Convexity Recognition of the Union of Polyhedra

F. D. Torrisi

torrisi@aut.ee.ethz.ch, http://control.ethz.ch/~torrisi Currenty with esmertec AG http://www.esmertec.com

Joint Work with A.Bemporad and K. Fukuda

Union of Polyhedra

Problem: Given two convex polyhedra P,Q in \mathbb{R}^d :

- Recognize if $P \cup Q$ is convex
- If yes, find a minimal representation for $P \cup Q$ Three natural cases:
- 1. P,Q, are in H-representation $P = \{x : Ax \le \alpha\}$, $Q = \{x : Bx \le \beta\}$
- 2. P,Q, are in V-representation $P = \operatorname{conv}(V) + \operatorname{cone}(R)$, $Q = \operatorname{conv}(W) + \operatorname{cone}(S)$
- 3. P,Q, are in VH-representation

Key Theorem for H-Polyhedra

Theorem 1 $P \cup Q$ is convex $\Leftrightarrow P \cup Q = env(P,Q)$. *Proof*.

- ⇐ trivial (env is a convex object)
- \Rightarrow Consider the H-representation of $P \cup Q$
 - Clearly, $P \cup Q \subseteq env(P,Q)$
 - Show that $P \cup Q \supseteq env(P,Q)$, by contradiction
 - Holds for unbounded polyhedra

Key Theorem for H-Polyhedra

Proof.

- $P \cup Q = env(P,Q) \Rightarrow P \cup Q$ is convex trivial
- $P \cup Q$ is convex $\Rightarrow P \cup Q = env(P,Q)$

- Let $K \triangleq P \cup Q$, $K \subseteq env(P,Q)$, show that $K \supseteq env(P,Q)$

- assume by contradiction that a facet inequality $r'x \leq s$ of K is not in env(P,Q)
- Let $H = \{x : r'x s\}$, then dim $(P \cap H) \leq d 2$ and dim $(Q \cap H) \leq d 2$, dim $(K \cap H) = d 1$
- $K \cap H = (P \cap H) \cup (Q \cap H)$, contradiction

Generalization to k H-Polyhedra

• Theorem 1 generalizes to $k \ge 3$ H-polyhedra

 $\cup_{i=1}^{k} P_i$ is convex $\Leftrightarrow \operatorname{env}(P_1, P_2, \dots, P_k) = \cup_{i=1}^{k} P_i$

Algorithm for H-Polyhedra

 $P = \{Ax \le \alpha\}, \ Q = \{Bx \le \beta\}$ Input: $(A, \alpha), \ (B, \beta)$ minimal H-representation Output: Minimal H-representation of $P \cup Q$ Complexity: $O(m_1m_2 \mathbf{lp}(d, m_1 + m_2))$ $m_1 =$ number of rows of A $m_2 =$ number of rows of BIn general: $O(\prod_{i=1}^k m_i \mathbf{lp}(d, \sum_{i=1}^k m_i))$

Key Theorem for V-Polytopes

Theorem 2 Let P, Q be polytopes with V-representation V and W, respectively. Then

 $P \cup Q$ is convex $\Leftrightarrow [v, w] \subseteq P \cup Q, \forall v \in V, \forall w \in W.$ Moreover, a stronger characterization of convexity holds $\exists v \in V, w \in W: (v, w) \cap (P \cup Q) = \emptyset \Leftrightarrow P \cup Q$ is nonconvex. Generalizes to unbounded polyhedra by homogenization

Key Theorem for V-Polytopes

Proof.

- $\Rightarrow P \cup Q \text{ is convex} \Rightarrow [v,w] \subseteq P \cup Q, \ \forall v \in V, \ \forall w \in W, \ \text{trivial}$
- $\Leftarrow [v,w] \subseteq P \cup Q, \ \forall v \in V, \ \forall w \in W \Rightarrow P \cup Q \text{ is convex}$ by contradiction assume $\exists z = (1-\gamma)\bar{v} + \gamma \bar{w}, 0 \leq \gamma \leq 1, \bar{v} \in$ $P, \bar{w} \in Q \text{ s.t. } z \notin P \cup Q$ $\Rightarrow \exists \tilde{v}, \tilde{w} \text{ s.t. } (\tilde{v}, \tilde{w}) \subset [\bar{v}, \bar{w}], (\tilde{v}, \tilde{w}) \notin P \cup Q, \ \tilde{v} \in H_P, \bar{w} \in H_P^-$ $\Rightarrow \exists w \in W, w \in H_P^-, \text{ similarly } \exists v \in V, v \in H_Q^-$
 - \Rightarrow $(v, w) \cap P \cup Q = \emptyset$, contradiction

Generalization to k V-Polyhedra

Open problem:

• Generalization to $k \ge 3$ V-polyhedra

Conjecture (false):

- Θ union of the vertices of P_1 , P_2 , P_3
- Check $\forall \theta_i, \theta_j \in \Theta$, $[\theta_i, \theta_j] \subset P_1 \cup P_2 \cup P_3$

Alternative: (Carathodory) Consider the convex hull of (d + 1) vertices and check if it is contained in $P_1 \cup P_2 \cup P_3$ Theorem: The convex hull of k vertices is enough *Proof.* By Carateodory's Theorem (Finschi, Torrisi) Can we exploit this characterization in an algorithm?

Algorithm for V-Polyhedra (1)

Main idea: Ray shooting from v_i towards w_j , and check $z \in Q$

- 1 Remove vertices of P which are in Q, and vice-versa, and let \overline{V} , \overline{W} the sets of remaining vertices;
- 2 if no vertex has been removed, return False; /*disjoint.*/
- 3 for each pair $v_i \in \overline{V}$, $w_j \in \overline{W}$ do
- 4 Find the corresponding vector $z \triangleq v_i + \lambda_0^*(w_j v_i)$, where $\lambda_0^* = \max \lambda_0$ s.t. $v_i + \lambda_0(w_j - v_i) \in P$
- 5 Determine if $z \in Q$ (via LFT)
- 6 if $z \notin Q$, return False; $/*P \cup Q$ is nonconvex.*/
- 7 let X be the set of points in $V \cap W$ that are extreme in $P \cup Q$;
- 8 return conv $(\overline{V} \cup \overline{W} \cup X)$.

Algorithm for V-Polyhedra (1)

 $P = \operatorname{conv}(V), V = \{v_1, \dots, v_{n_1}\}$ $Q = \operatorname{conv}(W), W = \{w_1, \dots, w_{n_2}\}$ Input: V, W minimal V-representation
Output: Minimal V-representation of $P \cup Q$ Complexity: $O(n_1n_2(\operatorname{Ip}(d, n_1) + \operatorname{Ip}(d, n_2)))$ $n_1 = \operatorname{number} \text{ of vertices of } P$ $n_2 = \operatorname{number} \text{ of vertices of } Q$

Algorithm for V-Polyhedra (2)

Main idea: Exploit the stronger converse result in Theorem 2, and try to find a segment $(v_i, w_j) \notin P \cup Q$ by checking the middle point $z = \frac{v_i + w_j}{2}$

- 1 Remove vertices of P which are in Q, and vice-versa, and let \overline{V} , \overline{W} the sets of remaining vertices;
- 2 if no vertex has been removed, return False; /*disjoint*/
- 3 for each pair $v_i \in \overline{V}$, $w_i \in \overline{W}$ do

4 let
$$z \triangleq \frac{v_i + w_j}{2}$$

- 5 Determine if $z \in P \cup Q$ (via LFT)
 - if $z \notin P \cup Q$, return False; $/*P \cup Q$ is not convex.*/
- 7 let X be the set of points in $V \cap W$ that are extreme in $P \cup Q$;
- 8 return conv $(\overline{V} \cup \overline{W} \cup X)$.

Algorithm for V-Polyhedra (2)

- Algorithm 1 might stop earlier if $P \cup Q$ is not convex
- \rightarrow performance depends on inputs P and Q

VH-Polytopes

Theorem 3 Let P and Q be VH-polytopes, $P \cup Q$ is convex $\Rightarrow \operatorname{conv}(V \cup W) = \operatorname{env}(P,Q)$, moreover $\operatorname{conv}(V \cup W) =$ $\operatorname{env}(P,Q) = P \cup Q$.

The converse is not true:

Not useful for convexity recognition, a converse result can be proved under additional assumptions

VH-Polytopes

Theorem 4 Let $\overline{V} = \{v \in V : v \notin Q\}$, $\overline{W} = \{w \in W : w \notin P\}$. If $\overline{V} \cup \overline{W} \cup (V \cap W)$ and env(P,Q) are minimal V- and H-representations, respectively, of the same polytope then $P \cup Q$ is convex, and $P \cup Q = conv(\overline{V} \cup \overline{W} \cup (V \cap W)) = env(P,Q)$. *Proof.* by contradiction.

P

The result can not be exploited for convexity recognition of the union of polyhedra, as checking coherence of given Vand H-representation might be a hard task

Algorithm for VH-Polyhedra

Assuming that P and Q are given by coherent VHrepresentations, an efficient algorithm can be proposed by modifying 2nd Algorithm for V-polytopes to exploit information coming from H-representations

In this case the algorithm computes the solution without solving any LP

Complexity: $O(n_1n_2d(m_1 + m_2))$ strongly polynomial

Related Work (1): Reduction

Multiparametric Programming ammounts to solve for all \boldsymbol{x}

 $\label{eq:min_z} \min_z \Big\{ Rz + Qx \Big\},$ subj. to $Gz \leq W + Kx$

Optimal solution looks like

Problem: Find a "minimal" representation for the solution

Hyperplane Arrangements

Buck 1943, Edelsbrunner 1987, Fukuda 1996

Let $\mathcal{A}=\{H_i\}_{i=\{1,...,n\}}$, $H_i=\{x:a_ix-b_i=0\}$ be a collection of *n* hyperplanes in \mathbb{R}^d Theorem Each polyhedral region (or cell) is associated to a sign marking Theorem The total number

Theorem The total number of cells is bounded by Buck's formula $\#M \leq \sum_{i=0}^{d} \binom{n}{i}$

Hyperplane Arrangements - Algorithms

There is an optimal algorithm for enumeration of hyperplane arrangements with time and space complexity $O(n^d)$ (Edelsbrunner '87)

There is reverse search algorithm (Fukuda '96,'01) for enumeration of hyperplane arrangements that runs in $O(n \ln(n,d) \#M)$ time and O(n,d) space, where $\ln(n,d)$ is the complexity of solving a linear program with d variables and n constraints

Optimal Merging Of Cells - Idea

Markings allows easy merging of the region

- o Convexity recognition by marking comparison
- o Redundancy removal by marking comparison
- o Branch&Bound guarantees minimum by trying several combinations

o Future research: Fast suboptimal algorithms

Optimal Merging

Geyer Torrisi '03

252 regions are reduced to 39 regions in 2' on Pentium IV 2.8 GHz machine

Related Work (2): Extended hull

Compute the convex hull of the union of *k* H-polytopes

Conclusions

- We have provided:
 - Key theorems for characterizing the union of H-, Vand VH-polyhedra
 - Algorithms for computing the union of H-, V- and VHpolyhedra
- Similar work:
 - Efficient algorithms for adjacent H-polyhedra. (useful for multiparametric programming) (Geyer and Torrisi '03)
 - Convex hull of k H-polyhedra (Fukuda, Liebling and Lütolf '01)
- Open problems:
 - Generalization to k V-polyhedra

Technical Reports: http://control.ee.ethz.ch/

