
The Parma Polyhedra Library:

Toward a Complete Set of Numerical

Abstractions for the Analysis and Verification

of Hardware and Software Systems ⋆

Roberto Bagnara a, Patricia M. Hill b, Enea Zaffanella a

aDepartment of Mathematics, University of Parma, Italy
bSchool of Computing, University of Leeds, UK

Abstract

Since its inception as a student project in 2001, initially just for the handling (as
the name implies) of convex polyhedra, the Parma Polyhedra Library has been con-
tinuously improved and extended by joining scrupulous research on the theoretical
foundations of (possibly non-convex) numerical abstractions to a total adherence
to the best available practices in software development. Even though it is still not
fully mature and functionally complete, the Parma Polyhedra Library already of-
fers a combination of functionality, reliability, usability and performance that is not
matched by similar, freely available libraries. In this paper, we present the main
features of the current version of the library, emphasizing those that distinguish it
from other similar libraries and those that are important for applications in the field
of analysis and verification of hardware and software systems.

Key words: Formal methods, static analysis, computer-aided verification, abstract
interpretation, numerical properties.

⋆ This work has been partly supported by PRIN project “AIDA: Abstract Inter-
pretation Design and Applications.”

Email addresses: bagnara@cs.unipr.it (Roberto Bagnara),
hill@comp.leeds.ac.uk (Patricia M. Hill), zaffanella@cs.unipr.it (Enea
Zaffanella).

Preprint submitted to Science of Computer Programming



1 Introduction

The Parma Polyhedra Library (PPL) is a collaborative project started in Jan-
uary 2001 at the Department of Mathematics of the University of Parma,
Italy. Since 2002, the library is actively being developed also at the School of
Computing of the University of Leeds, United Kingdom. The PPL, that was
initially limited —as the name implies— to the handling of (not necessarily
topologically closed) convex polyhedra [17], is now aimed at becoming a truly
professional, functionally complete library for the handling of numeric approx-
imations targeted at abstract interpretation and computer-aided verification
of hardware and software systems.

In this paper we briefly describe the main features of the PPL. Unless otherwise
stated, the description refers to version 0.9 of the library, released on March
12, 2006. In other cases the described features have not yet been included into
an official release, but are still available from the PPL’s public CVS repository
(since development of the library takes place on that repository, the PPL is
always in a state of continuous release).

In the sequel we will compare the PPL with other libraries for the manipulation
of convex polyhedra. These are: 1

• PolyLib (version 5.22.1), originally designed by D. K. Wilde [85], based on
an efficient C implementation of N. V. Chernikova’s algorithm [26,27,28]
written by H. Le Verge [65], and further developed and maintained by
V. Loechner [66]; 2

• New Polka (version 2.1.0a), by B. Jeannet [62]; 3

• the polyhedra library that comes with the HyTech tool (version 1.04f) [59]; 4

• the Octagon Abstract Domain Library (version 0.9.8), by A. Miné [68,69]. 5

For reasons of space and opportunity, the paper concentrates on introducing
the library to prospective users. As a consequence, we assume the reader has
some familiarity with the applications of numerical abstractions in formal
analysis and verification methods and that she is not immediately concerned
by the theory that lies behind those abstractions. However, the paper provides
a complete set of references that enable any interested reader to reconstruct
every detail concerning the library, the applications and the relevant theory.

1 We restrict ourselves to those libraries that are freely available and provide the
services required by applications in static analysis and computer-aided verification.
2 http://icps.u-strasbg.fr/∼loechner/polylib/.
3 http://pop-art.inrialpes.fr/people/bjeannet/newpolka/index.html.
4 http://embedded.eecs.berkeley.edu/research/hytech/.
5 http://www.di.ens.fr/∼mine/oct/.

2



The paper is structured as follows: Section 2 introduces the numerical ab-
stractions currently supported by the Parma Polyhedra Library; Section 3
describes, also by means of examples, some of the most important features of
the library; Section 4 gives some indications concerning efficiency; Section 5
illustrates the current development plans for the library; Section 6 reviews
some of the applications using the PPL and concludes.

2 Currently Supported Abstractions

The numerical abstractions currently supported by the Parma Polyhedra Li-
brary are the domains of polyhedra, bounded difference shapes, octagonal
shapes and grids; powersets of these using the generic powerset construction;
and linear programming problems. For each of the supported abstractions, the
library features all the operators required by semantic constructions based on
abstract interpretation [31,32]; these are summarized in the following para-
graphs.

Construction The domain elements can be initialized by means of a variety
of constructors; in particular, they can be defined to be a vector space for a
specified number of dimensions —each dimension representing some concrete
entity relevant for the particular analysis— indicating that at this stage noth-
ing is known about the entities, or the empty abstraction (again for a given
number of dimensions), describing an inconsistent (unreachable) state. An el-
ement can also be initialized by means of constraints, specifying conditions its
points must satisfy; alternatively, it can be described by generators, that are
meant to be parametrically combined so as to describe all of its points. New
elements can also be constructed by copying an existing element in the same
abstraction.

Refinement and Expansion Any domain element can be refined by the
addition of further constraints its points must satisfy, thereby improving the
precision of the description: a typical application of refinement is to model
the effect of conditional guards in if-then-else and while-loop statements. The
expansion operators allow users to add new generators so as to expand the set
of points the element must contain; these may be used, for instance, to “forget”
some information regarding a space dimension, so as to model arbitrary input
by the user.

Upper and Lower Bounds It is often useful to compute an upper or
lower bound of two domain elements so as to obtain a correct approximation

3



of their union or intersection. For example, an analyzer could use an upper
bound operator to combine approximations that have been computed along
the alternative branches of an if-then-else statement while lower bound oper-
ators are needed, in combination with conversion operators (see below), when
conjunctively merging different approximations computed along the same set
of computation paths.

Affine Images and Preimages A common form of statement in an imper-
ative language is the assignment of an affine expression to a program variable.
Their semantics can be modeled by images (in a forward analysis) and/or
preimages (in a backward analysis) of affine transformations on domain el-
ements. All domains fully support the efficient (and possibly approximate)
computation of affine images and preimages. Also available are generaliza-
tions of these operators, useful for approximating more complex assignment
statements (e.g., to model constrained nondeterministic assignments or when
a non-linear expression can be bounded from below and/or above by affine
expressions).

Changing Dimensions An analyzer needs to be able to add, remove, and
more generally reorganize the space dimensions that are associated with the
values of the concrete entities it is approximating. The simple addition and
removal of dimensions is often needed at the entry and exit points of var-
ious kinds of programming contexts, such as declaration blocks where con-
crete entities (modeled by some of the space dimensions) may be local to the
block. More complex operators are useful to support the integration of the
results computed using different abstractions, that typically provide informa-
tion about different sets of concrete entities. In the simplest case, when the
abstractions are of the same kind but provide information about disjoint sets
of concrete entities, it is enough to concatenate the two abstract elements into
a new one. In more complex cases, when the described sets of concrete entities
have an overlap, the space dimensions of one of the abstract elements need
to be reconciled with those of the other, allowing for a correct integration of
the information. This can be obtained by efficiently mapping the space di-
mensions according to a (partial) injective function. The library also supports
the folding (and unfolding) of space dimensions, which is needed to correctly
and efficiently summarize the information regarding collections of concrete
entities [48].

Conversion Non-trivial analyses are typically based on a combination of
domains. It is therefore important to be able to safely and efficiently con-
vert between different abstractions. These conversions enable, for instance, the
combination of domain elements representing different kinds of information,

4



implementing so-called reduction operators. Another important application is
the dynamic control of the precision/efficiency ratio: in order to gain efficiency
in the analysis of a specific context, an element of a relatively precise domain
can temporarily be converted into an element of a weaker domain and then
back to the stronger abstraction on exit from that context.

Comparison The analysis of a program fragment is implemented by com-
puting an over-approximation of its semantics. Since the latter is usually mod-
eled as the least fixpoint of a continuous operator, a safe analysis typically
needs to iteratively compute an over-approximation of this fixpoint. There-
fore, a suitable lattice-theoretic comparison operator is needed so as to check
for the convergence of the analysis. Comparison operators are also useful in
selected contexts so as to efficiently predict whether or not some precision
improving techniques (e.g., reductions, widening variants and so on) are ap-
plicable. For all of the reasons above, each domain provides three different
comparison operators checking, respectively, equality, containment and strict
containment.

Widening Most of the domains supported by the library admit infinite as-
cending chains. These are infinite sequences of domain elements such that
every element in the sequence is contained in the element that follows it.
With these characteristics, the fixpoint computations upon which abstract in-
terpretation analysis techniques are based could be non-terminating. For this
reason, the domains can be so employed only in conjunction with appropri-
ate mechanisms for enforcing and/or accelerating the convergence of fixpoint
computations: widening operators [30,31,33,34] provide a simple and general
characterization for such mechanisms. 6 The PPL offers also several variations
of the available widenings: 7 widening “with tokens” (an improvement to the
widening delay technique proposed in [29]); and widening “up to” [53,57] (a
technique whereby constraints that are judged to be important by the appli-
cation can be preserved from the action of the widening).

Other Operators The library offers many other operators for use in a vari-
ety of more specialized contexts. For instance, before performing a non-trivial
domain combination, an analyzer may need information about a particular
domain element (such as, checking whether it denotes the empty set or the
whole vector space; the dimension of the vector space; the affine dimension of

6 Operators that do not provide a strict convergence guarantee are more properly
called extrapolation operators.
7 Some of these variations are extrapolation operators, as the guarantee of conver-
gence is conditional on the way they are used.

5



the element; its relation with respect to a given constraint or generator, and
so on). Another operator supported by the library is the difference operator,
which computes the smallest domain element that contains the set difference
of two elements; this is exploited in the implementation of the finite powerset
widening operator proposed in [16]. The library also provides the time-elapse
operator used to model hybrid systems [57].

The following sections briefly describe each of the supported domains. The
emphasis here is on the features that are unique to the PPL. The reader is
referred to the cited literature and to the library’s documentation [14,15] for
all the details.

2.1 Closed and Not Necessarily Closed Polyhedra

The Parma Polyhedra Library supports computations on the abstract domain
of convex polyhedra [36,52]. The PPL implements both the abstract domain
of topologically closed convex polyhedra (briefly called C polyhedra and imple-
mented by class C_Polyhedron) and the abstract domain of not necessarily
closed convex polyhedra (NNC polyhedra for short, class NNC_Polyhedron).
In both cases, polyhedra are represented and manipulated using the Double
Description (DD) method of Motzkin et al. [70]. In this approach, a closed
convex polyhedron can be specified in two ways, using a constraint system
(class Constraint_System) or a generator system (class Generator_System):
the constraint system is a finite set of linear equality or inequality constraints
(class Constraint); the generator system is a finite set of different kinds of
vectors, collectively called generators, which are rays and points of the poly-
hedron (class Generator). An example of double description is depicted in
Figure 1: the polyhedron represented by the shaded region can be represented
by the set of vectors satisfying the constraints or, equivalently, by the set

{ π1p1 + π2p2 + ρ1r1 + ρ2r2 ∈ R
2 | π1, π2, ρ1, ρ2 ∈ R+, π1 + π2 = 1 },

where p1 = ( 4
1 ), p2 = ( 1

4 ), r1 = ( 1
2 ), r2 = ( 2

1 ), and R+ is the set of non-
negative real numbers. In words, each vector can be obtained by adding a
non-negative combination of the rays and a convex combination of the points.

Implementation of convex polyhedra using the DD method offer some im-
portant advantages to analysis and verification applications. The first one is
due to the “mix” of operations such applications require: some of them are
more efficiently performed on the representation with constraints. This is the
case for the addition of constraints and for the intersection, which is simply
implemented as the union of constraint systems, and for deciding whether a
generator is subsumed or not by a polyhedron (e.g., to decide whether a point
is inside or outside). Some operations are instead more efficiently performed

6



r

r

x

y















x + y ≥ 5

x − 2y ≤ 2

y − 2x ≤ 2







points:
{

(4, 1), (1, 4)
}

rays: {(1, 2), (2, 1)}

Figure 1. The double description method for polyhedra

on generators: computing the convex polyhedral hull (just by taking the union
of generator systems), adding individual generators (e.g., the addition of the
rays r = ( 1

0 ) and −r to the set of rays for the polyhedron in Figure 1 is the
easiest way to “forget” all the information concerning the space dimension x),
projection onto designated dimensions, deciding whether the space defined
by a constraint is disjoint, intersects or includes a given polyhedron, finite-
ness/boundedness tests (a polyhedron is finite/bounded if and only if it has
no rays among its generators), and the time-elapse operator of [56,57]. There
are also important operations, such as the inclusion and equality tests and the
widenings, that are more efficiently performed when both representations are
available. Systems of constraints and generators enjoy a quite strong and useful
duality property. Very roughly speaking, the constraints of a polyhedron are
(almost) the generators of the polar [73,82] of the polyhedron, the generators
of a polyhedron are (almost) the constraints of the polar of the polyhedron,
and the polar of the polar of a polyhedron is the polyhedron itself. This implies
that computing constraints from generators is the same problem as comput-
ing generators from constraints. The algorithm of N. V. Chernikova [26,27,28]
(later improved by H. Le Verge [65] and by K. Fukuda and A. Prodon [47])
solves both problems yielding a minimized system and can be implemented
so that the source system is also minimized in the process. This is basically
the algorithm employed by PolyLib, New Polka and the Parma Polyhedra
Library. It is worth noticing that it is not restrictive to express the coeffi-
cients of constraints and rays by integer numbers, as using rational numbers
would not result in increased expressivity (but would have a negative impact
on efficiency). For points, a common integer denominator suffices. 8

8 The correctness requirements of applications in the field of system’s analysis and
verification prevent the adoption of floating-point coefficients, since any rounding
error on the wrong side can invalidate the overall computation. For domains as com-
plicated as that of polyhedra, the correct, precise and reasonably efficient handling

7



Restricting the attention to convex polyhedra, two of the main innovations
introduced by the PPL are the complete handling of NNC polyhedra and
the introduction of a new widening operator. Apart from the PPL, the only
libraries—among those that provide the services required by applications in
static analysis and computer-aided verification—that support NNC polyhe-
dra are the already mentioned New Polka and the library by N. Halbwachs,
A. Kerbrat and Y.-E. Proy called, simply, Polka [54]. The Polka library, how-
ever, is not available in source format and binaries are distributed under rather
restrictive conditions (until about the year 1996 they could be freely down-
loaded), so our knowledge of it is as given in [54], the programmer’s manual in
a package that includes the actual library. The support provided by Polka and
New Polka for NNC polyhedra is incomplete, incurs avoidable inefficiencies
and leaves the client application with the non-trivial task of a correct inter-
pretation of the results. In particular, even though an NNC polyhedron can be
described by using constraint systems that may contain strict inequalities, the
Polka and New Polka libraries lack a corresponding extension for generator
systems. In contrast, the PPL implements the proposal put forward in [13],
whereby the introduction of closure points as a new kind of generator, allows
a clean user interface, symmetric to the constraint system interface for NNC
polyhedra, that is decoupled from the implementation. As explained in detail
in [13], a user of the PPL is fully shielded from implementation details such
as the extra ǫ dimension that users of the other libraries have to carefully
take into account. Another feature that is unique to the PPL is the support
for the minimization of the descriptions of an NNC polyhedron: we refer the
interested reader to [13] for a precise account of the impact this new feature
has on performance and usability.

The original widening operator proposed by Cousot and Halbwachs [36,52]
is termed standard widening since, for 25 years, all analysis and verification
tools that employed convex polyhedra also employed that operator. Nonethe-
less, there was an unfulfilled demand for more precise widening operators.
The Parma Polyhedra Library, besides the standard widening, offers the new
widening proposed in [12]: on a single application this is always more precise
than the standard widening. As these widenings are not monotonic, increased
precision on a single application does not imply increased precision on the final
result of the analysis. In practice, however, an overall increase of precision is
almost always achieved [12].

Both widenings can be improved, as said before, by applying the “widen-
ing with tokens” delay strategy or the “widening up-to” technique; moreover,
“bounded” extrapolation operators are available that provide additional pre-
cision guarantees over the widenings upon which they are built.

of floating-point rounding errors is an open issue.

8



2.2 Bounded Difference Shapes

By restricting to particular subclasses of linear constraints, it is possible to ob-
tain domains that are simpler and computationally more efficient than the one
of convex polyhedra. One possibility, which has a long tradition in computer
science [20], is to only consider potential constraints, also known as bounded
differences: these are restricted to take the form vi−vj ≤ d or ±vi ≤ d, where
vi and vj are variables and d, the inhomogeneous term, belongs to some com-
putable number family. Systems of bounded differences have been used by the
artificial intelligence community as a way to reason about temporal quantities
[1,37], as well as by the model checking community as an efficient yet pre-
cise way to model and propagate timing requirements during the verification
of various kinds of concurrent systems [38,64]. In the abstract interpretation
field, the idea of using an abstract domain of bounded differences was put
forward in [6] and the first fully developed application of bounded differences
in this field can be found in [80]. Possible representations for finite systems
of bounded differences are matrix-like data structures called difference-bound
matrices (DBM) [20] and weighted graphs called constraint networks [37].
These representations, however, have a “syntactic” nature: they encode sets
of constraints rather than geometric shapes. As pointed out in [10] this nature
has several drawbacks, the most important one being that natural extrapola-
tion operators do not provide a convergence guarantee, that is, they are not
widenings. This results into an extra burden on the client application, which
has to take into account the implementation details and use the domain ele-
ments with care so as to avoid non-termination of the analysis.

In order to overcome the difficulties mentioned above and to continue pursu-
ing a complete separation between interface (which must be natural and easy
to use) and implementation (which must be efficient and robust), the Parma
Polyhedra Library offers the “semantic” domain of bounded difference shapes.
A bounded difference shape is nothing but a geometric shape, that is, a con-
vex polyhedron: its internal representation needs not concern (and, in fact,
is completely hidden from) the client application. The class template imple-
menting this domain in the PPL is BD_Shape<T>, where the class template
type parameter T defines the family of numbers that are used to (correctly)
approximate the inhomogeneous terms of bounded differences. The value of T
may be one of the following:

• a bounded precision native integer type (that is, from signed char to long

long and from int8_t to int64_t);
• a bounded precision floating point type (float, double or long double);
• an unbounded integer or rational type, as provided by GMP (mpz_class or
mpq_class).

9



Among other things, PPL’s BD_Shape<T> offers the proper widening operator
defined in [10] and a user interface that matches the interfaces of the general
polyhedra classes C_Polyhedron and NNC_Polyhedron.

2.3 Octagonal Shapes

Another restricted class of linear constraints was introduced in [19]. These are
of the form avi +bvj ≤ d, where a, b ∈ {−1, 0,+1} and d belongs to some com-
putable number family. Systems of such constraints were called simple sections
in [19] and have been given the structure of an abstract domain by A. Miné
[68]. The resulting octagon abstract domain has, due to its syntactic nature,
the same problems outlined in the previous section. This is why, as explained
in detail in [10], the Parma Polyhedra Library offers a semantic domain of
octagonal shapes, for which it provides a widening operator. This is imple-
mented by the class template Octagonal_Shape<T>, where the class template
type parameter T can be instantiated as for bounded difference shapes. 9 An-
other feature of this class is that its implementation uses the strong closure
algorithm introduced in [10], which has lower complexity than the one used
in the Octagon Abstract Domain Library 10 [68,69].

2.4 Grids

Given a1, . . . , an, b, f ∈ Z, the linear congruence relation a1v1+· · ·+anvn ≡f b

denotes the subset of R
n given by

{

〈q1, . . . , qn〉 ∈ R
n

∣

∣

∣ ∃µ ∈ Z .
n

∑

i=1

aiqi = b + µf

}

;

when f 6= 0, the relation is said to be proper ; when f = 0, the relation is
equivalent to (i.e., it denotes the same hyperplane as) a1v1 + · · · + anvn = b.
A congruence system is a finite set of congruence relations and a grid is any
subset of R

n whose elements satisfy all the congruences of such a system. The
grid domain is the set of all such grids.

An example of grid is given in Figure 2, where the solutions of the congruence
relations are given by the dashed lines and the grid elements by the (filled
and unfilled) squares. The figure shows also that there is an alternative way
of describing the same grid: if we call the points marked by the filled squares

9 Support for octagonal shapes has not yet been included into a formal release. It
is however complete and available in the PPL’s public CVS repository.
10 Until at least version 0.9.8.

10



x

y

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

r r

r







x ≡2 0

x + 2y ≡4 2

{

points:
{

(2, 0), (6, 0), (4, 1)
}







points:
{

(2, 0)
}

parameters:
{

(4, 0), (2, 1)
}

Figure 2. The double description method for grids

p1 = ( 2
0 ), p2 = ( 6

0 ) and p3 = ( 4
1 ), we can see that the grid is given by

{ π1p1 + π2p2 + π3p3 ∈ R
2 | π1, π2, π3 ∈ Z, π1 + π2 + π3 = 1 }. (1)

We say that the set of points {p1,p2,p3} generates the grid. Some of these
generating points can be replaced by parameters that give the direction and
spacing for the neighboring points. Specifically, by subtracting the point p1

from each of the other two generating points p2 and p3, we obtain the param-
eters q2 = ( 4

0 ) and q3 = ( 2
1 ) and can now express the grid as

{p1 + π2q2 + π3q3 ∈ R
2 | π2, π3 ∈ Z }.

Notice that, in the generator representation for grids, points and parameters
can have rational, non integer coordinates.

The domain of grids, as briefly described above, has been introduced by
P. Granger [50,51] and its design has been completed in [8,9] by including
refined algorithms and new operators for affine images, preimages and their
generalizations, grid-difference and widening. The Parma Polyhedra Library
includes the first truly complete implementation of this abstract domain by
means of the Grid class. Congruence relations and systems thereof are re-
alized by the classes Congruence and Congruence_System, and likewise for
generators with the classes Grid_Generator, and Grid_Generator_System.

A more restricted domain, the domain of integral lattices has been partly
implemented in PolyLib [66] following the approach in [74,75]. An integral
lattice in dimension n is the grid generated by the affine integral combination
—as in (1)— of exactly n+1 affinely independent points that are additionally
bound to have integer coordinates. These restrictions have the consequences
that only the generator representation is supported and, as explained in [8,9],

11



the reduced expressivity has an impact on the possibility to solve concrete
analysis problems. The implementation of the domain of integral lattices in
PolyLib is incomplete in the sense that it misses domain operators such as the
join. Instead, it provides a union operator which, given two lattices returns
a set of lattices representing the precise set union of the points of the given
lattices. Similarly the difference operation on a pair of lattices returns a set of
lattices whose union contains the exact set difference of their points. Moreover,
although image and preimage operators are supported by PolyLib, as the
integral lattice must be full dimensional, only invertible image operators are
allowed.

2.5 Powersets

For applications requiring a high degree of precision, the Parma Polyhedra
Library provides a generic implementation of the finite powerset construction
[7,16]. This upgrades an abstract domain into a refined one where finite dis-
junctions of non redundant elements are precisely representable. The construc-
tion is implemented generically by the class template Powerset<D>, where the
type parameter D must provide about ten methods and operators implement-
ing, among other things, an entailment predicate and operators for obtaining
an upper bound and the “meet” of two given elements. No other requirements
are imposed and, in fact, the test suite of the PPL includes a program where
Powerset<D> is instantiated with a non numerical domain.

The class template Pointset_Powerset<PS> provides a specialization of class
Powerset<D> that is suitable for the instantiation with the “semantic” numer-
ical domains of the PPL: (C or NNC) polyhedra, bounded difference shapes,
octagonal shapes, grids and combinations thereof. A most notable and, at the
time of writing, unique feature of this implementation is the provision —in
addition to the extrapolation operator proposed in [25]— of provably correct,
certificate-based widening operators that lift the widening operators defined
on the underlying domain PS [16].

2.6 Linear Programming Problems

The library includes a Linear Programming (LP) solver based on the simplex
algorithm and using exact arithmetic. Note that the absence of rounding errors
is essential for most (if not all) of the intended applications. Since it is common
practice to solve an LP problem by exploiting duality results, correctness may
be lost even if controlled rounding is used; this is because a feasible but possibly
non-optimal solution for the dual of an LP problem may actually correspond
to an unfeasible solution for the original LP problem.

12



The LP solver interface allows for both satisfiability checks and optimization
of linear objective functions. A limited form of incrementality allows for the
efficient re-optimization of an LP problem after modification of the objective
function. Ongoing implementation work is focusing on improving the efficiency
of the solver as well as providing better support for incremental computations,
so as to also allow for the efficient re-optimization of the LP problem after
a modification of the feasible region caused by the addition of further con-
straints. 11

3 Main Features

In this section we will briefly review the main features of the Parma Polyhedra
Library. We will focus on usability, on the absence of arbitrary limits due
to the use of fully dynamic data structures, on some of the measures that
contribute to the library’s robustness, on the support for resource-bounded
computations, on the possibility to use machine integer coefficients without
compromising correctness, on portability and on the availability of complete
documentation.

3.1 Usability

By “usability” of the Parma Polyhedra Library we actually mean two things:

(1) that the library provides natural, easy to use interfaces that can be used,
even by the non expert, to quickly prototype an application;

(2) that, nonetheless, the library and its interfaces provide all the function-
alities that allow their use in the development of professional, reliable
applications.

In other words, simplicity of the interfaces has not been obtained with sim-
plistic solutions or by the omission of functionalities.

As mentioned before particular care has been taken (to the point of developing
the necessary theoretical concepts) in the complete decoupling of the user
interfaces from all implementation details. So, the internal representation of,
say, constraints, congruences, generators and systems thereof need not concern
the client application. All the user interfaces, whatever language they interface
to, refer to high-level concepts and never to their possible implementation
in terms of vectors, matrices or other data structures. For instance, unlike

11 The incremental LP solver has not yet been included into a formal release. It is
however complete and available in the PPL’s public CVS repository.

13



PolyLib and New Polka, implementation devices (such as so-called positivity
constraints [85] or ǫ-representations [13,56]) never surface at the user level
and need not concern the client application. As another example, a user of the
Octagon Abstract Domain Library must know that octagons are represented
there by means of difference-bound matrices, that some of the operations on
octagons do “close” these matrices, and that one argument to the widening is
better closed for improved accuracy while the other should not be closed as
this would prevent convergence.

The Parma Polyhedra Library currently offers, besides the C++ interface, a
portable Prolog interface and a C interface. The Prolog interface is “portable”
in that it supports (despite the lack of standardization of Prolog foreign lan-
guage interfaces) six major Prolog systems: Ciao, GNU Prolog, SWI-Prolog,
SICStus, XSB and YAP. The C interface is particularly important, as it allows
to interface the PPL with almost anything else: for example, third parties have
already built interfaces for Haskell, Java and Objective Caml. The design of
the interfaces to directly supported languages has been focused on ensuring
that programmers can use the library following the most natural program-
ming style in that language. As a simple example, in the appropriate contexts,
‘X < 5*Z’ and ‘X + 2*Y + 5*Z >= 7’ is valid syntax expressing a strict and
a non-strict inequality, both in the C++ and the Prolog interfaces. This can be
done because both languages allow to override (or freely interpret) operators
and provide exceptions as a powerful method of reporting run-time errors.
Here is how a NNC polyhedron in a space of dimension 3 can be created using
the C++ interface:

#include <ppl . hh>

namespace PPL = Parma Polyhedra Library ;

. . .
PPL : : Var iab le X( 0 ) ;
PPL : : Var iab le Y( 1 ) ;
PPL : : Var iab le Z ( 2 ) ;
PPL : : NNC Polyhedron ph (3 , PPL : :UNIVERSE) ;
ph . add cons t r a i n t (X + 2∗Y + 5∗Z >= 7 ) ;
ph . add cons t r a i n t (X < 5∗Z ) ;
. . .

And here is how the same polyhedron can be created using the Prolog interface:

14



. . .
numbervars ( [X, Y, Z ] , 0 , ) ,
ppl new NNC Polyhedron from constra ints (

[X + 2∗Y + 5∗Z >= 7 , X < 5∗Z ] ,
PH

) ,
. . .

In standard C things are more complicate as the language syntax does not
allow to represent, say, constraints as easily. 12 Thus, in order to build con-
straints the C application will have to build the linear expressions occurring
in them and the memory used to hold these intermediate data structures will
have to be explicitly managed, unless a conservative garbage collector is used.
Moreover, lack of exceptions means that non-trivial error detection and han-
dling will demand significantly more effort in C than in C++ or Prolog (all
the functions of the C interface return an int: a negative value indicates an
error has occurred). The best approach to development using the C interface
is to begin by developing a layer of interface functions that are suited to the
application at hand: the PPL’s C interface provides all the required services.

Still on the subject of ease of use, the numeric abstractions provided by the
library provide similar interfaces. A high degree of integration is obtained
through the adoption of common data types and the availability of methods
specifically designed for interoperability. As a consequence, the specification
and implementation of new abstractions and tools can be easily obtained by
composition of the available services. As a simple example, the code in List-
ing 1 is exploiting the LP solver capabilities to efficiently compute (and print)
all the upper bounds for the variables corresponding to the dimensions of a
closed polyhedron.

Note that the code in Listing 1 is taking advantage of a limited form of incre-
mentality provided by the LP solver: the check for satisfiability (corresponding
to the first phase of the simplex algorithm) is executed only once and it is not
repeated when optimizing the different objective functions (namely, only the
second phase of the simplex algorithm is executed in the for-loop). Code similar
to the one above is actually used in the library itself to precisely approximate
a polyhedron by means of a bounded difference or octagonal shape without
incurring the potentially high cost of converting from the constraint to the
generator representation of the polyhedron.

12 Unless one represents them with strings. While a string-based interface is certainly
possible, we do not believe it would make things simpler: strings would have to be
parsed at run-time and parsing errors would have to be properly handled.

15



Listing 1. Printing upper bounds for all variables using the LP solver

#include <ppl . hh>

#include <iostream>

using namespace Parma Polyhedra Library ;
using namespace Parma Polyhedra Library : : IO Operators ;

void pr int upper bounds ( const C Polyhedron& ph) {
LP Problem lp (ph . c on s t r a i n t s ( ) ) ;
// Check the s a t i s f i a b i l i t y o f the problem .
i f ( ! lp . i s s a t i s f i a b l e ( ) ) {

std : : cout << ” u n s a t i s f i a b l e ” << std : : endl ;
return ;

}
// Print the upper bound o f each v a r i a b l e .
lp . s e t opt imiza t ion mode (MAXIMIZATION) ;
Generator g ( po int ( ) ) ;
C o e f f i c i e n t num, den ;
const dimens ion type dim = ph . space dimens ion ( ) ;
for ( dimens ion type i = 0 ; i < dim ; ++i ) {

Var iab le x ( i ) ;
lp . s e t o b j e c t i v e f u n c t i o n (x ) ;
LP Problem Status s t a tu s = lp . s o l v e ( ) ;
i f ( s t a tu s == UNBOUNDED LP PROBLEM)

std : : cout << x << ” < +in f t y ” << std : : endl ;
else {

a s s e r t ( s t a tu s == OPTIMIZED LP PROBLEM) ;
g = lp . op t im i z i ng po in t ( ) ;
lp . e v a l u a t e o b j e c t i v e f un c t i o n (g , num, den ) ;
std : : cout << x << ” <= ” << num << ”/” << den

<< std : : endl ;
}

}
}

3.2 Absence of Arbitrary Limits

The only real restrictions imposed by the library on the client application are
those caused by limitations of the available virtual memory. All data structures
are fully dynamic and automatically expand (in amortized constant time) and
shrink in a way that is completely transparent to the user, ensuring the best
use of available memory.

16



In contrast, in the PolyLib, New Polka and HyTech libraries, matrices of co-
efficients, which are the main data structures used to represent polyhedra,
cannot grow dynamically and the client application is ultimately responsi-
ble for specifying their dimensions. Since the worst case space complexity of
the methods employed is exponential, in general the client application cannot
make a safe and practical choice: specifying small dimensions may provoke a
run-time failure; generous dimensions may waste significant amounts of mem-
ory and, again, result in unnecessary run-time failures.

3.3 Robustness

The clean separation between interface and implementation, among other im-
portant advantages, allows for the adoption of incremental and lazy com-
putation techniques. The increased efficiency due to these techniques amply
repays the cost of the interface checks that contribute to the library’s robust-
ness, which, as it will be explained in the sequel, is one of its most important
features.

First, the library systematically checks all the interface invariants and throws
an exception if any one of them is violated. This makes it very difficult to
inadvertently create invalid objects and greatly simplifies the debugging of
client applications. Secondly, the library is exception-safe, that is, it never
leaks resources or leaves invalid object fragments around, even in the presence
of exceptions. In particular, if an exception is raised, then all the memory
allocated by the failed computation is discarded. These features allows appli-
cations using the PPL to use timeouts or to sensibly deal with run-time errors
such as arithmetic overflows and out-of-memory conditions, so as to continue
the computation in a reliable state (see below for more on this subject). It
is important to stress that, while error handling and recovery are somewhat
optional features (there may be no interest in continuing the computation af-
ter an error has occurred), error detection should be considered a mandatory
feature in the field of system’s analysis and verification, since failure to de-
tect an error can easily result into undefined (i.e., completely unpredictable)
behavior, therefore compromising any statement about correctness.

For comparison, PolyLib detects only some errors, sometimes setting a flag
and sometimes printing a message and aborting, whereas New Polka and the
HyTech libraries detect some errors, print an error message and abort. The
Octagon Abstract Domain Library makes no attempt at detecting errors. None
of these libraries perform a systematic check of interface invariants.

17



3.4 Resource-Bounded Computations

The library, thanks to its exception-safety characteristics, naturally supports
resource-bounded computations, that is, computations that are limited in the
amount of CPU time or virtual memory or both. The client application can
take advantage of this feature by attempting a computation that is potentially
very expensive imposing a maximum limit on the resources to be used. Should
this bound be exceeded, an exception is raised and the client application can
resort to a simplified computation (possibly using a simpler numerical ab-
straction) trusting that the PPL will release all the resources allocated by the
interrupted computation. With these facilities at hand, users of the library
can quite easily code resource-bounded or, at least, resource-conscious numer-
ical abstractions. An example is shown in Listing 2. This uses the Parma
Watchdog Library (PWL), a library that virtualizes the interval timers for
any XSI-conforming implementation of UNIX. 13 The PWL, which is cur-
rently distributed with the PPL, gives an application the ability to work with
an unbounded number of independent “watchdog” timers.

The example class Up_Appr_Polyhedron is meant to provide convex polyhe-
dra with “upward approximated”, resource-conscious operations. As the main
representation it uses closed convex polyhedra; the user can set a timeout for
the operations and externally impose a limit on the virtual memory available
to the process. When a resource limit is reached, the class temporarily switches
to a simpler family of polyhedra: bounded difference shapes. Listing 3 shows a
simple implementation for the intersection operation. If no timeout has been
requested, then the operation is performed without any overhead. Otherwise
the polyhedra are copied, a watchdog timer, w, is set and the operation is
attempted. When w expires, the PPL is asked to abandon all expensive com-
putations and to throw Timeout_object. Alternatively, if the process exceeds
the virtual memory it has been allotted, then the bad_alloc standard excep-
tion will be thrown. If none of those happen, then control will be returned to
the caller. Otherwise, bounded difference shapes approximating the argument
polyhedra will be computed using a polynomial complexity method, 14 these
shapes will be intersected and the intersection will be used to construct the
resulting convex polyhedron.

The technique illustrated in a simplified way by Listings 2 and 3 is quite
powerful and allows to deal with the complexity-precision trade-off in a very
flexible way. In particular, it is possible, thanks to the PWL, to work with

13 XSI it is the core application programming interface for C and shell programming
for systems conforming to the Single UNIX Specification.
14 As mentioned in Section 2.6, it is also possible to compute these approximations
using a “simplex complexity” algorithm (i.e., theoretically exponential but very
efficient in practice).

18



Listing 2. Declaration of a class for resource-conscious computations

#include <ppl . hh>

#include <pwl . hh>

#include <stdexcept>

namespace PPL = Parma Polyhedra Library ;
namespace PWL = Parma Watchdog Library ;

class Up Appr Polyhedron {
private :

// The type o f the main po l y h ed ra l a b s t r a c t i o n .
typedef PPL : : C Polyhedron PH;

// The type o f a s imp le r po l y h ed ra l a b s t r a c t i o n .
typedef PPL : : BD Shape<mpq class> SPH;

PH ph ;

// Timeout in hundredth o f a second ; 0 f o r no t imeout .
stat ic unsigned long t imeout hs ;

class Timeout : public PPL : : Throwable {
. . .

} ;

stat ic Timeout Timeout object ;

public :
stat ic void s e t t imeout (unsigned long n ) ;
. . .
void i n t e r s e c t i o n a s s i g n ( const Up Appr Polyhedron& y ) ;
. . .

} ;

multiple timers: while individual polyhedra operations can be guarded by a
timer, other timers can monitor operations of greater granularity, such as
entire analysis phases. When an analysis phase is taking too much, then the
timeouts used for the individual operations can be shortened or the analyzer
can switch to a totally different, less complex analysis technique. It is worth
observing that, notwithstanding the friendliness of the PPL’s user interfaces,
professional applications in the field of system’s analysis and verification are
not expected to be directly based on the abstractions provided by the library.

19



Listing 3. Definition of a resource-conscious intersection method

void Up Appr Polyhedron
: : i n t e r s e c t i o n a s s i g n ( const Up Appr Polyhedron& y) {

i f ( t imeout hs == 0) {
// No t imeout : do the opera t ion d i r e c t l y .
ph . i n t e r s e c t i o n a s s i g n (y . ph ) ;
return ;

}

// Save cop i e s o f ‘ ph ’ and ‘ y . ph ’ : they may be needed
// to recover from a re source s exhaus t ion cond i t i on .
PH xph copy = ph ;
PH yph copy = y . ph ;

try {
PWL: : Watchdog w( timeout hs ,

PPL : : abandon expensive computat ions ,
Timeout object ) ;

ph . i n t e r s e c t i o n a s s i g n (y . ph ) ;
PPL : : abandon expens ive computat ions = 0 ;
return ;

}
catch ( const Timeout&) {

// Timeout exp i r ed .
}
catch ( const std : : b ad a l l o c&) {

// Out o f memory .
}

// Resources exhaus ted : use s imp le r po lyhedra .
PPL : : abandon expens ive computat ions = 0 ;

SPH xph simple ( xph copy , PPL : :POLYNOMIAL COMPLEXITY) ;
SPH yph simple ( yph copy , PPL : :POLYNOMIAL COMPLEXITY) ;
xph s imple . i n t e r s e c t i o n a s s i g n ( yph s imple ) ;
ph = PH( xph s imple . m in im iz ed cons t ra in t s ( ) ) ;

// Restore ‘ y . ph ’ .
const cast<PH&>(y . ph ) = yph copy ;

}

20



Rather, the PPL abstractions have been designed so as to serve as building
blocks for the actual analysis domains: in this field the complexity-precision
trade-off is often so serious that the right way to face it is, by necessity,
application-dependent.

3.5 Unbounded or Native Integer Coefficients

For the representation of general convex polyhedra, with the default configu-
ration, the Parma Polyhedra Library uses unbounded precision integers. On
the other hand, if speed is important and the numerical coefficients involved
are likely to be small, applications may use native integers (8, 16, 32 and 64
bit integers are supported by the PPL). This is a safe strategy since, when
using native integers, the library also performs systematic (yet efficient) over-
flow detection. It is thus possible to adopt an approach whereby computations
are first attempted with native integers. If a computation runs to completion,
the user can be certain that no overflow occurred. Otherwise an exception is
raised (as in the case seen before for resource-bounded computations), so that
the client application can be restarted with bigger native integers or with un-
bounded integers. This is another application of the library’s exception-safety,
as one can rather simply code the above approach as follows:

try {
// Analyze wi th 64− b i t c o e f f i c i e n t s .
. . .

}
catch ( const std : : o v e r f l ow e r r o r &) {

// Analyze wi th unbounded c o e f f i c i e n t s .
. . .

}
. . .

Again, the client application does not need to be concerned about the resources
allocated by the PPL during the computation of the try block: everything will
be deallocated automatically.

Concerning other libraries, PolyLib and New Polka can use unbounded in-
tegers as coefficients, whereas the library of HyTech does not support them.
Differently from the PPL, these libraries use finite integral types without any
mechanism for overflow detection. Technically speaking and according to the
C standard (the language in which they are written), this means that the ef-
fects of an overflow are completely undefined, i.e., client applications cannot
make any assumption about what can happen should an overflow occur. In
addition, PolyLib (and, according to [21], some versions of HyTech) can use

21



floating point values, in which case underflows and rounding errors, in addition
to overflows, can affect the results.

3.6 Portability and Documentation

Great care has been taken to ensure the portability of the PPL. The library
is written in standard C++, it follows all the available applicable standards
and uses sophisticated automatic configuration mechanisms. It is known to
run on all major UNIX-like operating systems, on Mac OS X (whether Intel-
or PowerPC-based) and on Windows (via Cygwin or MinGW).

A big investment has also been made on documentation and at several levels.
First, the theoretical underpinnings have been thoroughly investigated, inte-
grated when necessary and written down: an extensive bibliography is available
on the PPL web site. Secondly, during the entire development of the library,
the quality, accessibility and completeness of the documentation has always
been given a particular emphasis: while some parts of the library need more
work in this respect, the vast majority of the code is thoroughly documented
and some parts of it approach the ideal of “literate programming.”

The library has been documented using the Doxygen tool. 15 Doxygen is a
documentation system for C++, C, Java, and other languages that allows to
generate high-quality documentation from a collection of documented source
files. The source files can be documented by means of ordinary comments, that
can be placed near the program elements being documented: just above the
declaration or definition of a member, class or namespace, for instance. This
makes it much easier to keep the documentation consistent with the actual
source code. Moreover, Doxygen allows the typesetting of mathematical for-
mulas within comments by means of the relevant subset of LATEX, which is an
important feature for a project like the PPL. It is also able to automatically
extract the code structure and use this information to generate include de-
pendency graphs, inheritance diagrams, and collaboration diagrams. Doxygen
can generate documentation in various formats, such as HTML, PostScript
and PDF. The HTML and PDF output are fully hyperlinked, a feature that
greatly facilitates “navigation” in the available documentation.

The Parma Polyhedra Library is equipped with two manuals generated with
the help of Doxygen: a user’s manual, containing all and only the information
needed by people wishing to use the library [15]; and a developer’s reference
manual that contains, in addition, all the details concerning the library imple-
mentation [14]. All manuals are available, in various formats, from the PPL
web site and the user’s manual is also included in each source distribution.

15 http://www.doxygen.org.

22



4 Efficiency

One natural question is how does the efficiency of the Parma Polyhedra Library
compare with that of other polyhedra libraries. Of course, such a question does
not have a definite answer. Apart from clarifying whether CPU or memory
efficiency or both are the intended measures of interest, the answer will depend
on the targeted applications: with different applications the results can vary
wildly. Moreover, even within the same application, big variations may be
observed for different inputs. For these reasons, it must be admitted that
the only way to meaningfully assess the performance of the library is with
respect to a particular application, a particular set of problem instances, and
a particular definition of ‘performance’.

For the same reasons, it is nonetheless instructive to compare the performance
of various polyhedra libraries on a well-defined problem with a large set of
freely available inputs. One such problem, called vertex/facet enumeration,
is particularly relevant for implementations based on the Double Description
method such as the Parma Polyhedra Library, New Polka and PolyLib, as this
problem has to be solved whenever one description has to be converted into
the other one. The vertex/facet enumeration problem is a well-studied one
and several systems have been expressly developed to solve it. We have thus
compared the above mentioned libraries with the following (in parentheses,
the versions we have tested):

• cddlib (version 0.94b), a C implementation of the Double Description method,
by K. Fukuda [47]; 16

• lrslib (version 0.42b), a C implementation of the reverse search algorithm
for vertex enumeration/convex hull problems, by D. Avis [3,4]; 17

• pd (version 1.7), a C program implementing a primal-dual algorithm using
rational arithmetic, by A. Marzetta and maintained by D. Bremner [24]. 18

Both cddlib and lrslib come with driver programs that support a polyhedra
input format that was introduced by K. Fukuda and extended by D. Avis;
this input format is also supported by the pd program. The distributions of
cddlib and lrslib provide more than 100 different inputs of varying complexity
for these programs. Driver programs that can read the same input format and
use the PPL, New Polka and PolyLib are part of the PPL distribution since
version 0.7.

The tests have been performed on a PC equipped with an AMD Athlon 2800+
with 1 GB of RAM and running GNU/Linux and GMP version 4.2. All the

16 http://www.cs.mcgill.ca/∼fukuda/soft/cdd home/cdd.html.
17 http://cgm.cs.mcgill.ca/∼avis/C/lrs.html.
18 http://www.cs.unb.ca/profs/bremner/pd/.

23



software has been compiled with GCC 4.0.3 at the optimization level that
is the default for each package (i.e., the PPL was compiled with ‘-O2’, its
default; PolyLib, cddlib, and pd with -O2; New Polka and lrslib with ‘-O3’).
The obtained running times, in seconds, are reported in Tables 1 and 2. 19

The entries marked with ‘n.a.’ in the pd’s column indicate the problems that
cannot be solved by pd, which can only handle polyhedra that contain the
origin. Entries marked with ‘ovfl’ indicate the problems on which pd runs into
an arithmetic overflow. It should be noted that strictly speaking, lrslib solves
a slightly different, easier problem than the one solved by the other systems:
while the latter guarantee the result is minimized, the output of lrslib may
contain duplicate rays.

Table 1: Efficiency on vertex enumeration

input PPL New Polka PolyLib cddlib lrslib pd
ccc4.e 0.00 0.11 0.03 0.00 0.00 n.a.
ccc5.e 0.00 0.10 0.04 0.02 0.00 n.a.
ccc6.e 0.03 0.14 0.26 0.61 3.12 n.a.
ccp4.e 0.00 0.10 0.02 0.00 0.00 0.01
ccp5.e 0.00 0.10 0.04 0.02 0.00 5.36
ccp6.e 0.05 0.15 0.31 0.90 3.95 > 1h

cp4.e 0.00 0.08 0.03 0.00 0.00 0.01
cp5.e 0.00 0.12 0.05 0.02 0.00 5.29
cp6.e 0.05 0.18 0.30 0.88 3.86 > 1h

cube.e 0.00 0.05 0.02 0.00 0.00 0.00
cut16_11.e 0.00 0.12 0.04 0.02 0.00 3.86
cut32_16.e 0.05 0.17 0.28 0.91 4.32 > 1h

cyclic10-4.e 0.00 0.07 0.02 0.00 0.00 0.00
cyclic12-6.e 0.00 0.08 0.03 0.01 0.00 0.44
cyclic14-8.e 0.00 0.09 0.04 0.06 0.01 172.10
cyclic16-10.e 0.02 0.14 0.07 0.24 0.04 > 1h

dcube10.e 0.02 0.13 0.10 0.23 0.02 > 1h

dcube12.e 0.17 0.22 2.66 1.29 0.10 > 1h

dcube3.e 0.00 0.08 0.02 0.00 0.00 0.00
dcube6.e 0.00 0.07 0.03 0.00 0.00 0.35
dcube8.e 0.00 0.12 0.03 0.04 0.00 119.53
irbox20-4.e 0.00 0.08 0.01 0.01 0.00 0.01
irbox200-4.e 0.02 0.07 0.02 0.98 0.05 0.18
mp5.e 0.00 0.11 0.05 0.59 0.84 3.93
prodst62.e 34.78 161.09 123.28 > 1h > 1h ovfl
redcheck.e 0.00 0.06 0.01 0.00 0.00 0.00
reg24-5.e 0.00 0.08 0.03 0.01 0.00 0.01
reg600-5_m.e 5.05 19.12 12.37 135.49 33.63 n.a.
samplev1.e 0.00 0.09 0.02 0.00 0.00 n.a.
samplev2.e 0.00 0.06 0.02 0.00 0.00 n.a.
samplev3.e 0.00 0.07 0.02 0.00 0.00 n.a.

19 Filenames have been shortened to fit the table on the page: in particular the .ext
and .ine extensions have been shortened to .e and .i, respectively; moreover, the
file called integralpoints.ine has been renamed integpoints.i.

24



Table 1: Efficiency on vertex enumeration (continued)

input PPL New Polka PolyLib cddlib lrslib pd
tsp5.e 0.00 0.12 0.04 0.00 0.00 n.a.
allzero.i 0.00 0.06 0.01 0.00 0.00 n.a.
cp4.i 0.00 0.09 0.02 0.00 0.00 n.a.
cp5.i 0.01 0.12 0.05 0.14 5.91 n.a.
cross10.i 0.08 0.22 0.14 10.50 > 1h 1.38
cross12.i 0.84 3.04 2.86 166.15 > 1h 15.24
cross4.i 0.00 0.07 0.02 0.00 0.00 0.00
cross6.i 0.00 0.06 0.03 0.04 0.09 0.01
cross8.i 0.01 0.07 0.03 0.54 28.90 0.14
cube.i 0.00 0.09 0.02 0.00 0.00 0.00
cube10.i 0.02 0.15 0.16 0.24 0.03 > 1h

cube12.i 0.19 0.32 3.70 1.35 0.18 > 1h

cube3.i 0.00 0.06 0.02 0.00 0.00 0.00
cube6.i 0.00 0.10 0.03 0.01 0.00 0.34
cube8.i 0.00 0.10 0.05 0.06 0.00 123.23
cubetop.i 0.00 0.08 0.02 0.00 0.00 n.a.
cubocta.i 0.00 0.10 0.02 0.00 0.00 0.00
cyc.i 0.00 0.08 0.01 0.00 0.00 0.00
cyclic17_8.i 0.04 0.15 0.14 0.32 0.08 > 1h

diamond.i 0.00 0.08 0.01 0.00 0.00 0.00
dodeca_m.i 0.00 0.07 0.02 0.00 0.00 n.a.
ex1.i 0.00 0.07 0.02 0.00 0.00 n.a.
grcubocta.i 0.00 0.06 0.02 0.01 0.00 0.01
hexocta.i 0.00 0.05 0.01 0.02 0.00 0.01
icododeca_m.i 0.00 0.07 0.02 0.05 0.00 n.a.
in0.i 0.00 0.06 0.02 0.00 0.00 n.a.
in1.i 0.00 0.08 0.02 0.01 0.00 n.a.
in2.i 0.00 0.08 0.03 0.00 0.00 n.a.
in3.i 0.00 0.05 0.02 0.00 0.00 n.a.
in4.i 0.00 0.10 0.03 0.01 0.00 n.a.
in5.i 0.00 0.07 0.04 0.03 0.00 n.a.
in6.i 0.02 0.14 0.09 0.42 0.03 n.a.
in7.i 0.18 0.40 0.44 0.96 0.08 n.a.
infeas.i 0.00 0.09 0.02 0.00 0.00 n.a.
integpoints.i 0.00 0.10 0.04 0.05 0.00 n.a.
kkd18_4.i 0.00 0.10 0.02 0.02 0.00 n.a.
kkd27_5.i 0.05 0.12 0.07 0.08 0.01 n.a.
kkd38_6.i 2.95 5.26 1.52 0.32 0.05 n.a.
kq20_11_m.i 0.19 0.41 0.45 0.99 0.08 n.a.
metric40_11.i 0.00 0.11 0.04 0.07 0.57 n.a.
metric80_16.i 0.13 0.24 0.07 0.54 32.09 n.a.
mit31-20.i 23.34 27.21 115.00 103.19 25.53 > 1h

mp5.i 0.00 0.08 0.04 0.06 0.58 n.a.
mp5a.i 0.00 0.10 0.03 0.06 0.57 n.a.
mp6.i 0.33 0.42 0.75 4.66 1177.96 n.a.
nonfull.i 0.00 0.06 0.02 0.00 0.00 n.a.
origin.i 0.00 0.08 0.02 0.00 0.00 n.a.
project1_m.i 0.00 0.10 0.04 0.03 0.00 1.10
project1res.i 0.00 0.08 0.02 0.00 0.00 0.00

25



Table 1: Efficiency on vertex enumeration (continued)

input PPL New Polka PolyLib cddlib lrslib pd
project2_m.i 0.02 0.09 0.05 0.46 0.13 n.a.
project2res.i 0.00 0.08 0.02 0.08 0.01 n.a.
rcubocta.i 0.00 0.08 0.01 0.01 0.00 0.01
reg24-5.i 0.00 0.08 0.02 0.01 0.00 0.01
rhomtria_m.i 0.00 0.09 0.02 0.04 0.00 n.a.
sample.i 0.00 0.08 0.01 0.00 0.00 0.00
sampleh1.i 0.00 0.05 0.02 0.00 0.00 n.a.
sampleh2.i 0.00 0.06 0.01 0.00 0.00 n.a.
sampleh3.i 0.00 0.04 0.02 0.00 0.00 n.a.
sampleh4.i 0.00 0.07 0.01 0.00 0.00 n.a.
sampleh5.i 0.00 0.05 0.01 0.00 0.00 n.a.
sampleh6.i 0.00 0.06 0.01 0.00 0.00 n.a.
sampleh7.i 0.00 0.09 0.01 0.00 0.00 n.a.
sampleh8.i 52.87 73.64 78.76 > 1h 4.59 n.a.
trunc10.i 8.81 9.06 0.08 1.66 9.15 737.37
trunc7.i 0.02 0.13 0.04 0.13 0.16 17.51
tsp5.i 0.00 0.10 0.04 0.02 0.00 n.a.
total 130.34 308.12 345.70

In Table 2 we have collected the data concerning the hardest of these problems.
Here we have imposed a memory limit of 768 MB: entries marked with ‘mem’
indicate the problems on which this limit was exceeded. The entries marked
with ‘tab’ in the New Polka’s column indicate the problems where New Polka
ran “out of table space” in the conversion algorithm.

Table 2: Efficiency on vertex enumeration: hard problems

input PPL New Polka PolyLib cddlib lrslib pd
cp7.e > 1h tab > 1h > 1h > 1h > 1h

cyclic25_13.e 89.94 tab 354.83 221.98 12.10 n.a.
cp6.i > 1h tab > 1h > 1h > 1h n.a.
mit.i > 1h tab > 1h 950.00 2024.16 n.a.
mit288-281.i mem tab mem mem > 1h ovfl
mit41-16.i 137.14 tab 320.37 325.65 33.89 > 1h

mit708-9.i > 1h tab > 1h 1016.23 1927.18 n.a.
mit71-61.i > 1h tab mem > 1h > 1h n.a.
mit90-86.i mem tab mem > 1h > 1h ovfl

Another possibility of evaluating the performance of the Parma Polyhedra
Library on a standard problem with standard data is offered by linear pro-
gramming, which is the paradigm upon which several approaches to analysis
and verification (such as, e.g., [76,78]) rest upon. This requires either a version
of the simplex based on exact arithmetic, or, in case a classical floating-point
implementation is used, it forces to validate the obtained result with some al-

26



ternative methods. The MathSAT 20 decision procedure [23], which is applica-
ble to the formal verification of infinite state systems (such as timed and hybrid
systems), is based on a version of the Cassowary Constraint Solving Toolkit [5],
modified so as to use exact arithmetic instead of floating-point numbers. More-
over, the algorithm employed by MathSAT requires incremental satisfiability
checks: a set of constraints is added and satisfiability is checked, more con-
straints are added and satisfiability is re-checked, and so forth. We have thus
measured the efficiency of the PPL’s incremental constraint solver by compar-
ison with the version of Cassowary used in MathSAT and with the Wallaroo
Linear Constraint Solving Library, 21 another descendant of Cassowary. The
benchmarks we used are quite standard in the linear programming commu-
nity: they come from the ‘lp’ directory of NetLib. 22 The solution times, in
seconds, obtained for the problem of adding one constraint at a time, checking
for satisfiability at each step, are given in Table 3.

Table 3: Efficiency of the simplex solver on incremental sat-
isfiability checking

input PPL Wallaroo Cassowary/MathSAT
adlittle.mps 0.33 1.46 1.51
afiro.mps 0.02 0.05 0.07
blend.mps 13.45 5.40 8.23
boeing1.mps 47.28 87.80 75.48
boeing2.mps 2.32 10.58 14.67
kb2.mps 0.11 0.30 0.46
sc105.mps 0.48 10.95 7.23
sc50a.mps 0.05 0.64 0.56
sc50b.mps 0.06 0.70 0.94
total 64.10 117.88 109.15

5 Development Plans

In this section we briefly review the short- and mid-term development plans we
have for the library. We deliberately omit all long-term projects: for all those
we mention here, code —whether in the form of a prototype or as a proof-of-
concept exercise— has already been developed that proves the feasibility of
the proposal.

20 http://mathsat.itc.it/.
21 http://sourceforge.net/projects/wallaroo/.
22 http://www.netlib.org/lp/index.html.

27



5.1 More Abstractions

Intervals and Bounding Boxes An important numerical domain is the
domain of bounding boxes : these are representable by means of finite set of
intervals or be seen as finite conjunctions of constraints of the form ±vi ≤ d

or ±vi < d. Despite the fact that bounding boxes have been one of the first
abstract domains ever proposed [30] and that they have been implemented
and reimplemented dozens of times, no freely available implementation is re-
ally suitable for the purposes of abstract interpretation. In fact, the available
interval libraries either lack support for non-closed intervals (so that they are
unable to represent constraints of the form ±vi < d), or they do not pro-
vide the right support for approximation in the sense of partial correctness
(e.g., division by an interval containing zero gives rise to a run-time error in-
stead of giving an interval containing the result under the assumption that
the concrete division being approximated was not a division by zero), or they
disregard rounding errors and are therefore unsafe. We are thus working at a
complete implementation of bounding boxes based on intervals. Such intervals
are parametric on a number of features: they support open as well as closed
boundaries; boundaries can be chosen within one of the number families men-
tioned in Section 2.2 (when boundaries are floating point numbers, rounding
is of course controlled to maintain soundness); independently from the type
of the boundaries, both plain intervals of real numbers and intervals subject
to generic restrictions are supported. This notion of restriction can be instan-
tiated to obtain intervals of integer numbers, modulo intervals [71,72], and
generalizations of the latter providing more precise information. 23

Grid-Polyhedra An interesting line of development consists in the com-
bination of the grids domain with the several polyhedral domains provided
by the PPL: not only the Z-polyhedra domain [2], but also many variations
such as grid-polyhedra, grid-octagon, grid-bounded-difference, grid-interval
domains (not to mention their powersets).

Polynomial Equalities and Inequalities The work in [18] proved the
feasibility of representing systems of polynomial inequalities of bounded de-
gree by encoding them into convex polyhedra. The prototype implementation
used for the experimental evaluation presented in [18] is being turned into a
complete abstract domain and will be incorporated into the PPL.

23 An implementation of these interval families is already available in the PPL’s
public CVS repository.

28



5.2 More Language Interfaces

The current version of the PPL only offers C and Prolog interfaces for (C and
NNC) polyhedra and LP problems. It would not be difficult to add, along
the same lines, interfaces for all the other abstractions. It can be done, rather
quickly, mostly as a “copy and paste” exercise. Instead of following that route
(which would imply substantial code duplication and an unaffordable mainte-
nance burden), we are working at an automatic way of obtaining these inter-
faces out of a few “templates.” As part of this ongoing effort, we are extending
the set of available direct interfaces 24 with Java and Objective Caml. 25 Fi-
nally there are plans to develop an interface that allows to use the PPL’s
numerical abstractions within Mathematica. 26

5.3 Other Features

Other features on the horizon of the Parma Polyhedra Library include the
inclusion of: bidirectional serialization functions for all the supported abstrac-
tions; the ask-and-tell generic construction of [6]; 27 and the extrapolation
operators defined in [58] and [60]; We also plan to add support for more
complexity-throttling techniques such as: breaking down the set of the vari-
ables of interests into “packs” of manageable size [22,35,84]; support for Carte-
sian factoring as defined in [55]; and the limitation of the number of constraints
and generators and/or the size of coefficients in the representation of polyhe-
dra [43].

6 Discussion

In this paper, we have presented the Parma Polyhedra Library, a library of
numerical abstractions especially targeted to applications in the field of analy-
sis and verification of software and hardware systems. We have illustrated the
general philosophy that is behind the design of the library, its main features,
examples highlighting the advantages offered to client applications, and the
avenue we have prepared for future developments.

24 As opposed to the indirect interfaces that can be obtained by passing through
the C interface.
25 Initial versions of these interfaces are already available in the PPL’s public CVS
repository.
26 http://www.wolfram.com/.
27 Preliminary support for both these features is already available in the PPL’s
public CVS repository.

29



The Parma Polyhedra Library is being used on several applications in the
field of verification of hardware and software systems. It has been used for the
verification of properties of oscillator circuits [45,46]; to verify the soundness
of batch workflow networks (a kind of Petri nets used in workflow manage-
ment) [83]; in the field of safety analysis of continuous and hybrid systems
to overapproximate the systems of linear differential equations expressing the
dynamics of hybrid automata [40,42,44,79] and, in particular, the PPL is used
in PHAVer, an innovative tool for the verification of such systems [43]. The
PPL is also used: in a version of TVLA (3-Valued Logic Analysis Engine,
http://www.cs.tau.ac.il/∼tvla/), a system for the verification of prop-
erties of arrays and heap-allocated data [49]; in iCSSV (interprocedural C
String Static Verifier), a tool for verifying the safety of string operations in
C programs [41]; and in a static analyzer for gated data dependence graphs,
an intermediate representation for optimizing compilation [61]. This analyzer
employs, in particular, the precise widening operator and the widening with
tokens technique introduced in [11,12]. In [76] the PPL is used to derive invari-
ant linear equalities and inequalities for a subset of the C language; it is used
in StInG [77] and LPInv [78], two systems for the analysis of transition sys-
tems; it is used for the model-checking of reconfigurable hybrid systems [81];
it is used in a static analysis tool for x86 binaries that automatically identifies
instructions that can be used to redirect control flow, thus constituting vulner-
abilities that can be exploited in order to bypass intrusion detection systems
[63]; it is also used to represent and validate real-time systems’ constraints and
behaviors [39] and to automatically derive the argument size relations that are
needed for termination analysis of Prolog programs [67].

In conclusion, even though the library is still not mature and functionally com-
plete, it already offers a combination of functionality, reliability, usability and
performance that is not matched by similar, freely available libraries. More-
over, since the PPL is free software and distributed under the terms of the
GNU General Public License (GPL), and due to the presence of extensive doc-
umentation, the library can already be regarded as an important contribution
secured to the community.

For the most up-to-date information, documentation and downloads and to
follow the development work, the reader is referred to the Parma Polyhedra
Library site at http://www.cs.unipr.it/ppl/.

Acknowledgments. We would like to express our gratitude and apprecia-
tion to all the present and past developers of the Parma Polyhedra Library:
Irene Bacchi, Abramo Bagnara, Danilo Bonardi, Sara Bonini, Andrea Cimi-
no, Katy Dobson, Giordano Fracasso, Maximiliano Marchesi, Elena Mazzi,
David Merchat, Matthew Mundell, Andrea Pescetti, Barbara Quartieri, Elisa
Ricci, Enric Rodŕıguez-Carbonell, Angela Stazzone, Fabio Trabucchi, Claudio

30



Trento, Alessandro Zaccagnini, Tatiana Zolo. Thanks also to Aaron Bradley,
for contributing to the project his Mathematica interface, to Goran Frehse,
for contributing his code to limit the complexity of polyhedra, and to all the
users of the library that provided us with helpful feedback.

References

[1] J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In J. R.
Hobbs and R. Moore, editors, Formal Theories of the Commonsense World,
pages 251–268. Ablex, Norwood, NJ, 1985.

[2] C. Ancourt. Génération automatique de codes de transfert pour multiprocesseurs
à mémoires locales. PhD thesis, Université de Paris VI, Paris, France, March
1991.

[3] D. Avis. Computational experience with the reverse search vertex enumeration
algorithm. Optimization Methods and Software, 10:107–124, 1998.

[4] D. Avis. lrs: A revised implementation of the reverse search vertex
enumeration algorithm. In G. Kalai and G. M. Ziegler, editors, Polytopes —
Combinatorics and Computation, volume 29 of Oberwolfach Seminars, pages
177–198. Birkhäuser-Verlag, 2000.

[5] G. J. Badros, A. Borning, and P. J. Stuckey. The Cassowary linear
arithmetic constraint solving algorithm. ACM Transactions on Computer-
Human Interaction, 8(4):267–306, 2001.

[6] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, March 1997.
Printed as Report TD-1/97.

[7] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of
constraint logic-based languages. Science of Computer Programming, 30(1–
2):119–155, 1998.

[8] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. Grids:
A domain for analyzing the distribution of numerical values, 2006. Accepted
for publication and presented at the International Symposium on Logic-based
Program Synthesis and Transformation.

[9] R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, and E. Zaffanella. A practical
tool for analyzing the distribution of numerical values, 2006. Submitted
for publication. Available at http://www.comp.leeds.ac.uk/hill/Papers/

papers.html.

[10] R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for
weakly-relational numeric abstractions. In C. Hankin and I. Siveroni, editors,
Static Analysis: Proceedings of the 12th International Symposium, volume 3672
of Lecture Notes in Computer Science, pages 3–18, London, UK, 2005. Springer-
Verlag, Berlin.

31



[11] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of
the 10th International Symposium, volume 2694 of Lecture Notes in Computer
Science, pages 337–354, San Diego, California, USA, 2003. Springer-Verlag,
Berlin.

[12] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

[13] R. Bagnara, P. M. Hill, and E. Zaffanella. Not necessarily closed convex
polyhedra and the double description method. Formal Aspects of Computing,
17(2):222–257, 2005.

[14] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library
Developer’s Manual. Department of Mathematics, University of Parma, Parma,
Italy, release 0.9 edition, March 2006. Available at http://www.cs.unipr.it/
ppl/.

[15] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, Parma, Italy, release
0.9 edition, March 2006. Available at http://www.cs.unipr.it/ppl/.

[16] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset
domains. Software Tools for Technology Transfer, 2006. To appear.

[17] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In M. V. Hermenegildo
and G. Puebla, editors, Static Analysis: Proceedings of the 9th International
Symposium, volume 2477 of Lecture Notes in Computer Science, pages 213–
229, Madrid, Spain, 2002. Springer-Verlag, Berlin.

[18] R. Bagnara, E. Rodŕıguez-Carbonell, and E. Zaffanella. Generation of basic
semi-algebraic invariants using convex polyhedra. In C. Hankin and I. Siveroni,
editors, Static Analysis: Proceedings of the 12th International Symposium,
volume 3672 of Lecture Notes in Computer Science, pages 19–34, London, UK,
2005. Springer-Verlag, Berlin.

[19] V. Balasundaram and K. Kennedy. A technique for summarizing data access
and its use in parallelism enhancing transformations. In B. Knobe, editor,
Proceedings of the ACM SIGPLAN’89 Conference on Programming Language
Design and Implementation (PLDI), volume 24(7) of ACM SIGPLAN Notices,
pages 41–53, Portland, Oregon, USA, 1989. ACM Press.

[20] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[21] B. Bérard and L. Fribourg:. Reachability analysis of (timed) Petri nets using
real arithmetic. In J. C. M. Baeten and S. Mauw, editors, CONCUR’99:
Concurrency Theory, Proceedings of the 10th International Conference, volume
1664 of Lecture Notes in Computer Science, pages 178–193, Eindhoven, The
Netherlands, 1999. Springer-Verlag, Berlin.

32



[22] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI’03), pages 196–207, San Diego,
California, USA, 2003. ACM Press.

[23] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum,
S. Schulz, and R. Sebastiani. The MathSAT 3 system. In R. Nieuwenhuis,
editor, Automated Deduction: Proceedings of the 20th International Conference,
volume 3632 of Lecture Notes in Computer Science, pages 315–321, Tallinn,
Estonia, 2005. Springer-Verlag, Berlin.

[24] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and
facet enumeration. Discrete and Computational Geometry, 20(3):333–357, 1998.

[25] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems
with unbounded integer variables: Symbolic representations, approximations,
and experimental results. ACM Transactions on Programming Languages and
Systems, 21(4):747–789, 1999.

[26] N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of system of linear equations. U.S.S.R. Computational Mathematics
and Mathematical Physics, 4(4):151–158, 1964.

[27] N. V. Chernikova. Algorithm for finding a general formula for the non-negative
solutions of system of linear inequalities. U.S.S.R. Computational Mathematics
and Mathematical Physics, 5(2):228–233, 1965.

[28] N. V. Chernikova. Algorithm for discovering the set of all solutions of
a linear programming problem. U.S.S.R. Computational Mathematics and
Mathematical Physics, 8(6):282–293, 1968.

[29] P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick
and N. D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303–342. Prentice Hall, Inc., Englewood Cliffs, New Jersey,
1981.

[30] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In B. Robinet, editor, Proceedings of the Second International
Symposium on Programming, pages 106–130, Paris, France, 1976. Dunod, Paris,
France.

[31] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the Fourth Annual ACM Symposium on Principles of
Programming Languages, pages 238–252, New York, 1977. ACM Press.

[32] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pages 269–282, New York, 1979. ACM Press.

33



[33] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

[34] P. Cousot and R. Cousot. Comparing the Galois connection and
widening/narrowing approaches to abstract interpretation. In M. Bruynooghe
and M. Wirsing, editors, Proceedings of the 4th International Symposium on
Programming Language Implementation and Logic Programming, volume 631
of Lecture Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992.
Springer-Verlag, Berlin.

[35] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTRÉE analyzer. In M. Sagiv, editor, Programming Languages
and Systems, Proceedings of the 14th European Symposium on Programming,
volume 3444 of Lecture Notes in Computer Science, pages 21–30, Edinburgh,
UK, 2005. Springer-Verlag, Berlin.

[36] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, pages 84–96, Tucson,
Arizona, 1978. ACM Press.

[37] E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281–331, 1987.

[38] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Proceedings of the International Workshop on
Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 197–212, Grenoble, France, 1989. Springer-
Verlag, Berlin.

[39] D. Doose and Z. Mammeri. Polyhedra-based approach for incremental
validation of real-time systems. In L. T. Yang, M. Amamiya, Z. Liu, M. Guo,
and F. J. Rammig, editors, Proceedings of the International Conference on
Embedded and Ubiquitous Computing (EUC 2005), volume 3824 of Lecture
Notes in Computer Science, pages 184–193, Nagasaki, Japan, 2005. Springer-
Verlag, Berlin.

[40] L. Doyen, T. A. Henzinger, and J.-F. Raskin. Automatic rectangular refinement
of affine hybrid systems. Technical Report 2005.47, Centre Fédéré en
Vérification, Université Libre de Bruxelles, Belgium, 2005.

[41] R. Ellenbogen. Fully automatic verification of absence of errors via
interprocedural integer analysis. Master’s thesis, School of Computer Science,
Tel-Aviv University, Tel-Aviv, Israel, December 2004.

[42] G. Frehse. Compositional verification of hybrid systems with discrete interaction
using simulation relations. In Proceedings of the IEEE Conference on Computer
Aided Control Systems Design (CACSD 2004), Taipei, Taiwan, 2004.

[43] G. Frehse. PHAVer: Algorithmic verification of hybrid systems past hytech. In
M. Morari and L. Thiele, editors, Hybrid Systems: Computation and Control:

34



Proceedings of the 8th International Workshop (HSCC 2005), volume 3414 of
Lecture Notes in Computer Science, pages 258–273, Zürich, Switzerland, 2005.
Springer-Verlag, Berlin.

[44] G. Frehse, Z. Han, and B. Krogh. Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In Proceedings of the
43rd IEEE Conference on Decision and Control (CDC 2004), Atlantis, Paradise
Island, Bahamas, 2004.

[45] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying analog oscillator circuits
using forward/backward refinement. In Proceedings of the 9th Conference on
Design, Automation and Test in Europe (DATE 06), Munich, Germany, 2006.
ACM SIGDA. CD-ROM publication.

[46] G. Frehse, B. H. Krogh, R. A. Rutenbar, and O. Maler. Time domain verification
of oscillator circuit properties. Available at http://www-verimag.imag.fr/
∼maler/Papers/oscil.pdf, 2005. Presented at the 2005 Workshop on Formal
Verification of Analog Circuits (a satellite event of ETAPS 2005).

[47] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza,
R. Euler, and Y. Manoussakis, editors, Combinatorics and Computer Science,
8th Franco-Japanese and 4th Franco-Chinese Conference, Brest, France, July
3-5, 1995, Selected Papers, volume 1120 of Lecture Notes in Computer Science,
pages 91–111. Springer-Verlag, Berlin, 1996.

[48] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In K. Jensen and A. Podelski, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 10th International
Conference, TACAS 2004, volume 2988 of Lecture Notes in Computer Science,
pages 512–529, Barcelona, Spain, 2004. Springer-Verlag, Berlin.

[49] D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array
operations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 338–350, Long Beach, California,
USA, 2005.

[50] P. Granger. Static analysis of linear congruence equalities among variables of
a program. In S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91:
Proceedings of the International Joint Conference on Theory and Practice
of Software Development, Volume 1: Colloquium on Trees in Algebra and
Programming (CAAP’91), volume 493 of Lecture Notes in Computer Science,
pages 169–192, Brighton, UK, 1991. Springer-Verlag, Berlin.

[51] P. Granger. Static analyses of congruence properties on rational numbers
(extended abstract). In P. Van Hentenryck, editor, Static Analysis: Proceedings
of the 4th International Symposium, volume 1302 of Lecture Notes in Computer
Science, pages 278–292, Paris, France, 1997. Springer-Verlag, Berlin.

[52] N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

35



[53] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis,
editor, Computer Aided Verification: Proceedings of the 5th International
Conference, volume 697 of Lecture Notes in Computer Science, pages 333–346,
Elounda, Greece, 1993. Springer-Verlag, Berlin.

[54] N. Halbwachs, A. Kerbrat, and Y.-E. Proy. POLyhedra INtegrated
Environment. Verimag, France, version 1.0 of POLINE edition, September 1995.
Documentation taken from source code.

[55] N. Halbwachs, D. Merchat, and C. Parent-Vigouroux. Cartesian factoring of
polyhedra in linear relation analysis. In R. Cousot, editor, Static Analysis:
Proceedings of the 10th International Symposium, volume 2694 of Lecture
Notes in Computer Science, pages 355–365, San Diego, California, USA, 2003.
Springer-Verlag, Berlin.

[56] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid
systems by means of convex approximations. In B. Le Charlier, editor, Static
Analysis: Proceedings of the 1st International Symposium, volume 864 of Lecture
Notes in Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-
Verlag, Berlin.

[57] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

[58] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies
for hybrid automata. In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,
editors, Hybrid Systems II, volume 999 of Lecture Notes in Computer Science,
pages 252–264. Springer-Verlag, Berlin, 1995.

[59] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1+2):110–122, 1997.

[60] T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the hytech

experience. In Proceedings of the 40th Annual Conference on Decision and
Control, pages 2887–2892. IEEE Computer Society Press, 2001.

[61] C. Hymans and E. Upton. Static analysis of gated data dependence graphs.
In R. Giacobazzi, editor, Static Analysis: Proceedings of the 11th International
Symposium, volume 3148 of Lecture Notes in Computer Science, pages 197–211,
Verona, Italy, 2004. Springer-Verlag, Berlin.

[62] B. Jeannet. Convex Polyhedra Library, release 1.1.3c edition, March 2002.
Documentation of the “New Polka” library available at http://www.irisa.

fr/prive/Bertrand.Jeannet/newpolka.html.

[63] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating
mimicry attacks using static binary analysis. In Proceedings of Security ’05,
the 14th USENIX Security Symposium, pages 161–176, Baltimore, MD, USA,
2005.

36



[64] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. In Proceedings
of the 18th IEEE Real-Time Systems Symposium (RTSS’97), pages 14–24, San
Francisco, CA, 1997. IEEE Computer Society Press.

[65] H. Le Verge. A note on Chernikova’s algorithm. Publication interne 635, IRISA,
Campus de Beaulieu, Rennes, France, 1992.

[66] V. Loechner. PolyLib: A library for manipulating parameterized polyhedra.
Available at http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999.
Declares itself to be a continuation of [85].

[67] F. Mesnard and R. Bagnara. cTI: A constraint-based termination inference tool
for ISO-Prolog. Theory and Practice of Logic Programming, 5(1&2):243–257,
2005.

[68] A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE’01), pages 310–319, Stuttgart,
Germany, 2001. IEEE Computer Society Press.

[69] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
Polytechnique, Paris, France, March 2005.

[70] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double
description method. In H. W. Kuhn and A. W. Tucker, editors, Contributions
to the Theory of Games – Volume II, number 28 in Annals of Mathematics
Studies, pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

[71] T. Nakanishi and A. Fukuda. Modulo interval arithmetic and its application
to program analysis. Transactions of Information Processing Society of Japan,
42(4):829–837, 2001.

[72] T. Nakanishi, K. Joe, C. D. Polychronopoulos, and A. Fukuda. The modulo
interval: A simple and practical representation for program analysis. In
Proceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques, pages 91–96, Newport Beach, California, USA, 1999.
IEEE Computer Society.

[73] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley Interscience Series in Discrete Mathematics and Optimization. John
Wiley & Sons, 1988.

[74] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra.
Technical Report 1016, IRISA, Campus Universitaire de Bealieu, Rennes,
France, July 1996.

[75] P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using
a canonic representation. Parallel Processing Letters, 7(2):181–194, 1997.

[76] S. Sankaranarayanan, M. Colón, H. B. Sipma, and Z. Manna. Efficient strongly
relational polyhedral analysis. In E. A. Emerson and K. S. Namjoshi, editors,
Verification, Model Checking and Abstract Interpretation: Proceedings of the

37



7th International Conference (VMCAI 2006), volume 3855 of Lecture Notes in
Computer Science, pages 111–125, Charleston, SC, USA, 2006. Springer-Verlag,
Berlin.

[77] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Constraint-based linear-
relations analysis. In R. Giacobazzi, editor, Static Analysis: Proceedings of
the 11th International Symposium, volume 3148 of Lecture Notes in Computer
Science, pages 53–68, Verona, Italy, 2004. Springer-Verlag, Berlin.

[78] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Scalable analysis of
linear systems using mathematical programming. In R. Cousot, editor,
Verification, Model Checking and Abstract Interpretation: Proceedings of the
6th International Conference (VMCAI 2005), volume 3385 of Lecture Notes in
Computer Science, pages 25–41, Paris, France, 2005. Springer-Verlag, Berlin.

[79] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Fixed point iteration for
computing the time elapse operator. In J. Hespanha and A. Tiwari, editors,
Hybrid Systems: Computation and Control: Proceedings of the 9th International
Workshop (HSCC 2006), volume 3927 of Lecture Notes in Computer Science,
pages 537–551, Santa Barbara, CA, USA, 2006. Springer-Verlag, Berlin.

[80] R. Shaham, E. K. Kolodner, and S. Sagiv. Automatic removal of array memory
leaks in Java. In D. A. Watt, editor, Proceedings of the 9th International
Conference on Compiler Construction (CC 2000), volume 1781 of Lecture Notes
in Computer Science, pages 50–66, Berlin, Germany, 2000. Springer-Verlag,
Berlin.

[81] H. Song, K. Compton, and W. Rounds. SPHIN: a model checker for
reconfigurable hybrid systems based on SPIN. In R. Lazic and R. Nagarajan,
editors, Proceedings of the 5rd Workshop on Automated Verification of Critical
Systems, University of Warwick, UK, 2005.

[82] J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I.
Springer-Verlag, Berlin, 1970.

[83] K. van Hee, O. Oanea, N. Sidorova, and M. Voorhoeve. Verifying generalized
soundness for workflow nets. In I. Virbitskaite and A. Voronkov, editors,
Perspectives of System Informatics: Proceedings of the Sixth International
Andrei Ershov Memorial Conference, Lecture Notes in Computer Science,
Akademgorodok, Novosibirsk, Russia, 2006. Springer-Verlag, Berlin. To appear.

[84] A. Venet and G. Brat. Precise and efficient static array bound checking for large
embedded C programs. In Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation (PLDI’04), pages 231–
242, Washington, DC, USA, 2004. ACM Press.

[85] D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon
State University, Corvallis, Oregon, December 1993. Also published as IRISA
Publication interne 785, Rennes, France, 1993.

38


