Inner and Outer Approximations of Polytopes Using Boxes

F. D. Torrisi
torrisi@aut.ee.ethz.ch, http://control.ethz.ch/~torrisi
Currently with esmertec AG http://www.esmertec.com

Joint Work with
A. Bemporad and C. Filippi
Given an H-polytope $\mathcal{P} : \{x : Ax \leq b\}$ look for two collections \mathcal{I} and \mathcal{E} of adjacent boxes s. t.:

1. the union of all boxes in \mathcal{I} is contained in \mathcal{P}
2. the union of all boxes in \mathcal{E} contains \mathcal{P}

minimize the volume error and minimize the total number of boxes
Main Idea: Maximize the volume of the box subj. to. all the vertices are in \mathcal{P}

$\mathcal{B}(x, x + y) = \{z \in \mathbb{R}^d : x \leq z \leq x + y\}$; $\mathcal{P} = \{x \in \mathbb{R}^d : Ax \leq b\}$

$$\max_{x,y} \prod_{j \in D} y_j$$
subject to $$Ax + AV(S)y \leq b \quad (\forall S \subseteq D)$$
y > 0

where $D = \{1, \ldots, d\}$; $V(S) \in \{0,1\}^d$ is the incidence vector of $S \subseteq D$
Lemma 1 \(\text{The constraints } Ax + AV(S)y \leq b \ \forall S \subseteq D; y \geq 0 \) are equivalent to the set of constraints \(Ax + A^+y \leq b \), where \(A^+ \) is the positive part of \(A \).

Proof by lines, remembering that \(y > 0 \).

Lemma 2 \(\max_{x,y} \prod_{j \in D} y_j \) is equivalent to \(\max_{x,y} \sum_{j \in D} \ln y_j \). Therefore the problem is convex and polynomially solvable.
Single Inner Constrained Box

\[\mathcal{B}(x, x + \lambda r) = \{z : z \leq z \leq x + \lambda r\}; \mathcal{P} = \{x : Ax \leq b\} \]

Main Idea: If the edges of the box are constrained, maximizing the volume amount to maximizing one edge

\[
\max_{x, \lambda} \lambda \\
\text{subject to } Ax + A^+ r \lambda \leq b,
\]

Complexity: \(O(lp(d + 1, m)) \)

How to choose \(r \)? \(e \) (1 vector), Inner Diameters, Outer Box
Single Greedy Inner Box

Assume that $0 \in \mathcal{P}$

How to find the max τ s.t. $\mathcal{B}(-\epsilon \tau, \epsilon \tau) \subseteq \mathcal{P}$?

$$\mathcal{B}(-\epsilon \tau, \epsilon \tau) = \{x \in \mathbb{R}^d: -\epsilon \tau \leq x \leq \epsilon \tau\}, \, \tau \in \mathbb{R};$$

$$\mathcal{P} = \{x \in \mathbb{R}^d: Ax \leq b\}, \, a_{ij} \text{ is the } j\text{-th element in the } i\text{-th row of } A$$

$$\tau(\mathcal{P}) = \max\{\tau: \mathcal{B}(-\tau \epsilon, \tau \epsilon) \subseteq \mathcal{P}\} = \min\{\tau_i: \, i = 1, \ldots, m\} \text{ where}$$

$$\tau_i = \begin{cases} \sum_{j \in D} b_i & \text{if } \sum_{j \in D} |a_{ij}| > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

because $z_i(\tau) = \max \left\{ \sum_{j \in D} a_{ij} x_j: \ x \in \mathcal{B} \right\}$
Single Greedy Inner Box

Main Idea: Starting from a point x_0 in \mathcal{P}, grow B until it bridges one of the constraints of \mathcal{P}. Then, fix a vertex, remove the active constraints and continue, until all the vertices are fixed.

Complexity $O(md^2)$, $m = \#$ rows of A
Single Outer Box

\[\mathcal{P} = \{x : Ax \leq b\} \]

Main Idea: Find the point \(u_j \) (\(l_j \)) in \(\mathcal{P} \) with the biggest (smallest) \(j \)-th coordinate

\[
\begin{align*}
 l_j &= \min\{x_j : Ax \leq b\} \\
 u_j &= \max\{x_j : Ax \leq b\}
\end{align*}
\]

Complexity: \(O(d \, \text{lp}(m, d)) \)
Recursive Inner Approximation

Main Idea: Partition $\mathcal{P} \setminus \mathcal{B}$ in $2d$ polyhedra and compute the inner approximation of the rests.

Stopping Condition: Prune a branch of the approximation if $\text{vol}(\mathcal{B}) < \epsilon$.

Lemma 3 The total number of recursive calls is bounded by $2d \left\lceil \frac{\text{vol}(\mathcal{P})}{\epsilon} \right\rceil$.

Theorem 1 Let $\mathcal{I}_\epsilon = \{\mathcal{B}_t\}_{t=1}^{S(\epsilon)}$ be the inner approximation of the polytope \mathcal{P} for a given $\epsilon > 0$. Then,

$$\lim_{\epsilon \to 0} \bigcup_{t=1}^{S(\epsilon)} \mathcal{B}_t = \mathcal{P} \quad \text{a.e.}$$
Recursive Outer Approximation

Main Idea: Partition \mathcal{P} in 2 polyhedra along the longest edge and compute the outer approximation of the two polyhedra

Stopping Condition: Prune a branch of the approximation if $\text{vol}(B) < \epsilon$

Lemma 4 Let V denote the volume of the minimum volume outer box of \mathcal{P}. The total number of boxes is bounded by $\left\lceil \frac{4V}{\epsilon} \right\rceil$.

Theorem 1 Let $\mathcal{E}_\epsilon = \{B_t\}_{t=1}^{T(\epsilon)}$ be the outer approximation of the polytope \mathcal{P} for a given $\epsilon > 0$. Then

$$\lim_{\epsilon \to 0} \bigcup_{t=1}^{T(\epsilon)} B_t \Rightarrow a.e. \mathcal{P}.$$
The multiple box outer approximation might generate too many polyhedra

Solution: Stop the approximation if B is in the interior of P. I.e. $B \cap \delta P = \emptyset$

Alternative: Combine inner and outer approximation
Recursive Inner-Outer Approximation

Main Idea: First perform an inner approximation, then compute the outer approximation of the rests.

Computes in one shot both the inner and outer approximation.
Extension: Approximate Projections

Main Idea: First perform an inner approximation, then compute the outer approximation of the rests. Computes in one shot both the inner and outer approximation.
Conclusions

Algorithms to compute an inner and an outer approximation of a polytope

- Minimal *volume error* and *number* of boxes
- Alternative to the exact computation of the *projection*
- Good *performance*

Open Question: determine the projection of \(\mathcal{P} \) (or a polyhedral approximation) using the approximation

Possible Extension: Use arbitrary polytopes (i.e. octagons) as approximant shapes