores sharing the main memory. Multicores and clusters of multicores are now
the norm and, although, many parallel Prolog systems have been developed in the past,

evaluating their performance or even the implementation of newer computational mod-
els specialized for the multicores is still open to further research.

Another major difficulty in the implementation of any parallel system is to design
efficient scheduling strategies to assign computing tasks to workers waiting for work. A
parallel Prolog system is no exception as the parallelism that Prolog programs exhibit
is usually highly irregular. Achieving the necessary cooperation, synchronization and
concurrent access to shared data structures among several workers during execution is
a difficult task. For environment copying, scheduling strategies based on bottommost

dispatching of work have proved to be more efficient than topmost strategies [3]. An
important mechanism that suits bottommost strategies best is incremental copying [1],
an optimized copy mechanism that avoids copying the whole stacks when sharing work.
Stack splitting [4,5] is an extension to the environment copying model that provides
a simple, clean and efficient method to accomplish work splitting among workers. It
successfully splits the computation task of one worker in two complementary sets, and
was thus first introduced aiming at distributed memory architectures [6,7].

In this work, we focus on the implementation of splitting strategies for or-parallel
Prolog execution on multicore architectures and, for that, we present a framework, on
top of the YapOr system [2], that integrates and supports five alternative splitting strate-
gies. We used YapOr’s original splitting strategy [2] and two splitting strategies from
previous work [8], named vertical and half splitting, that split work based on choice
points, together with the new implementation of two alternative stack splitting strate-
gies, named horizontal [4] and diagonal splitting [7], in which the split is based on the
unexplored alternative matching clauses. All implementations take full advantage of the
state-of-the-art fast and optimized Yap Prolog engine [9] and share the underlying ex-
ecution environment and most of the data structures used to implement or-parallelism
in YapOr. In particular, we took advantage of YapOr’s infrastructure for incremental
copying and scheduling support, which we used with minimal modifications. We thus
argue that all these common support features allow us to make a first and fair compar-
ison between these five alternative splitting strategies and, therefore, better understand
their advantages and weaknesses.

The remainder of the paper is organized as follows. First, we introduce some back-
ground about environment copying, stack splitting and YapOr’s scheduler. Next, we
describe the five alternative splitting strategies and discuss their major implementation
issues in YapOr. We then present experimental results on a set of well-known bench-
marks and advance some conclusions and further work.

2 Environment Copying

In the environment copying model, each worker keeps a separate copy of its own envi-
ronment, thus enabling it to freely store assignments to shared variables without con-
flicts. Every time a worker shares work with another worker, all the execution stacks are
copied to ensure that the requesting worker has the same environment state down to the
search tree node1 where the sharing occurs. To reduce the overhead of stack copying,

1 At the engine level, a search tree node corresponds to a choice point in the stack.

58

an optimized copy mechanism called incremental copy [1] takes advantage of the fact
that the requesting worker may already have traversed one part of the path being shared.
Therefore, it does not need to copy the stacks referring to the whole path from root, but
only the stacks starting from the youngest node common to both workers.

As a result of environment copying, each worker can proceed with the execution
exactly as a sequential engine, with just minimal synchronization with other workers.
Synchronization is mostly needed when updating scheduling information and when ac-
cessing shared nodes in order to ensure that unexplored alternatives are only exploited
by one worker. Shared nodes are represented by or-frames, a data structure that workers
must access, with mutual exclusion, to obtain the unexplored alternatives. All other data
structures, such as the environment, the heap, and the trail do not require synchroniza-
tion.

3 Stack Splitting

Stack splitting was first introduced to target distributed memory architectures, thus aim-
ing to reduce the mutual exclusion requirements of environment copying when access-
ing shared nodes of the search tree. It accomplishes this by defining simple, clean and
efficient work splitting strategies in which all available work is statically divided in two
complementary sets between the sharing workers. In practice, stack splitting is a refined
version of the environment copying model, in which the synchronization requirement
was removed by the preemptive split of all unexplored alternatives at the moment of
sharing. The splitting is such that both workers will proceed, each executing its branch
of the computation, without any need for further synchronization when accessing shared
nodes.

The original stack splitting proposal [4] introduces two strategies for dividing work:
vertical splitting, in which the available choice points are alternately divided between
the two sharing workers, and horizontal splitting, which alternately divides the unex-
plored alternatives in each available choice point. Diagonal splitting [7] is a more elab-
orated strategy that achieves a precise partitioning of the set of unexplored alternatives.
It is a kind of mix between horizontal and vertical splitting, where the set of all un-
explored alternatives in the available choice points is alternately divided between the
two sharing workers. Another splitting strategy [10], which we named half splitting,
splits the available choice points in two halves. Figure 1 illustrates the effect of these
strategies in a work sharing operation between a busy worker P and an idle worker Q.

Figure 1(a) shows the initial configuration with the idle worker Q requesting work
from a busy worker P with 7 unexplored alternatives in 4 choice points. Figure 1(b)
shows the effect of vertical splitting, in which P keeps its current choice point and
alternately divides with Q the remaining choice points up to the root choice point. Fig-
ure 1(c) illustrates the effect of half splitting, where the bottom half is for worker P and
the half closest to the root is for worker Q. Figure 1(d) details the effect of horizontal
splitting, in which the unexplored alternatives in each choice point are alternately split
between both workers, with workers P and Q owning the first unexplored alternative
in the even and odd choice points, respectively. Figure 1(e) describes the diagonal split-
ting strategy, where the unexplored alternatives in all choice points are alternately split

59

(a) before sharing (b) vertical splitting (c) half splitting

(d) horizontal splitting (e) diagonal splitting

P

b1

a1

c1

d1

Root

CP1

CP2

CP3

CP4
c2

c3

d2

b2
b3

b4

a1 a2

Root

CP1

CP2

Q

b1

b2

b3

b4

a1

c1

d1

Root

CP1

CP2

CP3

CP4

d2

b1

a1 a2

Root

CP1

CP2

CP3

c2
c3

P

Q

P

b1

b2

b3

b4

a1 a2

c1

d1

Root

CP1

CP2

CP3

CP4
c2

c3

d2
idle

Q

P

b1 b3

a1

c1

d1

Root

CP1

CP2

CP3

CP4

b1

b2

b4

a1

c1

Root

CP1

CP2

CP3

CP4
c2

Q
d2

P

b1

b2

b4

a1

c1

d1

Root

CP1

CP2

CP3

CP4
c2

Q

b1 b3

a1 a2

c1

Root

CP1

CP2

CP3

CP4

c3

d2

c3

a2

Fig. 1: Alternative stack splitting strategies

between both workers in such a way that, in the worst case, Q may stay with one more
alternative than P . For all strategies, the corresponding execution stacks are first copied
to Q, next both P and Q perform splitting, according to the splitting strategy at hand,
and then P and Q are set to continue execution. As we will see, in some situations,
there is no need for any copy at all, and a backtracking action is enough to place the
requesting worker ready for execution.

4 YapOr’s Scheduler and Original Splitting Strategy

We can divide the execution time of a worker in two modes: scheduling mode and
engine mode. A worker enters in scheduling mode whenever it runs out of work and
calls the scheduler to search for available work. As soon as it gets a new piece of work,
it enters in engine mode and runs like a sequential engine.

4.1 Work Scheduling

In YapOr, when a worker runs out of work, first the scheduler tries to select a busy
worker with excess of work load to share work. The work load is a measure of the

60

amount of unexplored alternatives in private nodes. There are two alternatives to search
for busy workers in the search tree: search below or search above the current node where
the idle worker is positioned. Idle workers always start to search below the current
node, and only if they do not find any busy worker there, they search above. The main
advantage of selecting a busy worker below instead of above is that the idle worker can
request immediately the sharing operation, because its current node is already common
to the busy worker, which avoids backtracking in the tree and undoing variable bindings.

When the scheduler does not find any busy worker with excess of work load, it
tries to move the idle worker to a better position in the search tree. By default, the idle
worker backtracks until it reaches a node where there is at least one busy worker below.
Another option is to backtrack until reaching the node that contains all the busy workers
below. The goal of these strategies is to distribute the idle workers in such a way that
the probability of finding, as soon as possible, busy workers with excess of work below
is substantially increased.

4.2 Work Sharing

Similarly to the Muse system[3], YapOr also follows a bottommost work sharing strat-

egy. Whenever an idle worker Q makes a work request to a busy worker P, the work
sharing operation is activated to share all private nodes of P with Q. P accepts the work
request only if its work load is above a given threshold value. In YapOr, accomplishing
this operation involves the following stages:

Sharing loop. This stage handles the sharing of P’s private nodes. For each private
node, a new or-frame is allocated and the access to the unexplored alternatives,
previously done through the CP_alt fields in the private choice points, is moved
to the OrFr_alt fields in the new or-frames. All nodes have now a correspond-
ing or-frame, which are sequentially chained through the fields OrFr_next and
OrFr_nearest_livenode. The OrFr_nearest_livenode field is used
to optimize the search for shared work. The membership field OrFr_members,
which defines the set of workers that own or act upon a node, is also initialized to
indicate that P and Q are sharing the corresponding choice points.

Membership update. Next, the old or-frames on P’s branch are updated to include
the requesting worker Q in the membership field (frames starting from P’s current
top_or_frame til Q’s top_or_frame). In order to delimit the shared region
of the search tree, each worker maintains two important variables, named top_cp
and top_or_frame, that point, respectively, to the youngest shared choice point
and to the youngest or-frame2.

Compute top or-frames. Finally, the new top or-frames in each worker are set,
and since all shared work is available to both workers, both get the same
top_or_frame. As we will see next, this is not the case for stack splitting, and

2 Please note that the use of the naming top in these two variables can be confusing since, due
to historical reasons, it refers to the top of the choice-point stack (where the root node is at the
bottom) and not to the top of the search tree (where the root node is at the top). Despite this
naming, our discussion keeps following a search tree approach with the root node always at
the top.

61

the top_or_frame variable of Q is set accordingly to the splitting strategy being
considered.

5 Supporting Alternative Splitting Strategies in YapOr

Extending YapOr to support different stack splitting strategies required some modifica-
tions to the way unexplored alternatives are accessed. In more detail:

– With stack splitting, each worker has its own work chaining sequence. Hence, the
control and access to the unexplored alternatives returned to the CP_alt choice
point fields and the OrFr_alt and OrFr_nearest_livenode or-frame fields
were simply ignored.

– For the vertical and half splitting strategies, the OrFr_nearest_livenode

field was recovered as a way to implement the chaining sequence of choice points.
At work sharing, each worker adjusts its OrFr_nearest_livenode fields so
that two separate chains are built corresponding to the intended split of the work.

– In order to reuse YapOr’s infrastructure for incremental copying and scheduling
support, the or-frames are still chained through the OrFr_next fields and still use
the OrFr_member fields for work scheduling.

Next, we detail the implementation of the vertical, half, horizontal and diagonal
splitting strategies as well as the incremental copy technique.

5.1 Vertical Splitting

The vertical splitting strategy follows a pre-determined work splitting scheme in which
the chain of available choice points is alternately divided between the two sharing work-
ers. At the implementation level, we use the OrFr_nearest_livenode field in
order to generate two alternated chain sequences in the or-frames, and thus divide the
available work in two independent execution paths. Workers can share the same or-
frames but they have their own independent path without caring for the or-frames not
assigned to them. Figure 2 presents the pseudo-code that implements the work sharing
procedure for vertical splitting.

The work sharing procedure starts from P’s youngest choice point (register B)
and traverses all P’s private choice points to create a corresponding or-frame by call-
ing the alloc_or_frame() procedure. In Fig. 2, the current_fr, next_fr
and nearest_fr variables represent, respectively, the or-frame allocated in the cur-
rent step, the or-frame allocated in the previous step, which is used to link to the
current or-frame by the OrFr_next field, and the or-frame allocated before the
next_fr, which is used as a double spaced frame marker in order to initiate the
OrFr_nearest_livenode fields. For the youngest choice point, the or-frame is
initialized with just the owning worker P in the membership field. The other or-frames
are initialized with both workers P and Q.

Next, follows the connection with the older and already stored or-frames. Here,
consideration must be given to the condition of P’s current top_or_frame. If it is

62

next_fr = NULL
nearest_fr = NULL
current_cp = B // B points to the youngest choice point
while (current_cp != top_cp) // loop until the youngest shared choice point
current_fr = alloc_or_frame(current_cp)
add_member(P, OrFr_member(current_fr))
if (next_fr)

OrFr_next(next_fr) = current_fr
add_member(Q, OrFr_member(current_fr))

if (nearest_fr)
OrFr_nearest_livenode(nearest_fr) = current_fr

nearest_fr = next_fr
next_fr = current_fr
current_cp = CP_b(current_cp) // next choice point on stack

// connecting with the older or-frames
if (next_fr)
if (top_or_frame == root_frame)

OrFr_nearest_livenode(next_fr) = DEAD_END
else

OrFr_nearest_livenode(next_fr) = top_or_frame
OrFr_next(next_fr) = top_or_frame

if (nearest_fr)
if (top_or_frame == root_frame)

OrFr_nearest_livenode(nearest_fr) = DEAD_END
else

OrFr_nearest_livenode(nearest_fr) = top_or_frame

// continuing vertical splitting
if (next_fr = NULL)
current_fr = top_or_frame

nearest_fr = OrFr_nearest_livenode(current_fr)
while (nearest_fr != DEAD_END)
OrFr_nearest_livenode(current_fr) = OrFr_nearest_livenode(nearest_fr)
current_fr = nearest_fr
nearest_fr = OrFr_nearest_livenode(current_fr)

Fig. 2: Work sharing with vertical splitting

the root or-frame, the OrFr_nearest_livenode fields of the new or-frames are
assigned to a DEAD_END value, which marks the ending point for unexplored work.
Otherwise, they are assigned to P’s current top_or_frame.

Finally, we need to decide where to continue the vertical splitting algorithm for
the older shared nodes. If no private work was shared, which means that we are
only sharing work from the old shared nodes, the starting or-frame is P’s current
top_or_frame. Otherwise, if some new or-frame was created, the starting or-frame
is the last created frame in the sharing loop stage, which was connected to P’s cur-
rent top_or_frame in the previous step. Either way, this serves the decision to
elect the or-frame where the continuation of vertical splitting, guided through the
OrFr_nearest_livenode field, should continue. The procedure then traverses the
old shared frames until a DEAD_END is reached and, at each frame, lies a reconnection
process of the OrFr_nearest_livenode field.

63

5.2 Half Splitting

The half splitting strategy partitions the chain of available choice points in
two consecutive and almost equally sized parts, which are chained through the
OrFr_nearest_livenode field of the corresponding or-frames. For that, the
choice points are numbered sequentially and independently per worker to allow the
calculation of the relative depth of the worker’s assigned choice points. In order to sup-
port this numbering of nodes, a new split counter field, named CP_sc, was introduced
in the choice point structure. Figure 3 presents the pseudo-code that implements work
sharing with horizontal splitting.

// updating the split counter
current_cp = B // B points to the youngest choice point
split_number = CP_sc(current_cp) / 2
while (CP_sc(current_cp) != split_number + 1)
CP_sc(current_cp) = CP_sc(current_cp) - split_number
current_cp = CP_b(current_cp) // next choice point on stack

CP_sc(current_cp) = 1 // middle choice point

// assign the remaining choice points to the requesting worker
middle_fr = CP_or_fr(current_cp)
if (middle_fr)
OrFr_nearest_livenode(middle_fr) = DEAD_END
current_fr = top_or_frame // top_or_frame points to the youngest or-frame
while (current_fr != middle_fr)

remove_member(Q, OrFr_member(current_fr))
current_fr = OrFr_next(current_fr)

else
// sharing loop stage

Fig. 3: Work sharing with half splitting

The work sharing procedure starts from P’s youngest choice point and updates the
split counter on half of the choice points, in decreasing order, until reaching the middle

choice point in P’s initial partition, which gets a split counter value of 1. These are the
half choice points that, after sharing, will be still owned by P. The other half will be
assigned to the requesting worker Q.

After updating the split counter, we can distinguish two different situations. The
first situation occurs when there are more old shared choice points than private in P’s
branch, in which case the middle choice point is already assigned with an or-frame.
Thus, there is no need for the sharing loop stage, the middle frame is assigned to a
DEAD_END, to mark the end of P’s newly assigned work, and the requesting worker
Q is excluded from all or-frames from the top frame til the middle frame. The second
situation occurs when the middle choice point is private, in which case the remaining
choice points are updated to belong to Q, which includes allocating and initializing the
corresponding or-frames.

64

5.3 Horizontal Splitting

In the horizontal splitting strategy, the unexplored alternatives are alternately di-
vided in each choice point. For that, the choice points include an extra field, named
CP_offset, that marks the offset of the next unexplored alternative belonging to the
choice point. When allocating a private choice point, CP_offset is initialized with
a value of 1, meaning that the next alternative to be taken has a displacement of 1 in
the list of unexplored alternatives. This is the usual and expected behavior for private
choice points.

When sharing work, we follow YapOr’s default splitting strategy where a new or-
frame is allocated for each private choice point in P and then all or-frames are updated
to include the requesting worker Q in the membership field. Next, to implement the
splitting process, we double the value of the CP_offset field in each shared choice
point, meaning that the next alternative to be taken in the choice point is displaced two
positions relatively to the previous value. Finally, we adjust the first alternative at each
choice point for the workers P and Q. Recall from Fig. 1 that P must own the first
unexplored alternative in the even choice points and Q the first unexplored alternative
in the odd choice points. Figure 4 shows the pseudo-code for this procedure.

// the sharing worker P starts the adjustment
if (sharing worker) adjust = TRUE else adjust = FALSE
current_cp = top_cp
while(current_cp != root_cp) // loop until the root choice point
alt = CP_alt(current_cp)
if (alt != NULL)
offset = CP_offset(current_cp)
CP_offset(current_cp) = offset * 2
if (adjust)

CP_alt(current_cp) = get_next_alternative(alt, offset)
current_cp = CP_b(current_cp) // next choice point on stack
adjust = !adjust

Fig. 4: Work sharing with horizontal splitting

5.4 Diagonal Splitting

Diagonal splitting is an alternative strategy that implements a better overall distribu-
tion of unexplored alternatives between workers. Diagonal splitting is based on the
alternated division of all alternatives, regardless of the choice points they belong to.
This strategy also follows YapOr’s default splitting strategy and uses the same offset
multiplication approach as presented for horizontal splitting, but takes into account the
number of unexplored alternatives in a choice point to decide how the partitioning will
be done in the next choice point.

When a first choice point with an odd number of alternatives (say 2n+ 1) appears,
the worker that must own the first alternative (say Q) is given n + 1 alternatives and
the other (say P) is given n. The workers then alternate and, in the next choice point,

65

P starts the partitioning. When more choice points with an odd number of alternatives
appear, the split process is repeated. At the end, Q and P may have the same number of
unexplored alternatives or, in the worst case, Q may have one more alternative than P .
The pseudo-code for this procedure is shown next in Fig. 5.

// the sharing worker P starts the adjustment
if (sharing worker) adjust = TRUE else adjust = FALSE
current_cp = top_cp
while(current_cp != root_cp) // loop until the root choice point
alt = CP_alt(current_cp)
if (alt != NULL)

offset = CP_offset(current_cp)
CP_offset(current_cp) = offset * 2
if (adjust)

CP_alt(current_cp) = get_next_alternative(alt, offset)
n_alts = number_of_unexplored_alternatives(alt) / offset
if (n_alts mod 2 != 0) // workers alternate

adjust = !adjust
current_cp = CP_b(current_cp) // next choice point on stack

Fig. 5: Work sharing with diagonal splitting

5.5 Incremental Copy

In YapOr’s original implementation, the incremental copy process copies everything in
P’s stacks that is missing in Q. With stack splitting, it only copies the segments between
Q’s top_cp before and after sharing for the global and local stacks. For the trail stack,
the copy is the same since this is necessary to correctly implement the installation

phase [2], where Q installs from P the bindings made to variables belonging to the
common segments not copied from P .

Figure 6 illustrates the stack segments to be copied with incremental copy. For
vertical splitting, if P has private work, Q’s new_top_cp is assigned with the sec-
ond choice point in P’s choice point set (P[CP_b(B)]). If there is no private work,
the new_top_cp is assigned with the choice point corresponding to the or-frame
pointed by P[OrFr_nearest_livenode(CP_or_fr(old_top_cp))]. For
half splitting, the new_top_cp is always assigned with the choice point denoted
by P[CP_b(middle_cp)]. For the horizontal and diagonal splitting, the assigning
ranges are similar to YapOr’s original implementation.

Q[CP_h(old_top_cp)]

P[CP_h(B)]

P[B]

Q[old_top_cp] = Q[B]

P[TR]
P[CP_tr(B)]

Q[CP_tr(old_top_cp)]

Q[CP_h(new_top_cp)]

Q[new_top_cp]

Q[CP_tr(new_top_cp)]

Global
stack

Local
stack

Trail
stack

P’s stacks

Fig. 6: Segments to copy with incremental copy

We next discuss the
situations where Q’s
new top_or_frame,
assigned during shar-
ing, is older than Q’s
top_or_frame before
sharing. In such case, Q

does not copy any segment

66

from P and only needs to
move up in the search tree
in order to be consistent
with the new assigned
top_or_frame. In this
movement, we may have
to update the or-frames
corresponding to the back-
tracked path by removing
Q from the membership
fields and by executing
a checking phase. The
checking phase is necessary to avoid incoherent values in the CP_alt fields in Q’s
choice points not copied from P. For half splitting, it also avoids incoherent values
in the split counter fields for Q’s choice points not copied from P. We can say that
such incoherency can be caused by the independent work sharing operations with
different workers that make the common (not copied) stack segments of P and Q, to be
inconsistent in Q.

6 Experimental Results

In this section, we evaluate and compare the performance of the five splitting strategies
on a set of well-known benchmarks. The environment for our experiments was a multi-
core machine with 4 AMD Six-Core Opteron TM 8425 HE (2100 MHz) chips (24 cores
in total) and 64 GB of DDR-2 667MHz RAM, running Linux (kernel 2.6.31.5-127 64
bits) with Yap Prolog 6.3.2. The machine was running in multi-user mode, but no other
users were using it. For the benchmarks, we used the following set of programs:

cubes(N) a program that consists of stacking N colored cubes in a column in such a
way that no color appears twice in the same column for each side.

ham(N) a program for finding all the Hamiltonian cycles in a graph with N nodes, with
each node connected to 3 other nodes.

magic(N) a program to solve the Rubik’s magic cube problem in N steps.
maze(N) a program that solves a maze problem in N steps by moving an empty square

in a 4x4 grid.
nsort(N) a program for ordering a list of N elements using a naive algorithm and start-

ing with the list inverted.
queens(N) a program to solve the N-queens problem that analyzes the board state at

every step.
puzzle a program that solves a puzzle problem where the diagonals must add up to the

same amount.

All benchmarks find all the solutions for the given problem by simulating an au-
tomatic failure whenever a new solution is found. Each benchmark was executed 10
consecutive times and the results are the average of those executions.

67

We start by measuring the cost of the parallel strategies over the sequential system.
Table 1 presents the execution times, in seconds, for the set of benchmark programs,
when using the sequential version of Yap and the respective ratios when using the sev-
eral parallel models with one worker. In general, for all models, YapOr overheads result
from handling the work load register and from operations that (i) verify whether the
youngest node is shared or private, (ii) check for sharing requests, and (iii) check for
backtracking messages due to cut operations.

Table 1: Execution times, in seconds, for Yap’s sequential model and the respective overhead
ratios for YapOr running 1 worker with YapOr’s original splitting strategy (OS), vertical splitting
(VS), half splitting (1/2S), horizontal splitting (HS) and diagonal splitting (DS).

Programs Yap

YapOr / Yap

OS VS 1/2S HS DS

cubes(7) 0.200 1.050 1.080 1.070 1.110 1.135
ham(26) 0.350 1.169 1.180 1.177 1.094 1.100
magic(6) 5.102 1.045 1.036 1.005 1.245 1.252
magic(7) 45.865 1.051 1.021 1.007 1.251 1.261
maze(10) 0.623 1.064 1.050 1.050 1.273 1.207
maze(12) 10.558 1.057 1.041 1.035 1.268 1.214
nsort(10) 2.775 1.124 1.155 1.096 1.074 1.072
nsort(12) 368.862 1.128 1.074 1.057 1.081 1.082
queens(11) 1.216 1.039 1.234 1.051 1.036 1.107
queens(13) 47.187 1.025 1.165 1.053 1.043 1.039
puzzle 0.153 1.157 1.235 1.144 1.176 1.157

Average 1.083 1.116 1.068 1.150 1.148

Results in Table 1 show that for these set of benchmarks, YapOr’s overhead with
each of the splitting strategies is small, between 6.8% and 15%. This is in-line with the
overheads observed previously for YapOr and some of the splitting strategies [2,11,8].

Next, we assessed the performance of the or-parallel models, by running YapOr
with a varying number of workers, up to 24, although for simplicity here we only show
results for 16 and 24 workers. For fairness in the comparison of all strategies, we use the
sequential execution times as the base execution times, instead of considering the base
execution times with 1 worker for each strategy. In this way, the speedups do reflect
real gains from sequential execution times. The results are shown in Tables 2 and 3 and
the best speedup value among all strategies, which corresponds to the fastest execution
times, for each benchmark, is marked with a gray background color.

From Table 2 we can observe the overall performance of all strategies without re-
sorting to incremental copy optimization. The results show reasonably good speedups
with exception for half splitting. With 24 workers, YapOr’s original splitting shows the
best performance, followed by vertical splitting and then horizontal and diagonal split-

68

Table 2: Speedups for YapOr running 16 and 24 workers with YapOr’s original splitting strategy
(OS), vertical splitting (VS), half splitting (1/2S), horizontal splitting (HS) and diagonal splitting
(DS) without the incremental copy technique.

Programs

16 Workers 24 Workers

OS VS 1/2S HS DS OS VS 1/2S HS DS

cubes(7) 6.45 4.65 0.61 5.26 5.12 6.66 3.92 0.46 4.76 4.54
ham(26) 6.14 4.86 2.34 4.11 5.14 6.36 4.79 2.07 3.97 5.14
magic(6) 14.33 14.25 8.35 11.67 11.70 20.40 19.77 7.76 16.51 16.35
magic(7) 14.97 15.51 12.18 12.29 12.31 22.24 22.96 16.17 18.39 18.43
maze(10) 9.58 10.74 4.82 7.78 7.98 11.32 11.98 4.20 9.16 8.41
maze(12) 14.44 15.06 11.55 12.50 12.56 21.03 21.81 14.89 17.80 17.68
nsort(10) 10.63 11.37 9.91 9.94 10.16 13.73 12.50 12.06 12.50 12.33
nsort(12) 14.37 14.71 14.72 14.43 14.52 21.16 21.47 21.62 20.93 20.78
queens(11) 12.66 7.84 1.68 11.05 11.15 16.21 8.94 1.60 13.07 12.93
queens(13) 15.66 14.05 4.10 15.08 15.16 22.14 20.54 4.12 22.20 22.42
puzzle 3.82 2.21 2.25 3.00 3.12 3.73 1.91 1.45 2.59 2.68

Average 11.19 10.48 6.59 9.74 9.90 15.00 13.69 7.85 12.90 12.88

ting with minimal differences. For some benchmarks, such as the cubes and queens

benchmarks, half splitting does pretty badly.
Table 3 shows the overall performance for all strategies, but now using the incre-

mental copying optimization. The performance for all strategies improve significantly
for all benchmarks. Again, half splitting is the worst performing strategy, on average,
it performs about 14% less than the best performing strategy with 24 workers. Another
observation is that vertical, horizontal and diagonal splitting perform slightly close to
the original YapOr. The best overall performance with 16 and 24 workers is achieved
with vertical splitting.

Instead of using the sequential execution times as the base reference, if one uses
the execution times with 1 worker for each strategy, then the average speedups with
incremental copying and 24 workers for the original, vertical, horizontal and diagonal
splitting were very close and above 20.

7 Conclusions and Further Work

We have presented the integration of five alternative splitting strategies on top of the Ya-
pOr system for or-parallel Prolog execution on multicores. Our implementation shares
the underlying execution environment and most of the data structures used to implement
or-parallelism in YapOr.

Experimental results, on a multicore machine with 24 cores, showed that clearly
incremental copying optimization pays off in improving real performance in all strate-
gies. The results for all strategies are reasonably good and the average speedups over

69

Table 3: Speedups for YapOr running 16 and 24 workers with YapOr’s original splitting strategy
(OS), vertical splitting (VS), half splitting (1/2S), horizontal splitting (HS) and diagonal splitting
(DS) with the incremental copy technique.

Programs

16 Workers 24 Workers

OS VS 1/2S HS DS OS VS 1/2S HS DS

cubes(7) 8.00 13.33 6.45 13.33 12.50 13.33 14.28 4.00 16.66 15.38
ham(26) 10.00 10.29 7.95 10.00 11.29 9.45 7.60 4.48 7.14 9.45
magic(6) 14.96 15.46 15.27 12.41 12.47 22.08 22.87 22.77 18.41 18.41
magic(7) 15.15 15.64 15.46 12.52 12.50 22.63 23.40 22.96 18.67 18.78
maze(10) 13.54 15.19 14.83 12.46 12.71 18.32 22.25 21.48 18.32 18.87
maze(12) 15.12 15.59 15.25 13.18 13.46 22.36 23.30 22.75 19.73 19.95
nsort(10) 14.15 14.60 14.60 14.15 14.08 20.25 20.70 21.34 19.96 20.40
nsort(12) 14.18 14.36 14.43 14.04 14.26 21.59 22.28 22.16 21.69 21.85
queens(11) 14.65 13.66 9.57 14.82 14.82 20.26 17.62 6.75 20.26 20.96
queens(13) 15.75 14.51 13.87 15.35 15.32 23.44 21.60 15.90 22.99 22.91
puzzle 9.00 10.20 11.76 11.76 11.76 9.56 10.20 15.30 10.92 12.75

Average 13.13 13.89 12.68 13.09 13.20 18.48 18.74 16.35 17.71 18.16

all benchmarks is reasonably close, with exception for half splitting that performs a
little worse. However, these are preliminary results and further detailed statistics are
necessary to enable us to explain some apparently inconsistent results. For example,
half splitting performs badly with cubes and queens benchmarks, both with incremen-
tal and without incremental copying, but, on the other hand, it is the best performing
on the nsort(10) and puzzle benchmarks with incremental copying. To explain these
results, we need not only to gather low level statistics, during the execution, but also
understand in which manner the splitting strategy influences the scheduling of work.
A postmortem visualization of the search tree might also bring some insight in to this
analysis.

Although stack splitting was initially proposed for distributed memory architec-
tures, the results show that it is equally suitable for multicore architectures. This is an
interesting advantage of stack splitting since we could use it as the basis for a hybrid
execution model aiming at clusters of multicores. The idea is to combine workers into
teams. A team of workers might run on shared memory and use any splitting strategy
to distribute work. Different teams might be assigned to different cluster nodes and can
distribute work using stack splitting.

Acknowledgments

We thank the referees for their valuable comments and suggestions. This work is
partially funded by the ERDF (European Regional Development Fund) through the
COMPETE Programme and by FCT (Portuguese Foundation for Science and Tech-

70

nology) within projects PEst (FCOMP-01-0124-FEDER-022701), LEAP (PTDC/EIA-
CCO/112158/2009) and HORUS (PTDC/EIA-EIA/100897/2008).

References

1. Ali, K., Karlsson, R.: The Muse Approach to OR-Parallel Prolog. International Journal of
Parallel Programming 19(2) (1990) 129–162

2. Rocha, R., Silva, F., Santos Costa, V.: YapOr: an Or-Parallel Prolog System Based on En-
vironment Copying. In: Portuguese Conference on Artificial Intelligence. Number 1695 in
LNAI, Springer-Verlag (1999) 178–192

3. Ali, K., Karlsson, R.: Full Prolog and Scheduling OR-Parallelism in Muse. International
Journal of Parallel Programming 19(6) (1990) 445–475

4. Gupta, G., Pontelli, E.: Stack Splitting: A Simple Technique for Implementing Or-
parallelism on Distributed Machines. In: International Conference on Logic Programming,
The MIT Press (1999) 290–304

5. Pontelli, E., Villaverde, K., Guo, H.F., Gupta, G.: Stack splitting: A technique for efficient
exploitation of search parallelism on share-nothing platforms. Journal of Parallel and Dis-
tributed Computing 66(10) (2006) 1267–1293

6. Villaverde, K., Pontelli, E., Guo, H., Gupta, G.: PALS: An Or-Parallel Implementation of
Prolog on Beowulf Architectures. In: International Conference on Logic Programming.
Number 2237 in LNCS, Springer-Verlag (2001) 27–42

7. Rocha, R., Silva, F., Martins, R.: YapDss: an Or-Parallel Prolog System for Scalable Be-
owulf Clusters. In: Portuguese Conference on Artificial Intelligence. Number 2902 in LNAI,
Springer-Verlag (2003) 136–150

8. Vieira, R., Rocha, R., Silva, F.: Or-Parallel Prolog Execution on Multicores Based on Stack
Splitting. In: International Workshop on Declarative Aspects and Applications of Multicore
Programming, ACM Digital Library (2012)

9. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog System. Journal of Theory and
Practice of Logic Programming 12(1 & 2) (2012) 5–34

10. Villaverde, K., Pontelli, E., Guo, H., Gupta, G.: A Methodology for Order-Sensitive Exe-
cution of Non-deterministic Languages on Beowulf Platforms. In: International Euro-Par
Conference. Number 2790 in LNCS, Springer-Verlag (2003) 694–703

11. Santos Costa, V., Dutra, I., Rocha, R.: Threads and Or-Parallelism Unified. Journal of The-
ory and Practice of Logic Programming, International Conference on Logic Programming,
Special Issue 10(4–6) (2010) 417–432

71

Reversible Language Extensions and their Application

in Debugging

Zoé Drey1, José F. Morales1, and Manuel V. Hermenegildo2,1

1 IMDEA Software Institute, Madrid (Spain)
2 School of Computer Science, T. U. Madrid (UPM), (Spain)

Abstract. A range of methodologies and techniques are available to guide the
design and implementation of language extensions and domain-specific lan-
guages. A simple yet powerful technique is based on source-to-source transfor-
mations interleaved across the compilation passes of a base language. Despite
being a successful approach, it has the main drawback that the input source code
is lost in the process. When considering the whole workflow of program devel-
opment (warning and error reporting, debugging, or even program analysis), pro-
gram translations are no more powerful than a glorified macro language. In this
paper, we propose an augmented approach to language extensions for Prolog,
where symbolic annotations are included in the target program. These annota-
tions allow selectively reversing the translated code. We illustrate the approach
by showing that coupling it with minimal extensions to a generic Prolog debugger
allows us to provide users with a familiar, source-level view during the debugging
of programs which use a variety of language extensions, such as functional nota-
tion, DCGs, or CLP{Q,R}.

Keywords: language extensions, debuggers, logic programming, constraint program-
ming

1 Introduction

One of the key decisions when specifying a problem or writing a program to solve it
is choosing the right language. Even when using recent high-level and multi-paradigm
languages, the programmer often still needs precise, domain-specific vocabulary, no-
tations, and abstractions which are usually not readily available. These needs are the
main motivation behind the development of domain-specific languages, which enable
domain experts to express their solutions in terms of the most appropriate constructs.

However, designing a new language can be an intimidating task. A range of method-
ologies and tools have been developed over the years in order to simplify this process,
from compiler-compilers to visual environments [12]. A simple, yet powerful technique
for the implementation of domain-specific languages is based on source-to-source trans-
formations. Although in this process the source and target language can be completely
different, it is frequent to be just interested in some idiomatic extensions, i.e., adding
domain specific features to a host language while preserving the availability of most
of the facilities of this language. Examples of such extensions are adding functional

notation to a language that does not support it, adding a special notation for grammars
(such as Definite Clause Grammars (DCGs) [15]), etc. Such transformations have been
proposed in the context of object-oriented programming (e.g.,for Java, [14]), functional
programming (e.g.,for Haskell, [9]), or logic programming (the term_expansion
facility in most Prologs, or the extended mechanisms of [2,8]) In this approach, the
language implementations provide a collection of hooks that allow the programmer to
extend the compiler and implement both syntactic and semantic variations.

An important practical aspect is that, in addition to appropriate notation, the pro-
grammer also needs environments that help during program development. In particu-
lar, basic tools such as editors, analyzers, and, specially, debuggers are fundamental
to productivity. However, in contrast to the significant attention given to mechanisms
and tools for defining language extensions, comparatively few approaches have been
proposed for the efficient construction of such development environments for domain-
specific languages. In some cases ad-hoc editors, debuggers, analyzers, etc. have been
developed from scratch. However, this approach is time consuming, error prone, hard
to maintain, and usually not scalable to a variety of language extensions.

A more attractive alternative, at least conceptually, is to reuse the tools available
for the target language, such as its debuggers or analyzers. This can in principle save
much implementation effort, in the same way in which the source-to-source approach
leverages the implementation of the target language to support the domain-specific ex-
tensions. However, the downside of this approach is that these tools will obviously
communicate with the programmer in terms of the target language. Since a good part
of the syntactic structure of the input source code is typically lost in the transformation
process, these messages and debugger steps in terms of the target language are often not
easy to relate with the source level and then the target language tools are not really use-
ful for their intended purposes. For example, a debugging trace may display auxiliary
calls, temporary variables, and obscure data encodings, with no trivial relation with the
control or data domain at the source level. Much of that information is not only hard to
read, but in most cases it should be invisible to the programmer or domain expert, who
should not be forced to understand how the language at the source level is embedded in
the supporting language.

In this paper, we propose a method for recovering symbolically the source of par-
ticular translations (that is, reversing them and providing an unexpanded view when
required) in order to make target language level development tools useful in the pres-
ence of language extensions. Our solution is presented in the context of Ciao [8], which
uses a powerful language extension mechanism for supporting several paradigms and
(sub-)languages. We augment this extension mechanism with support for symbolic an-
notations that enable the recovery of the source code information at the target level. As
an example application, we use these annotations to parameterize the Ciao interactive
debugger, so that it displays domain-specific information, instead of plain Prolog goals.
Our approach requires only very small modifications in the debugger and the compiler,
which can still handle other language extensions in the usual way.

The paper is organized as follows: 2 presents a concrete extension mechanism
and illustrates the limitations of the traditional translation approach in our context. 3
presents our approach to unexpansion, and guidelines for instrumenting language ex-

73

tensions so that the intervening translations can be reversed as needed into their input
source code. 4 presents the application of the approach to the case of debuggers. Finally,
5 presents related work and 6 concludes and suggests some future work.

2 Language extensions and their limitations

We present a concrete language extension mechanism based on translations (the one
implemented in the Ciao language) and then illustrate the limitations of the traditional
translation-based extension approach in our context. In Ciao [8], language extensions
are implemented through packages [2], which encapsulate syntactic extensions for the
input language, translation rules for code generation to support new semantics, and
the necessary run-time code. Packages are separated into compile-time and run-time
parts. The compile-time parts (termed compilation modules) are only invoked during
compilation, and are not included in executables, since they are not necessary during
execution. On the other hand, the run-time parts are only required for execution and are
consequently included in executables. This phase distinction has a number of practical
advantages, including obviously the reduction of executable sizes.

More formally, let us assume that an extension for some language denoted as Le

is defined by the package PkgMode, and that the compiler passes include calls to a
generic expansion mechanism JexpandK, which takes a package, an input program in
the source language, and generates a program in the target language L. That is, given
JexpandKe = JexpandK(PkgMode), for a program Pe ∈ Le we can obtain the expanded
version JexpandKe(Pe) = P ∈ L. Note that in practice, Ciao contains finely grained
translation hooks, which allow a better integration with the module system and the
composition of translations [13]. This level of detail is not necessary for the scope
of this paper, and thus, for the sake of simplicity, the expansion will work on whole
programs at a time.

Functional notation. We illustrate the translation process in Ciao with an example
from the functional notation package [3]. This package extends the language with func-

tional-like syntax for relations. Informally, this extension allows including terms with
predicate symbols as part of data terms, while interpreting them as predicate calls with

an implicit last argument. It also allows defining clauses in functional style where the
last argument is separated by a := symbol (as well as other functionalities, such as
expanding goals in the last argument after the body). The translation can be abstractly
specified as a collection of rewrite rules such as:

(Clauses) trJ p(ā) := C :- B K = (p′(v̄, T) :- v̄ = ā, B, T = C)
(Calls) trJ q(. . . p(ā) . . .) K = (p′(ā, T), q(. . . T . . .))

The first rule describes the meaning of a clause in functional notation, where p′ is the
predicate in plain syntax corresponding to the definition of p in functional notation (i.e.,
using :=). The second rule must be applied using a leftmost-innermost strategy for ev-
ery p function symbol that appears in the goal q, where T is a new variable (skipping
higher-order terms). If SLD resolution is used, the evaluation order corresponds to ea-
ger, call-by-value evaluation (but lazy evaluation is possible and shown in [3]). We refer
to the actual implementation later in this section.

74

Source code (functional notation)

f(X) := X < 42 ?

(k(l(m(X))) * 3)

| 1000.

k(X) := X + 1.

l(X) := X - 2.

m(X) := X.

Target code (plain Prolog)

f(X,Res) :- X < 42, !,

m(X, M), l(X, L), k(X, K),

T is K * 3,

T = Res.

f(X,1000).

k(X,Res) :- Res is X+1.

l(X,Res) :- Res is X-2.

m(X,X).

Fig. 1: Example translation for functional notation.

PkgMode DbgMod

Pe JexpandK P JexpandK Pdbg

Fig. 2: The translation process and application of the standard debugger.

Example 1. In 1 we show an example program that defines a predicate f/2 in func-
tional notation and its translation into plain Prolog code. Its body contains nested calls
to k/2, l/2, m/2, and also syntactic sugar for a conditional (if-then-else) construct
(using the syntax: CondGoal ? ThenExpr | ElseExpr).

2.0.1 Forgetful Translations and Loss of Symbolic Information. Both the stan-
dard compilation and the translations for language extensions are typically focused on
implementing some precise semantics during execution. That is, the correctness of the
translation guarantees that for all programs Pe ∈ Le, the expected semantics JexecKe
for that language can be described in terms of a program P ∈ L and its corresponding
execution mechanism JexecK. That is, for all Pe ∈ Le there exists a P = JexpandKe(Pe)
so that JexecKe(Pe) = JexecK(P).

Most of the time, symbolic information at the source level is lost, since it is not
necessary at run time. In particular, such information removal and loss of structure is
necessary to perform important program optimizations (e.g.,assigning some variables
to registers without needing to keep the symbolic name, its relation to other variables
in the same scope, etc.). When programs are not necessarily executed, but manipulated
at a symbolic level, the translation-based approach is no longer valid on its own. For
example, assume a simple debugger that interprets the source and allows the user to
inspect variable values at each program point interactively. In this case the translation,
as a program transformation, must preserve not only the input/output behaviour but also
some other observable features (such as line numbers or variable names).

In order to explore the particular case of debuggers more closely, 2 illustrates the
translation process of a source program, using a compilation module PkgMode contain-

75

ing the translation rules for extension e. If the developer asks the Ciao interpreter to
debug this program, further instrumentation is applied that is also defined in part as a
language extension, DbgMod in 2; this instrumentation customizes the code by encap-
sulating it into a predicate that specifies whether a part of the code is spy-able or not.
The following example illustrates in a concrete case the limitations of this process.

Example 2 (Interactive debugging). Consider the code and transformation of 1. If the
target-level debugger is used without any other provision, following the process of 2,
debugging a call to f(3,T) amounts to debugging its translation, as illustrated in the
trace of 3 (the exit calls are omitted in order to save space). The problem of this trace
is twofold: first, the interactive debugging does not make explicit the actual source-
level predicate that is currently being tested. Second, understanding the trace forces the
developer to make the mental effort of analyzing the debugged data and mapping it back
to the source code. This effort increases if the source code contains operators that do not
exist on the target (Prolog) side. The first case can be easily overcome when operator
definitions are shared, e.g.,using a graphical editor and catching the operator with the
line number and the occurence number of the call. However, the second case implies
remembering the mapping between the source and the target operator. Furthermore,
things get even more tedious and intricate when one instruction in the source language
is translated into a composition of goals.

3 Building reversible extensions

In this section we provide an informal definition of unexpansion with respect to a lan-
guage extension. We then present guidelines in order to instrument a compilation mod-
ule for such a language extension. The purpose of this instrumentation is to drive the
process of reconstructing a program in terms of the language extension (or source lan-
guage) in which the program is written. Through this mechanism, a language extension
can be made reversible. To illustrate our objective, we apply the guidelines and param-
eterize one of the translation rules used in the functional notation extension.

3.1 A correspondence between expansion, unexpansion, and observers

We use the term unexpansion to designate the inverse of the expansion JexpandKe, that
is, the recovering of the original Pe source program from P . Unfortunately, this in-
verse is rarely a one-to-one mapping. For example, f(3,T) in L corresponds to both

2 2 Call: f(3,_6378) ?

3 3 Call: <(3,42) ?

4 3 Call: m(3,_6658) ?

5 3 Call: l(3,_6663) ?

6 4 Call: is(_6663,3-2) ?

...

9 3 Call: is(_6673,2*3) ?

10 3 Call: =(_6378,6) ?

Fig. 3: Excerpt of the display of the interactive debugger.

76

Pe P

Ve V

Obse(i)

JexpandKe

Obs(i)

Pe (P, Sym)

Ve V

Obse(i)

JexpandKsym
e

Obssym(i)

?

Obssym
e (i)

Fig. 4: Observation problem at the source level (left); Observation using symbolic information
(right).

T=f(3) and f(3,T) (with f/1 using functional notation). For another example, a
clause can either be translated in one or many clauses, as depicted in Figure 1 for f in
functional notation.

Not existing a unique solution can be confusing for the user and impractical for auto-
matic transformations. However, the most important use of unexpansion in our context
is to observe the behavior of only certain program aspects at the source language level.
In this case, unexpansion seems more treatable. For that purpose we define the term ob-

server accordingly: an observer is an interface that provides some specific source-level
information about a particular program. The observer can be either static or dynamic.
Specifically, we can consider as observers monitors (e.g.,interactive debuggers, tracers,
and profilers) for dynamic observation, and verifiers (e.g.,static analyzers and model
checkers) for static observation. Thus, a source-level view may correspond to the cur-
rent instruction being invoked in an interactive debugger, or to a trace of the memory
state, in a tracer, or perhaps the dependencies between the program variables, in a static
analyzer, all of them represented in terms of the source language abstractions.

The correspondance between expansion and unexpansion, in the context of an ob-
server, is sketched in Figure 4. We assume that we have observers Obse(i) and Obs(i)
for the source and target languages, respectively. We denote by i some particular ob-
servable aspect and by V the aspect (e.g.,“line numbers” and an integer). On the left
diagram we depict the impossibility of getting information at the Le level in general.
To provide the programmer with source-level observers, our approach relies on extend-
ing the expansion (JexpandKsym

e) with additional symbolic information (which can be
significantly smaller than the sources). Then, observers Obs

sym(i) can retrieve V (e.g.,a
single number encoding the row and columns) and map it back to Ve (e.g.,the row and
columns). This composition provides an effective Obs

sym
e (i).

We now propose guidelines for easily instrumenting the translation module of a
language extension, in such a way that observers can be parameterized with respect to
this instrumentation.

3.2 Instrumentation of a compilation module

Instrumenting a compilation module involves annotating its translation rules with
source code information that can then be used by an observer (i.e.,the debugger in

77

our application example). We illustrate the instrumentation process on the functional
extension example.

3.2.1 Guidelines. The first step in making a language extension reversible is to deter-
mine which parts of the source code need to be kept available in the expansion process.
The second step is to determine how and where to propagate this information, so that
it can be accessed whenever the developer requires observation during program execu-
tion. The third step is to determine the representation of the observable data.

Event and data analysis. What events do we want to observe? What do we want to ob-
serve about them? These selections should be useful for following the control flow and
state changes during program execution. For example, in a λ-calculus-like language,
the definition and the application of a function are two of the key elements to follow in
order to debug a program [16]. As another example, in a goal involving expressions in
functional notation, the debugger must be aware of which positions correspond to data
terms and which positions to predicate calls.

Decomposition. How is a source statement decomposed into target code? The answer to
this question implies in part how the data that we want to observe should be propagated.
For example, while the generic debugger may step through a number of target-level
statements, a source-specific debugger may have to consider a single source statement
as corresponding to all those steps. This applies for example in the conditional statement
C ? A | B of the functional notation, where A is translated into an (at least) two-goal
target code segment.

Representation. How should the data to be observed be represented? In a purely syn-
tactic extension, data always represents elements of the concrete syntax. Nevertheless,
it is interesting to consider this question when displaying the runtime context, such as
the state of the memory, for semantic extensions.

For example, in a CLP{Q,R} extension, variables are bound at run-time to complex
terms attached to attributed variables which reflect the internal, low-level representation
of the constraint store, while what the programmer would like to see is a symbolic
representation of the constraints among the variables in the source constraint language.

3.2.2 Instrumentation in action. To instrument the translation rules we propose to
annotate the target parameter of each rule (i.e., the argument in which the code gener-
ated by the translation is returned). This annotation (which we call the meta-annotation)
is defined as a macro which provides the symbolic information to drive the process of
recovering source code data within the observer. It may contain any data written in a
prolog syntax, enabling to recover some source level information.

For example, such annotation could be a list of variables and a function enabling to
recover their value in the source level notation from the target context (its environment
and store), or a single string to be displayed at the observer’s output at run time.

78

We currently distinguish two types of meta-annotations: the $clause_info

annotation, which is wrapped around target clauses, and the $goal_info meta-
annotation, which is wrapped around target goals. The purpose of each of these meta-
annotations is to gather symbolic information to recover a source-level statement or a
source-level call, respectively. Additionally, this distinction enables to handle clauses
and goals properly, in particular to retrieve their location in source modules.

A meta-annotation takes two arguments: the first argument is the wrapped element
(i.e., the original clause or goal(s) generated by the transformation), and the second one
provides symbolic information enabling to recover an “observable” representation of
the wrapped element, according to what the extension designer wants the programmer
to observe. We illustrate this annotation process with Example 3.

Example 3. Let us consider the translation rule for clause declarations in the functional
notation package. This rule, named defunc, translates such clause declarations into a
set of clauses:

defunc((FuncHead := FuncValOpts), Clauses) :-

FuncValOpts = (FuncVal1 | FuncValR), !,

Clauses = [Clause1 | ClauseR],

defunc((FuncHead := FuncVal1), Clause1),

(1)

defunc((FuncHead := FuncValR), ClauseR).

(2)

The FuncHead part on the left corresponds to a predicate declaration; the
FuncValOpts part on the right corresponds to goal invocations (this results from
the data analysis guideline). Notice that the declaration is decomposed into many goals
(marked (1) and (2)) if the | operator appears inside its right part. Therefore, the transla-
tion needs to be adapted slightly, in order to indicate to the debugger that the declaration
is to be treated as a single one. As illustrated in Example 4 below, the resulting adapta-
tion amounts to creating an intermediate predicate (defunc_rec, not really necessary
in this simple case), and to annotating the defunc rule (this results from the decom-
position guideline). Note that the $clause_info wrapper effectively groups all the
clauses into which the definition is expanded, and this can be detected by the observer
which will then treat it as a single clause.

The symbolic information attached to the annotation is represented by the contents
of variable SI. This variable is handled by an observer, according to the nature of
the program view it aims to provide. For example, line numbers, variables or function
names can be attached to it. It can even be left as a free variable, in cases where the
observer can automatically retrieve the information.

This approach based on meta-information enables us to envision a range of program
views, from simple syntax recovery to high-level representation of analysis results: an-
notations can be enriched with source-specific procedures to handle various represen-
tations of the target program, enabling different instantiations of the meta-annotation
variable. They can even hold procedures that perform advanced computations parame-
terized with the symbolic information (e.g.,counting the number of times a function is
invoked).

79

SI1
︷ ︸︸ ︷

f(X) :=

SCond
︷︸︸︷

Cond ?

SB1
︷︸︸︷

B1 |

SB2
︷︸︸︷

B2 .

f(X) := Cond ? B1.

f(X) := B2.

’$clause_info’([

(f(X, R) :-

’$goal_info’(trJCondK, SCond),

’$goal_info’((!, trJB1K), SB1)),

(f(X, R) :- ’$goal_info’(trJB2K,
SB2)

], SI1)

(Decomposition)

(Translation with sym-

bolic annotations)

Fig. 5: Instrumented translation of a clause in functional notation.

Example 4. The instrumentation of the translation rule for declarations in functional
notation writes as follows:

defunc((FuncHead := FuncValOpts), $clause_info(Clauses, SI)) :-

defunc_rec((FuncHead := FuncValOpts), Clauses),

SI = (FuncHead := FuncValOpts).

defunc_rec((FuncHead := FuncValOpts), Clauses) :-

FuncValOpts = (FuncVal1 | FuncValR), !,

Clauses = [Clause1 | ClauseR],

defunc_rec((FuncHead := FuncVal1), Clause1),

defunc_rec((FuncHead := FuncValR), ClauseR).

The same instrumentation method applies to goals, as outlined in the schema of Fig-
ure 5, which depicts a declaration of the form f(X) := Cond ? B1 | B2. In this
figure, the variable names Sx correspond to symbolic information for some program
elements (like goals or clauses), and the expressions trJxK correspond to a translation
of the term x. To avoid the overloading of the compilation module with annotations,
symbolic information can be stored in a specific table.

4 Application to the interactive debugger

We now illustrate the use of a reversible language extension to parameterize the generic
interactive debugger of Ciao. We describe the modifications performed on the compiler
and on the debugger, and show the resulting source-level trace for our initial example
of Figure 1.

80

with debugger spy info

compiler

interactive debugger

debug_module

use_module

translated
program

compilation module
source

program

uses

compiler

interactive debugger

translator extractor

meta-
controller

meta-
interpreter

compilation module

meta-annotation

source
program

uses

with debugger spy info

translated
program

controls

translator
controls

meta-
interpreter

Fig. 6: Implementation: original (left) vs. customized (right) infrastructure.

4.1 Implementation details

The overall process of making program behavior observable at the source level through
a debugger and reversible expansion is depicted in Figure 6.

The compiler is responsible for applying both the debugger compilation module and
the source language compilation module. Prior to applying the translation rules, it ex-
tracts the elements corresponding to sentences, clauses, and goals. During this step, in-
formation to locate the source program instructions are saved, such as the module name,
the line numbers for sentences, and the name of the goal being called. Then, sentences,
clauses, and goals are translated according to the specifications of the corresponding
compilation module. To enable the handling of the term_info meta-annotations in
Ciao, the translation step (represented by the translator box in Figure 6) of the
compiler needs to be customized. This is done by performing an extraction step (rep-
resented by the extractor box in Figure 6, right part) that modifies the translation
process when a meta-annotation is encountered.

In the case of the debugger, the required symbolic information corresponds to a
source node (e.g.,k(X) := X + 1 as in Figure 1). As a result, the extraction pro-
cess consists solely of storing each source node (either a clause or a goal) before its
expansion.

Once the source-level information is extracted and mapped to the appropriate tar-
get term (or composition of target terms, cf. the guidelines in Section 3), it is inter-
preted by the debugger. To step through the source code instead of the target code, the
debugger is equipped with a meta-controller, which checks the presence of a
meta-information call at the level of the translated program, and displays a trace step
accordingly. In particular, it is responsible for locating the name of the target goal in the
source nodes corresponding to this goal. Since the compiler provides the source code in-
formation as a Prolog term, this localization is straightforward. When a goal invoked in

81

the debugger has not been annotated (with $goal_info), the meta-controller looks
into the last $clause_info meta-annotation, and looks for the name of this goal
inside this meta-annotation. Otherwise, the standard, expanded debug information is
displayed.

4.2 Source-level tracing: the functional example revisited

With this instrumentation, Example 1 is now debugged in source code terms, as il-
lustrated in Figure 7. Note that the debugger now displays the complete declaration
(see second line) defining f, instead of a single part of a clause (see the second line
in Example 1). When a function evaluation returns a value (which is the case of all the
functions f/1, k/1, l/1, m/1), intermediate unifications are performed by the generic
debugger. When the debugger is instrumented with a meta controller (i.e.,the handler of
meta-annotations), these unification steps are ignored (skipped over), since they have
no representation in the original source code.

5 Related Work

There exist frameworks and generative approaches that facilitate the development of
DSL tools for programming, including debuggers [6,19]. For example, the Eclipse In-
tegrated Development Environment [6], provides an API and an underlying framework
that can greatly help in the development of a debugger [5]. Emacs is another example
of such environments, with facilities in the same line as Eclipse. However, these tools
are large and have a significant learning curve, and, more importantly, their facilities
are centered more around the graphical navigation of the source code and interfacing
with a command-line debugger, while the focus of our work is on bridging syntactic
or semantic aspects between two sides of a translation, within such a command-line
debugger. In that sense our work is complementary to (and in practice combines well
with) the facilities in Eclipse, Emacs, and related environments. Generative approaches
have been suggested (e.g.,based on aspect weaving into the language grammar [21]) in
order to reduce developer burden when using intricate APIs.

2 2 Call: ex0:f(3,_6371) ?

3 3 Call: f(3) := 3 < 42 ? k(l(m(3)))*3 | 1000 ?

4 4 Call: f(3) := 3 < 42 ? k(l(m(3)))*3 | 1000 ?

5 5 Call: m(3) := 3 ?

6 4 Call: f(3) := 3 < 42 ? (k(l(m(3)))*3 | 1000 ?

7 5 Call: l(3) := 3 - 2 ?

8 4 Call: f(3) := 3 < 42 ? k(l(m(3)))*3 | 1000 ?

9 5 Call: k(1) := 1 + 1 ?

10 3 Call: f(3):= 3 < 42 ? k(l(m(3))) * 3 | 1000 ?

2 2 Exit: ex0:f(3,12) ?

Fig. 7: An excerpt of the debugger trace, customized with source information.

82

However, none of these approaches provide a methodology for developing reli-
able and maintainable debuggers. As a result, the development of debuggers has re-
mained difficult, inciting DSL tool developers to implement ad-hoc solutions, through
extension-specific modifications and adaptations of the debugger code. For example,
SWI-Prolog includes a graphical debugger for Prolog with built-in support for DCGs
and Logtalk programs [20]. As mentioned in the introduction, this approach results in
useful debuggers but which are specific to concrete extensions. As a result, they have to
be modified again for other transformations.

Our objective has been to develop a more general approach, which we have illus-
trated by applying the same methodology to several extensions including functional
notation, DCGs, and CLP{Q,R}.

Lindeman et al. [11] have proposed recently a declarative approach to defining de-
buggers. To this end, they use SDF [18], a rewriting system, to instrument the abstract
syntax tree with debugging annotations. However, it does not seem obvious that their
approach could be applied to other observer tools. Indeed, instrumentation is achieved
by providing debugger-specific information, in the form of events. In contrast, our in-
strumentation process makes it possible to easily add and handle different kinds of
meta-information.

Unexpansion and decompilation only differ in the hypothesis used in decompilation:
that the original source code may not be available. It is interesting however to compare
to existing related decompilation approaches. Bowen [1] proposes a compilation pro-
cess from Prolog to object code which makes it possible to define decompilation as
an inverse call to compilation, provided some reordering of calls is performed. Gomez
et al. [7] also propose a decompilation process for Java based on partial evaluation.
However, these approaches have not been designed to be applicable to a large class of
different language extensions. More generally, while it is in theory possible (although
predictably hard with current technology) to implement fully reversible transforma-
tions, this approach runs into the problem that such inversions are non-deterministic in
general, in the sense that a given target code can be generated from multiple source
texts. Presenting the programmer with a different code that what is in the source pro-
gram could be even more confusing that debugging the target code directly.

More similar to our solution is the approach of Tratt [17], which also targets lan-
guage extensions, and where source information is injected into the abstract syntax tree
of the source program. This information is exploited to report errors in terms of the
language extension. However, they only discuss how to inject such information in the
syntax tree, and do not explain how to use this information when building or adapting
tools.

The macro-expansion passing style [4] approach makes it possible to easily im-
plement observers. Our approach differs from this one in the reliance on the existing
generic debugger (Ciao’s in our examples), and concentrates instead on what changes
are required in the debugger and the extension framework in order to handle meta-
information for unexpansion in a way that is independent from the concrete language
extension.

83

As a conclusion, we believe that our process proposal could be extended to other
Prologs, as the meta-annotations enable to hold symbolic information that is made avail-
able in most Prolog compilers, e.g., line numbers or variable names.

6 Conclusion and future work

We have presented a generic approach that enables a debugger for a target language to
display trace information in terms of the language extension in which a source program
is written, using the Ciao debugger as an example. The proposed approach is based
on an extension of the usual mechanisms for term expansion, and in particular of their
modular implementation in Ciao through packages. Specifically, we define a method-
ology for making relevant parts of the source text and other characteristics at the target
level by enriching the translation rules. We have shown that the compiler and the de-
bugger require only small adaptations in order to take this mechanism into account and
that these adaptations are generic in the sense that while the transformation rules are of
course specific to the extension, the compiler and debugger themselves do not require
further modification, for what is arguably a usefully large class of extensions. In par-
ticular, in the paper we have illustrated this approach by applying it on the functional
notation. In the system, we have successfully applied it also to the DCG and CLP{Q,R}
constraint packages.

In future work, we plan to extend the flexibility of the approach by enriching the
annotations, and being able to provide different annotations for different purposes. Also,
we feel that this initial work on augmenting the language extension mechanism already
provides us gives with the basis for adapting the Ciao pre-processor so that for example
errors, warnings, and other reports are made in terms of the source, domain-specific
language, for different extensions, without requiring further modification of the pre-
processor itself. The same would apply of course to the auto-documenter.

Finally, we could leverage Kishon et al.’s framework [10] to check the soundness
of our approach with regard to the intended semantics of a language extension. Doing
so would also enable to show the equivalence between the behavior of an ad-hoc source
level debugger and our customization of the target level debugger.

Acknowledgments

The research leading to these results has received funding from the Madrid Regional
Government under CM project P2009/TIC/1465 (PROMETIDOS), and the Spanish
Ministry of Economy and Competitiveness under project TIN-2008-05624 DOVES.

References

1. J. P. Bowen. From programs to object code and back again using logic programming:
Compilation and decompilation. Journal Of Software Maintenance Research And Practice,
5(4):205–234, 1993.

2. D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In International Con-

ference on Computational Logic, CL2000, number 1861 in LNAI, pages 131–148. Springer-
Verlag, July 2000.

84

3. A. Casas, D. Cabeza, and M. Hermenegildo. A Syntactic Approach to Combining Functional
Notation, Lazy Evaluation and Higher-Order in LP Systems. In The 8th International Sym-

posium on Functional and Logic Programming (FLOPS’06), pages 142–162, Fuji Susono
(Japan), April 2006.

4. R. K. Dybvig, D. P. Friedman, and C. T. Haynes. Expansion-passing style: A general macro
mechanism. Lisp and Symbolic Computation, 1(1):53–75, 1988.

5. Eclipse. How to write an Eclipse debugger. http://www.eclipse.org/articles/
Article-Debugger/how-to.html.

6. ECRC. Eclipse User’s Guide. European Computer Research Center, 1993.
7. M. Gómez-Zamalloa, E. Albert, and G. Puebla. Decompilation of Java Bytecode to Prolog

by Partial Evaluation. Information and Software Technology, 51(10):1409–1427, October
2009.

8. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. Morales, and G. Puebla. An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming,
12(1–2):219–252, January 2012. http://arxiv.org/abs/1102.5497.

9. P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28(4es):196,
1996.

10. A. Kishon, P. Hudak, and C. Consel. Monitoring semantics: A formal framework for spec-
ifying, implementing, and reasoning about execution monitors. In PLDI, pages 338–352,
1991.

11. R. T. Lindeman, L. C. Kats, and E. Visser. Declaratively defining domain-specific language
debuggers. In Proceedings of the 10th ACM international conference on Generative pro-

gramming and component engineering, GPCE ’11, pages 127–136, New York, NY, USA,
2011. ACM.

12. M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific lan-
guages. ACM Comput. Surv., 37(4):316–344, Dec. 2005.

13. J. F. Morales, M. V. Hermenegildo, and R. Haemmerlé. Modular Extensions for Modular
(Logic) Languages. In 21th International Symposium on Logic-Based Program Synthesis

and Transformation (LOPSTR’11), Odense, Denmark, July 2011. To appear.
14. N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework

for java. In Compiler Construction, pages 138–152, 2003.
15. F. Pereira and D. Warren. Definite clause grammars for language analysis - a survey of the

formalism and a comparison with augmented transition networks. Artificial Intelligence,
13:231–278, 1980.

16. A. P. Tolmach and A. W. Appel. A debugger for standard ml. J. Funct. Program., 5(2):155–
200, 1995.

17. L. Tratt. Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst., 30(6):31:1–31:40, Oct. 2008.

18. M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The
asf+sdf meta-environment: A component-based language development environment. In
Compiler Construction, pages 365–370, 2001.

19. M. G. J. van den Brand, B. Cornelissen, P. A. Olivier, and J. J. Vinju. Tide: A generic debug-
ging framework — tool demonstration —. Electron. Notes Theor. Comput. Sci., 141(4):161–
165, Dec. 2005.

20. J. Wielemaker. SWI-prolog — source-level debugger. http://www.swi-prolog.

org/gtrace.html.
21. H. Wu, J. Gray, S. Roychoudhury, and M. Mernik. Weaving a debugging aspect into domain-

specific language grammars. In Proceedings of the 2005 ACM symposium on Applied com-

puting, SAC ’05, pages 1370–1374, New York, NY, USA, 2005. ACM.

85

Parallel Local Search: Experiments with a PGAS-based

programming model

Rui Machado1,2, Salvador Abreu2, and Daniel Diaz3

1 Fraunhofer ITWM, Kaiserslautern, Germany
rui.machado@itwm.fhg.de

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

3 University of Paris 1-Sorbonne, France
Daniel.Diaz@univ-paris1.fr

Abstract. Local search is a successful approach for solving combinatorial opti-
mization and constraint satisfaction problems. With the progressing move toward
multi and many-core systems, GPUs and the quest for Exascale systems, paral-
lelism has become mainstream as the number of cores continues to increase. New
programming models are required and need to be better understood as well as
data structures and algorithms. Such is the case for local search algorithms when
run on hundreds or thousands of processing units. In this paper, we discuss some
experiments we have been doing with Adaptive Search and present a new parallel
version of it based on GPI, a recent API and programming model for the devel-
opment of scalable parallel applications. Our experiments on different problems
show interesting speedups and, more importantly, a deeper interpretation of the
parallelization of Local Search methods.

Keywords: Parallel Local Search, GPI, Adaptive Search, Constraint Program-
ming

1 Introduction

Systematic and complete search algorithms impose a limitation on the problem size
they are able to solve due to the exponential increase in processing time and memory
requirements. For this reason, heuristics-based search algorithms are used (and neces-
sary) for larger problem sizes. Instead of exploring the complete search space, heuristics
are used to guide the search to portions of the search space where solutions might be
found. Local Search and Meta-heuristics are an interesting paradigm for combinatorial
search and have been shown very effective for solving real-life problems [9,8]. But de-
spite the effectiveness of local search methods, for really large problem instances, the
running time required might still be substantial. One way to cope with this problem is
by introducing parallelism.

The current trend we are facing is an inevitable paradigm shift towards multi-
core technologies where parallelism is now omnipresent. In recent systems parallelism
spreads over several systems levels and heterogeneity is growing on the node as well
as on the chip level. Data must be maintained across a hierarchy of memory levels and

most applications and algorithms are not yet ready to take full advantage of available
capabilities. There is a demand for programming models with a flexible threads model
and asynchronous communication to cope with this gap.

PGAS (Partitioned Global Address Space) programming models have been dis-
cussed as an alternative to MPI [12] for some time. The PGAS approach offers the
developer an abstract shared address space which simplifies the programming task and
at the same time facilitates data-locality, thread-based programming and asynchronous
communication. GPI is a PGAS API that follows this philosophy and delivers the full
performance of RDMA-enabled4 networks directly to the application without interrupt-
ing the CPU.

In this paper we aim at bringing together both the need for parallelism to solve
large problem instances with Local Search and its availability in current systems. We
implemented a new parallel version of the Adaptive Search algorithm based on GPI that
goes beyond the simple independent multiple-walk. Our new design shows interesting
speedup gains on benchmarks with scalability problems and more importantly, a deeper
interpretation on the parallelization of Adaptive Search in particular and Local Search
methods in general, based on some characteristics of the benchmarks.

The rest of the paper is organized as follows: in section 2 we present GPI and its
programming model, hightlighting some its major features. Section 3 provides some
background on the Adaptive Search algorithm and section 4 focuses on its paralleliza-
tion. In section 5, we detail our parallelization strategy based on GPI and in section 6
we show the obtained results and compare it to the previous implementation. Section 7
examines and interprets our experimental findings, correlating them with the character-
istics of the problems. Finally, section 8 presents a short conclusion and perspectives of
future work.

2 GPI

GPI (Global address space Programming Interface) is a PGAS API for parallel applica-
tions running on clusters. The thin communication layer delivers the full performance
of RDMA-enabled networks directly to the application without interrupting the CPU.
Fig. 1 depicts the architecture of GPI.

The local memory is the internal memory available only to the node and allocated
through typical allocators (e.g. malloc). This memory cannot be accessed by other
nodes. The global memory is the partitioned global shared memory available to other
nodes and where data shared by all nodes should be placed. The DMA interconnect
connects all nodes and is through this interconnect that GPI operations are issued. At
the node level, the Manycore Threading Package (MCTP) is used to take advantage
of all cores present on the system and make use of the GPI functionality and global
memory. The MCTP was developed to help programmers take better advantage of new
architectures and ease the development of multi-threaded applications. The MCTP is a
threading package based on thread pools that abstracts the native threads of the plat-
form.

4 RDMA - Remote Direct Memory Access.

87

Global Memory

Node 1 Node 2 Node n

Local Memory

MCTP threads

Global Memory Global Memory

The Global Programming Interface (GPI)

DMA interconnect

MCTP threads MCTP threads

Local MemoryLocal Memory

Fig. 1: GPI

GPI is constituted by a pair of components: the GPI daemon and the GPI library. The
GPI daemon runs on all nodes of the cluster, waiting for requests to start applications
and the library holds the functionality available for a program to use: read/write global
data, passive communication, global atomic counters, collective operations. The two
components are described in more detail in our previous contribution [10].5

The GPI core functionality can be summarized as follows:

– read and write global data
– passive communication
– send and receive messages
– commands
– global atomic counters and spinlocks
– barriers
– collective operations

In the context of this work, the most important functionality is the read/write of global
data.

Two operations exist to read and write from global memory independent of whether
it is a local or remote location. One important point is that those operations are one-
sided that is, only the peer that issues such operation takes part in it. This is different
from a two-sided scheme (message passing) where the peer that sends (sender) has a
corresponding peer (receiver) that needs to issue a receive operation. Moreover, this
functionality is non-blocking and completely off-loaded to the interconnect, allowing
the program to continue its execution and hence take better advantage of CPU cycles.
The data movement does not require any intermediate buffers and protocols to maintain

5 GPI was previously known as Fraunhofer Virtual Machine (FVM).

88

those buffers. If the application needs to make sure the data was transferred (read or
write), it needs to call a wait operation that blocks until the transfer is finished and
asserting that the data is usable.

3 Adaptive Search

Local Search is based on the simple idea of “searching” by iteratively moving from one
solution to one of its neighbours. The neighborhood of a solution is the set of solutions
that can be obtained by applying a move. A move is a local change (hence the name
Local Search).

The mechanism used to select a neighbour and thus the definition of what con-
stitutes a neighbourhood is the main issue that differentiates between different local
search methods. In general, it is problem dependent and is related to the definition of
the objective function.

The Adaptive Search method [4] is one of many different local search methods and
has proved to be very efficient in the types of problems where it was tested. It is a
generic, domain-independent constraint-based local search method.

This meta-heuristic takes advantage of the structure of the problem in terms of con-
straints and variables and can guide the search more precisely than a single global cost
function to optimize, such as for instance the number of violated constraints. The algo-
rithm also uses an short-term adaptive memory in the spirit of Tabu Search in order to
prevent stagnation in local minima and loops. This method is generic, can be applied to
a large class of constraints (e.g. linear and non-linear arithmetic constraints, symbolic
constraints, etc) and naturally copes with over-constrained problems.

The input of the method is a problem in CSP format, that is, a set of variables with
their (finite) domains of possible values and a set of constraints over these variables.
For each constraint, an “error function” needs to be defined; it will give, for each tuple
of variable values, an indication of how much the constraint is violated. For instance,
the error function associated with an arithmetic constraint |X − Y | < c, for a given
constant c ≥ 0, can be max(0, |X − Y | − c).

Adaptive Search relies on iterative repair, based on variable and constraint error in-
formation, seeking to reduce the error on the worst variable so far. The basic idea is
to compute the error function for each constraint, then combine for each variable the
errors of all constraints in which it appears, thereby projecting constraint errors onto
the relevant variables. Finally, the variable with the highest error will be taken and its
value will be modified. In this second step, the well known min-conflict heuristic is
used to select the value in the variable domain which is the most promising, that is,
the value for which the total error in the next configuration is minimal. In order to pre-
vent being trapped in local minima, the Adaptive Search method also includes a short-
term memory mechanism to store variables to avoid (variables can be marked Tabu and
“frozen” for a number of iterations). It also integrates reset transitions to escape stag-
nation around local minima. A (partial) reset consists in assigning fresh random values
to some variables (also randomly chosen). A reset is guided by the number of variables
being marked Tabu. As in any local search method, it is also possible to restart from
scratch when the number of iterations reaches a given limit.

89

4 Parallel Adaptive Search

When parallelizing an algorithm one aims at identifying hotspots and sources of paral-
lelism. As with most of meta-heuristics, in Adaptive Search these sources of parallelism
are essentially: (1) the inner loop of the algorithm i.e.,computing and combining the er-
rors of variables and selecting the variable with highest error and (2) the search space
of the problem.
The problem with exploiting the inner loop of the algorithm is its granularity: it is too
fine-grained. The overhead associated with synchronization and dispatching of tasks
comes at a too high cost.

The other main source of parallelism is the search space (domain) of the problem
itself. Theoretically, this domain could be decomposed in several disjunct partitions to
be explored in parallel and without dependencies. However, in practice, several issues
arise with this. Each partition is in general still too large for a sequential execution
and more importantly, not the whole search space is equally valid and the exploration
should avoid areas of it that lead to poor solutions. Moreover, it is hard and expensive
to control and maintain the search conducted in the different partitions since a Local
Search algorithm only has a local view of the search space. One example is the class of
problems that have the best solutions clustered in a certain ’zone’ of the search space.
In this case, the algorithm should converge to that zone but in case of parallel execution
avoid too much redundant work.

The Adaptive Search method has already been subject to some research on its par-
allel behaviour. Previous work on parallel implementations of the Adaptive Search al-
gorithm have mostly focused on independent multiple-walks, requiring no commmuni-
cation neither shared memory between processing units.

In [5], the authors present a parallel implementation of the Adaptive Search algo-
rithm for the Cell/BE, a heterogenous multicore architecture. The system includes 16
processors (the SPEs) where each one starts with a different random initial solution.
The PPE acts as the master processor, waiting for the message of a found solution. For
such number of processing units, the results were very promising, achieving for some
problems linear speed-up.

Further work with Parallel Adaptive Search continued to follow the same approach
with no communication between workers but more interestingly, concentrating on clus-
ter systems with a larger number of cores.

In [2], the authors experiment and investigate the performance of a multiple
independent-walk on a system with up to 256 cores. The parallelization was done with
MPI and involves the introduction of a “communication step” which tests if termination
was detected (a solution was found) and terminates the execution properly.

The presented performance results are relatively modest in terms of parallel effi-
ciency and still far away for the ideal speed-up which contrasts with the results ob-
tained at a smaller scale (ie. up to 16 cores) in previous work. This points out the need
for better alternative strategies in order to better exploit large-scale parallelism.

Since that the independent multiple-walk approach still leaves space for improve-
ment in terms of parallel efficiency and scalability for some problems, new ways to take
take full advantage of parallel systems must be found.

90

In [1], the authors experiment with more complex strategies, where processes ex-
change messages resembling branch-and-bound methods where the bound is exchanged
between all participants. In their work, two alternatives are attempted: exchanging the
cost of the current solution of each process and the current cost plus the number of iter-
ations needed to achieve that cost. Unfortunately, both approaches do not achieve better
results than an independent multiple-walk.

5 Adaptive Search with GPI

Previous work with parallel Adaptive Search provides some groundwork to build upon
and has showed that some benchmarks exhibit scalability problems when run on a large
number of cores.
GPI seems, à priori, an interesting match to the problem of parallelization. Local search
methods work with local information, trying to progress and converge to solutions in
a global search space, requiring low global information. However, in a parallel setting,
communication and cooperation are crucial and in this case, required to overcome the
low parallel efficiency in some problems. The communication with GPI is based on
one-sided primitives that might benefit the local view on a global search space, allowing
threads to cooperate asynchronously. Moreover, communication is very efficient as GPI
exploits the full performance of the interconnect. Hence, we continue to explore ways
to further improve the parallelization of the Adaptive Search algorithm, exploiting GPI
and its programming model, with the objective of getting some further benefits. But
more importantly, to find mechanisms, concepts or limitations that are general.

In general, we can define the following objectives:

– further investigate and understand the behavior of parallel Adaptive Search on dif-
ferent problems.

– investigate the possibilites given by GPI and devise more complex mechanisms for
the parallel execution of Adaptive Search, improving its performance

– identify the, possibly new, problems generated by the previous point.

The new parallel version of Adaptive Search based on GPI includes two variants
which we name TDO (Termination Detection Only) and PoC (Propagation of Configu-
ration).

The TDO variant implements the simple independent multiple-walk and serves
mostly has our basis for comparison. First, with the existing MPI version, making sure
that the implementation is correct and the performance is as expected. Second, to al-
low us to measure the improvement (if present) obtained with the more complex PoC
variant. The PoC variant introduces more communication and sharing between working
threads, by means of GPI primitives and threaded model.

The next sections present the two different variants in more detail.

5.1 Termination Detection Only

The variant with Termination Detection Only (TDO) is rather straightforward and im-
plements the idea of an independent multiple-walk: all available cores execute the se-
quential version of the Adaptive Search algorithm.

91

We name this variant as Termination Detection Only since it subsumes itself to a
termination detection problem i.e.,detecting the termination of a distributed computa-
tion. Termination Detection is itself a subject of much research and several algorithms
have been and continue to be proposed([6,11,13]).

In the case of the Parallel Adaptive Search method, we are interested in detecting
termination as soon as one of the participating threads has found a solution, instead of
waiting for all threads to finish as some of them can potentially require too many steps
in order to find a solution (it is enough to be trapped in a ’zone’ of the search space with
no possible solutions).

The implementation of this variant is simple as it only involves the implementation
of a mechanism of triggering and detecting termination.

The GPI implementation follows a similar line of the previous work with MPI.
Whenever a thread finds a solution, it triggers termination by writing to its peers that it
has found a solution. Thus, the time of the parallel execution is the time taken by this
fastest thread.

Other threads must detect termination. This is only possible by introducing a com-
munication step inside the internal loop of the Adaptive Search algorithm. This is
required since there is no other way for a GPI instance to react on an remote event
(i.e.,termination) other than with communication. In this communication step, a check
for termination is done on a particular memory address that is written on termination
emmission as described above. The communication step introduces some overhead that
needs to be minimized. Thus the communication step is only executed every k iterations.

5.2 Propagation of configuration

The experiments in previous work and with the TDO variant have found that the simple
approach to parallelization, namely, the independent multiple-walk, proves itself insuf-
ficient in obtaining parallel efficiency on some problems specially when experimenting
with a large number of cores. Moreover, exchanging some simple information such as
the cost leads to no improvement.

Hence, we aim at communicating more and more meaningful information, intro-
ducing cooperation. By cooperation we mean mechanisms that allow threads to share
information about their state and thus benefit from the collective search. Also, we want
to exploit the potential and benefits of GPI and its programming model (one-sided com-
munication, no wait for communication, global access to data, threaded model, etc.).

One of the most powerful aspects of Local Search is its simplicity. And due to this
simplicity, it is hard to extract what could be considered as meaningful information to
be shared and communicated. One logical candidate not yet tried is the whole current
solution or configuration. Because the term solution is sometimes misleading, we refer
to the current solution as a configuration. The final solution represents the solution when
the algorithm stops.

The used implementation of the Adaptive Search method deals only with permu-
tation problems and thus, a configuration is the permutation vector of the problems’
variables.

Similarly to other approaches to the parallelization of local search methods which
introduce cooperation, several important questions arise, namely:

92

1. Who does the communication?
2. When to do the communication?
3. How to do the communication?
4. What to communicate?

Answering most of these questions requires carrying out actual experiments since the
best and correct answer it is not, in our opinion, foreseeable.

Our approach, which we call Propagation of Configuration (PoC), aims at answer-
ing these questions and give a better understanding of how cooperation can help with
increasing the scalability of Local Search in general and the Adaptive Search method
in particular.

Who does the communication?

Answering the question of who does the communication involves deciding whether a
single thread or all threads actually perform communication. Note that by communica-
tion we mean that, in a distributed setting, messages between nodes are exchanged. In a
single node and given the GPI programming model, we can benefit from the threaded-
model and shared memory. Notwithstanding the best option for this, it is clear that all
threads must benefit from it.

There are potential advantages and disvantages with both options. If all threads
perform communication, any shared resources must be protected by a mutual exclu-
sion mechanism, which might suffer from high contention. Moreover, when all threads
perform communication a lot more pressure on the interconnect follows, increasing
the parallel overhead and with possibly a lot of redundant communication happening
(the same configuration being communicated several times). But, on the other hand,
there will be a rapid progress towards the best promising neighborhood, intensifying
the search. Of course, this can be positive but can also become dangerous since most
of threads might get trapped in a local minimum or poor quality neighborhood. A good
trade-off between intensification and diversification must be achieved.

If a single master thread communicates, the effects are potentially the opposite:
less intensification but also less contention, less pressure on the interconnect and less
redundant work.

Preliminary tests made clear that the best option is the one with a single commu-
nicating thread since it reduces the parallel overhead. Plus, with GPI, all threads in a
single node benefit immediately from the results obtained by the master thread without
any exchange of messages.

When to do the communication?

The first possible answer to this question is to follow the same strategy as with the Ter-
mination Detection Only variant: introduce a communication step and perform commu-
nication every k iteration. The value of k is fundamental on how well this option might
perform. With a low value (e.g.,k = 10), a strong intensification of the search is achieved
but with the danger that threads might give up too soon on a promising neighborhood.

93

With a high value of k, we avoid that danger but less intensification will be achieved
since less information will be propagated.

The other option is to not interrupt the normal flow of the algorithm for communi-
cation, letting the search progress normally and independently until a local minimum
is achieved. Only at this point the configuration is propagated and possibly used. One
danger however is if threads don’t hit local minima that often, the propagation of config-
uration won’t progress and some threads might never see an up-to-date configuration,
achieving less intensification. A solution to this problem is to still have communica-
tion every k iteration, where threads simply keep the communication progressing but
only use the propagated information when they are in trouble i.e.,hit a local minimum.
However, this option increases the overhead by adding the extra communication step in
some iterations.

In principle the second option might seem more promising as no disturbance is
caused when the algorithm is progressing positively. But the forementioned danger
that the propagation of configurations won’t progress can have the consequence that
there won’t be a benefit from the communication scheme when compared to the simple
TDO variant. We performed some tests on a problem with low number of local minima
(Magic Square) and in fact, this is what happens.

Based on this reasoning, our chosen option to when to communicate is to have a
communication step. Moreover, we still need to detect termination thus a communica-
tion step must be present, even if with a much lower influence in terms of overhead.
Our PoC variant combines termination detection and the propagation of configurations
in a single step that happens every k iterations and we focus on finding an optimal value
for k.

How to do the communication?

With this question, we consider a single alternative. Since we aim at large scale execu-
tions, we need an efficient approach. Communication is done in a tree-based topology,
in which each node only communicates with its parent and children (if any). Currently, a
binary tree is used but this can be parametrized at initialization. At each communication
step, the propagation of the configuration is done either up (to parent) or down (to the
children) the tree. This only happens if a configuration was propagated from the chil-
dren (in case of the up direction) or from the parent (down direction). The propagation
of the communication behaves then like a wave, up and down the tree, with possibly
different configurations being propagated at different points of the tree and contributing
to some diversification.

Communication is performed by using GPI one-sided primitives. A thread posts a
write operation and returns immediately to work. The configuration to be propagated
will be directly written to the memory of the remote node asynchronously, without any
acknowledgement of it and overlapped with the algorithm’s computation. The remote
node on the other hand, on its communication step, checks if a valid configuration was
written to its memory, decides how to act on it and propagates its decision further.

We consider this single alternative since it gives us a good balance between in-
tensification and diversification and because having a tree-based topology provides an
efficient pattern to achieve communication scalability. The final objective is to have a

94

communication step with low overhead and here GPI provides us with mechanisms to
do so.

What to communicate?

The Adaptive Search method (as many other Local Search methods) is very simple and
includes very few elements that can be communicated.

The proposed option already mentioned before, is to communicate a full configura-
tion. To this, we only add the cost of the configuration as it is the metric to evaluate the
configuration. Plus, computing the cost everytime we communicate a configuration is a
source of extra overhead specially if a problem has a large number of variables.

Still, the question remains of which configuration to communicate. In our design the
best configuration i.e.,the configuration with better cost is communicated. At a commu-
nication step, a thread decides to propagate its own current configuration or the propa-
gated configuration(s).

Communicating configurations can be of advantage because it includes implicitly
more information about the state of the search since it, in a sense, provides a semi-
exact positioning within the whole search space. As the best configurations are being
propagated, other threads that are currently on poorer neighborhoods might benefit from
moving to the best ones. With the stochastic behavior of Adaptive Search and enough
diversification, the whole search procedure can be performed on the best neighborhoods
and possibly, converge faster to good solutions.

6 Experimental results

In this section we present the obtained results using different problems.

– all-interval: the All Interval Series problem (prob007 in CSPLib [7]),
– costas-array: the Costas Array problem,
– magic-square: the Magic Square problem (prob019 in CSPLib).

The experiments were conducted on a cluster system where each node includes a dual
Intel Xeon 5148LV (“Woodcrest”) (i.e.,4 CPUs per node) with 8 GB of RAM. The full
system is composed of 620 cores connected with Infiniband (DDR). Since we aim at
large scale, we performed our experiments on the system using up to 256 cores on some
problems and 512 cores on others. This difference is due to the fact that the system is
largely used and is hard to get access to the full system.

Note that Adaptive Search, as many other Local Search methods, has a stochastic
behavior to achieve diversity on the search. To benchmark such behavior, several exe-
cutions must be done and averaged. In our experiments we ran each problem 100 times
in order to obtain meaningful results.

We compare both GPI variants (TDO and PoC) with the MPI implementation from
previous work, which serves as our basis for comparison.

Fig. 2 depicts the obtained results for the Costas Array problem (CAP) with n=20.
As already observed in previous work [3], the CAP shows an almost optimal scal-

ability using an independent multiple-walk with no cooperation. We can observe that

95

 16

 32

 64

 128

 256

 16 32 64 128 256

S
p
e
e
d
-u

p

No. of cores

Costas Array 20

GPI
MPI

Fig. 2: Costas Array (n=20) on 256 cores (64 nodes)

our implementation obtains similar, although slight better, results. This is the expected
result since both approaches (TDO and MPI) are equivalent and a confirmation that our
implementation performs as expected.

Although we aspired at obtaining even better results with the PoC variant (possibly
super linear) for this problem, our experiments showed that this variant performs much
worse than the simple TDO variant and thus we only present the speedup obtained with
GPI using the TDO variant.

The Fig. 3 depicts the obtained results for the Magic Square problem up to 512
cores.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16 32 64 128 256 512

S
p
e
e
d
-u

p

No. of cores

Magic Square 200

GPI
MPI

PropConf (k=1000)
PropConf (k=10)

Fig. 3: Magic Square 200 on 512 cores (128 nodes)

96

For this problem we present the speedup obtained with the TDO and PoC variants
and compare it with the MPI version. The GPI TDO variant presents again, as expected,
results similar to the MPI version.

The Magic Squares benchmark is one of the problems that results in disappointing
scalability when using the simple independent multiple-walk and therefore a major tar-
get for improvement with more sophisticated approaches. Indeed, for this problem, our
PoC variant improves the performance and scales better as we increase the number of
cores used.

We wanted to answer the question of when to do communication: as we mentioned,
in our preliminary experiments it turned out that the best approach is to have a commu-
nication step every k iterations where the value of k is decisive. Surprinsingly, for this
benchmark, a lower value of k (k=10 in contrast to k=1000) improves scalability by a
factor of 2, achieving a speedup of 97 with 512 cores. Still a low parallel efficiency but
a large improvement over the other options and variants.

The obtained results for the last problem, the All Interval series (n=400), is shown
in Fig. 4.

 0

 5

 10

 15

 20

 25

 30

 16 32 64 128 256

S
p
e
e
d
-u

p

No. of cores

All Interval

GPI
MPI

PropConf(k=1000)

Fig. 4: All Interval 400 on 256 cores (64 nodes)

The All Interval Series benchmark is also one of the problems where good scala-
bility was hard to reach when using a large number of cores. In Fig. 4 it is possible to
observe this fact, where both the MPI and GPI TDO versions reach a modest speedup
factor of 20 and 25, respectively (with 256 cores). Our PoC variant however, performs
much worse than the TDO variant at a low number of cores but it improves as we in-
crease the number of cores, hinting that this variant can be of advantage if we increase
the number of cores and the problem size. In Fig. 4 we only depict the obtained results
for the PoC variant with k = 1000 since, for this benchmark, it is the best value. In
contrast to the Magic Squares benchmark, a lower value of k results in a much worse
performance.

97

7 Discussion

The experimental results presented large differences in how the different problems ben-
efit from parallelism and the implemented variants. One of our main objectives is to
investigate and understand why this happens.

In order to be able to draw some conclusions on our experiments, it is important
to characterize the chosen problems from different perspectives. We characterize the
problems using different information such as the number of iterations and local minima.
This characterization will give us a basis to better understand the problems at hand and
possibly explain our results.

The Table 1 presents the obtained values for acquired information when running
some instances of the previously presented problems. This information is the following:

Problem The problem instance.
Iterations The number of iterations required to find a solution.
Local Minima The number of local minima found.
Resets The number of partial resets performed (not full restart).
Same var / Iteration The number of times that existed more than one candidate vari-

able (highest error value) to be selected.

This information allows us to better understand how does the Adaptive Search algorithm
progress towards a solution, the neighborhood structure and extract further information
(e.g.,number of local minima per iteration).

Problem Iterations Local Minima Resets Same var/Iteration

Magic Square 200 413900.505 25864.75 3.01 23.36

Costas 18 389932.263 204024.89 204024.89 1.00

Costas 19 3364807.772 1714299.50 1714299.50 0.99

All Interval 200 11229.220 495.27 495.27 5.97

All Interval 400 41122.406 1422.15 1422.15 9.19

Table 1: Information collected for different problems instances.

From Table 1 we can see that the different problems exhibit a quite different behav-
ior. The Magic Square problem performs a low number of partial resets when compared
to the total number of iterations or to the number of identified local minima. On the other
hand, it is the problem where the number of candidate variables per iterations (Same
var/Iteration) is high, meaning that at each iteration there are several possible moves
towards the next configuration.

The Costas Array problem exhibits a completely different behavior. In this problem,
the number of local minima identified is very large (almost every second iteration finds
a local minimum) and the number of partial resets is very high, coincident with the

98

number of local minima i.e.,at each local minimum found, a partial reset is performed.
Also the number of possible moves at each iteration is close to 1.

The All Interval problem is yet another kind problem. Here, the number of resets is
as with the CAP equal to the number of local minima but these happen much less often.
The number of possible variable choices or moves is higher than 1, meaning that some
diversification could be achieved.

If we relate this characterization of problems with the obtained experimental results,
some conclusions can be conjectured in order to better understand the parallelization of
such algorithm or, more concretely, how much can it benefit from a communication
scheme such as the one we designed.

We argue that one critical aspect is the neighborhood of a configuration or the set
of possible moves, which define transitions between configurations. Since we are prop-
agating configurations we can look at our problems at hand according to this aspect.
If a problem has a dense neighborhood or, in other words, the set of possible moves at
each transition is (much) larger than one, each of these moves can be explored in paral-
lel. Thus, when a promising configuration is propagated and several moves are possible
and explored in parallel, the probability that one of these moves leads to a faster path
towards an optimal solution increases.

Another important aspect is the number of local minima and resets and how both
relate. A problem that finds a large number of local minima before encountering an
optimal solution benefits less from processing a configuration which seems promising.
This configuration is heuristically promising but in reality this information is less mean-
ingful than it should. Similarly, a problem with a high number of partial resets suffers
from the same problem.

Looking back at our experimental results with the different problems, we can better
understand a) the difference in scalability and b) the improvement factor brought by the
PoC variant to some problems.

In the Magic Square problem, each configuration has a dense neighborhood and
benefits from the parallel exploration of different moves. Thus, the PoC variant im-
proves the performance and scalability of the algorithm. When a working thread adopts
a propagated configuration, it will define its own path from that configuration and differ-
ently from one other thread that receives that same promising configuration. Moreover,
this problem has a low number of local minima and resets meaning that paths from
one (initial) configuration towards an optimal solution are a series of transitions from
neighbor configurations.

The Costas Array Problem exhibits optimal scalability with the independent
multiple-walk MPI version or with our TDO variant and this is already per se sat-
isfactory. On the other hand, it performs worse with the PoC variant: propagating a
configuration is only a source of parallel overhead and will limit the search allowing
less diversification. A propagated configuration will allow, on average, a single move
and two threads taking the same configuration results in redundant work which is also
probably unfruitful since the CAP is one of the problems with a high number of local
minima and reset. This also explains the good scalability using the TDO variant, where
increasing the number of cores allows covering more of the total search space together
with the fact that solutions for this problem are well spread over it.

99

Finally, the All Interval Series problem shows a mixed behavior. Similarly to the
CAP, the larger number of local minima found and same number of resets point to
the same problem. There is less benefit from taking a propagated configuration since
its meaningfulness is low. The PoC variant only introduces unnecessary overhead and
this could explain the much worse performance at a lower number of cores. On the
other hand, and similarly to the Magic Square benchmark, there is more than one pos-
sible move, on average i.e.,some diversification can be achieved. With a large enough
number of cores, the parallel overhead can be amortized by the gain obtained with this
diversification. This could be the reason for the steeper curve for the PoC variant on
Fig. 4. Of course, with further experiments we will be able to understand this better.

In summary, problems where configurations have a denser neighborhood benefit
from a cooperation scheme such as the PoC variant where the full configuration is com-
municated. Contrarily, problems that follow a trajectory with a single move possible
won’t benefit from a communication scheme that propagates the best current configu-
ration. Also, if a large number of local minima is found and partial resets are required
in the same number, the expectation for improvement in performance is zero.

8 Conclusion

In this paper we presented our work on the parallel implementation of the Adaptive
Search method using a different programming model. GPI is an API designed for high-
performance and scalable parallel applications. We aimed at investigating and under-
standing the behavior of Adaptive Search in a parallel setting, focusing on different
problems particularly those that, in previous work, showed scalability problems when
targeting a large number of cores. GPI and its programming model allowed us to de-
sign a new communication and parallelization scheme which in our experimental eva-
lution allowed a gain of a factor of 2 in terms of speedup for some problems. More
importantly, it provided deeper insight and understanding on the parallelization of Lo-
cal Search methods given different problems with disparate characteristics such as the
neighborhood of a configuration, the number of local minima and partial resets.

In the future, we intend to examine our design and conclusions with other larger
problems and experiment with complexer parallelization schemes. One possible direc-
tion is instead of using promising information (configurations, cost, statistics) directly,
act on the complement of it, avoiding redundant work and cover as much as possible
from the search space since this is the main source of parallelism.

One of our potential final goals is the design of a new Local Search algorithm more
amenable to parallelization that builds upon these experiences.

References

1. Yves Caniou and Philippe Codognet. Communication in parallel algorithms for constraint-
based local search. In IPDPS Workshops, pages 1961–1970, 2011.

2. Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experiments in parallel
constraint-based local search. In Peter Merz and Jin-Kao Hao, editors, EvoCOP, volume
6622 of Lecture Notes in Computer Science, pages 96–107. Springer, 2011.

100

3. Yves Caniou, Daniel Diaz, Florian Richoux, Philippe Codognet, and Salvador Abreu. Per-
formance analysis of parallel constraint-based local search. In Proceedings of the 17th

ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, PPoPP
’12, pages 337–338, New York, NY, USA, 2012. ACM.

4. P. Codognet and D. Diaz. Yet another local search method for constraint solving. Stochastic

Algorithms: Foundations and Applications, pages 342–344, 2001.
5. Daniel Diaz, Salvador Abreu, and Philippe Codognet. Targeting the cell broadband engine

for constraint-based local search. Concurrency and Computation: Practice and Experience,
24(6):647–660, 2012.

6. Edsger W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of a termination
detection algorithm for distributed computations. Inf. Process. Lett., 16(5):217–219, 1983.

7. Ian P. Gent and Toby Walsh. Csplib: A benchmark library for constraints. In CP, pages
480–481, 1999. http://www.csplib.org.

8. T. Gonzalez, editor. Handbook of Approximation Algorithms and Metaheuristics. Chapman
and Hall / CRC, 2007.

9. T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics: Progress as Real Problem

Solvers. Springer Verlag, 2005.
10. Rui Machado and Carsten Lojewski. The fraunhofer virtual machine: a communication

library and runtime system based on the rdma model. In Computer Science-Research and

Development, volume 23(3), pages 125–132, 2009.
11. Friedemann Mattern. Algorithms for distributed termination detection. Distributed Comput-

ing, 2:161–175, 1987. 10.1007/BF01782776.
12. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2, September 4th 2009.

available at: http://www.mpi-forum.org (Dec. 2009).
13. Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar B. Kodali, David Grove, and Sriram

Krishnamoorthy. Lifeline-based global load balancing. In PPOPP, pages 201–212, 2011.

101

The Ciao CLP(FD) Library

A Modular CLP Extension for Prolog

(System Description)

Emilio Jesús Gallego Arias1, Rémy Haemmerlé1,
Manuel V. Hermenegildo1,2, and José F. Morales2

1 Universidad Politécnica de Madrid
2 IMDEA Software Institute

Abstract. We present a new free library for Constraint Logic Programming over
Finite Domains, included with the Ciao Prolog system. The library is entirely
written in Prolog, leveraging on Ciao’s module system and code transformation
capabilities in order to achieve a highly modular design without compromising
performance. We describe the interface, implementation, and design rationale of
each modular component. The library meets several design goals: a high level
of modularity, allowing the individual components to be replaced by different
versions; high-efficiency, being competitive with other FD implementations; a
glass-box approach, so the user can specify new constraints at different levels;
and a Prolog implementation, in order to ease the integration with Ciao’s code
analysis components. The core is built upon two small libraries which implement
integer ranges and closures. On top of that, a finite domain variable datatype
is defined, taking care of constraint reexecution depending on range changes.
These three libraries form what we call the FD kernel of the library. This FD
kernel is used in turn to implement several higher-level finite domain constraints,
specified using indexicals. Together with a labeling module this layer forms what
we name the FD solver. A final level integrates the CLP(FD) paradigm with
our FD solver. This is achieved using attributed variables and a compiler from
the CLP(FD) language to the set of constraints provided by the solver. It should
be noted that the user of the library is encouraged to work in any of those levels
as seen convenient: from writing a new range module to enriching the set of FD
constraints by writing new indexicals.

1 Introduction

Constraint Logic Programming (CLP) [1] is a natural and well understood extension
of Logic Programming (LP) in which term unification is replaced by constraint solving
over a specific domain. This brings a number of theoretical and practical advantages
which include increased expressive power and declarativeness, as well as higher per-
formance for certain application domains. The resulting CLP languages allow applying
efficient, incremental constraint solving techniques to a variety of problems in a very
natural way: constraint solving blends in elegantly with the search facilities and the
ability to represent partially determined data that are inherent to logic programming.
As a result, many modern Prolog systems offer different constraint solving capabilities.

One of the most successful instances of CLP is the class of constraint logic lan-
guages using Finite Domains (FD). Finite domains refer to those constraint systems
in which constraint variables can take values out of a finite set, typically of integers
(i.e., a range). They are very useful in a wide variety of problems, and thus many Pro-
log systems offering constraint solving capabilities include a finite domain solver. In
such systems, domain (range) definition constraints as well as integer arithmetic and
comparison constraints are provided in order to specify problems.

Since the seminal paper of Van Hentenryck et al. [2], many FD solvers adopt the
so-called “glass-box” approach. Our FD Kernel also follows this approach, based on
a unique primitive called an indexical. High-level constraints are then built/defined in
terms of primitive constraints. An indexical has the form X in r, where r is a range
expression (defined in 2). Intuitively, X in r constrains the FD term (FD variable or
integer) X to belong to the range denoted by the term r. In the definition of the range
special expressions are allowed. In particular, the expressions max(Y) and max(Y)

evaluate to the minimum and the maximum of the range of the FD variable Y, and
the expression dom(Y) evaluates to the current domain of Y. Constrains are solved
partially in an incremental using consistency techniques [3] which maintain the con-
straint network in some coherent state (depending on the arc-consistency algorithm
used). This is done by monotone domain shrinking and propagation. When all con-
straints are placed and all values have been propagated a call is typically made to a
labeling predicate which performs an enumeration-based search for sets of compatible
instantiations for each of the variables that remain not bound to a single value. We refer
to [2] for more details regarding indexicals and finite domain constraint solving.

In this paper, we present a new free library for Constraint Logic Programming over
Finite Domains, included with the Ciao Prolog system [4]. The library is entirely writ-
ten in Prolog, leveraging on Ciao’s module system and code transformation capabilities
in order to achieve a highly modular design without compromising performance. We
describe the interface, implementation, and design rationale of each modular compo-
nent. The library meets several design goals: a high level of modularity, allowing the
individual components to be replaced by different versions; high-efficiency, being com-
petitive with other FD implementations; a glass-box approach, so the user can specify
new constraints at different levels; and a Prolog implementation, in order to ease the
integration with Ciao’s code analysis components. The core is built upon two small li-
braries which implement integer ranges and closures. On top of that, a finite domain

variable datatype is defined, taking care of constraint reexecution depending on range
changes. These three libraries form what we call the FD kernel of the library. This FD
kernel is used in turn to implement several higher-level finite domain constraints, spec-
ified using indexicals. Together with a labeling module this layer forms what we name
the FD solver. A final level integrates the CLP(FD) paradigm with our FD solver.
This is achieved using attributed variables and a compiler from the CLP(FD) language
to the set of constraints provided by the solver. It should be noted that the user of the
library is encouraged to work in any of those levels as seen convenient: from writing a
new range module to enriching the set of FD constraints by writing new indexicals.

One of the first CLP(FD) implementations is the CHIP system [5]. This commercial
system follows a typical black-box approach: it consists of a complete solver written in

103

C and interfaces in an opaque manner to a Prolog engine. This makes it difficult for
the programmer to understand what is happening in the core of the system. Also, no
facilities are provided for tweaking the solver algorithms for a specific application.

More recent CLP(FD) systems such as those in SICStus [6], GNU Prolog [7,8],
and B-Prolog [9] are built instead following more the glass-box approach. The basic
constraints are decomposed into smaller but highly optimized primitives (typically in-
dexicals). Consequently, the programmer has more latitude to extend the constraints as
needed. However, even if such systems can be easily modified/extended at the interface
level (e.g., both SICStus and B-Prolog provide way to define new global constraints)
they are much harder to modify at the implementation level (e.g., it is not possible to
replace the implementation of range).

The Ciao CLP(FD) library that we present has more similarities with the one re-
cently developed for SWI Prolog [10]. Both are fully written in Prolog and support
unbound ranges. The SWI library is clearly more complete than Ciao’s (e.g., it pro-
vides some global constraints and always terminating propagation), but it is designed
in a monolithic way: it is implemented in a single file, mixing different language exten-
sions (using classical Prolog term_expansion mechanisms) while the Ciao library
is split in more around 20 modules with a clear separation of the different language
extensions [11].

Summarizing, our library differs in a number of ways from other existing ap-
proaches:

– First, along with more recent libraries it differs from early systems in that it is
written entirely in Prolog. This dispenses with the need for a foreign interface and
opens up more opportunities for automatic program transformation and analysis.
The use of the meta-predicates setarg/3 and call/1 means that the use of
Prolog has a minimal impact on performance.

– Second, the library is designed as a set of separate modules. This allows replacing
a performance-critical part — like the range code — with a new implementation
better suited for it.

– Third, the library supports the “glass-box” approach fully, encouraging the user to
access directly the low-level layers for performance-critical code without losing the
convenience of the high-level CLP paradigm. Again, the fact that the implementa-
tion is fully in Prolog is the main enabler of this feature.

– Lastly, we have prioritized extensibility, ease of modification, and flexibility, rather
than micro-optimizations and pure raw speed. However, we argue that our design
will accommodate several key optimizations like the ones of [12] without needing
to extend the underlying WAM.

The rest of the paper proceeds as follows. In Sec. 2 we present the architecture of
the library and the interface of the modules. In Sec. 3 we discuss with an example how
to use the glass box approach at different levels for better efficiency in a particular prob-
lem, with preliminary benchmarks illustrating the gains. Finally, in Sec. 4 we conclude
and discuss related and future work.

104

2 Architecture of the Ciao CLP(FD) Library

The Ciao CLP(FD) library consists of seven modules grouped into three logical lay-
ers plus two specialized Prolog to Prolog translators. In the definition of these modules
and interfaces we profit from Ciao’s module system [13] and Ciao’s support for as-
sertions [14,4], so that every predicate is correctly annotated with its types and other
relevant interface-related characteristics, as well as documentation. The translators are
built using the Ciao packages mechanism [13], which provides integrated and modular
support for syntax modification and code transformations. A description of the user in-
terface for the library along with up-to-date documentation may be found in the relevant
part of the Ciao manual.

2.1 The Global Architecture

The global architecture is illustrated in Fig. 1. The kernel layer provides facilities for
range handling and propagation chains, which are used for defining finite domain vari-
ables — which, as mentioned before, are different from the standard logical variables.
The FD layer defines a finite set of constraints such as a+b=c/3, using indexicals.
These constraints are translated form their indexical form to a set of instructions of the
kernel layer. Labeling and branch-and-bound optimization search modules complete the
finite domain solver.

The CLP(FD) constraints are translated to FD constraints by a CLP(FD) com-
piler. We use attributed variables to attach a finite domain variable to every logical vari-
able involved in CLP(FD) constraints. Thus, the CLP(FD) layer is thin and of very
low overhead.

2.2 The Finite Domain Kernel

The finite domain kernel is the most important part of the library. Its implementa-
tion freely follows the design of the GNU Prolog FD solver ([8] provides a general
overview of this solver). A finite domain variable is composed of a range and several
propagation chains. When the submission of a constraint modifies the range of a finite
domain variable, other finite domain variables depending on that range are updated by
firing up constraints stored in propagation chains. The propagation events are executed
in a synchronous way, meaning that a range change will fail if any of its dependent
constraints cannot be satisfied.

The kernel implements arithmetic over ranges (pointwise operations, union, inter-
section complementation, ...) and management of propagation chains, amounting to the
delay of Prolog goals on arbitrary events. These two elements are used to implement
the two basic operations of a finite domain variable: tell and prune. The first one at-
tempts to constrain a variable into a particular range, while the second one (prune/2)
removes a value form the range of a variable. The variable code inspects the new and
old ranges and wakes up the suspended goals on a given variable.

All the data structures are coded in an object-oriented style. Efficient access and in-
place update are implemented by using the setarg/3 primitive. We took special care
to use setarg/3 in a safe way to avoid undesired side effects, such as those described
by Tarau [15].

105

FD Term

Propagators Range

FD Kernel

FD Constraints

Labeling

B&B Optimization

Idx Compiler

FD Solver

CLP(FD) Run Time

CLP(FD) Compiler

CLP(FD)

Fig. 1: The Ciao CLP(FD) Library Architecture.

2.2.1 Ranges. Range handling is one of the most important parts of the library, given
the high frequency of range operations. Indeed, the library supports three implemen-
tations for ranges: the standard one using lists of closed integer intervals; an imple-
mentation using lists of open (i.e., unbounded) intervals; and a bit-based implementa-
tion which despite allowing unbound ranges is more suitable for problems dealing with
small ranges.3 Indeed, the user is encouraged to implement new range modules which
are better suited to some particular problems.

The interface that a range module must implement is split into two parts. The first
one, shown in Fig. 2, deals with range creation and manipulation. Each of the opera-
tions defined in the figure has a corresponding predicate. For instance, bounds addition
t+t is implemented by the predicate bound_add/3, and similarly for the rest of the
predicates. Note that it is a convention of the interface that any operation that tries to
create an empty range will fail. This is better for efficiency and we found no practical
example yet where this would be inconvenient.

Fig. 3 lists the rest of the predicates that a range implementation must provide.
They are mainly used for obtaining information about a range and are instrumental for
the labeling algorithms.

2.2.2 Propagation Chains. Propagation chains are just lists of goals meant to be
executed when a change in the range of a FD variable happens. The module defines a

3 The implementation of the bit-based range uses arbitrary precision integers plus three non-ISO
predicates for computing the least and most significative bits, and the number of active bits in
such integers. We implemented these predicates in C.

106

r ::= t .. t (interval)
| {t} (singleton)
| r \/ r (union)
| r /\ r (intersection)
| - r (complementation)
| r + n (pointwise addition)
| r - n (pointwise subtraction)
| r * n (pointwise multiplication)

t ::= min(Y) (minimum)
| max(Y) (maximum)
| dom(Y) (domain)
| val(Y) (value)
| t+t | t-t | t*t | . . . (arithmetic expression)
| n (bound)

Fig. 2: Range Interface, Part 1: Syntax.

propagation chain structure that is simply a named set of chains. We support in-place
update for the structure, thus allowing efficient update of the propagation chains used in
the finite domain variables. The interface of the propagation chain module is presented
in Fig. 4. We use internal facilities of the Ciao module system in order to efficiently
implement execute/2.

2.2.3 Finite Domain Variables. An FD variable is a structure consisting of a range
and a propagation chain.

In the current implementation, integers are considered to be finite domain variables
too. However, we are in the process of phasing out this optimization as we incorporate
more information into finite domain variables to aid optimizations.

FD variables are never unified, i.e., they cannot be substituted by others or by
integer values as is typically done by the Prolog unification mechanism. A priori, such
variables have no correspondence to Prolog logical variables.

Apart from accessing its range and propagation chain, the most important operations
that a finite domain variable supports is the tell operation, which tries to update the FD
variable to a new range:

fd_range_bound_t/1 Type of a range bound.
fd_range_t/1 Type of a range object.
is_singleton/1 True if range is a singleton.
singleton_to_bound/2 Returns the value of a singleton range.
size/2 Number of elements in a range.
get_domain/2 List of elements in a range.
enum/2 Backtracks throughout all the elements in a range.
bound_const/2 Correspondence of indexical constants with bounds.

Fig. 3: Range Interface, Part 2: Predicates.

107

fd_pchains_t/1 Type of a chain structure.
fd_pchain_type_t/1 Name of a chain.
empty/1 Returns an empty chain structure.
add/3 Adds a goal to a given chain.
execute/2 Wakes up a particular chain.

Fig. 4: Propagation Chain Interface.

1 tell_range(FdVar, TellRange):-

2 fd_var:get_range(FdVar, VarRange),

3 fd_range:intersect(VarRange, TellRange, NewRange),

4 set_range_and_propagate(FdVar, VarRange, NewRange)

The propagation predicate will set the new range for the variable and compare the
new range with the old one. The current definition — following [12] — supports four
propagation events, depending on the range change:

dom: The range changed.
max: The maximum of the range has changed.
min: The minimum of the range has changed.
val: The new range is a singleton.

2.3 The Finite Domain Solver

Once the finite domain kernel is in place, the finite domain solver is just the labeling
algorithm and a set of constraints defined using the kernel. As mentioned before, the
constraints are defined using indexicals, of the form X in Range. Such indexicals
are compiled to programs of the FD kernel in a transparent way for the user. The
compilation is carried out by Ciao’s source-to-source transformation capabilities, which
means that an input Prolog file using the indexicals package is processed in such
a way that predicates containing indexical definitions are replaced by their compiled
form.

The indexical syntax is intended to be compatible with syntax used in SICStus and
GNU Prolog. However, the use of Ciao’s package system means that the user may freely
mix indexicals with Prolog code (or with many other syntax extensions, such as, e.g.,
functional notation) without any ill effect, as seen in Appendix A.

2.3.1 The Constraints Library. A reasonable set of local constraints is provided,
covering most examples that we have tried to date. We use the convention of using t
for ground terms, such that in the constraint ’a+b<>c’/3, all three arguments are
assumed to be FD variables, whereas in the constraint named a+t<>c/3, the second
argument is assumed to be an immutable singleton, and thus no propagation chains will
be installed on it.

108

2.3.2 Labeling and Optimization Searches, This layer includes also typical labeling
algorithms and branch and bound optimization searches. In fact, the current labeling
engine is a slight adaptation of the one in the SWI CLP(FD) library: we opted for
replacing the preliminary version of the engine with this one from SWI, because of
its many useful features and easy adaptability to our library.4 The porting task was
relatively easy because the labeling engine is a quite peripheral part of the library (i.e.,
it has very few code dependencies). It also underlines the high modularity of our library,
since two versions of the labeling are in fact available 5. Finally we obtained for free a
common user interface with SWI (and Yap).

The optimization searches uses a branch-and-bound algorithm with restart to find
a value that minimizes (or maximizes) the FD variable according the execution of a
Prolog goal. It offers a user-interface similar to the one provided by GNU Prolog.

2.4 CLP(FD)

With the FD solver in place, supporting the CLP(FD) paradigm is a matter of perform-
ing two mappings: logical variables must be put in correspondence with FD variables
and CLP(FD) constraints must be translated to FD constraints.

2.4.1 Variable Wrapping. For every logical variable to be involved in a CLP(FD)
constraint we will attach to it an attribute containing an FD variable:

1 wrapper(A, X):- get_attr_local(A, X), !.

2 wrapper(A, X):- var(A), !, fd_term:new(X), put_attr_local(A, X).

3 wrapper(X, X):- integer(X), !.

Logical variables and finite domain variables may communicate in two ways. In the first
one, two logical variables may be unified, needing to link their underlying finite domain
variables. We implement this communication using the unify_hook attribute:

1 attr_unify_hook(IdxVar, Other):-

2 (nonvar(Other) ->

3 (integer(Other) ->

4 fd_constraints:’a=t’(IdxVar, Other)

5 ; clpfd_error(type_error(Other), ’=’/2)

6)

7 ; get_attr_local(Other, IdxVar_) ->

8 fd_constraints:’a=b’(IdxVar, IdxVar_)

9 ; put_attr_local(Other, IdxVar)

10).

4 Some features of this engine are currently disabled, but we are planning to activate all such
features shortly. The labeling engine was in fact extracted from the tor library [16], where it is
isolated in a single file.

5 The old labeling engine can be found in revisions older than 14721 of Ciao 1.15.

109

We simply call the FD constraints ’a=b’/2 and ’a=t’/2.
The other form of communication is instantiation of the logical variable when the

corresponding finite domain one gets a singleton range. We modify the wrapper pred-
icate to add an instantiation goal to the val chain of freshly created FD vars, i.e., we
replace the second clause within the definition of the wrapper by the following one:

1 wrapper(A, X):- var(A), !, fd_term:new(X), put_attr_local(A, X),

2 % Force instantiation of A when X represents an integer

3 fd_term:add_propag(X, val, ’fd_term:integerize’(X, A)).

This small example points out the possibilities of our scheme beyond the current use as
a support for indexicals.

2.4.2 Constraint Compilation. The FD solver provides a finite set of FD con-
straints, however, in the CLP(FD) side we may encounter constraints such as:

1 A #= B + C + D + E

which should be linearized to

1 A1 #= D + E,

2 B1 #= B + C,

3 A #= A1 + B1

and then wrapped to:6

1 ’a=b+c’(~wrapper(A1), ~wrapper(D), ~wrapper(E)),

2 ’a=b+c’(~wrapper(B1), ~wrapper(B), ~wrapper(C)),

3 ’a=b+c’(~wrapper(A) , ~wrapper(A1), ~wrapper(B1))

We provide a small compiler which takes care of this process, along with other features
like compile-time integer detection.

3 Glass-Box Programming

As previously stated, we encourage the use of a glass box approach when programming
with this library. We will use the classical queens program in order to illustrate some of
the possibilities that the library offers:

– The use of different range implementations.
– The direct use of the FD constraints, skipping the CLP(FD) compiler.
– The definition of new FD constraints using indexicals.
– The definition of new atomic constraints directly using the solver kernel, thus skip-

ping the indexical compiler.

6 We profit here from Ciao’s functional notation such that for p(X,Y), ~p(X) is handled
syntactically like a function with return value Y.

110

Queens Parameters Bits Closed Open SWI
n=16, step, clpfd 0.916 1.144 1.432 1.050
n=16, step, fd 0.572 0.848 1.104 –
n=16, step, idx 0.388 0.648 0.916 –
n=16, step, kernel 0.224 0.336 0.368 –
n=90, ff, clpfd 2.080 2.052 2.484 1.071
n=90, ff, fd 1.112 1.272 1.592 –
n=90, ff, idx 0.752 1.124 1.588 –
n=90, ff, kernel 0.388 0.408 0.432 –

Fig. 5: Queens Benchmark.

Benchmarking Conditions: We provide for illustration purposes some preliminary ex-
perimental results. However, it is important to point out that the library is not yet in a
state in which relevant absolute performance numbers can be produced and its perfor-
mance potential fully assessed, since it is still missing important optimizations. Also,
only two benchmarks are used.

The benchmarks were run using Ciao 1.15 (revision 14744) on an Intel(R)
Core(TM)2 CPU T7200 @ 2.00GHz computer. For reference, we include also the cor-
responding numbers for SWI Prolog (v. 5.10.4). The purpose is not to make an extensive
comparison7 but rather to have a simple, well understood baseline with which to com-
pare. We should note that we did not explore SWI’s support for custom constraints. At
the same time, during these tests we have determined that backtracking over changes
made by setarg/3 is currently significantly slower in Ciao than in SWI, which, given
the reliance of the implementation on setarg/3 gives us a clear avenue for perfor-
mance improvement, independently of any changes to the library itself.

The complete program used in the benchmark is shown in Appendix A. Basically
a benchmark has three run time parameters, the number of queens (n=N), the labeling
strategy (either “step” or “first fail”8), and the constraints used, whose meaning will be
explained later. For SWI, only the first two parameters carry significance.

3.1 Range Implementations

As previously stated, the library provides three range implementations, selectable at
compile-time. The standard one is called “Closed,” and represents ranges using a Prolog
list of intervals of integers. Thus, every FD variable is always bound. “Open” is a
variation of this approach where the intervals are enriched with constants sup and
inf. This imposes a penalty on bound arithmetic. Lastly, we compare both against a
simple bit-vector implementation, done mostly in Prolog with a small support from C.
The results can be seen in Fig. 5. The differences go from negligible to more than 50%.

7 This is left as future work where, in addition to implementing the optimizations mentioned,
we will include comparison with a number of other systems as well.

8 Comparing the Ciao and SWI libraries using the heuristic labeling strategies as “first fail” is
relevant since both use the same code for labeling.

111

In a different benchmark (bridge), the closed interval version was 25% faster than the
open one.

3.2 Constraint Implementations

We now focus on the different possibilities that the library allows for FD constraint
programming.

In the queens program, the main constraint of the problem is expressed by the
diff/3 constraint:

1 diff(X, Y, I) :-

2 X #\= Y,

3 X #\= Y+I,

4 X+I #\= Y.

where I will be always an integer.
However, the compiler cannot (yet) detect that I is an integer, and may perform

some unnecessary linearization. We may skip the compiler and define diff using di-
rectly the FD constraints:

1 diff(X, Y, I):-

2 fd_constraints:’a<>b’(~w(X),~w(Y)),

3 fd_constraints:’a<>b+t’(X, Y, I),

4 fd_constraints:’a<>b+t’(Y, X, I).

The speedup is considerable, getting close to 50% speedup in some cases. Indeed, the
compiler should be improved to produce this kind of code by default.

The user may notice that the above three constraints may be encoded by using just
two indexicals. For instance one can use the following definition for diff/3:

1 diff(X,Y,I):-

2 idx_diff(~w(X), ~w(Y), I).

3 idx_diff(X, Y, I) +:

4 X in -{val(Y), val(Y)+c(I), val(Y)-c(I)},

5 Y in -{val(X), val(X)+c(I), val(X)-c(I)}.

Again, the improvement is up to 40% from the previous version.
However, the constraint diff can be improved significantly by using directly the

kernel delay mechanism (val chain) and FD variable operations. In particular, we use
the optimized kernel prune/2 operation that removes a single element form the range
of a variable:

1 diff(X, Y, I):-

2 wrapper(X, X0), wrapper(Y, Y0)

3 fd_term:add_propag(Y, val, ’queens:cstr’(X0, Y0, I)),

4 fd_term:add_propag(X, val, ’queens:cstr’(Y0, X0, I)).

5
6 % Y is always a singleton.

112

7 cstr(X, Y, I):-

8 fd_term:integerize(Y, Y0),

9 fd_term:prune(X, Y0),

10 Y1 is Y0 + I,

11 fd_term:prune(X, Y1),

12 Y2 is Y0 - I,

13 fd_term:prune(X, Y2).

We reach around 80% speedup from the first version, and this result is optimal regard-
ing what the user can do. Additional speedups can be achieved, but not without going
beyond our glass-box approach. Indeed, our CLP(FD) compiler is simpler given that
we are working on a new translator that directly generates custom kernel constraints
from CLP(FD) constraints.

4 Conclusions and Future Work

The Ciao CLP(FD) library described is distributed with the latest Ciao version, avail-
able at http://ciaohome.org. Although included in the main distribution, it lives
in the contrib directory, as it should be considered at a beta stage of development.

Even if we did not include yet important optimizations that should improve signif-
icantly the performance of the library, the current results are encouraging. The library
has been used successfully internally within the Ciao development team in a number of
projects.

The modular design and low coupling of components allow their easy replacement
and improvement. Indeed, every individual piece may be used in a glass-box fashion.
We expect that the use of Prolog will allow the integration with Ciao’s powerful static
analyzers. At the same time, the clear separation of run-time and compile-time phases
allows the modification and the improvement of the translation schemes in an indepen-
dent manner. Indeed, the advantages of this design have already been showcased in [17],
where a Prolog to Javascript cross-compiler was used to provide a JS version of the li-
brary and which only required replacing a few lines of code. Using this cross-compiler
CLP(FD) programs can be run on the server side or on the browser side unchanged.

Regarding future work, we distinguish two main lines: the kernel and the CLP(FD)
compiler.

For the kernel, the first priority is to finish settling down its interface. While we
consider it mature, some optimizations — like avoiding reexecution — may require that
we include more information in our FD variable structure, range modification times,
etc. Indeed, we would like to support more strategies for propagators than the current
linear one. Support for some global constraints is on the roadmap, and will likely mean
the addition of more propagation chains.

The library features primitive but very useful statistics. However we think it is not
enough and we are working on an FD instrumentation package that will provide de-
tailed statistics and profiling. This is key in order to extract the maximum performance
from the library. Once we get detailed profiling information from a wide variety of
benchmarks, a better range implementation will be due.

113

Regarding the CLP(FD) compiler, the current version should be considered a proof
of concept. Indeed, we are studying alternative strategies including the generation of
custom kernels or specialized FD constraints for each particular program in contrast
to the current approach of mapping a CLP(FD) program to a fixed set of primitive
constraints. CiaoPP — Ciao’s powerful abstract interpretation engine — could be used
in the translation, providing information about the CLP(FD) program to the CLP(FD)
compiler so it can generate an optimal kernel of FD code for that program. In this
sense, we think that we will follow the CiaoPP approach of combining inference with
user-provided annotations in the new CLP(FD) compiler.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments.
The research leading to these results has received funding from the Madrid Regional

Government under CM project P2009/TIC/1465 (PROMETIDOS), and the Spanish
Ministry of Economy and Competitiveness under project TIN-2008-05624 DOVES.
The research by Rémy Haemmerlé has also been supported by PICD, the Programme
for Attracting Talent / young PHDs of the Montegancedo Campus of International Ex-
cellence.

References

1. Jaffar, J., Maher, M.: Constraint LP: A Survey. JLP 19/20 (1994) 503–581
2. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation and evaluation of the

constraint language cc(fd). Journal of Logic Programming 37(1–3) (1998) 139–164
3. Dib, M., Abdallah, R., Caminada, A.: Arc-consistency in constraint satisfaction problems: A

survey. In: Second International Conference on Computational Intelligence, Modelling and
Simulation. (2010) 291–296

4. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., Puebla, G.: An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming
12(1–2) (January 2012) 219–252 http://arxiv.org/abs/1102.5497.

5. Dincbas, M., Hentenryck, P.V., Simonis, H., Aggoun, A.: The Constraint Logic Program-
ming Language CHIP. In: Proceedings of the 2nd International Conference on Fifth Gener-
ation Computer Systems. (1988) 249–264

6. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In:
Proceedings of the9th International Symposium on Programming Languages: Implementa-
tions, Logics, and Programs: Including a Special Trach on Declarative Programming Lan-
guages in Education. PLILP ’97, London, UK, UK, Springer-Verlag (1997) 191–206

7. D. Diaz, S.A., Codognet, P.: On the implementation of GNU Prolog. Theory and Practice of
Logic Programming 12(1–2) (January 2012) 253–282

8. Codognet, P., Diaz, D.: Compiling constraints in clp(fd). J. Log. Program. 27(3) (1996)
185–226

9. Zhou, N.F.: Programming finite-domain constraint propagators in action rules. Theory Pract.
Log. Program. 6(5) (September 2006) 483–507

10. Triska, M.: The finite domain constraint solver of swi-prolog. In Schrijvers, T., Thiemann,
P., eds.: Functional and Logic Programming. Volume 7294 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (2012) 307–316

114

11. Morales, J.F., Hermenegildo, M.V., Haemmerlé, R.: Modular Extensions for Modular
(Logic) Languages. In: 21th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR’11), Odense, Denmark (July 2011) To appear.

12. Díaz, D., Codognet, P.: A Minimal Extension of the WAM for clp(fd). In: Proceedings
of the Tenth International Conference on Logic Programming, Budapest, MIT press (June
1993) 774–790

13. Cabeza, D., Hermenegildo, M.: A New Module System for Prolog. In: International Confer-
ence on Computational Logic, CL2000. Number 1861 in LNAI, Springer-Verlag (July 2000)
131–148

14. Hermenegildo, M., Puebla, G., Bueno, F., López-García, P.: Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor). Science of Computer Programming 58(1–2) (2005) 115–140

15. Tarau, P.: BinProlog 2006 version 11.x Professional Edition User Guide. BinNet Corpora-
tion. (2006) Available from http://www.binnetcorp.com/.

16. Schrijvers, T., Triska, M., Demoen, B.: Tor: Extensible Search with Hookable Disjunction.
Draft. Available from http://users.ugent.be/~tschrijv/tor/ (2012)

17. Morales, J.F., Haemmerlé, R., Carro, M., Hermenegildo, M.V.: Lightweight compilation of
(C)LP to JavaScript. Theory and Practice of Logic Programming, 28th Int’l. Conference on
Logic Programming (ICLP’12) Special Issue (2012) To appear.

A Complete Code for the Queens Example

1 queens(N, L, Lab, Const) :-

2 length(L, N),

3 domain(L, 1, N),

4 safe(L, Const),

5 labeling(Lab, L).

6
7 safe([], _Const).

8 safe([X|L], Const) :-

9 noattack(L, X, 1, Const),

10 safe(L, Const).

11
12 noattack([], _, _, _Const).

13 noattack([Y|L], X, I, Const) :-

14 diff(Const, X, Y, I),

15 I1 is I + 1,

16 noattack(L, X, I1, Const).

17
18 diff(clpfd, X, Y, I) :-

19 X #\= Y, X #\= Y+I, X+I #\= Y.

20
21 diff(fd, X,Y,I):-

22 fd_diff(~wrapper(X), ~wrapper(Y), I).

23
24 fd_diff(X, Y, I):-

25 fd_constraints:’a<>b’(X,Y),

26 fd_constraints:’a<>b+t’(X,Y,I),

115

27 fd_constraints:’a<>b+t’(Y,X,I).

28
29 diff(idx, X,Y,I):-

30 idx_diff(~wrapper(X), ~wrapper(Y), I).

31
32 idx_diff(X, Y, I) +:

33 X in -{val(Y), val(Y)+c(I), val(Y)-c(I)},

34 Y in -{val(X), val(X)-c(I), val(X)+c(I)}.

35
36 diff(kernel, X,Y,I):-

37 kernel_diff(~wrapper(X), ~wrapper(Y), I).

38
39 kernel_diff(X, Y, I) :-

40 fd_term:add_propag(Y, val, ’queens:cstr’(X, Y, I)),

41 fd_term:add_propag(X, val, ’queens:cstr’(Y, X, I)).

42
43 cstr(X, Y, I):-

44 fd_term:integerize(Y, Y0),

45 fd_term:prune(X, Y0),

46 Y1 is Y0 + I, fd_term:prune(X, Y1),

47 Y2 is Y0 - I, fd_term:prune(X, Y2).

116

