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Abstract. The finite powerset construction upgrades an abstract do-
main by allowing for the representation of finite disjunctions of its ele-
ments. In this paper we define three generic widening operators for the
finite powerset abstract domain. The widenings are obtained by lifting
any widening operator defined on the base-level abstract domain and are
parametric with respect to the specification of a few additional operators.
We illustrate the proposed techniques by instantiating our widenings on
powersets of convex polyhedra, a domain for which no non-trivial widen-
ing operator was previously known.

1 Introduction

The design and implementation of effective, expressive and efficient abstract
domains for data-flow analysis and model-checking is a very difficult task. For
this reason, starting with [12], there continues to be strong interest in techniques
that derive enhanced abstract domains by applying systematic constructions
on simpler, existing domains. Disjunctive completion, direct product, reduced
product and reduced power are the first and most famous constructions of this
kind [12]; several variations of them as well as others constructions have been
proposed in the literature.

Once the carrier of the enhanced abstract domain has been obtained by
one of these systematic constructions, the abstract operations can be defined, as
usual, as the optimal approximations of the concrete ones. While this completely
solves the specification problem, it usually leaves the implementation problem
with the designer and gives no guarantees about the efficiency (or even the
computability) of the resulting operations. This motivates the importance of
generic techniques whereby correct, even though not necessarily optimal, domain
operations are derived automatically or semi-automatically from those of the
domains the construction operates upon [9, 12, 19].

This paper focuses on the derivation of widening operators for a kind of dis-
junctive refinement we call finite powerset construction. As far as we know, this
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is the first time that the problem of deriving non-trivial, provably correct widen-
ing operators in a domain refinement is tackled successfully. We also present its
specialization to finite powersets of convex polyhedra. Not only is this included
to help the reader gain a better intuition regarding the underlying approach but
also to provide a definitely non-toy instance that is practically useful for ap-
plications such as data-flow analysis and model checking. Sets of polyhedra are
implemented in Polylib [25, 29] and its successor PolyLib [26], even though no
widenings are provided. Sets of polyhedra, represented with Presburger formulas
made available by the Omega library [24, 27], are used in the verifier described
in [8]; there, an extrapolation operator (i.e., a widening without convergence
guarantee) on sets of polyhedra is described. Another extrapolation operator is
implemented in the automated verification tool described in [17], where sets of
polyhedra are represented using the clp(q, r) constraint library [23].

The rest of the paper is structured as follows: Section 2 recalls the basic
concepts and notations needed in this paper; Section 3 defines the finite pow-
erset construction as a disjunctive refinement for any abstract domain that is
a join-semilattice; Section 4 gives three alternative strategies for upgrading any
widening for the base-level domain into a proper widening for the finite powerset
domain; Section 5 shows a possible way to control the precision/efficiency trade-
off of these widenings. Section 6 concludes. Appendix A contains the proofs of
all the stated results.

2 Preliminaries

For a set S, ℘(S) is the powerset of S, whereas ℘f(S) is the set of all the finite
subsets of S; the cardinality of S is denoted by # S. The first limit ordinal is
denoted by ω. Let O be a set equipped with a well-founded ordering ‘�’. If M
and N are finite multisets over O, #(n, M) denotes the number of occurrences
of n ∈ O in M and M � N means that there exists j ∈ O such that #(j, M) >
#(j, N) and, for each k ∈ O with k � j, we have #(k, M) = #(k, N). The
relation ‘�’ is well-founded [18].

2.1 Abstract Interpretation

In the literature, several abstract interpretation frameworks have been proposed
that are able to establish a formal relationship between the behaviors of pro-
grams when observed at different levels of abstraction. The main difference be-
tween these frameworks usually concerns the trade-off between their general
applicability and the strength of the formal results that can be established. In
this paper we will adopt the framework proposed in [14, Section 7], where the
correspondence between the concrete and the abstract domains is induced from a
concrete approximation relation and a concretization function. Since we are not
aiming at maximum generality, for the sole purpose of simplifying the presenta-
tion, we will consider a particular instance of the framework by assuming a few
additional but non-essential domain properties. The resulting construction will
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be adequate for our purposes, since it still allows for algebraically weak abstract
domains.

The concrete domain is modeled as a complete lattice of semantic properties
〈C,v,⊥,>,t,u〉; as usual, the concrete approximation relation c1 v c2 holds
if c1 is a stronger property than c2 (i.e., c2 approximates c1). The concrete
semantics c ∈ C of a program is formalized as the least fixpoint of a continuous
(concrete) semantic function F : C → C, which is iteratively computed starting
from the bottom element, so that

c = Fω(⊥) :=
⊔

δ<ω

(
Fδ(⊥)

)
.

The abstract domain D̂ = 〈D,`,0,⊕〉 is modeled as a join-semilattice (i.e.,
the least upper bound d1 ⊕ d2 exists for all d1, d2 ∈ D). We will overload ‘⊕’
so that, for each S ∈ ℘f(D),

⊕
S denotes the least upper bound of S. The

abstract domain D̂ is related to the concrete domain by a monotonic and injective
concretization function γ : D → C. Monotonicity and injectivity mean that the
abstract partial order ‘`’ is indeed the approximation relation induced on D
by the concretization function γ. For all d1, d2 ∈ D, we will use the notation
d1 
 d2 to mean that d1 ` d2 and d1 6= d2. We assume the existence of a
monotonic abstract semantic function F ] : D → D that is sound with respect to
F : C → C:

∀c ∈ C : ∀d ∈ D : c v γ(d) =⇒ F(c) v γ
(
F](d)

)
. (1)

This local correctness condition ensures that each concrete iterate can be safely
approximated by computing the corresponding abstract iterate (starting from
the bottom element 0 ∈ D). However, due to the weaker algebraic properties
satisfied by the abstract domain, the abstract upward iteration sequence may
not converge. Even when it converges, it may fail to do so in a finite number of
steps, therefore being useless for the purposes of static analysis.

Widening operators [10, 11, 14, 15] provide a simple and general characteriza-
tion for enforcing and accelerating convergence. We will adopt a minor variation
of the classical definition of widening operator (see footnote 6 in [15, p. 275]).

Definition 1. (Widening.) Let 〈D,`,0,⊕〉 be a join-semilattice. The partial
operator ∇ : D × D � D is a widening if

1. d1 ` d2 implies that d1 ∇ d2 is defined and d2 ` d1 ∇ d2, for each d1, d2 ∈ D;
2. for each increasing chain d0 ` d1 ` · · · , the increasing chain defined by

d′0 := d0 and d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

Any widening operator ‘∇’ induces a corresponding partial ordering ‘`∇’ on the
domain D; this is defined as the reflexive and transitive closure of the relation{

(d1, d) ∈ D × D
∣∣ ∃d2 ∈ D . d1 
 d2 ∧ d = d1 ∇ d2

}
. The relation ‘`∇’

satisfies the ascending chain condition. We write d1 
∇ d2 to denote d1 `∇ d2

and d1 6= d2.
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It can be proved that the upward iteration sequence with widenings starting
at the bottom element d0 := 0 and defined by

di+1 :=

{
di, if F](di) ` di,

di ∇
(
di ⊕F ](di)

)
, otherwise,

converges after a finite number j ∈ N of iterations [15]. Note that the widening
is always applied to arguments d = di and d′ = di ⊕ F ](di) satisfying d 
 d′.
Also, when condition (1) holds, the post-fixpoint dj ∈ D of F ] is a correct
approximation of the concrete semantics, i.e., Fω(⊥) v γ(dj).

2.2 The Abstract Domain of Polyhedra

In this section, we instantiate the abstract interpretation framework sketched
above by presenting the well-known abstract domain of closed convex polyhedra.
This domain will be used throughout the paper to illustrate the generic widening
techniques that will be defined.

Let Rn, where n > 0, be the n-dimensional real vector space. The set P ⊆ Rn

is a closed and convex polyhedron (polyhedron, for short) if and only if P can
be expressed as the intersection of a finite number of closed affine half-spaces of
Rn. The set CPn of closed convex polyhedra on Rn, when partially ordered by
subset inclusion, is a lattice having the empty set and Rn as the bottom and top
elements, respectively; the binary meet operation is set-intersection, whereas the
binary join operation, denoted by ‘]’, is called convex polyhedral hull (poly-hull,
for short). Therefore, we have the abstract domain

ĈPn := 〈CPn,⊆, ∅, Rn,],∩〉.

This domain can be related to several concrete domains, depending on the in-
tended application. One example of a concrete domain is the complete lattice

Ân :=
〈
℘(Rn),⊆, ∅, Rn,∪,∩

〉
.

Note that ĈPn is a meet-sublattice of Ân, sharing the same bottom and top
elements. Another example is the complete lattice

B̂n :=
〈
℘c(R

n),⊆, ∅, Rn,∪c,∩
〉
,

where ℘c(Rn) is the set of all topologically closed and convex subsets of Rn and
the join operation ‘∪c’ returns the smallest topologically closed and convex set

containing its arguments. Note that ĈPn is a sublattice of B̂n. As a final example
of concrete domain for some analysis, consider the complete lattice

Ĉn :=
〈
℘(CPn),⊆, ∅, CPn,∪,∩

〉
.

The abstract domain ĈPn, which is a join-semilattice, is related to the con-
crete domains shown above by the concretization functions γA : CPn → ℘(Rn),
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γB : CPn → ℘c(Rn) and γC : CPn → ℘(CPn): for each P ∈ CPn, we have both
γA(P) := P and γB(P) := P , and γC(P) := ↓P := {Q ∈ CPn | Q ⊆ P }. All
these concretization functions are trivially monotonic and injective.

For each choice of the concrete domain C ∈
{
℘(Rn), ℘c(Rn), ℘(CPn)

}
, the

continuous semantic function F : C → C and the corresponding monotonic ab-
stract semantic function F ] : CPn → CPn, which is assumed to be correct, are

deliberately left unspecified. The domain ĈPn contains infinite ascending chains
having no least upper bound in CPn. Thus, the convergence of the abstract
iteration sequence has to be guaranteed by the adoption of widening operators.

2.3 Widening the Polyhedral Domain

The first widening on polyhedra was introduced in [16] and refined in [20]. This
operator, denoted by ‘∇s’, has been termed standard widening and used almost
universally. Its formal specification requires some further notation and concepts
related to the domain of polyhedra.

Any vector v ∈ Rn is regarded as a matrix in Rn×1 so that it can be manip-
ulated with the usual matrix operations of addition, multiplication (both by a
scalar and by another matrix), and transposition, which is denoted by v

T. For
each i = 1, . . . n, the i-th component of the vector v ∈ Rn is denoted by vi. The
scalar product of v, w ∈ Rn, denoted 〈v, w〉, is v

T
w =

∑n
i=1

viwi. The vector of
Rn having all components equal to zero is denoted by 0.

Let V = {v1, . . . , vm} ⊆ Rn be a finite set of vectors. The orthogonal of V is

V ⊥ :=
{

w ∈ Rn
∣∣ ∀v ∈ V : 〈v, w〉 = 0

}
.

The vectors in V are said affinely independent if the only solution of the system
of equations

{∑m
i=1

λivi = 0,
∑m

i=1
λi = 0

}
is λi = 0, for each i = 1, . . . , m. If

k ≤ n+1 is the maximum number of affinely independent points of a polyhedron
P ∈ CPn, then the dimension of P , denoted as dim(P), is k − 1.

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear non-strict
inequality constraint 〈a, x〉 ≥ b defines a topologically closed affine half-space of
Rn. The linear equality constraint 〈a, x〉 = b defines an affine hyperplane of Rn

(i.e., the intersection of the affine half-spaces 〈a, x〉 ≥ b and 〈−a, x〉 ≥ −b). We
do not distinguish between syntactically different constraints defining the same
affine half-space so that, for example, x ≥ 2 and 2x ≥ 4 are the same constraint.
Thus, each polyhedron P can be represented by a finite system of linear equality
and non-strict inequality constraints C and we write P = con(C).

The subsets of equality and inequality constraints in C are denoted by eq(C)
and ineq(C), respectively. When P = con(C) 6= ∅, we say that C is in minimal
form if and only if # eq(C) = n − dim(P) and there does not exist C ′ ⊂ C such
that con(C′) = P . All constraint systems in minimal form describing a given
polyhedron have the same cardinality. For each linear constraint β of the form(
〈a, x〉 ≥ b

)
or

(
〈a, x〉 = b

)
, let slope(β) := a; for each constraint system C ′,

let slope(C′) :=
{

slope(β)
∣∣ β ∈ C′

}
. A constraint system C is in orthogonal

form if it is in minimal form and slope(ineq(C)) ⊆ slope(eq(C))⊥. All constraint
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systems in orthogonal form describing a given polyhedron have identical sets of
inequality constraints.

The following definition of standard widening requires that each equality
constraint is split into the two corresponding linear inequalities; thus, for each
constraint system C, we define

repr≥(C) :=
{
〈−a, x〉 ≥ −b

∣∣∣
(
〈a, x〉 = b

)
∈ C

}

∪
{
〈a, x〉 ≥ b

∣∣∣
(
〈a, x〉 ≥ b

)
∈ C ∨

(
〈a, x〉 = b

)
∈ C

}
.

Definition 2. (Standard widening.) For i = 1, 2, let Pi = con(Ci) ∈ CPn,
where the constraint system C1 is either inconsistent or in minimal form. Then,
the polyhedron P1 ∇s P2 ∈ CPn is defined as

P1 ∇s P2 =

{
P2, if P1 = ∅;

con(C′
1 ∪ C′

2), otherwise;

where

C′
1 :=

{
β1 ∈ repr≥(C1)

∣∣∣ P2 ⊆ con
(
{β1}

) }
,

C′
2 :=

{
β2 ∈ repr≥(C2)

∣∣∣∣∣
∃β1 ∈ repr≥(C1) .

P1 = con
((

repr≥(C1) \ {β1}
)
∪ {β2}

)
}

.

The constraints in C′
1 are those that would have been selected when using

the original proposal of [16], whereas the constraints in C ′
2 are added to ensure

that this widening is a well defined operator on the domain of polyhedra (i.e., it
does not depend on the particular constraint representations).

The second widening we summarize here is in fact a generalization of the
framework presented in [4], which was based on an idea proposed in [7]. The
framework is designed so that all its instances are indeed widening operators and
it relies on a strict partial ordering relation on CPn incorporating a notion of, so
to speak, “limited growth” or “growth that cannot be indefinite” (graphically, a
descending parabola).

Definition 3. (‘y’.) For i = 1, 2, let Pi = con(Ci) ∈ CPn where, if Pi 6= ∅, Ci

is in orthogonal form. The relation ys ⊆ CPn × CPn is such that P1 ys P2 if
and only if P1 ⊂ P2 and either P1 = ∅ or at least one of the following holds:

dim(P1) < dim(P2); (2)

ineq(C1) ⊃ ineq(C2). (3)

We denote by ‘y’ any ordering on CPn that is a refinement of ‘ys’ and satisfies
the ascending chain condition.

Note that the orthogonality condition for the constraint systems of the polyhedra
ensures that the relation ‘ys’ is well defined. Because of conditions (2) and (3)
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it can be shown that the application of ‘∇s’ will always yield a polyhedron that
is related to the previous iterate by any ‘y’ ordering. That is, P1 y P1 ∇s P2

for any P1 ⊂ P2 ∈ CPn.
Let h : CP2

n → CPn be an upper bound operator on CPn and

P1 ∇̃ P2 :=

{
h(P1,P2), if P1 y h(P1,P2) ⊂ P1 ∇s P2;

P1 ∇s P2, otherwise.

By construction, ‘∇̃’ is an upper bound operator at least as precise as ‘∇s’ and
it still satisfies P1 y P1 ∇̃ P2.

In [4, 5], after defining a suitable refinement of the ‘ys’ ordering relation, an
instance of the ‘∇̃’ widening schema is proposed that uses several extrapolation
heuristics. For a formal definition of this improved widening operator, we refer
the reader to [4].

3 A Disjunctive Refinement

Traditionally, semantic domains have been designed incrementally by applying
suitable domain constructors to basic components. In this respect, the theory of
abstract interpretation makes no exception and systematic ways of composing
or enhancing abstract domains have been proposed since [12]. In this section,
we present the finite powerset operator, which is a domain refinement similar to
disjunctive completion [12] and is obtained by a variant of the down-set comple-
tion construction presented in [13]. The following notation and definitions are
mainly borrowed from [2, Section 6].

Definition 4. (Non-redundancy.) Let D̂ = 〈D,`,0,⊕〉 be a join-semilattice.
The set S ∈ ℘(D) is called non-redundant with respect to ‘`’ if and only if
0 /∈ S and ∀d1, d2 ∈ S : d1 ` d2 =⇒ d1 = d2. The set of finite non-redundant
subsets of D (with respect to ‘`’) is denoted by ℘fn(D,`). The reduction func-
tion Ω`

D
: ℘f(D) → ℘fn(D,`) mapping each finite set into its non-redundant

counterpart is defined, for each S ∈ ℘f(D), by

Ω`

D
(S) := S \ { d ∈ S | d = 0 ∨ ∃d′ ∈ S . d 
 d′ }.

The restriction to the finite subsets reflects the fact that here we are mainly
interested in an abstract domain where disjunctions are implemented by explicit
collections of elements of the base-level abstract domain. As a consequence of
this restriction, for any S ∈ ℘f(D) such that S 6= {0}, Ω`

D
(S) is the (finite) set

of the maximal elements of S.

Definition 5. (Finite powerset domain.) Let D̂ := 〈D,`,0,⊕〉 be a join-
semilattice. The finite powerset domain over D̂ is the join-semilattice

D̂P :=
〈
℘fn(D,`),`P,0P,⊕P

〉
,

where 0P := ∅ and S1 ⊕P S2 := Ω`

D
(S1 ∪ S2).
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The approximation ordering ‘`P’ induced by ‘⊕P’ is the Hoare powerdomain
partial order [1], so that S1 `P S2 if and only if

∀d1 ∈ S1 : ∃d2 ∈ S2 . d1 ` d2.

A sort of Egli-Milner partial order relation [1] will also be useful: S1 `EM S2

holds if and only if either S1 = 0P or S1 `P S2 and

∀d2 ∈ S2 : ∃d1 ∈ S1 . d1 ` d2.

An (Egli-Milner) connector for D̂P, denoted by ‘ �EM’ is any upper bound oper-
ator for the Egli-Milner ordering on ℘fn(D,`). Note that although a least upper
bound for ‘`EM’ may not exist, a connector can always be defined; for instance,
we can let S1 �EM S2 :=

{⊕
(S1 ∪ S2)

}
.

Besides the requirement on finiteness, another difference with respect to the
down-set completion of [13] is that we are dropping the assumption about the
complete distributivity of the concrete domain. This is possible because our
semantic domains are not necessarily related by Galois connections, so that this
property does not have to be preserved.

The finite powerset domain is related to the concrete domain by means of
the concretization function γP : ℘fn(D,`) → C defined by

γP(S) :=
⊔{

γ(d)
∣∣ d ∈ S

}
.

Note that γP is monotonic but not necessarily injective. For S1, S2 ∈ ℘fn(D,`),
we write S1 ≡γP

S2 to denote that the two abstract elements actually denote the
same concrete element, i.e., when γP(S1) = γP(S2). It is easy to see that ‘≡γP

’

is a congruence relation on D̂P. As noted in [13], non-redundancy only provides
a partial, syntactic form of reduction. On the other hand, requiring the full,
semantic form of reduction for a finite powerset domain can be computationally
very expensive.

A correct abstract semantic function F ]
P : ℘fn(D,`) → ℘fn(D,`) on the finite

powerset domain may be provided by an ad-hoc definition. More often, if the
concrete semantic function F : C → C satisfies suitable hypotheses, F ]

P can be
safely induced from the abstract semantic function F ] : D → D. For instance, if
F is additive, we can define F ]

P as follows [12, 19]:

F]
P
(S) := Ω`

D

({
F](d)

∣∣ d ∈ S
})

.

3.1 The Finite Powerset Domain of Polyhedra

The polyhedral domain (ĈPn)P, having carrier ℘fn(CPn,⊆), is the finite powerset

domain over ĈPn. The approximation ordering is ‘⊆P’ where, for each S1,S2 ∈
℘fn(CPn,⊆),

S1 ⊆P S2 ⇐⇒ ∀P1 ∈ S1 : ∃P2 ∈ S2 . P1 ⊆ P2.
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Let γA

P
, γB

P
and γC

P
denote the (powerset) concretization functions induced by

γA, γB and γC, respectively. Then, the relation ‘≡γA

P

’ makes two finite sets of
polyhedra equivalent if and only if they have the same set-union. The gen-
eral problem of deciding the semantic equivalence with respect to γA

P
of two

finite (non-redundant) collections of polyhedra is known to be computationally
hard [28]. For γB

P
, the relation ‘≡γB

P

’ makes two finite sets of polyhedra equivalent
if and only if they have the same poly-hull, so that the powerset construction
provides no benefit at all. Finally, γC

P
is injective so that ‘≡γC

P

’ coincides with the
identity congruence relation.

Example 1. For the polyhedral domain (ĈP1)P, let3

T0 :=
{
{0 ≤ x ≤ 2}, {1 ≤ x ≤ 2}, {3 ≤ x ≤ 4}, {4 ≤ x ≤ 5}

}
,

T1 :=
{
{0 ≤ x ≤ 2}, {3 ≤ x ≤ 4}, {4 ≤ x ≤ 5}

}
,

T2 :=
{
{0 ≤ x ≤ 1}, {1 ≤ x ≤ 2}, {3 ≤ x ≤ 5}

}
.

Then T0 /∈ ℘fn(CP1,⊆), but T1 = Ω⊆

CP1
(T0) ∈ ℘fn(CP1,⊆). Also, T1 ≡γA

P

T2.

4 Widening the Finite Powerset Domain

If the domain refinement of the previous section is meant to be used for static
analysis, then a key ingredient that is still missing is a systematic way of ensur-
ing the termination of the analysis. In this section, we describe three widening
strategies that rely on the existence of a widening ∇ : D ×D � D on the base-
level abstract domain. Note that this assumption is satisfied by most abstract
domains used in the context of static analysis.4 We start by proposing a very
general specification of an extrapolation operator that lifts this ‘∇’ operator to
the powerset domain.

Definition 6. (h∇
P
.) A partial operator h∇

P
: ℘fn(D,`)2 � ℘fn(D,`) is an ex-

trapolation heuristics for D̂P if, for all S1, S2 ∈ ℘fn(D,`) such that S1 
P S2,
h∇

P
(S1, S2) is defined and satisfies the following conditions:

S2 `EM h∇
P

(S1, S2); (4)

∀d ∈ h∇
P

(S1, S2) \ S2 : ∃d1 ∈ S1 . d1 
∇ d. (5)

Informally, condition (4) ensures that the result is an upper approximation of
S2 in which every element covers at least one element of S2 (i.e., the heuristics
cannot add elements that are unrelated to S2); condition (5) ensures that in
the resulting set, each element that was not already in S2 originates from an
application of ‘∇’ to an element of S1.

3 In this and the following examples, we will abuse notation by writing a constraint
system C to denote the polyhedron P = con(C).

4 If the base-level abstract domain D̂ is finite or Noetherian, so that it is not necessarily
endowed with an explicit widening operator, then a dummy widening can be obtained
by considering the least upper bound operator ‘⊕’.
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4.1 Powerset Widenings Using Egli-Milner Connectors

For the first widening, we require an additional property for the extrapolation
heuristics; together with the previous conditions, this will ensure that each ele-
ment of the resulting set that cover an element of the first argument S1 originates
from an application of ‘∇’ to a (possibly different) element of S1.

Definition 7. (∇-connected heuristics.) The extrapolation heuristics ‘h∇
P
’ is

said to be ∇-connected if, for all S1, S2 ∈ ℘fn(D,`) where S1 
P S2, we have

∀d ∈ h∇
P

(S1, S2) ∩ S2 :
(
(∃d1 ∈ S1 . d1 
 d) → (∃d′

1 ∈ S1 . d′1 
∇ d)
)
. (6)

It is straightforward to construct an algorithm for computing a ∇-connected
extrapolation heuristics for any given base-level widening ‘∇’. The basic idea
was proposed in [8] for an abstract domain encoding a set of integer vectors by
means of a Presburger formula. Intuitively, for all pairs (d1, d2) ∈ S1 × S2 that
can be built using the two arguments S1 and S2, we compute d1 ∇ d2, provided
this operation happens to be defined; otherwise, we simply take d2.

Proposition 1. For all S1, S2 ∈ ℘fn(D,`) such that S1 `P S2, let

h∇
P

(S1, S2) := S2 ⊕P Ω`

D

(
{ d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1 
 d2 }

)
.

Then ‘h∇
P
’ is a ∇-connected extrapolation heuristics for D̂P.

For the finite powerset domain over ĈPn, lines 10–15 of the algorithm speci-
fied in [8, Figure 8, page 773] provide an implementation of the heuristics ‘h∇

P
’

defined in Proposition 1, instantiated with the standard widening, ‘∇s’, on ĈPn.

Example 2. To see that the ‘h∇
P

’ defined in Proposition 1 is not a widening for

(ĈPn)P, consider the strictly increasing sequence T0 ⊆P T1 ⊆P · · · in CP1 defined
by Tj := {Pi | 0 ≤ i ≤ j }, where Pi := {x = i}, for i ∈ N. Then, no matter
what the specification for ‘∇’ is, we obtain h∇

P
(Tj , Tj+1) = Tj+1, for all j ∈ N.

Thus, the “widened” sequence is diverging.

Example 2 shows that, when computing h∇
P

(S1, S2), divergence is caused by
those elements of S2 that cover none of the elements occurring in S1, i.e., when
S1 0EM S2. Thus, stabilization can be obtained by replacing S2 with S1 �EM S2,
where ‘�EM’ is a connector for D̂P. We therefore define a simple widening oper-
ator on the finite powerset domain that uses a connector to ensure termination.

Definition 8. (The ‘EM∇P’ widening.) Let ‘h∇
P
’ be a ∇-connected extrapola-

tion heuristics and ‘�EM’ be a connector for D̂P. Let also S1, S2 ∈ ℘fn(D,`),
where S1 
P S2. Then S1 EM∇P S2 := h∇

P
(S1, S

′
2), where

S′
2 :=

{
S2, if S1 `EM S2;

S1 �EM S2, otherwise.

10



Theorem 1. The ‘EM∇P’ operator is a widening on D̂P.

Example 3. To illustrate the widening operator ‘EM∇P’ we consider the powerset

domain (ĈP1)P, with the standard widening ‘∇s’ on ĈP1 and the trivial connector
‘]EM’ returning the singleton poly-hull of its arguments. Consider the sequence
T0 ⊆P T1 ⊆P · · · of Example 2 and the widened sequence U0 ⊆P U1 ⊆P · · · where
U0 = T0 and Ui = Ui−1 EM∇P (Ui−1 ]P Ti), for each i > 0. When computing U1,
the second argument of the widening is U0 ]P T1 = T1. Note that U0 `EM T1 does
not hold so that the connector is needed. Thus, we obtain

U1 = h∇
P

(U0,U0 ]EM T1) = h∇
P

(
U0,

{
{0 ≤ x ≤ 1}

})
=

{
{0 ≤ x}

}
.

In the next iteration we obtain stabilization. Clearly, in general the precision of
this widening will depend on the chosen connector operator.

4.2 Powerset Widenings using Set Cardinality

In the iteration sequence in Example 2, there is no finite upper bound on the
cardinality of the set being widened. So in the second cardinality-based widening
specified here, if the cardinality of the given set S2 exceeds a fixed bound k by
some ` > 0, we first collapse S2 to a smaller set S′

2 by replacing a subset of
cardinality ` + 1 by its join (so that # S ′

2 ≤ k and S2 `EM S′
2).

Definition 9. (Collapsor.) The relation collapsek ⊆ ℘fn(D,`) × ℘fn(D,`) is
defined, for each k ≥ 1, so that collapsek(S, S′) holds if and only if

S′ :=

{
S, if # S ≤ k;

(S \ S′′) ⊕P {⊕S′′}, otherwise, where S ′′ ⊆ S and # S′′ > # S − k.

A unary operator ⇑k : ℘fn(D,`) → ℘fn(D,`) is called a k-collapsor for D̂P if
collapsek

(
S,⇑k(S)

)
holds.

The operator sketched in [8], which uses the ‘h∇
P

’ heuristics defined in Propo-

sition 1, is similar to the widening ‘EM∇P’ for the polyhedral domain ĈPn but,
instead of using a connector in the otherwise case in Definition 8, it assumes the
use of an operator like the collapsor to limit the cardinality of the sets. How-
ever, such an approach is not enough to obtain a widening and, even when the
cardinality of the set to be widened is fixed so that the collapsor is not required,
termination cannot be guaranteed (see Example 11 in Appendix A). We therefore
define a particular subclass of extrapolation heuristics for the cardinality-based
widening that avoids the problem.

Definition 10. (∇-covered heuristics.) The extrapolation heuristics ‘h∇
P
’ is

said to be ∇-covered if, for all S1, S2 ∈ ℘fn(D,`) such that S1 
P S2, we have

∀d1 ∈ S1 : ∃d ∈ h∇
P

(S1, S2) . d1 `∇ d. (7)

11



A ∇-covered extrapolation heuristics can be obtained for any widening ‘∇’ on
the base-level domain D̂. One possibility is to selectively replace the standard
reduction map ‘Ω`

D
’ by a non-standard, widening-based reduction map ‘Ω∇

D
’.

The idea being that if, in a set in ℘f(D), one element d entails another d′, then
instead of just removing the redundant element d, ‘Ω∇

D
’ replaces both d and d′

by their widening d ∇ d′.

Definition 11. (∇-reduction map.) An operator Ω∇

D
: ℘f(D) → ℘fn(D,`) is

a ∇-reduction map if, for all S ∈ ℘f(D), there exists a sequence S0, . . . , Sm of
elements of ℘f(D) such that S0 = S, Sm = Ω∇

D
(S) ∈ ℘fn(D,`) and, for each

0 < i ≤ m, Si =
(
Si−1 \ {d, d′}

)
∪ {d ∇ d′}, where d, d′ ∈ Si−1 and d 
 d′.

Proposition 2. For all S1, S2 ∈ ℘fn(D,`) such that S1 `P S2, let h∇
P

(S1, S2) :=
Ω∇

D
(S1 ∪ S2). Then ‘h∇

P
’ is a ∇-covered extrapolation heuristics for D̂P.

We can now define the cardinality-based widening ‘k∇P’.

Definition 12. (The ‘k∇P’ widening.) Let ‘h∇
P
’ be a ∇-covered extrapolation

heuristics and ‘⇑k’ be a k-collapsor for D̂P, for some k ≥ 1. Let also S1, S2 ∈
℘fn(D,`), where S1 
P S2. Then S1 k∇P S2 := h∇

P
(S1, S

′
2), where

S′
2 :=

{
S2, if # S2 ≤ k;

⇑k(S2), otherwise.

Theorem 2. The ‘ k∇P’ operator is a widening on D̂P.

Example 4. To illustrate the widening operator ‘k∇P’ for k = 2, we consider

the powerset domain (ĈP1)P with the standard widening ‘∇s’ on ĈP1 and a 2-
collapsor that, given a non-redundant and finite set of intervals on the x-axis,
reduces its cardinality to 2 by taking the poly-hull of all the intervals but the one
having the smallest lower bound. Consider again the sequence T0 ⊆P T1 ⊆P · · ·
of Example 2 and the widened sequence U0 ⊆P U1 ⊆P · · · where U0 = T0 and
Ui = Ui−1 2∇P (Ui−1 ]P Ti), for each i > 0. As U0 ⊂ T1, and # T1 = 2, we obtain
U1 = T1. Again U1 ⊂ T2. As # T2 = 3, we compute ⇑2(T2) before applying an
‘h∇

P
’ operator. Thus, we obtain

U1 = h∇
P

(
U1,⇑2(T2)

)
= h∇

P

(
U1,

{
{x = 0}, {1 ≤ x ≤ 2}

})
=

{
{x = 0}, {1 ≤ x}

}
.

In the next iteration we obtain stabilization. Clearly, the precision of this widen-
ing will depend on the value of k.

4.3 Powerset Widenings Using Finite Convergence Certificates

When trying to prove that an upper bound operator � : D×D → D is indeed a
widening on the abstract domain D̂, a possible tactic is to provide a “convergence
certificate.” Formally, a finite convergence certificate for ‘�’ (on D̂) is a triple

12



(O,�, µ) where (O,�) is a well-founded ordered set and µ : D → O, which is
called level mapping, is such that

∀d1, d2 ∈ D : d1 
 d2 =⇒ µ(d1) � µ(d1 � d2).

We will abuse notation by writing µ to denote the certificate (O,�, µ).
We now present another widening operator (denoted here by ‘µ∇P’) for the

finite powerset domain that requires that the base-level widening ‘∇’ is provided
with a finitely computable certificate µ. The computability requirement is im-
portant because we will directly use this certificate in the implementation of
the new widening. This is also the reason why we cannot directly infer such a
certificate from the partial order relation ‘`∇’, which in general does not come
with a computability guarantee.

Example 5. For the polyhedral domain ĈPn and the standard widening ‘∇s’,
a certificate µ can be inferred from any limited growth ordering relation ‘y’
satisfying Definition 3, by letting

µ(P) � µ(Q) ⇐⇒ P y Q,

µ(P) = µ(Q) ⇐⇒ (P 6y Q) ∧ (Q 6y P).

An alternative and slightly simpler certificate (Os,�s, µs) can be directly pro-
vided by taking Os to be the pair (N, N), ‘�s’ the lexicographic ordering of the
pair using > for the individual ordering of the components and µs : CPn → Os

be defined as the level mapping

µs(P) =
(
n − dim(P), # C

)
,

where C is any constraint system in minimal form defining P .

For the widening operator ‘∇̂’ on ĈPn proposed in [4], a certificate can be
obtained by considering the level mapping µb : CPn → Ob induced, as shown
above, by the specific limited growth ordering relation defined in [4].

Given a certificate µ for a widening ‘∇’ on D̂, we can define a suitable limited
growth ordering relation ‘yP’ for the finite powerset domain D̂P that satisfies
the ascending chain condition.

Definition 13. (The ‘yP’ relation.) The relation yP ⊆ ℘fn(D,`)×℘fn(D,`)
induced by the certificate µ for ‘∇’ is such that, for each S1, S2 ∈ ℘fn(D,`),
S1 yP S2 if and only if either one of the following conditions holds:

µ
(⊕

S1

)
� µ

(⊕
S2

)
; (8)

µ
(⊕

S1

)
= µ

(⊕
S2

)
∧ # S1 > 1 ∧ # S2 = 1; (9)

µ
(⊕

S1

)
= µ

(⊕
S2

)
∧ # S1 > 1 ∧ # S2 > 1 ∧ µ̃(S1) � µ̃(S2), (10)

where, for each S ∈ ℘fn(D,`), µ̃(S) denotes the multiset over O obtained by
applying µ to each abstract element in S.
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Proposition 3. The ‘ yP’ relation satisfies the ascending chain condition.

Intuitively, the relation ‘yP’ will induce a certificate µP : D̂P → OP for the new
widening. Namely, by defining µP(S1) �P µP(S2) if and only if S1 yP S2, we
will obtain µP(S1) �P µP(S1 µ∇P S2).

The specification of our “certificate-based widening” assumes the existence
of a subtract operation for the base-level domain. It is expected that a specific
subtraction would be provided for each domain; here we just indicate a minimal
specification.

Definition 14. (Subtraction.) The partial operator 	 : D×D � D is a sub-
traction for D̂ if, for all d1, d2 ∈ D such that d2 ` d1, we have d1 	 d2 ` d1 and
d1 = (d1 	 d2) ⊕ d2.

A trivial subtraction operator can always be defined as d1	d2 := d1. In practice,
when designing a widening, the actual subtraction operator would be expected
to lose as little precision as possible.

Example 6. In ĈPn, the function diff : CPn ×CPn → CPn is defined so that, for
any P ,Q ∈ CPn, diff(P ,Q) denotes the smallest closed and convex polyhedron
containing the set difference P \Q. Then, if Q ⊆ P , we have diff(P ,Q) ⊆ P and

P = (P \ Q) ∪Q

= diff(P ,Q) ∪Q

= diff(P ,Q) ]Q,

so that ‘diff’ is a subtraction.

We can now define the certificate-based widening ‘µ∇P’.

Definition 15. (The ‘µ∇P’ widening.) Let ‘ yP’ be the limited growth ordering
induced by the certificate µ for ‘∇’ and let ‘ �P’ be any upper bound operator on
D̂P. Let S1, S2 ∈ ℘fn(D,`) be such that S1 
P S2. Also, if

⊕
S1 


⊕
(S1 �P S2),

let d ∈ D be defined as d :=
(⊕

S1 ∇
⊕

(S1 �P S2)
)
	

(⊕
(S1 �P S2)

)
. Then

S1 µ∇P S2 :=





S1 �P S2, if S1 yP S1 �P S2;

(S1 �P S2) ⊕P {d}, if
⊕

S1 

⊕

(S1 �P S2);{⊕
S2

}
, otherwise.

In the first case, we simply return the upper bound S1 �P S2, since this is enough
to ensure a strict decrease in the level mapping. In the second case, the join of
S1 is strictly more precise than the join of S1 �P S2, so that we apply ‘∇’ to
them and then, using the subtraction operator, improve the obtained result,
since S1 yP (S1 �P S2) ⊕P {d} holds. In the last case, since the join of S1 is
equivalent to the join of S1 �P S2, we return the singleton consisting of the join
itself, as originally proposed in [12, Section 9].

Theorem 3. The ‘ µ∇P’ operator is a widening on D̂P.
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Example 7. To illustrate the last two cases of Definition 15, consider the domain

(ĈP1)P, with the standard widening ‘∇s’ for ĈP1, certified by the level mapping
µs defined in Example 5 and the upper bound ‘�P’ defined as ‘⊕P’, so that we
will always have S1 �P S2 = S2.

Let T1 =
{
{0 ≤ x ≤ 1}

}
and T2 =

{
{0 ≤ x ≤ 1}, {2 ≤ x ≤ 3}

}
. Then

T1 6y
P
T2, so that the condition for the first case in Definition 15 does not hold.

The poly-hulls of T1 and T2 are {0 ≤ x ≤ 1} and {0 ≤ x ≤ 3}, respectively, so
that the condition for the second case holds. Since

⊎
T1 ∇s

⊎
T2 = {0 ≤ x}, then

by letting the polyhedron P be the element d as specified in Definition 15, we
obtain P = diff

(
{0 ≤ x}, {0 ≤ x ≤ 3}

)
= {3 ≤ x}, so that

T1 µ∇P T2 = T2 ]P {P} =
{
{0 ≤ x ≤ 1}, {2 ≤ x ≤ 3}, {3 ≤ x}

}
.

Now let T3 =
{
{x = 1}, {x = 3}

}
and T4 =

{
{x = 1}, {x = 2}, {x = 3}

}
.

Then T3 6y
P
T4, so that the condition for the first case in Definition 15 does not

hold. Moreover,
⊎
T3 =

⊎
T4 = {1 ≤ x ≤ 3}, so that neither the second case

applies. Thus, T3 µ∇P T4 =
{
{1 ≤ x ≤ 3}

}
.

As shown in the example above, Definition 15 does not require that the
upper bound operator ‘�P’ is based on the base-level widening ‘∇’. Moreover,
the scheme of Definition 15 can be easily extended to any finite set of heuristically
chosen upper bound operators on D̂P, still obtaining a proper widening operator
for the powerset domain. The simplest heuristics, already used in the example
above, is the one taking �P := ⊕P. If this fails to ensure a decrease in the level
mapping, another possibility is the adoption of an extrapolation heuristics ‘h∇

P
’

for D̂P. Anyway, many variations could be defined, depending on the required
precision/efficiency trade-off. In the following section, we investigate one of these
possibilities, which originates as a generalization of an idea proposed in [8].

5 Merging Elements According to a Congruence Relation

When computing a powerset widening S1 ∇P S2, no matter if it is based on an
Egli-Milner connector, a k-collapsor, or a finite convergence certificate, some of
the elements occurring in the second argument S2 can be merged together (i.e.,
joined) without compromising the finite convergence guarantee. This merging
operation can be guided by a congruence relation on the finite powerset domain
D̂P, the idea being that a well-chosen relation will benefit the precision/efficiency
trade-off of the widening.

One option is to use semantics preserving congruence relations, i.e., refine-
ments of the congruence relation ‘≡γP

’. The availability of relatively efficient but
incomplete tests for semantic equivalence can thus be exploited to improve the
efficiency and/or the precision of the analysis. As the purpose of this paper is to
provide generic widening procedures for powersets that are independent of the
underlying domains and hence, of any intended concretizations, here we define
these congruences in a way that is independent of the particular concrete domain
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adopted. Two such relations are the identity congruence relation, where no non-
trivial equivalence is assumed, and the ⊕-congruence relation, where sets that
have the same join are equivalent. Note that both these have the useful property
that congruent elements have the same join. However, the identity congruence
allows for no merging at all and hence it will have no influence on the conver-
gence of the iteration sequence; on the other hand, the ⊕-congruence allows for
a complete merging of the abstract collection and is usually the basis of the
default, roughest heuristics for ensuring termination. We now define a congru-
ence relation that lies between these extremes and still preserves the mentioned
property.

Definition 16. (‘/’ and ‘./’.) The content relation / ⊆ ℘fn(D,`) × ℘fn(D,`)
is such that S1 / S2 holds if and only if for all S ′

1 ∈ ℘fn(D,`) where S′
1 `P S1

there exists S′′
1 ∈ ℘fn(D,`) such that

⊕
S′

1 =
⊕

S′′
1 and S′′

1 `P S2. The same-
content relation ./ ⊆ ℘fn(D,`) × ℘fn(D,`) is such that S1 ./ S2 holds if and
only if S1 / S2 and S2 / S1.

Thus, for any S, S′ ∈ ℘fn(D,`), we have that S `P S′ implies that S / S′ so
that S /

{⊕
S

}
, since S `P

{⊕
S

}
. Moreover, if S is a singleton, then S ′ `P S

if and only if S′ / S. Note that ‘./’ is a congruence relation on D̂P.
Observe that the identity congruence relation can be obtained by strengthen-

ing the conditions in the definition of ‘/’, replacing
⊕

S′
1 =

⊕
S′′

1 with S′
1 = S′′

1 ;
and the ⊕-congruence can be obtained by weakening the conditions, replacing
S′′

1 `P S2 with
⊕

S′′
1 `

⊕
S2. Thus the same-content relation is a compromise

between keeping all the information provided by the explicit set structure, as
done by the identity congruence, and losing all of this information, as occurs
with the ⊕-congruence.

For the finite powerset domain of polyhedra (ĈPn)P, the content relation
‘/’ corresponds to the condition that all the points in polyhedra in the first
set are contained by polyhedra in the second set; and hence, the same-content
congruence relation ‘./’ coincides with the induced congruence relation ‘≡γA

P

’.

Proposition 4. For all S1,S2 ∈ ℘fn(CPn,⊆), S1 ./ S2 if and only if S1 ≡γA

P

S2.

Example 8. For T1, T2 ∈ ℘fn(CP1,⊆) as defined in Example 1, we have T1 ./ T2.
Consider also T3, T4 ∈ ℘fn(CP1,⊆) where

T3 :=
{
{0 ≤ x ≤ 3}, {1 ≤ x ≤ 5}

}
, T4 :=

{
{0 ≤ x ≤ 5}

}
.

Then T3 ./ T4 and also T2 / T4 although the converse does not hold. To see
this, let S1, S2, and S′

2 in Definition 16 be T2, T4, and T ′
4 :=

{
{x = 2.5}

}
,

respectively. Then, if T ′′
4 is such that

⊎
T ′′

4 =
⊎
T ′

4 and T ′′
4 ⊆P T ′

4 , we must have
T ′′

4 = T ′
4 *P T2; hence, although T4 =

{⊎
T2

}
, we have T4 6 T2.

We now define an operation merger that is parametric with respect to the
congruence relation and replaces selected subsets by congruent singleton sets.
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Fig. 1. Merging polyhedra according to ‘./’.

Definition 17. (Merge and mergers.) Let R be a congruence relation on
D̂P. Then the merge relation merge

R
⊆ ℘fn(D,`)×℘fn(D,`) for R is such that

merge
R
(S1, S2) holds if and only if S1 `P S2 and

∀d2 ∈ S2 : ∃S′
1 ⊆ S1 . d2 =

⊕
S′

1 ∧ {d2} R S′
1.

A set S ∈ ℘fn(D,`) is fully-merged for R, if merge
R
(S, S′) implies S = S′; S is

pairwise-merged for R if, for all d1, d2 ∈ S, we have that {d1, d2} is fully-merged.
An operator ↑R : ℘fn(D,`) → ℘fn(D,`) is a merger for R if merge

R
(S, ↑R S)

holds.

Observe that, for all S ∈ ℘fn(D,`), we have S `EM ↑R S.

As R is a congruence relation on D̂P, for any merger ‘↑R’ for R and S ∈ D̂P,
S R (↑R S) holds. For any congruence relation R on D̂P that refines the ⊕-
congruence relation, we can always merge a set to obtain one that is fully- or
pairwise-merged.

Proposition 5. Let R be congruence relation on D̂P that refines the ⊕-congru-
ence relation. Then there exists a merger ‘ ↑R’ such that, for all S ∈ ℘fn(D,`),
↑R S is fully-merged (resp., pairwise-merged).

For the finite powerset domain over ĈPn, lines 1–9 of the algorithm specified
in [8, Figure 8, page 773] define a merger operator ‘↑./’ such that, for each finite
set S of polyhedra, ↑./ S is pairwise-merged.

Example 9. Figure 1 shows two examples of sets of polyhedra. In the left-hand
diagram, the set T = {P1,P2,P3} of three squares is not pairwise-merged for
‘./’ since P1 ∪ P2 and P2 ∪ P3 are convex polyhedra. Both T1 = {P1 ∪ P2,P3}
and T2 = {P1,P2 ∪ P3} are fully-merged and hence pairwise-merged for ‘./’,
and merge

./
(T , Ti) holds for i = 1, 2. In the right-hand diagram, the set T ′ =

{Q1,Q2,Q3,Q4,Q5} is pairwise-merged but not fully-merged for ‘./’. Since
Q′ :=

⋃
T ′ is a convex polyhedron, the singleton set {Q′} is fully-merged and

hence pairwise-merged for ‘./’ and merge
./

(
T ′, {Q′}

)
holds.
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6 Conclusion

We have studied the problem of endowing any abstract domain obtained by
means of the finite powerset construction with a provably correct widening op-
erator. We have proposed three generic widening operators and we have in-
stantiated our techniques, which are completely general, on powersets of convex
polyhedra, an abstract domain that is being used for static analysis and abstract
model-checking and for which no non-trivial widening operator was previously
known.

We have extended the Parma Polyhedra Library (PPL) [3, 6], a modern C++

library for the manipulation of convex polyhedra, with a prototype implemen-
tation of the certificate-based widening and its variant employing the ‘widening
up to’ technique [21, 22]. The experimental work has just started, but the initial
results obtained are very encouraging as our new widening compares favorably,
both in terms of precision and efficiency, with the extrapolation operator of [8].
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A Proofs

Proof (of Proposition 1 on page 10). Let S := S2 ∪ Ω`

D
(S′), where

S′ := { d1 ∇ d2 ∈ D | d1 ∈ S1, d2 ∈ S2, d1 
 d2 }.

Then, by hypothesis, h∇
P

(S1, S2) = Ω`

D
(S). To prove that ‘h∇

P
’ is a ∇-connected

extrapolation heuristics for D̂P, we need to prove that properties (4) and (5) of
Definition 6 and property (6) of Definition 7 hold.

We first show that property (4) of Definition 6 holds. Suppose d2 ∈ S2.
Then, as S2 ⊆ S, we have d2 ∈ S. By Definition 4, there exists d′

2 ∈ Ω`

D
(S)

such that d2 ` d′2. Thus, by Definition 5, S2 `P h∇
P

(S1, S2). Suppose next that
d ∈ h∇

P
(S1, S2) \ S2. Then d ∈ Ω`

D
(S′) ⊆ S′, so that there exists d1 ∈ S1 and

d2 ∈ S2 such that d = d1 ∇ d2. Since ‘∇’ is a widening on D̂, d2 ` d. Thus, it
follows that S2 `EM h∇

P
(S1, S2).

Secondly we show that property (5) of Definition 6 and property (6) of Def-
inition 7 hold. Let d ∈ h∇

P
(S1, S2) and d1 ∈ S1 be such that d1 
 d.

We first suppose that d ∈ S2 and show that d ∈ S′. As d1 
 d, d1 ∇ d is
defined and is in S′. As ‘∇’ is a widening, d ` d1 ∇ d. By Definition 4, there
exists d′ ∈ Ω`

D
(S′) such that d1 ∇ d ` d′. However Ω`

D
(S′) ⊆ S so that, again by

Definition 4, there exists d′′ ∈ Ω`

D
(S) = h∇

P
(S1, S2) such that d′ ` d′′ and hence,

by transitivity of ‘`’, d ` d′′. Since d, d′′ ∈ h∇
P

(S1, S2) ∈ ℘fn(D,`) we must have
d = d′ = d′′ so that d ∈ S′.

Since, by hypothesis, h∇
P

(S1, S2) ⊆ S2 ∪ S′ and, by the previous paragraph,
d ∈ S2 implies that d ∈ S′, it follows that, in all cases, we must have d ∈ S ′.
Thus there exists d′

1 ∈ S1 and d2 ∈ S2 such that d = d′
1 ∇d2 and hence d′

1 
∇ d.
Therefore both properties (5) of Definition 6 and (6) of Definition 7 hold. ut

Proof (of Theorem 1 on page 11). We first prove that that condition (1)
in Definition 1 holds, i.e., that S2 `P S1 EM∇P S2. Assume the notation and the
hypotheses introduced in Definition 8 and let T := S1 EM∇P S2 = h∇

P
(S1, S

′
2). By

definition of ‘�EM’, we have S2 `EM S1 �EM S2. Thus, in both the cases of the
definition of S′

2, we obtain S2 `EM S′
2, which implies S2 `P S′

2. Moreover, by
Definition 6, S′

2 `P T so that, by transitivity of ‘`P’, S2 `P T .
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We now prove condition (2) holds in Definition 1. Suppose T0 `P T1 `P · · · is
an increasing chain of elements in ℘fn(D,`) and consider the widened sequence
defined by U0 := T0 and, for each i > 0, Ui := Ui−1 EM∇P (Ui−1⊕PTi). As we have
already shown that condition (1) in Definition 1 holds, (Ui−1⊕PTi) `P Ui so that,
by transitivity of ‘`P’, Ui−1 `P Ui. Thus U0 `P U1 `P · · · is another increasing
chain in ℘fn(D,`). We need to show that the widened sequence converges in a
finite number of steps.

For each i > 0, consider the successive widened iterates Ui−1 and Ui, so that,
according to Definition 8, we can write Ui = h∇

P
(Ui−1, S

′
2), where in both the

cases for the definition of S ′
2 we have Ui−1 `EM S′

2. Since ‘h∇
P

’ is a ∇-connected
extrapolation heuristics, by property (4) of Definition 6, we have S ′

2 `EM Ui

and, by transitivity of ‘`EM’, Ui−1 `EM Ui. Moreover, in the above context, the
properties (5) of Definition 6 and (6) of Definition 7 can be rewritten to the
simpler property:

∀d′ ∈ Ui : ∃d ∈ Ui−1 . d `∇ d′. (11)

Let Wi ⊆ D × D be defined so that (d, d′) ∈ Wi holds if and only if d ∈ Ui−1,
d′ ∈ Ui and d 
∇ d′. Thus, by property (11), we have

∀d′ ∈ Ui \ Ui−1 : ∃d ∈ Ui−1 . (d, d′) ∈ Wi. (12)

For each i ∈ N, consider the finite directed graph Gi = (Vi, Ei), where

– the set of vertices Vi ⊆ D is Vi :=
⋃
{Uj | 0 ≤ j ≤ i };

– the set of edges Ei ⊆ Vi × Vi is Ei :=
⋃
{Wj | 0 < j ≤ i }.

Furthermore, consider the (a priori, possibly infinite) graph G = (V, E) such
that V =

⋃
i≥0

Vi and E =
⋃

i≥0
Ei =

⋃
i≥1

Wi. We will now show that G is a
finite and acyclic graph, so that, by property (12), ‘EM∇P’ is a widening. Namely,
we will prove the following properties for the graph G, which combined together
imply that G is a finite and acyclic graph:

1. G has no infinite paths;
2. G has a finite number of connected components;
3. G is finitely branching, i.e., each vertex has finite outdegree.

To prove G has no infinite paths, suppose p := d0 → d1 → · · · → di → · · ·
is a (possibly infinite) path in G. By the definition of G, if (dk−1, dk) is an edge
in p for some k > 0, then there exists an index j > 0 such that (dk−1, dk) ∈
Wj . By definition of Wj , we know that dk−1 
∇ dk. Thus, we have a strictly
increasing sequence d0 
∇ d1 
∇ · · · 
∇ di 
∇ · · · and hence, as ‘
∇’ satisfies
the ascending chain condition, the path p must be finite.

We now prove that the graph G has a finite number of connected components.
Consider, for any i > 0 the graph Gi = (Vi, Ei). Then, by property (12), for
each vertex di in Vi either di ∈ Vi−1 or there is an edge (di−1, di) in Ei where
di−1 ∈ Ui−1 ⊆ Vi−1. Thus, for all i ∈ N, the number of components of Gi is no
more than the number of components of Gi−1. As the number of components of
G0 is # U0, the number of components of G is no more than # U0.
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Finally, to prove that G is finitely branching, consider any vertex d ∈ V .
Suppose that, for some index i > 0, there exists (d, d′) ∈ Ei \ Ei−1 (note that
(d, d′) /∈ E0 because E0 = ∅). Then (d, d′) ∈ Wi. Thus, by definition of Wi,
d ∈ Ui−1 and d′ ∈ Ui \ Ui−1 and d 
 d′. However, for all indices j ≥ i, as
Ui `P Uj , there exists dj ∈ Uj such that d′ ` dj so that d 
 dj ; as Uj is a
non-redundant set (in the sense of Definition 4), d /∈ Uj . Thus all outgoing edges
from d are in Ei. As the set Ei is finite, d has a finite number of outgoing edges.

ut

Proof (of Proposition 2 on page 12). Let S = S1∪S2, so that h∇
P

(S1, S2) =
Ω∇

D
(S). By Definition 11, there exists m ∈ N and a sequence T0, . . . , Tm in ℘f(D)

where T0 = S, Tm = Ω∇

D
(S) ∈ ℘fn(D,`) and, for each 0 < i ≤ m, there exists

d, d′ ∈ Ti−1 such that d 
 d′ and Ti =
(
Ti−1 \ {d, d′}

)
∪ {d ∇ d′}. Thus, for all

d ∈ Ti−1 there exists d′ ∈ Ti such that d `∇ d′. We prove, for all 0 ≤ i ≤ m, the
following properties hold:

∀d ∈ S2 : ∃di ∈ Ti . d ` di; (13)

∀di ∈ Ti : ∃d ∈ S2 . d ` di; (14)

∀di ∈ Ti \ S : ∃d ∈ S1 . d 
∇ di; (15)

∀d ∈ S1 : ∃di ∈ Ti . d `∇ di. (16)

Letting i = m in properties (13) and (14) we obtain S2 `EM Ω∇

D
(S), so that

property (4) in Definition 6 holds. Since S1 `P S2 and Tm ∈ ℘fn(D,`), we
have Tm \ S = Tm \ S2; thus, letting i = m in property (15), we obtain that
property (5) in Definition 6 holds. Thus ‘h∇

P
’ is an extrapolation heuristics for

D̂P. Moreover, letting i = m in property (16), we obtain that property (7) in
Definition 10 holds, so that ‘h∇

P
’ is ∇-covered.

We now prove the four properties by induction on i. For the base case, we
have i = 0 and T0 = S = S1∪S2, so that all the properties hold trivially. For the
inductive case, assuming that m > 0, consider an index j such that 0 < j ≤ m
and all the properties hold for all i ≥ 0 where 0 ≤ i < j; we show they also hold
when i = j. By Definition 11, if dj−1 ∈ Tj−1, then there exists dj ∈ Tj such that
either dj−1 = dj or there exists d′

j−1 ∈ Tj−1 such that dj−1 
 d′j−1 6= dj and
dj = dj−1 ∇ d′j−1; in both cases, dj−1 `∇ dj . Thus, assuming properties (13),
(14), (15) and (16) hold for i = j − 1, they also hold for i = j. ut

Proof (of Theorem 2 on page 12). We first prove that condition (1) holds in
Definition 1, i.e., that S2 `P S1 k∇P S2. Assume the notation and the hypotheses
introduced in Definition 12 and let T := S1 k∇P S2 = h∇

P
(S1, S

′
2). By Definition 9,

S2 `P ⇑k(S2). Thus, in both the cases of the definition of S ′
2, we obtain S2 `P S′

2.
Moreover, by Definition 6, S ′

2 `P T so that, by transitivity of ‘`P’, S2 `P T .
We now prove condition (2) holds in Definition 1. Suppose T0 `P T1 `P · · · is

an increasing chain of elements in ℘fn(D,`) and consider the widened sequence
defined by U0 := T0 and, for each i > 0, Ui := Ui−1 k∇P (Ui−1 ⊕P Ti). As we
have already shown that condition (1) in Definition 1 holds, (Ui−1 ⊕P Ti) `P Ui

so that, by transitivity of ‘`P’, Ui−1 `P Ui. Thus U0 `P U1 `P · · · is another
increasing chain in ℘fn(D,`).
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For each i > 0, consider the successive widened iterates Ui−1 and Ui. Ac-
cording to Definition 12, we have Ui = h∇

P
(Ui−1, S

′
i), where

Si := Ui−1 ⊕P Ti;

S′
i :=

{
Si, if # Si ≤ k;

⇑k(Si), otherwise.

By Definition 9, in both the cases for the definition of S ′
i, we have Ui−1 `P S′

i

and # S′
i ≤ k. For an arbitrary j ∈ N, let dj ∈ Uj . Then, by condition (7) in

Definition 10, there exists dj+1 ∈ Uj+1 such that dj `∇ dj+1. By transitivity, for
all i > j, there exists di ∈ Ui such that dj `∇ di. As the ‘
∇’ relation satisfies
the ascending chain condition, there exist m ∈ N and dm ∈ Um such that, for
all i ≥ m, dm ∈ Ui.

Suppose that the widening iteration does not converge in a finite number
of steps. Then, by the point above, there must exist an index ` ∈ N such that
#(U`−1 ∩U`) = k. By definition of S′

`, we have U`−1 `P S′
` `P U` and # S′

` ≤ k.
Thus, by Definition 4, we obtain both S ′

` = U`−1 ∩ U` and U`−1 = S′
`. By

condition (4) of Definition 6, we know that S ′
` `EM U`, so that U` = S′

` = U`−1.
Thus, the widening iteration converges, contradicting the assumption made at
the beginning of this paragraph. ut

In order to prove Proposition 3, we first define a minor variant (a coarsening)
of the ‘yP’ relation and show that it satisfies the ascending chain condition.

Definition 18. (The ‘yL’ relation.) The relation yL ⊆ ℘fn(D,`)×℘fn(D,`)
induced by the certificate µ for ‘∇’ is such that, for each S1, S2 ∈ ℘fn(D,`),
S1 yL S2 if and only if either one of the following conditions holds:

µ
(⊕

S1

)
� µ

(⊕
S2

)
;

µ
(⊕

S1

)
= µ

(⊕
S2

)
∧ µ̃(S1) � µ̃(S2).

Lemma 1. The ‘yL’ relation on D̂P satisfies the ascending chain condition.

Proof. By assumption, (O,�, µ) is a finite convergence certificate for the base-
level widening operator ‘∇’, so that ‘�’ is a well-founded ordering on O. As noted
in Section 2, letting M(O) denote the set of all the multisets having elements
in O, the (strict) multiset ordering relation � ⊆ M(O) × M(O) induced by
‘�’ is also well-founded. As a consequence, the lexicographic product of ‘�’ and
‘�’ is a well-founded partial order relation on the product O × M(O). Note
that, by Definition 18, S1 yL S2 holds if and only if there is a strict decrease
in this lexicographic product ordering, so that ‘yL’ satisfies the ascending chain
condition. ut

Proof (of Proposition 3 on page 14). Let S0 yP S1 yP · · · yP Si yP · · ·
be a chain of abstract elements in the finite powerset domain D̂P. In order to
prove that the chain is finite, we will show that, for all indices i ∈ N there exists
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j ∈ {i + 1, i + 2} such that Si yL Sj . The result will then be a consequence of
Lemma 1.

Let i ∈ N. Note that, by assumption, we have Si yP Si+1 yP Si+2. We
distinguish three cases.

If Si yP Si+1 holds by virtue of condition (8) of Definition 13, then we have
µ
(⊕

Si

)
� µ

(⊕
Si+1

)
, which implies Si yL Si+1. Similarly, if Si yP Si+1 holds

by virtue of condition (10) of Definition 13, then we have µ
(⊕

Si

)
= µ

(⊕
Si+1

)

and µ̃(Si) � µ̃(Si+1), which again implies Si yL Si+1. Thus, in these two cases
we can take j := i + 1.

Otherwise, Si yP Si+1 must hold by virtue of condition (9) of Definition 13,
so that µ

(⊕
Si

)
= µ

(⊕
Si+1

)
and # Si+1 = 1. However, Si+1 yP Si+2 also holds

and, by the above condition on the cardinality of Si+1, this may only happen
by virtue of condition (8) of Definition 13, so that µ

(⊕
Si+1

)
� µ

(⊕
Si+2

)
.

Thus, µ
(⊕

Si

)
= µ

(⊕
Si+1

)
� µ

(⊕
Si+2

)
and, by taking j := i + 2, we obtain

Si yL Sj . ut

Proof (of Theorem 3 on page 14). Let S1, S2 ∈ ℘fn(D,`), where S1 
P S2

and let T := S1 µ∇P S2. We first prove that condition (1) in Definition 1 holds,
i.e., S2 `P T . Consider each of the three cases in Definition 15 separately. If
the first case applies, then T = S1 �P S2 and the result holds because, by
hypothesis, ‘�P’ is an upper bound operator on D̂P. If the second case applies,
then T = (S1 �P S2) ⊕P {d}. Since ‘⊕P’ is the least upper bound operator, the
result follows once again by the hypothesis on ‘�P’. If the third and last case
applies, then T =

{⊕
S2

}
, so that the result holds trivially by definition of ‘`P’.

We now prove that condition (2) in Definition 1 holds. By Proposition 3,
‘yP’ satisfies the ascending chain condition; hence, to complete the proof it is
sufficient to show that S1 yP T .

Consider each of the three cases in Definition 15. If the first case is applied,
then the applicability conditions trivially ensure that S1 yP T .

Suppose now the second case is applied, so that T = (S1�P S2)⊕P{d}, where

d := d1 	 d2;

d1 :=
⊕

S1 ∇
⊕

(S1 �P S2);

d2 :=
⊕

(S1 �P S2).

Note that the applicability condition
⊕

S1 

⊕

(S1 �P S2) for this case ensures
that the required base-level widening application in the computation of the ab-
stract element d1 ∈ D is well defined. Moreover, since ‘∇’ is an upper bound
operator on D̂, we have d2 ` d1, so that also the subtraction application in the
computation of the abstract element d ∈ D is well defined. By Definition 14, we
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O

T0 = {P1,P2}

P1

P2

O

T1 = {P1,P2,P3}

P1

P2

P3

O

P4

P5

U1

T2 = {P4,P5}

Fig. 2. The condition #U1 > 1 is needed to obtain a proper widening.

know that d1 = (d1 	 d2) ⊕ d2. As a consequence, we obtain

⊕
T =

⊕(
(S1 �P S2) ⊕P {d}

)

= d ⊕
(⊕

(S1 �P S2)
)

= d ⊕ d2

= (d1 	 d2) ⊕ d2

= d1

=
⊕

S1 ∇
⊕

(S1 �P S2).

Since ‘µ’ is a certificate for the base-level widening ‘∇’, we obtain

µ
(⊕

S1

)
� µ

(⊕
S1 ∇

⊕
(S1 �P S2)

)
= µ

(⊕
T

)
,

so that by condition (8) of Definition 13, S1 yP T .
Finally, if the last case is applied, then T =

{⊕
S2

}
so that

⊕
T =

⊕
S2. By

hypothesis, since ‘�P’ is an upper bound operator, we have S1 
P S2 `P S1�PS2,
so that we obtain

⊕
S1 `

⊕
S2 `

⊕
(S1�PS2). Since the condition for the second

case of Definition 15 does not hold, we have
⊕

S1 =
⊕

(S1 �P S2), which implies⊕
S1 =

⊕
S2 =

⊕
T and µ

(⊕
S1

)
= µ

(⊕
T

)
. Also note that # T = 1 and, since

S1 
P S2 `P T , it must be # S1 > 1. Therefore condition (9) of Definition 13 is
satisfied and S1 yP T . ut

It should be noted that case (9) of Definition 13 has been introduced so as
to ensure that S1 yP

{⊕
S2

}
holds in the last case of the specification of ‘µ∇P’,

therefore inducing a strict decrease in the corresponding level mapping. This
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made also necessary the addition of the extra conditions on the cardinalities of
S1 and S2 in case (10) of Definition 13, since otherwise we would have obtained
a relation violating the ascending chain condition, as illustrated by the following
example.

Example 10. Consider the finite powerset domain (ĈP2)P, with the standard
widening ‘∇s’ on the base-level domain CP2, certified by the level mapping ‘µs’
defined in Example 5 and the upper bound ‘�P’ defined as ‘⊕P’, so that we will
always have S1 �P S2 = S2. Consider an iteration sequence T0 ⊆P T1 ⊆P · · ·
starting with the sets of polyhedra illustrated in Figure 2, where T0 = {P1,P2}
is shown in the top left diagram and T1 = T0 ]P {P3} is shown in the bottom
left diagram. For the widened sequence, U0 := T0 and, since U0 ⊆P T1, we have
to compute U1 := U0 µ∇P T1 = T0 µ∇P T1. As

⊎
T0 =

⊎
T1, # T1 > 1 and5

µ̃s(T0) =
{
(0, 3)2

}
6�

{
(0, 3)3

}
= µ̃s(T1),

the last case applies in Definition 15 so that U1 =
{⊎

T1

}
, as is indicated in the

lower square in the right-hand diagram of Figure 2. Now let T2 = {P4,P5} consist
of the two triangles bounded by solid lines in the right-hand diagram. Note that
U1 ⊆P T2, so that we have to compute the widened iterate U2 := U1 µ∇P T2. Since

µs

(⊎
U1

)
= (0, 4) = µs

(⊎
T2

)

but
µ̃s(U1) =

{
(0, 4)1

}
�

{
(0, 3)2

}
= µ̃s(T2),

without the extra condition #U1 > 1 in case (10) of Definition 13, we would have
U1 yP T2. Thus, we would apply the first case in the definition of ‘µ∇P’, obtaining
U2 = T2. However, it is easy to note that U2 = T2 has the same structure
of U0 = T0 (the former can be obtained from the latter by a suitable affine
image transformation) so that the sequence Ti and the corresponding “widened”
sequence Ui can be extended indefinitely without obtaining convergence (in a
finite number of steps). In contrast, since we require the condition #U1 > 1, the
second case of Definition 15 applies and U1 µ∇PT2 is the (unbounded) polyhedron
indicated by the dotted lines in the right-hand diagram.

Proof (of Proposition 4 on page 16). The finite powerset domain (ĈPn)P

is related to the concrete domain Ân defined in Section 2.2 by the concretization
function γA

P
induced from γA, where γA(P) = P for each P ∈ CPn. Namely, for

each S ∈ ℘fn(CPn,⊆), we have γA

P
(S) =

⋃
S. Therefore, we have to show that,

for all S1,S2 ∈ ℘fn(CPn,⊆), S1 ./ S2 if and only if
⋃
S1 =

⋃
S2.

First we assume that
⋃
S1 ⊆

⋃
S2 and show that S1 / S2. Consider an

arbitrary element S ′
1 ∈ ℘fn(CPn,⊆) such that S ′

1 `P S1. Let

S ′′
1 = Ω⊆

CPn

(
{P ′

1 ∩ P2 ∈ CPn | P ′
1 ∈ S ′

1,P2 ∈ S2 }
)

5 In this example a multiset is denoted as a set where each element carries in a super-
script the corresponding number of occurrences. For instance, we write M = {a3, b2}
to mean that element a and b occur (in multiset M) 3 and 2 times, respectively.
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so that
⋃
S ′′

1 =
⋃
S ′

1 ∩
⋃
S2. By definition, S ′

1 `P S1 implies
⋃
S ′

1 ⊆
⋃
S1; also,

by hypothesis,
⋃
S1 ⊆

⋃
S2, so that

⋃
S ′

1 ⊆
⋃
S2. Therefore

⋃
S ′′

1 =
⋃
S ′

1 and⋃
S ′′

1 ⊆
⋃
S2. Thus, by Definition 16, S1 / S2. By a symmetric argument, we

can prove that
⋃
S2 ⊆

⋃
S1 implies S2 / S1. Thus, again by Definition 16, we

obtain that S1 ≡γA

P

S2 implies S1 ./ S2.

Second we assume that
⋃
S1 *

⋃
S2 and show that S1 6 S2. By assumption,

there exist a point p ∈ Rn such that p ∈
(⋃

S1

)
\

(⋃
S2

)
. As a consequence,

there must exist a polyhedron P1 ∈ S1 such that p ∈ P1. Consider now the
polyhedron P ′

1 := {p} and the corresponding singleton S ′
1 = {P ′

1}. Note that
S ′

1 `P S1. Moreover, if S ′′
1 ∈ ℘fn(CPn,⊆) is such that

⊎
S ′′

1 =
⊎
S ′

1, then we must
have S ′′

1 = S ′
1. However, since p /∈

⋃
S2, we also have

⋃
S ′′

1 *
⋃
S2, which implies

S ′′
1 0P S2. Hence, by Definition 16, S1 6 S2. By a symmetric argument, we can

prove that
⋃
S2 *

⋃
S1 implies S2 6 S1. Thus, reasoning by contraposition, we

obtain that S1 ./ S2 implies S1 ≡γA

P

S2. ut

To prove Proposition 5 on page 17, it is convenient to consider non-redundant
merges, where each of the elements in the original abstract collection participates
to just one join operation.

Definition 19. Let R be a congruence relation on D̂P. Let S1, S2 ∈ ℘fn(D,`),
where S2 = {d1, . . . , dm} and {S1i}

m
i=1 is a partition of S1 such that, for each

1 ≤ i ≤ m, merge
R

(
S1i, {di}

)
holds. Then we write merge n

R
(S1, S2) and say

that S2 is a non-redundant merge of S1.

Lemma 2. Let R be a congruence relation on D̂P that refines the ⊕-congruence
relation. If S1, S2 ∈ ℘fn(D,`) where S1 6= S2 and merge

R
(S1, S2), then there

exists S′
2 6= S1 ∈ ℘fn(D,`) such that merge n

R
(S1, S

′
2) and # S′

2 < # S1.

Proof. By hypothesis, merge
R
(S1, S2) and S1 6= S2. Thus, by Definition 17, there

exists S′
1 ⊆ S1 where S′

1 R {d2} and {d2} 6= S′
1. Since R refines the ⊕-congruence

relation, we obtain d2 =
⊕

S′
1. Thus # S′

1 > 1. Let S′
2 = (S1 \S′

1)⊕P {d2}. Then
S′

2 6= S1, # S′
2 < # S1 and, by Definition 17, merge

R
(S1, S

′
2). If S1 \ S′

1 6= ∅,
then {S1 \ S′

1, S
′
1} is a partition of S1; otherwise, {S′

1} is such a partition. In
both cases, by Definition 19, merge n

R
(S1, S

′
2). ut

Proof (of Proposition 5 on page 17). We first prove, by induction on # S,
that there exists S′ ∈ ℘fn(D,`) such that merge

R
(S, S′), S′ is fully-merged

and, if S′ 6= S, then # S′ < # S. As ‘merge
R
’ is reflexive, the result holds

trivially if S is fully-merged. Suppose therefore that S is not fully-merged (so
that # S > 1). Then there exists S ′′ ∈ ℘fn(D,`) \ {S} such that merge

R
(S, S′′).

By Lemma 2, we can assume that S ′′ is chosen so that merge n
R
(S, S′′) and

# S′′ < # S. Therefore we can apply the inductive hypothesis to S ′′; there
exists S′ ∈ ℘fn(D,`) which is fully-merged, merge

R
(S′′, S′) and # S′ ≤ # S′′.

As ‘ merge
R
’ is transitive, we obtain merge

R
(S, S′) and # S < # S′.

The merger ‘↑R’ can thus be defined, for each S ∈ ℘fn(D,`), as ↑R S = S,
when S is already fully-merged, and ↑R S = S′ as defined above, otherwise. The
proof for a pairwise-merger is similar. ut
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T2 = {P2,P3}

P3P4

P2

O

T3 = {P2,P4}

P4

P2

O

T0 = {P0}

P0

P′
0

O

T1 = {P1,P3}

P3

P1

Fig. 3. Sequence of sets of polyhedra in Example 11.

The following example shows that, in general, it is not possible to obtain a
proper widening operator on the finite powerset domain by coupling an arbitrary
(i.e., not ∇-covered) extrapolation heuristics ‘h∇

P
’ with a fixed upper bound for

the cardinality of abstract descriptions. It is also shown that even the addition
of a merger operator for abstract descriptions, as proposed in [8], is not enough
for that purpose.

Example 11. Consider the finite powerset domain (ĈP2)P, with ‘∇s’ as the widen-

ing on the base-level abstract domain ĈP2, ‘h∇
P

’ be the extrapolation heuristics
for ‘∇s’ defined in Proposition 1 (which is also the one used in [8]) and ‘↑./’ be
the pairwise-merging operator defined in [8]. Let P0,P1,P2,P3,P4 ∈ CP2 be
defined as

P0 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4, x − y ≤ 3, x + y ≥ 1},

P1 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4, x − y ≤ 3},

P2 = {0 ≤ x ≤ 4, 0 ≤ y ≤ 4},

P3 = {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14, x − y ≥ −6, 5x − y ≥ −2, x + 3y ≥ 3},

P4 = {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14, x − y ≥ −6, 4x − y ≥ −3, x + 2y ≥ 2}.

Note that P1 = P0 ∇s P1 and P2 = P1 ∇s P2; moreover, for all i ∈ {0, 1, 2}, we
have Pi * P3 and Pi * P4.

Consider an increasing sequence T0 `P T1 `P T2 `P T3 `P . . . starting with
elements T0 = {P0}, T1 = {P1,P3}, T2 = {P2,P3}, and T3 = {P2,P4}. Then, the
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corresponding widened sequence U0 `P U1 `P U2 `P U3 `P . . . , will be computed
as follows. Since U0 = T0, in the first iteration (noting that T1 is fully-merged)
we compute

U1 = h∇
P

(U0, T1)

= {P3} ]P {P0 ∇s P1}

= {P1,P3}

= T1.

In the second iteration, noting that also T2 is fully-merged, we obtain

U2 = h∇
P

(U1, T2)

= {P3} ]P {P1 ∇s P2}

= {P2,P3}

= T2.

In the third iteration, since also T3 is fully-merged, letting

P ′
0 := P3 ∇s P4 = {0 ≤ x ≤ 8, 0 ≤ y ≤ 8, x + y ≤ 14, x − y ≥ −6},

we obtain

U3 = h∇
P

(U2, T3)

= {P2} ]P {P3 ∇s P4}

= {P3 ∇s P4}

= {P ′
0}.

Note that the polyhedron P2 does not occur in U3 because it is made redundant
by the polyhedron P ′

0 (i.e., P2 ⊆ P ′
0).

Now, the singleton U3 = {P ′
0} has the same structure as the singleton

U0 = {P0}, because the polyhedron P ′
0 can be obtained from P0 by a scal-

ing (by a factor 2) followed by a rotation. As a consequence, it is possible to
indefinitely extend the sequence Ti and the corresponding “widened” sequence
Ui without obtaining convergence (in a finite number of steps). Since in the above
computation all the abstract elements have cardinality less than or equal to 2,
the addition of any (non-trivial) upper bound on the cardinality of the abstract
descriptions will have no effect on termination.

Suppose now that, instead of just using the extrapolation heuristics ‘h∇
P

’, we
adopt the widening ‘EM∇P’ with the trivial connector:

S1 �EM S2 :=
{⊕

(S1 ∪ S2)
}
.

Let U ′
0 `P U ′

1 `P U ′
2 `P U ′

3 `P . . . , be the corresponding widened sequence.
Then instead of obtaining U1 = {T1} we obtain U ′

1 =
{
{x ≥ 0, y ≥ 0}

}
. Further

iterations leave this set unchanged.
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Suppose now that, instead of using the extrapolation heuristics ‘h∇
P

’ defined
in Proposition 1, we adopt one that is ∇-covered, such as that defined in Propo-
sition 2, and hence use a cardinality-based widening ‘k∇P’ for any k > 2. Then we
obtain the widened sequence U ′′

0 `P U ′′
1 `P U ′′

2 `P . . . , where U ′′
0 = U0, U

′′
1 = U1

and U ′′
2 = U2 would be computed as before. However in the third iteration we

will obtain

U ′′
3 = h∇

P
(U2, T3)

= Ω∇

D

(
{P2,P3,P4}

)

= Ω∇

D

(
{P2,P3 ∇s P4}

)

= Ω∇

D

(
{P2,P

′
0}

)

= {P2 ∇s P
′
o}

=
{
{x ≥ 0, y ≥ 0}

}
,

which is the same as the set U ′
1 computed using ‘EM∇P’.
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