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Union of Polyhedra

Problem: Given two convex polyhedra P,Q in R¢:
e Recognize if PU(Q is convex
e If yes, find a minimal representation for P U Q
T hree natural cases: :
1. P,Q, are in H-representation P = {z : Az < o}, Q = {x :
Br < B} :
2. P,Q, are in V-representation P = conv(V) 4+ cone(R),
Q@ = conv(W) 4 cone(S)
3. P,Q, are in VH-representation
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Envelope of Polyhedra

P={z:Av<a}, Q= {z:Bz<g}




Key Theorem for H-Polyhedra

Theorem 1 PUQ is convex <& PUQ@ = env(P, Q).
Proof.
< trivial (env is a convex object)
= — Consider the H-representation of PU @
— Clearly, PUQ@ Cenv(P,Q)
— Show that PUQ@ D env(P,Q), by contradiction
e Holds for unbounded polyhedra
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Key Theorem for H-Polyhedra

Proof.

o PUQ =-¢env(P,Q) = PUQ is convex trivial
e PUQ is convex = PUQ =env(P,Q) |
— Let K 2 PUQ, K C env(P,Q), show that K D env(P,Q)
— assume by contradiction that a facet inequality 'z < s
of K is not in env(P, Q) :
— Let H = {2 : v’z — s}, then dm(PNH) < d -2 andi
dim(QnNH)<d—2,dm(KNH)=d-1 '

— KNH=(PNH)U(QnNH), contradiction
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Generalization to £ H-Polyhedra

e [ heorem 1 generalizes to £ > 3 H-polyhedra

UlePz- is convex < env(Py, Po,..., P.) = UlePz-
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Algorithm for H-Polyhedra

Main idea: Determine a point

recenv(P,Q), z¢ P, 2¢ Q

1 Construct env(P,Q) ={z: Cz <~}
let Ax < &, Bx < 3 be the set of removed constraints

2 Remove from env(P, Q) possible duplicates
3 for each pair Ajx < oy, Bjxz < 3; do
4 Determine €¢* by solving the linear program
€ = max(w) €~
SUb_j. to Aix = oo; + ¢
szv - Bj —I- €
Cx <~

5 if ¢ > 0, stop; return False; /*P U Q is nonconvex.*/
6 return env(P, Q). /*PUQ is convex.*/
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Algorithm for H-Polyhedra

P={Az < a}, Q= {Bz < 8}
Input: (A,«), (B,3) minimal H-representation
Output: Minimal H-representation of PU Q@
Complexity: O(mimoslp(d, m1 + m»>))

m1 = number of rows of A

mo> = number of rows of B

In general: O(TT¢_, mylp(d, >F_{ m;))
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Key Theorem for V-Polytopes

P = conv(V), Q = conv(W)

U

Theorem 2 Let P, (Q be polytopes with V-representation V
and W, respectively. Then

PUQ is convex < [v,w] CPUQ, YveV, Yw e W.
Moreover, a stronger characterization of convexity holds

eV, weW: (v,w) N(PUQ) =0 < PUQ is honconvex.
Generalizes to unbounded polyhedra by homogenization
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Key Theorem for V-Polytopes

Proof.
= PUQ is convex = [v,w] CPUQ, YveV, Yw e W, trivial
< [v,w] CPUQ, YveV, YVwe W = PUQ is convex
by contradiction assume 3z = (1 —vy)v+yw,0 <~y < 1,0 €
Pwe@st z2¢ PUQ
= 39,% s.t. (T,@) C [v,w],(T, W) L PUQ, T € Hp,w € Hp
= dJwe W, we H,, similarly dJv € V,v € Hé
= (v, w) NPUQ = 0, contradiction
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Generalization to k£ V-Polyhedra

Open problem:
e Generalization to k£ > 3 V-polyhedra
Conjecture (false):
e © union of the vertices of Py, P>, P3
o Check v0;,0; € ©, [0;,0,] C PLUP>U P3
Alternative: (Carathodory) Consider the convex hull of (d +
1) vertices and check if it is contained in P U P> U P3

Theorem: The convex hull of k vertices is enough
Proof. By Carateodory’s Theorem (Finschi, Torrisi)

Can we exploit this characterization in an algorithm?
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Algorithm for V-Polyhedra (1)

1 Remove vertices of P which are in (0, and vice-versa, and

let V, W the sets of remaining vertices;
2 if no vertex has been removed, return False; /*disjoint.*/
3 for each pair v; € V, w; € W do
4 Find the corresponding vector z = v; 4+ \* S(w; —v;),

where A\ = max g s.t. v; + Ao(w; —v;) € P

5 Determine if z€ @ (via LFT)
6 If 2z ¢ Q, return False; /*PuU(Q is nonconvex.*/
7 let X be the set of points in V NW that are extreme in PUQ;
8 return conv(VUW U X).
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Main idea: Ray shooting from v; towards w;, and check z € Q)



Algorithm for V-Polyhedra (1)

P=conv(V), V=A{vy,...,un}
Q =conv(W), W ={wy,...,wn,}
Input: V, W minimal V-representation
Output: Minimal V-representation of PUQ
Complexity: O(nino(Ip(d,ny1) + Ip(d,n>)))
n1 = number of vertices of P
no = number of vertices of )
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Algorithm for V-Polyhedra (2)

’UZ'—|_’LU]‘

to find a segment (v;, w;) € PUQ by checking the middle point z = =5

1 Remove vertices of P which are in ), and vice-versa, and
let V, W the sets of remaining vertices;
If no vertex has been removed, return False; /*disjoint*/
for each pair v; €V, w; € W do

let 2 £ #,

Determine if z € PuU@ (via LFT)

If z¢ PUQ@, return False; /*PuUQ is not convex.*/
7 let X be the set of points in V NW that are extreme in PU Q;
8 return conv(VUW U X).
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ONQWN

Main idea: Exploit the stronger converse result in Theorem 2, and try



Algorithm for V-Polyhedra (2)

P=conv(V), V=A{vy,...,un}
Q =conv(W), W ={wy,...,wn,}
Input: V, W minimal V-representation
Output: Minimal V-representation of PUQ
Complexity: O(nino(Ip(d,ny1) + Ip(d,n>)))
n1 = number of vertices of P
no = number of vertices of )
Comparison:
e Algorithm 1 might stop earlier if PU(Q is not convex
— performance depends on inputs P and @
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VH-Polytopes

Theorem 3 Let P and Q be VH-polytopes, PUQ(Q is convex
= conv(VUW) =env(P,Q), moreover conv(VUW) =
env(P,Q) = PUQ.

The converse is not true:

Not useful for convexity recognition, a converse result can
be proved under additional assumptions
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VH-Polytopes

Theorem 4 LetV={veV: v€Q}, W={weW: w¢
P}. If VUWU(VNW) and env(P,Q) are minimal V- and H-
representations, respectively, of the same polytope then PUQ)
is convex, and PUQ =conv(VUW U (VNW)) =env(P,Q).
Proof. by contradiction.

The result can not be exploited for convexity recognition of
the union of polyhedra, as checking coherence of given V-
and H-representation might be a hard task
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Algorithm for VH-Polyhedra

Assuming that P and @ are given by coherent VH-
representations, an efficient algorithm can be proposed
by modifying 2"9 Algorithm for V-polytopes to exploit
information coming from H-representations

In this case the algorithm computes the solution without
solving any LP

Complexity: O(ninod(mq + mo)) strongly polynomial
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Related Work (1): Reduction

Multiparametric Programming ammounts to solve for all x

mzin {Rz + Qaz},
subj. to Gz < W + Kz

Optimal solution looks like

Problem:
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Buck 1943,

Hyperplane Arrangements  foestrumerios,

Fukuda 1996

Let A={H} 1. o H7{x:ax-b; |
=0} be a collection of '
n hyperplanes in R4

Theorem Each polyhedral
region (or cell) is
associated to a sign
marking

Theorem The total number
of cells is bounded by
Buck’s formula



Hyperplane Arrangements - Algorithmsé

There is an optimal algorithm for |
enumeration of hyperplane arrangements
with time and space complexity O |
(Edelsbrunner '87)

There is reverse search algorithm (Fukuda
'96,’01) for enumeration of hyperplane
arrangements that runs in O lp(n,d) #M)
time and O(,d) space, where Ip(n,d) is the
complexity of solving a linear program
with d variables and » constraints
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Optimal Merging Of Cells - Idea

Markings allows easy merging of the region
o Convexity recognition by marking comparison
o Redundancy removal by marking comparison

o Branch&Bound guarantees minimum by trying
several combinations

o Future research: Fast suboptimal algorithms
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Optimal Merging

252 regions are reduced to 39 regions in 2" on Pentium IV
2.8 GHz machine

10
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Related Work (2): Extended hull

____________________________________________________________________ Fukuda et gl._01 _:

Compute the convex hull of the union of £ H-
polytopes

____________________________________________________________________________________



Conclusions

e \We have provided:
— Key theorems for characterizing the union of H-, V-
and VH-polyhedra
— Algorithms for computing the union of H-, V- and VH-
polyhedra
e Similar work:
— Efficient algorithms for adjacent H-polyhedra. (useful
for multiparametric programming) (Geyer and Torrisi '03)
— Convex hull of k H-polyhedra (Fukuda, Liebling and Liitolf '01)
e Open problems:
— Generalization to k V-polyhedra
Technical Reports: http://control.ee.ethz.ch/
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