
Boolean Functions for Finite-Tree Dependencies ∗

Roberto Bagnara
Enea Zaffanella

Dept. of Mathematics
University of Parma, Italy

bagnara@cs.unipr.it
zaffanella@cs.unipr.it

Roberta Gori
Dept. of Computer Science

University of Pisa, Italy

gori@di.unipi.it

Patricia M. Hill
School of Computing

University of Leeds, U.K.

hill@comp.leeds.ac.uk

ABSTRACT
Several logic-based languages, such as Prolog II and its suc-
cessors, SICStus Prolog and Oz, offer a computation domain
including rational trees. Infinite rational trees allow for in-
creased expressivity (cyclic terms can provide efficient rep-
resentations of grammars and other useful objects) and for
faster unification (due to the safe omission of the occurs-
check). Unfortunately, the use of infinite rational trees has
problems. For instance, many of the built-in and library
predicates are ill-defined for such trees and need to be sup-
plemented by run-time checks whose cost may be signifi-
cant. In a companion paper [3] we have proposed a data-
flow analysis aimed at the knowledge of those program vari-
ables (the finite variables) that will always be bound to fi-
nite terms. The analysis domain introduced in [3] correctly
captures the creation and propagation of cyclic terms, but
is not capable of propagating the guarantees of finiteness
that come from built-in predicates and program annota-
tions. Here we present a domain of Boolean functions that
precisely captures how the finiteness of some variables in-
fluences the finiteness of other variables. This domain of
finite-tree dependencies provides relational information that
is important for the precision of the overall finiteness analy-
sis. It also combines obvious similarities, interesting differ-
ences and somewhat unexpected connections with classical
domains for groundness dependencies.

1. INTRODUCTION
The intended computation domain of most (concurrent

and/or constraint and/or functional) logic-based languages
includes the algebra of finite trees. Other logic-based lan-
guages, such as Prolog II and its successors [10, 12], SICStus

∗The work of the first two authors has been partly sup-
ported by MURST project “Certificazione automatica di
programmi mediante interpretazione astratta”. The work
of the second and fourth authors has been partly supported
by EPSRC under grant M05645.

Quaderno 252, Dipartimento di Matematica, Università di Parma, Italy.

Prolog [40], and Oz [38], refer to a computation domain of
rational trees. A rational tree is a possibly infinite tree with
a finite number of distinct subtrees and, as is the case for
finite trees, where each node has a finite number of immedi-
ate descendants. These properties will ensure that rational
trees, even though infinite in the sense that they admit paths
of infinite length, can be finitely represented. One possible
representation makes use of connected, rooted, directed and
possibly cyclic graphs where nodes are labeled with variable
and function symbols as is the case of finite trees.

Applications of rational trees in logic programming in-
clude graphics [21], parser generation and grammar manip-
ulation [10, 24], and computing with finite-state automata
[10]. Other applications are described in [23] and [25]. Go-
ing from Prolog to CLP, [35] combines constraints on ratio-
nal trees and record structures, while the logic-based lan-
guage Oz allows constraints over rational and feature trees
[38]. The expressive power of rational trees is put to use,
for instance, in several areas of natural language processing.
Rational trees are used in implementations of the HPSG
formalism (Head-driven Phrase Structure Grammar) [36],
in the ALE system (Attribute Logic Engine) [8], and in the
ProFIT system (Prolog with Features, Inheritance and Tem-
plates) [22].

While rational trees allow for increased expressivity, they
also come equipped with a surprising number of problems.
As we will see, some of these problems are so serious that
rational trees must be used in a very controlled way, dis-
allowing them in any context where they are “dangerous”.
This, in turn, causes a secondary problem: in order to disal-
low rational trees in selected contexts one must first detect
them, an operation that may be expensive.

The first thing to be aware of is that almost any semantics-
based program manipulation technique developed in the field
of logic programming —whether it be an analysis, a trans-
formation, or an optimization— assumes a computation do-
main of finite trees. Some of these techniques might work
with the rational trees but their correctness has only been
proved in the case of finite trees. Others are clearly inappli-
cable. Let us consider a very simple Prolog program:

list([]).

list([|T]) :- list(T).

Most automatic and semi-automatic tools for proving pro-
gram termination and for complexity analysis agree on the
fact that list/1 will terminate when invoked with a ground
argument. Consider now the query

?- X = [a|X], list(X).

1

and note that, after the execution of the first rational uni-
fication, the variable X will be bound to a rational term
containing no variables, i.e., the predicate list/1 will be
invoked with X ground. However, if such a query is given to,
say, SICStus Prolog, then the only way to get the prompt
back is by pressing ^C. The problem stems from the fact
that the analysis techniques employed by these tools are
only sound for finite trees: as soon as they are applied to a
system where the creation of cyclic terms is possible, their
results are inapplicable. The situation can be improved by
combining these termination and/or complexity analyses by
a finiteness analysis providing the precondition for the ap-
plicability of the other techniques.

The implementation of built-in predicates is another prob-
lematic issue. Indeed, it is widely acknowledged that, for the
implementation of a system that provides real support for
the rational trees, the biggest effort concerns proper han-
dling of built-ins. Of course, the meaning of ‘proper’ de-
pends on the actual built-in. Built-ins such as copy_term/2
and ==/2 maintain a clear semantics when passing from fi-
nite to rational trees. For others, like sort/2, the extension
can be questionable:1 both raising an exception and answer-
ing Y = [a] can be argued to be “the right reaction” to the
query

?- X = [a|X], sort(X, Y).

Other built-ins do not tolerate infinite trees in some argu-
ment positions. A good implementation should check for
finiteness of the corresponding arguments and make sure
“the right thing” (i.e., failing or raising an appropriate ex-
ception) always happens. However, such behavior appears
to be uncommon. A small experiment we conducted on six
Prolog implementations with queries like

?- X = 1+X, Y is X.

?- X = [97|X], name(Y, X).

?- X = [X|X], Y =.. [f|X].

resulted in infinite loops, memory exhaustion and/or system
thrashing, segmentation faults or other fatal errors. One
of the implementations tested, SICStus Prolog, is a profes-
sional one and implements run-time checks to avoid most
cases where built-ins can have catastrophic effects.2 The re-
maining systems are a bit more than research prototypes,
but will clearly have to do the same if they evolve to the
stage of production tools. Again, a data-flow analysis aimed
at the detection of those variables that are definitely bound
to finite terms would allow to avoid a (possibly significant)
fraction of the useless run-time checks. Note that what has
been said for built-in predicates applies to libraries as well.
Even though it may be argued that it is enough for pro-
grammers to know that they should not use a particular
library predicate with infinite terms, it is clear that the use
of a “safe” library, including automatic checks which en-
sure that such predicates are never called with an illegal
argument, will result in more robust systems. With the ap-
propriate data-flow analyses, safe libraries do not have to be
inefficient libraries.

Another serious problem is the following: the ISO Pro-
log standard term ordering cannot be extended to ratio-
nal trees [M. Carlsson, Personal communication, October
1Even though sort/2 is not required to be a built-in by the
standard, it is offered as such by several implementations.
2SICStus 3.8.5 still loops on ?- X = [97|X], name(Y, X).

2000]. Consider the rational trees defined by A = f(B, a)

and B = f(A, b). Clearly, A == B does not hold. Since the
standard term ordering is total, we must have either A @< B

or B @< A. Assume A @< B. Then f(A, b) @< f(B, a),
since the ordering of terms having the same principal func-
tor is inherited by the ordering of subterms considered in
a left-to-right fashion. Thus B @< A must hold, which is a
contradiction. A dual contradiction is obtained by assum-
ing B @< A. As a consequence, applying one of the Prolog
term-ordering predicates to one or two infinite terms may
cause inconsistent results, giving rise to bugs that are ex-
ceptionally difficult to diagnose. For this reason, any sys-
tem that extends ISO Prolog with rational trees ought to
detect such situations and make sure they are not ignored
(e.g., by throwing an exception or aborting execution with
a meaningful message). However, predicates such as the
term-ordering ones are likely to be called a significant num-
ber of times, since they are often used to maintain structures
implementing ordered collections of terms. This is another
instance of the efficiency issue mentioned above.

1.1 Detecting the Creation of Infinite Terms
In [3] we have introduced a composite abstract domain

for finite-tree analysis, denoted by H × P . The H domain,
written with the initial of Herbrand and called the finiteness
component, is the direct representation of the property of in-
terest: a set of variables, usually denoted by h, that cannot
be bound to infinite terms. Not surprisingly, H is too weak
to attain any reasonable precision. One of the reasons is
that it lacks any information about the sharing of program
variables. Consider how the H domain could safely approx-
imate a unification of the form x = y even assuming that,
before the unification, x and y can only be bound to finite
terms, i.e., x, y ∈ h. In H there is no information that can
exclude that x and y share a common variable, and there
is no information to ensure that both x and y are unbound
variables. Thus, the abstract unification operator of H can-
not exclude that x = y results in the creation of cyclic terms.
What is worse, since nothing is known about the sharing of
variables between x, y and the other variables of interest,
no variable can safely remain in h after the binding.

For this reason, the parametric domain H ×P of [3] com-
bines H with a generic domain P (the parameter of the
construction) providing sharing information. Here the term
“sharing information” is to be understood in its broader
meaning, which includes variable aliasing, groundness, lin-
earity, freeness and any other kind of information that can
improve the precision on these components, such as explicit
structural information. Several domain combinations and
abstract operators have been proposed in the literature to
capture these properties, and are characterized by differ-
ent precision/complexity trade-offs (see [6] for an account of
some of them).

Sharing information is exploited in H × P for two pur-
poses: detecting when new infinite terms are possibly cre-
ated (this is done along the lines of [39]) and confining the
propagation of those terms as much as possible. As shown
in [3], by giving a generic specification for this parameter
component in terms of the abstract queries it supports [15],
it is possible to define and establish the correctness of the
abstract operators on the finite-tree domain independently
from any particular domain for sharing analysis.

2

P
[3,39]

wwoooooooooooooo gg
[6,9]

PPPPPPPPPPPPPP

H
Thm. 25 //______oo
Thm. 16

Bfun oo Thm. 25 ______
Thm. 23

// Pos

Figure 1: The domains discussed in this paper and
the information flows between them.

1.2 Propagating Guarantees of Finiteness
The domain H × P captures the negative aspect of term-

finiteness, that is, the circumstances under which finiteness
can be lost. When a binding has the potential for creating
one or more rational terms, the abstract unification operator
of H×P removes from h all the variables that may be bound
to non-finite terms.

However, term-finiteness has also a positive aspect: there
are cases where a variable is granted to be bound to a fi-
nite term and this knowledge can be propagated to other
variables. Guarantees of finiteness are provided by several
built-ins like unify_with_occurs_check/2, var/1, name/2,
all the arithmetic predicates, besides those explicitly pro-
vided to test for term-finiteness such as the acyclic_term/1

predicate of SICStus Prolog.3 The term-finiteness infor-
mation encoded by H is attribute independent [18], which
means that each variable is considered in isolation. What
is missing is information concerning how finiteness of one
variable affects the finiteness of other variables. This kind
of information, usually termed relational information, is not
captured at all by H and it is only partially captured by the
composite domain H × P of [3].

Here we present a domain of Boolean functions that pre-
cisely captures how the finiteness of some variables influ-
ences the finiteness of other variables. This domain of finite-
tree dependencies provides relational information that is im-
portant for the precision of the overall finiteness analysis.
It also combines obvious similarities, interesting differences
and somewhat unexpected connections with classical do-
mains for groundness dependencies.

Finite-tree and groundness dependencies are similar in
that they both track covering information (a term s covers
t if all the variables in t also occur in s) and share several
abstract operations. However, they are different because
covering does not tell the whole story. Suppose x and y are
free variables before either the unification x = f(y) or the
unification x = f(x, y) are executed. In both cases, x will be
ground if and only if y will be so. When x = f(y) is the per-
formed unification, this equivalence will also carry over to
finiteness. In contrast, when the unification is x = f(x, y),
x will never be finite and will be totally independent, as far
as finiteness is concerned, from y. Among the unexpected
connections is the fact that finite-tree dependencies can im-
prove the groundness information obtained by the usual ap-
proaches to groundness analysis.

Figure 1 summarizes the information flows between the
domains discussed in this paper.

The paper is structured as follows: the required notations

3On most implementations conforming to the ISO Prolog
standard, the predicate acyclic term/1 can be defined by
acyclic term(T) :- unify with occurs check(T,).

and preliminary concepts are given in Section 2; the concrete
domain for the analysis is presented in Section 3; Section 4
introduces the use of Boolean functions for tracking finite-
tree dependencies, whereas Section 5 illustrates the interac-
tion between groundness and finite-tree dependencies. The
paper is concluded in Section 6 with some final remarks and
observations.

2. PRELIMINARIES

2.1 Infinite Terms and Substitutions
For a set S, ℘(S) is the powerset of S, whereas ℘f(S) is

the set of all the finite subsets of S. Let Sig denote a pos-
sibly infinite set of function symbols, ranked over the set
of natural numbers. Let Vars denote a denumerable set of
variable symbols, disjoint from Sig. Then Terms denotes
the free algebra of all (possibly infinite) terms in the sig-
nature Sig having variables in Vars. Thus a term can be
seen as an ordered labeled tree, possibly having some in-
finite paths and possibly containing variables: every inner
node is labeled with a function symbol in Sig with a rank
matching the number of the node’s immediate descendants,
whereas every leaf is labeled by either a variable symbol in
Vars or a function symbol in Sig having rank 0 (a constant).
It is assumed that Sig contains at least two distinct function
symbols, one having rank 0 (so that there exist finite terms
not containing variables) and one with rank greater than 0
(so that there exist infinite terms).

A path p ∈
(
N \ {0}

)?
is any finite sequence of (non-zero)

natural numbers. The empty path is denoted by ε, whereas
i.p denotes the path obtained by concatenating the sequence
formed by the natural number i 6= 0 with the sequence of
the path p. Given a path p and a (possibly infinite) term
t ∈ Terms, we denote by t[p] the subterm of t found by
following path p. Formally,

t[p] =

{
t if p = ε;

ti[q] if p = i . q ∧ (1 ≤ i ≤ n) ∧ t = f(t1, . . . , tn).

Note that t[p] is only defined for those paths p actually cor-
responding to subterms of t.

If t ∈ Terms then vars(t) denotes the set of variables oc-
curring in t. If vars(t) = ∅ then t is said to be ground ; t is a
finite term (or Herbrand term) if it contains a finite number
of occurrences of function symbols. The sets of all ground
and finite terms are denoted by GTerms and HTerms, re-
spectively.

The function size : HTerms → N, for each t ∈ HTerms, is
defined by

size(t)
def
=

{
1, if t ∈ Vars;

1 +
∑n
i=1 size(ti), if t = f(t1, . . . , tn).

A substitution is a total function σ : Vars→ HTerms that
is the identity almost everywhere; in other words, the do-
main of σ, defined as

dom(σ)
def
=
{
x ∈ Vars

∣∣ σ(x) 6= x
}
,

is a finite set of variables.
Given a substitution σ : Vars → HTerms, the symbol ‘σ’

also denotes the function σ : HTerms → HTerms defined as

3

follows, for each term t ∈ HTerms:

σ(t)
def
=

t, if t is a constant symbol;

σ(t), if t ∈ Vars;

f
(
σ(t1), . . . , σ(tn)

)
, if t = f(t1, . . . , tn).

If t ∈ HTerms, we write tσ to denote σ(t).
If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a

binding. The set of all bindings is denoted by Bind. Substi-
tutions are conveniently denoted by the set of their bindings.
Thus a substitution σ is identified with the (finite) set{

x 7→ σ(x)
∣∣ x ∈ dom(σ)

}
.

We denote by vars(σ) the set of all variables occurring in
the bindings of σ.

A substitution is said to be circular if, for n > 1, it has
the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in
rational solved form (RSF) if it has no circular subset. The
set of all substitutions in rational solved form is denoted by
RSubst .

The composition of substitutions is defined in the usual
way. Thus τ ◦ σ is the substitution such that, for all terms
t ∈ HTerms,

(τ ◦ σ)(t) = τ
(
σ(t)

)
and has the formulation

τ ◦ σ =
{
x 7→ xστ

∣∣ x ∈ dom(σ), x 6= xστ
}

∪
{
x 7→ xτ

∣∣ x ∈ dom(τ) \ dom(σ)
}
.

As usual, σ0 denotes the identity function (i.e., the empty
substitution) and, when i ∈ N with i > 0, σi denotes the
substitution (σ ◦ σi−1).

For each σ ∈ RSubst , s ∈ HTerms, the sequence of finite
terms

σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted by σ∞(s) [27,
31]. Therefore, the function rt : HTerms×RSubst → Terms
such that

rt(s, σ)
def
= σ∞(s)

is well defined. In general, this function is not a substitution:
while having a finite domain, its “bindings” x 7→ t can map
a domain variable x into a term t ∈ Terms \HTerms.

Some of the proofs in the following sections rely on the
following properties of the ‘rt’ function.

Proposition 1. Let σ ∈ RSubst and t ∈ HTerms. Then

vars
(
rt(t, σ)

)
∩ dom(σ) = ∅, (1a)

rt(t, σ) ∈ HTerms ⇐⇒ ∃i ∈ N . rt(t, σ) = tσi. (1b)

Proof.

(1a) Let x ∈ dom(σ) and, towards a contradiction, sup-
pose x ∈ vars

(
rt(s, σ)

)
. Thus, there exists a finite path

p such that x = rt(s, σ)[p]. Thus, by definition of ‘rt’,
there exists an index i ∈ N such that x = σi(s)[p]. Since
x ∈ dom(σ), then x 6= xσ, so that x 6= σi+1(s)[p]. Also note
that, being σ ∈ RSubst , σ contains no circular subsets, so

that we have x 6= σj(s)[p], for each index j > i. This implies
x 6= rt(s, σ)[p], which is a contradiction. Since no such finite
path p can exist, we can conclude x /∈ vars

(
rt(s, σ)

)
.

(1b) Since substitutions map finite terms into finite terms,
a finite number of applications cannot produce an infinite
term, so that the left implication holds. Proving the right
implication by contraposition, suppose that rt(t, σ) 6= tσi,
for all i ∈ N. Then, by definition of ‘rt’, we have tσi 6= tσi+1,
for all i ∈ N. Letting n ∈ N be the number of bindings in
σ ∈ RSubst , for all i ∈ N it holds size(tσi) < size(tσi+n),
because σ has no circular subsets. Thus rt(t, σ) /∈ HTerms,
because there is no finite upper bound to the number of
function symbols occurring in rt(t, σ).

2.2 Equations
An equation is of the form s = t where s, t ∈ HTerms.

Eqs denotes the set of all equations. A substitution σ may
be regarded as a finite set of equations, that is, as the set
{x = t | x 7→ t ∈ σ }. We say that a set of equations e is
in rational solved form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst .

In the rest of the paper, we will often write a substitution
σ ∈ RSubst to denote a set of equations in rational solved
form (and vice versa).

Some logic-based languages, such as Prolog II, SICStus
and Oz, are based on RT , the theory of rational trees [10,
11]. This is a syntactic equality theory (i.e., a theory where
the function symbols are uninterpreted), augmented with a
uniqueness axiom for each substitution in rational solved
form. Informally speaking these axioms state that, if a
ground rational tree is assigned to each of the non-domain
variables of a substitution, then this substitution uniquely
defines a ground rational tree for each of its domain vari-
ables. Thus, any set of equations in rational solved form is,
by definition, satisfiable in RT .4

Given a set of equations e ∈ ℘f(Eqs) that is satisfiable in
RT , a substitution σ ∈ RSubst is called a solution for e in
RT if RT ` ∀(σ → e). If in addition vars(σ) ⊆ vars(e),
then σ is said to be a relevant solution for e. Finally, σ is
a most general solution for e in RT if RT ` ∀(σ ↔ e). In
this paper, the set of all the relevant most general solution
for e in RT will be denoted by mgs(e).

Definition 1. (↓(·) : RSubst → ℘(RSubst).) The function
↓(·) : RSubst → ℘(RSubst) is defined, for each σ ∈ RSubst ,
by

↓σ def
=
{
τ ∈ RSubst

∣∣ ∃σ′ ∈ RSubst . τ ∈ mgs(σ ∪ σ′)
}
.

The function ↓(·) corresponds to the closure by entailment
in the equality theory RT .

Proposition 2. Let σ ∈ RSubst. Then

↓σ =
{
τ ∈ RSubst

∣∣ RT ` ∀(τ → σ)
}
.

Proof. The result follows by the following chain of equiv-
alences, where the left implication in the last step is obtained
by taking σ′ = τ .

4Note that being in rational solved form is a very weak prop-
erty. Indeed, unification algorithms returning a set of equa-
tions in rational solved form are allowed to be much more
“lazy” than one would usually expect. We refer the inter-
ested reader to [29, 30, 32] for details on the subject.

4

τ ∈ ↓σ ⇐⇒ ∃σ′ ∈ RSubst . τ ∈ mgs(σ ∪ σ′)
⇐⇒ ∃σ′ ∈ RSubst . RT ` ∀

(
τ ↔ (σ ∪ σ′)

)
⇐⇒ ∃σ′ ∈ RSubst .

RT `
(
∀(τ → σ) ∧ ∀(τ → σ′)

∧ ∀
(
(σ ∪ σ′)→ τ

))
⇐⇒ RT ` ∀(τ → σ).

Notice that, since entailment is a transitive relation, we
have, for all σ, τ, υ ∈ RSubst ,

υ ∈ ↓ τ ∧ τ ∈ ↓σ =⇒ υ ∈ ↓σ.

The following results are needed in the sequel: Lemma 3
is a simple generalization of [26, Lemma 1]; Lemma 4 has
been proved in [26]; Lemma 5 has been proved in [3]; finally,
Lemma 6, which is new, relates the function ‘rt’ and the
concept of equality under the theory RT .

Lemma 3. Let σ ∈ RSubst and {x 7→ t} ∈ RSubst be both
satisfiable in the equality theory T , where x /∈ dom(σ) and

vars(t) ∩ dom(σ) = ∅. Let also σ′
def
= σ ∪ {x 7→ t}. Then

σ′ ∈ RSubst and σ′ is satisfiable in T .

Proof. Note that σ′ is a substitution, since σ ∈ RSubst
and x /∈ dom(σ). Moreover, as vars(t) ∩ dom(σ) = ∅, σ′

cannot contain circular subsets. Hence, σ′ ∈ RSubst .
Since both σ and {x 7→ t} are satisfiable in T , we have

T ` ∀Vars \ dom(σ) : ∃ dom(σ) . σ,

T ` ∀Vars \ {x} : ∃x . {x = t}.

Hence, since x /∈ dom(σ),

T ` ∀Vars \
(
dom(σ) ∪ {x}

)
:

∃
(
dom(σ) ∪ {x}

)
. σ ∪ {x = t}.

Thus σ′ is satisfiable in T .

Lemma 4. Let T be an equality theory, σ ∈ RSubst and
t ∈ HTerms. Then

T ` ∀
(
σ → (t = tσ)

)
.

Lemma 5. Let s ∈ GTerms ∩ HTerms and t ∈ HTerms,
where size(t) > size(s). Let also T be any syntactic equality
theory. Then T ` ∀(s 6= t).

Lemma 6. Let σ ∈ RSubst and s, t ∈ HTerms, where
RT ` ∀

(
σ → (s = t)

)
. Then rt(s, σ) = rt(t, σ).

Proof. Suppose, towards a contradiction, that it holds
rt(s, σ) 6= rt(t, σ). Then, there must exist a finite path p
such that:

a. x = rt(s, σ)[p] ∈ Vars\dom(σ), y = rt(t, σ)[p] ∈ Vars\
dom(σ) and x 6= y; or

b. x = rt(s, σ)[p] ∈ Vars \ dom(σ) and r = rt(t, σ)[p] /∈
Vars or, symmetrically, r = rt(s, σ)[p] /∈ Vars and x =
rt(t, σ)[p] ∈ Vars \ dom(σ); or

c. r1 = rt(s, σ)[p] /∈ Vars, r2 = rt(t, σ)[p] /∈ Vars and r1

and r2 have different principal functors.

Then, by definition of ‘rt’, there must exists an index i ∈ N
such that one of these holds:

1. x = sσi[p] ∈ Vars\dom(σ), y = tσi[p] ∈ Vars\dom(σ)
and x 6= y; or

2. x = sσi[p] ∈ Vars \ dom(σ) and r = tσi[p] /∈ Vars
or, symmetrically, r = sσi[p] /∈ Vars and x = tσi[p] ∈
Vars \ dom(σ); or

3. r1 = sσi[p] /∈ Vars and r2 = tσi[p] /∈ Vars have differ-
ent principal functors.

By Lemma 4, we have RT ` ∀
(
σ → (sσi = tσi)

)
; from

this, since RT is a syntactic equality theory, we obtain that

RT ` ∀
(
σ → (sσi[p] = tσi[p])

)
. (2)

We now prove that each case leads to a contradiction.
Consider case 1. Let r1, r2 ∈ GTerms ∩HTerms be terms

having different principal functors, so thatRT ` ∀(r1 6= r2).
By Lemma 3, we have σ′ = σ ∪ {x 7→ r1, y 7→ r2} ∈ RSubst
is satisfiable and RT ` ∀(σ′ → σ), RT ` ∀

(
σ′ → (x = r1)

)
,

RT ` ∀
(
σ′ → (y = r2)

)
. This is a contradiction, since,

by (2), we have RT ` ∀
(
σ → (x = y)

)
.

Consider case 2. Without loss of generality, consider the
first subcase, where x = sσi and r = tσi[p] /∈ Vars. Let
r′ ∈ GTerms ∩HTerms be such that r and r′ have different
principal functors, so that RT ` ∀(r 6= r′). By Lemma 3,
σ′ = σ ∪ {x 7→ r′} ∈ RSubst is satisfiable; we also have
RT ` ∀(σ′ → σ) and RT ` ∀

(
σ′ → (x = r′)

)
. This is a

contradiction, since, by (2), RT ` ∀
(
σ → (x = r)

)
.

Finally, consider case 3. In this case RT ` ∀(r1 6= r2).
This immediately leads to a contradiction, since, by (2),
RT ` ∀

(
σ → (r1 = r2)

)
.

2.3 Boolean Functions
We now introduce Boolean functions based on the notion

of Boolean valuation. An important class of Boolean func-
tions that has been used for data-flow analysis of logic-based
languages is Pos [1], introduced in [33] under the name Prop
and further refined and studied in [13, 34].

Definition 2. (Boolean valuations.) Consider any fi-

nite set of variables VI ∈ ℘f(Vars) and let B
def
= {0, 1}. The

set of Boolean valuations over VI is given by

Bval
def
= VI→ B.

For each a ∈ Bval, each x ∈ VI, and each c ∈ B the valuation
a[c/x] ∈ Bval is given, for each y ∈ VI, by

a[c/x](y)
def
=

{
c, if x = y;

a(y), otherwise.

For X = {x1, . . . , xk} ⊆ VI, we write a[c/X] as a shorthand
for a[c/x1] · · · [c/xk]. The distinguished elements 0,1 ∈ Bval
are given by

0
def
= λx ∈ VI . 0,

1
def
= λx ∈ VI . 1.

5

Definition 3. (Boolean functions.) The set of Boolean
functions over VI is

Bfun
def
= Bval→ B.

Bfun is partially ordered by the relation |= where, for each
φ, ψ ∈ Bfun,

φ |= ψ
def⇐⇒

(
∀a ∈ Bval : φ(a) = 1 =⇒ ψ(a) = 1

)
.

The distinguished elements >,⊥ ∈ Bfun are the functions
defined, respectively, by

⊥ def
= λa ∈ Bval . 0,

> def
= λa ∈ Bval . 1.

For φ ∈ Bfun, x ∈ VI, and c ∈ B, the Boolean function
φ[c/x] ∈ Bfun is given, for each a ∈ Bval, by

φ[c/x](a)
def
= φ

(
a[c/x]

)
.

When X ⊆ VI, φ[c/X] is defined in the expected way. If
φ ∈ Bfun and x, y ∈ VI the function φ[y/x] ∈ Bfun is given,
for each a ∈ Bval, by

φ[y/x](a)
def
= φ

(
a
[
a(y)/x

])
.

Boolean functions are constructed from the elementary func-
tions corresponding to variables and by means of the usual
logical connectives. Thus x denotes the Boolean function φ
such that, for each a ∈ Bval, φ(a) = 1 if and only if a(x) = 1.
For φ1, φ2 ∈ Bfun, we write φ1 ∧ φ2 to denote the function
φ such that, for each a ∈ Bval, φ(a) = 1 if and only if both
φ1(a) = 1 and φ2(a) = 1. A variable is restricted away using
Schröder’s elimination principle [37]:

∃x . φ def
= φ[1/x] ∨ φ[0/x].

Existential quantification is both monotonic and extensive
on Bfun. The other Boolean connectives and quantifiers are
handled similarly.

Pos ⊂ Bfun consists precisely of those functions assuming
the true value under the everything-is-true assignment, i.e.,

Pos
def
=
{
φ ∈ Bfun

∣∣ φ(1) = 1
}
.

In what follows we will need the notion of entailed and
disentailed variables of a Boolean function.

Definition 4. (True and false variables.) For a func-
tion φ ∈ Bfun, the set of variables necessarily true for φ
and the set of variables necessarily false for φ are given,
respectively, by

true(φ)
def
=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 1
}
,

false(φ)
def
=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 0
}
.

3. THE CONCRETE DOMAIN
Throughout the paper, we assume a knowledge of the ba-

sic concepts of abstract interpretation theory [16, 19].
For the purpose of this paper, we assume a concrete do-

main consisting of pairs of the form (Σ, V), where V is a
finite set of variables of interest and Σ is a (possibly infi-
nite) set of substitutions in rational solved form.

Definition 5. (The concrete domain.) Let

D[def
= ℘(RSubst)× ℘f(Vars).

If (Σ, V) ∈ D[, then (Σ, V) represents the (possibly infinite)
set of first-order formulas{

∃∆ . σ
∣∣ σ ∈ Σ, ∆ = vars(σ) \ V

}
where σ is interpreted as the logical conjunction of the equa-
tions corresponding to its bindings. The operation of pro-
jecting x ∈ Vars away from (Σ, V) ∈ D[is defined as follows:

∃∃x . (Σ, V)

def
=

σ′ ∈ RSubst

∣∣∣∣∣∣∣
σ ∈ Σ,

V = Vars \ V,
RT ` ∀

(
∃V . (σ′ ↔ ∃x . σ)

)
.

Concrete domains for constraint languages would be simi-
lar. If the analyzed language allows the use of constraints on
various domains to restrict the values of the variable leaves
of rational trees, the corresponding concrete domain would
have one or more extra components to account for the con-
straints (see [4] for an example).

The concrete element({
{x 7→ f(y)}

}
, {x, y}

)
expresses a dependency between x and y. In contrast,({

{x 7→ f(y)}
}
, {x}

)
only constrains x. The same concept can be expressed by
saying that in the first case the variable name ‘y’ matters,
but it does not in the second case. Thus, the set of variables
of interest is crucial for defining the meaning of the concrete
and abstract descriptions. Despite this, always specifying
the set of variables of interest would significantly clutter
the presentation. Moreover, most of the needed functions
on concrete and abstract descriptions, preserve the set of
variables of interest. For these reasons, we assume the exis-
tence of a set VI ∈ ℘f(Vars) that contains, at each stage of
the analysis, the current variables of interest.5 As a conse-
quence, when the context makes it clear that Σ ∈ ℘(RSubst),

we will write Σ ∈ D[as a shorthand for (Σ,VI) ∈ D[.

3.1 Operators on Substitutions in RSF
There are cases when an analysis tries to capture prop-

erties of the particular substitutions computed by a specific
rational unification algorithm. For instance, this is the case
for analyses tracking structure sharing for the purpose of
compile-time garbage collection, or providing upper bounds
to the amount of memory needed to perform a given com-
putation. More often the interest is on properties of the
rational trees themselves. In these cases it is possible to de-
fine abstraction and concretization functions that are inde-
pendent from the finite representations actually computed.
Moreover, it is important that these functions precisely cap-
ture the properties under investigation, so as to avoid any
unnecessary precision loss.

5This parallels what happens in the efficient implementa-
tion of data-flow analyzers. In fact, almost all the abstract
domains currently in use do not need to represent explic-
itly the set of variables of interest. In contrast, this set is
maintained externally and in a unique copy, typically by the
fixpoint computation engine.

6

Pursuing this goal requires the ability to observe proper-
ties of (infinite) rational trees while just dealing with one
of their finite representations. This is not always an easy
task, since even simple properties can be “hidden” when
using non-idempotent substitutions. For instance, when
rt(x, σ) ∈ GTerms \ HTerms is an infinite and ground ra-
tional tree, all of its finite representations in RSubst will
map the variable x into a finite term that is not ground.

These are the motivations behind the introduction of two
computable operators on substitutions that will later be
used to define the concretization functions for the considered
abstract domains. First, the groundness operator ‘gvars’
captures the set of variables that are mapped to ground ra-
tional trees by the ‘rt’ function. We define it by means of
the occurrence operator ‘occ’ introduced in [26].

Definition 6. (Occurrence functions.) For each n ∈ N,
the occurrence function occn : RSubst ×Vars→ ℘f(Vars) is
defined, for each σ ∈ RSubst and each v ∈ Vars, by

occ0(σ, v)
def
= {v} \ dom(σ)

and, for n > 0, by

occn(σ, v)
def
=
{
y ∈ Vars

∣∣ vars(yσ) ∩ occn−1(σ, v) 6= ∅

}
.

For each σ ∈ RSubst , v ∈ Vars and each n ≥ 0, we have
occn(σ, v) ⊆ vars(σ)∪{v}, where vars(σ) is a finite set. Also,
occn(σ, v) ⊆ occn+1(σ, v). Thus the following operator is
finitely computable.

Definition 7. (Occurrence operator.) The occurrence
operator occ : RSubst × Vars → ℘f(Vars) is given, for each
substitution σ ∈ RSubst and v ∈ Vars, by

occ(σ, v)
def
= occ`(σ, v)

where ` ∈ N is such that occ`(σ, v) = occn(σ, v) for all n ≥ `.

Definition 8. (Groundness operator.) The groundness
operator gvars : RSubst → ℘f(Vars) is given, for each sub-
stitution σ ∈ RSubst , by

gvars(σ)
def
=
{
y ∈ dom(σ)

∣∣ ∀v ∈ vars(σ) : y /∈ occ(σ, v)
}
.

The finiteness operator ‘hvars’, introduced in [3], captures
the set of variables that ‘rt’ maps to finite terms.

Definition 9. (Finiteness functions.) For each n ∈ N,
the finiteness function hvarsn : RSubst → ℘(Vars) is de-
fined, for each σ ∈ RSubst , by

hvars0(σ)
def
= Vars \ dom(σ)

and, for n > 0, by

hvarsn(σ)
def
= hvarsn−1(σ)

∪
{
y ∈ dom(σ)

∣∣ vars(yσ) ⊆ hvarsn−1(σ)
}
.

Observe that, for each σ ∈ RSubst and each n ∈ N with
n > 0, we have hvarsn(σ) ⊆ hvarsn+1(σ). Note also that
Vars \ hvarsn(σ) ⊆ dom(σ) is a finite set. By these two
properties, the following fixpoint computation is well defined
and finitely computable.

Definition 10. (Finiteness operator.) The finiteness
operator hvars : RSubst → ℘(Vars) is given, for each substi-
tution σ ∈ RSubst , by

hvars(σ)
def
= hvars`(σ)

where `
def
= `(σ) ∈ N is such that hvars`(σ) = hvarsn(σ) for

each n ≥ `.

The following proposition summarizes two results proved
in [26] and [3], and shows that the functions ‘gvars’ and
‘hvars’ precisely capture the intended properties.

Proposition 7. Let σ ∈ RSubst and x ∈ Vars. Then

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (7a)

y ∈ hvars(σ) ⇐⇒ rt(y, σ) ∈ HTerms. (7b)

Corollary 8. Let σ ∈ RSubst and t ∈ HTerms. Then

vars(t) ⊆ gvars(σ) ⇐⇒ rt(t, σ) ∈ GTerms, (8a)

vars(t) ⊆ hvars(σ) ⇐⇒ rt(t, σ) ∈ HTerms. (8b)

Example 1. Let

σ =
{
x 7→ f(y, z), y 7→ g(z, x), z 7→ f(a)

}
,

τ =
{
v 7→ g(z, w), x 7→ f(y), y 7→ g(w), z 7→ f(v)

}
.

Then

gvars(σ) ∩ vars(σ) = {x, y, z},
hvars(τ) ∩ vars(τ) = {w, x, y}.

The following proposition states how ‘gvars’ and ‘hvars’
behave with respect to the further instantiation of variables.

Proposition 9. Let σ, τ ∈ RSubst, where τ ∈ ↓σ. Then

hvars(σ) ⊇ hvars(τ), (9a)

gvars(σ) ∩ hvars(σ) ⊆ gvars(τ) ∩ hvars(τ). (9b)

Proof.

(9a). Suppose x ∈ hvars(τ)\hvars(σ). Then, by case (7b)
of Proposition 7, rt(x, τ) ∈ HTerms. By Proposition 1, there
exists i ∈ N such that rt(x, τ) = xτ i and also vars(xτ i) ∩
dom(τ) = ∅. Let t ∈ GTerms ∩HTerms and

υ
def
=
{
y 7→ t

∣∣ y ∈ vars(xτ i)
}
.

Then, by Lemma 3, τ ′
def
= τ ∪ υ ∈ RSubst is satisfiable.

Moreover xτ iτ ′ ∈ GTerms ∩ HTerms. Let n
def
= size(xτ iτ ′).

Note that, since rt(x, σ) /∈ HTerms, there exists j ∈ N such
that size(xσj) > n. Therefore, by Lemma 5,

RT ` ∀(xτ iτ ′ 6= xσj). (6)

Also, by Lemma 4, RT ` ∀
(
σ → (x = xσj)

)
and RT `

∀
(
τ → (x = xτ i)

)
. By definition, τ ′ ∈ ↓ τ and, by hypoth-

esis, τ ∈ ↓σ, so that τ ′ ∈ ↓σ. Thus, by Proposition 2 and
transitivity, we have RT ` ∀

(
τ ′ → (xτ i = xσj)

)
. Applying

Lemma 4, we obtain RT ` ∀
(
τ ′ → (xτ iτ ′ = xσj)

)
, which

contradicts (6).
(9b). Suppose x ∈ hvars(σ) ∩ gvars(σ). Then, by Propo-

sition 7, rt(x, σ) ∈ GTerms ∩ HTerms. Thus, by case (1b)
of Proposition 1, there exists i ∈ N such that rt(x, σ) = xσi

and also vars(xσi) = ∅. Thus rt(xσi, τ) = xσi. Since,

7

by hypothesis, τ ∈ ↓σ, by Lemma 4 and transitivity we
obtain RT ` ∀

(
τ → (x = xσi)

)
. Thus, by Lemma 6,

rt(x, τ) = rt(xσi, τ) = xσi. Therefore, by Proposition 7,
x ∈ gvars(τ) ∩ hvars(τ).

The next result shows how ‘hvars’ behaves with respect
to projecting away some of its variables.

Proposition 10. Let σ, τ ∈ RSubst and let W ⊆ Vars,
where RT ` ∀(∃W . σ ↔ ∃W . τ). Then

hvars(σ) \W = hvars(τ) \W.

Proof. Consider a variable z ∈ hvars(σ)\W . We assume
that z /∈ hvars(τ) to obtain a contradiction.

By case (7b) of Proposition 7, rt(z, σ) ∈ HTerms. By
Proposition 1, there exists i ∈ N such that rt(z, σ) = zσi

and vars(zσi) ∩ dom(σ) = ∅.
Take t ∈ GTerms ∩HTerms and let

υ
def
=
{
y 7→ t

∣∣ y ∈ vars(zσi)
}
.

By Lemma 3, σ′
def
= σ ∪ υ ∈ ↓σ is satisfiable. Thus, by

Proposition 2, we have

RT ` ∀(σ′ → σ). (7)

By the definition of σ′, zσiσ′ ∈ GTerms ∩ HTerms. As
z /∈ hvars(τ), there exists j ∈ N such that size(zτ j) >
size(zσiσ′). Thus, by Lemma 5,

RT ` ∀(zσiσ′ 6= zτ j). (8)

By applying Lemma 4, we have RT ` ∀
(
σ → (z = zσi)

)
and RT ` ∀

(
σ′ → (zσi = zσiσ′)

)
. Thus, by (7),

RT ` ∀
(
σ′ → (z = zσiσ′)

)
. (9)

Using (7), the hypothesis and the logically true statement
∀(σ → ∃W . σ), we obtain RT ` ∀(σ′ → ∃W . τ). By
Lemma 4, we have RT ` ∀

(
τ → (z = zτ j)

)
; thus, as RT

is a first-order theory, RT ` ∀
(
∃W . τ → ∃W . (z = zτ j)

)
.

Therefore, by transitivity, we obtain

RT ` ∀
(
σ′ → ∃W . (z = zτ j)

)
. (10)

Observe now that vars(z = zσiσ′) = {z} and, as a con-
sequence, we have vars(z = zσiσ′) ∩ W = ∅. Therefore,
by (9) and (10), we obtain

RT ` ∀
(
σ′ → (z = zσiσ′ ∧ ∃W . z = zτ j)

)
⇐⇒ RT ` ∀

(
σ′ → ∃W . (z = zσiσ′ ∧ z = zτ j)

)
⇐⇒ RT ` ∀

(
σ′ → ∃W . (zσiσ′ = zτ j)

)
.

But this contradicts (8), so that the assumption was false
and z ∈ hvars(τ). As the choice of z was arbitrary, we have

hvars(σ) \W ⊆ hvars(τ) \W.

The reverse inclusion follows by symmetry.

4. FINITE-TREE DEPENDENCIES
Any finite-tree domain must keep track of those variables

that are definitely bound to finite terms, since this is the
final information delivered by the analysis. In [3] we have
introduced the composite abstract domain H×P , where the
set of such variables is explicitly represented in the finiteness
component H.

Definition 11. (The finiteness component H.) The

set H
def
= ℘(VI), partially ordered by reverse subset in-

clusion, is called finiteness component. The concretization
function γH : H → ℘(RSubst) is given, for each h ∈ H, by

γH(h)
def
=
{
σ ∈ RSubst

∣∣ hvars(σ) ⊇ h
}
.

As proven in [3], equivalent substitutions in rational solved
form have the same finiteness abstraction.

Proposition 11. Let σ, τ ∈ RSubst, where σ ∈ γH(h)
and RT ` ∀(σ ↔ τ). Then τ ∈ γH(h).

As explained before, the precision of the finite-tree analy-
sis of [3] is highly dependent on the precision of the generic
component P . The information provided by P on ground-
ness, freeness, linearity, and sharing of variables is exploited,
in the combination H × P , to circumscribe as much as pos-
sible the creation and propagation of cyclic terms. However,
finite-tree analysis can also benefit from other kinds of rela-
tional information. In particular, we now show how finite-
tree dependencies allow to obtain a positive propagation of
finiteness information.

Let us consider the finite terms t1 = f(x), t2 = g(y), and
t3 = h(x, y): it is clear that, for each assignment of rational
terms to x and y, t3 is finite if and only if t1 and t2 are so.
We will capture this by the Boolean formula t3 ↔ (t1∧ t2).6

The reasoning is based on the following facts:

1. t1, t2, and t3 are finite terms, so that the finiteness of
their instances depends only on the finiteness of the
terms that take the place of x and y.

2. vars(t3) ⊇ vars(t1) ∪ vars(t2), that is, t3 covers both
t1 and t2; this means that, if an assignment to the
variables of t3 produces a finite instance of t3, that very
assignment will necessarily result in finite instances of
t1 and t2. Conversely, an assignment producing non-
finite instances of t1 or t2 will forcibly result in a non-
finite instance of t3.

3. Similarly, t1 and t2, taken together, cover t3.

The important point to notice is that the indicated depen-
dency will keep holding for any further simultaneous instan-
tiation of t1, t2, and t3. In other words, such dependencies
are preserved by forward computations (which proceed by
consistently instantiating program variables).

Consider the abstract binding x 7→ t where t is a finite
term such that vars(t) = {y1, . . . , yn}. After this binding
has been successfully performed, the destinies of x and t
concerning term-finiteness are tied together: forever. This
tie can be described by the dependency formula

x↔ (y1 ∧ · · · ∧ yn), (11)

meaning that x will be bound to a finite term if and only if
yi is bound to a finite term, for each i = 1, . . . , n. While the
dependency expressed by (11) is a correct description of any
computation state following the application of the binding
x 7→ t, it is not as precise as it could be. Suppose that x
and yk are indeed the same variable. Then (11) is logically
equivalent to

x→ (y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ yn). (12)

6The introduction of such Boolean formulas, called depen-
dency formulas, is originally due to P. W. Dart [20].

8

Correct: whenever x is bound to a finite term, all the other
variables will be bound to finite terms. The point is that
x has just been bound to a non-finite term, irrevocably: no
forward computation can change this. Thus, the implication
(12) holds vacuously. The precise and correct description for
the state of affairs caused by the cyclic binding is, instead,
the negated atom ¬x, whose intuitive reading is “x is not
(and never will be) finite.”

We are building an abstract domain for finite-tree depen-
dencies where we are making the deliberate choice of includ-
ing only information that cannot be withdrawn by forward
computations. The reason for this choice is that we want
the concrete constraint accumulation process to be paral-
leled, at the abstract level, by another constraint accumula-
tion process: logical conjunction of Boolean formulas. For
this reason, it is important to distinguish between perma-
nent and contingent information. Permanent information,
once established for a program point p, maintains its validity
in all program points that follow p in any forward compu-
tation. Contingent information, instead, does not carry its
validity beyond the point where it is established.

An example of contingent information is given by the h
component of H × P : having x ∈ h, in the description of
some program point, means that x is definitely bound to a
finite term at that program point ; nothing is claimed about
the finiteness of x at other program points and, in fact,
unless x is ground, x can still be bound to a non-finite term.
However, if at some program point variable x is both finite
and ground, then x is permanently finite. In this case we
will make sure our Boolean dependency formula entails the
positive atom x.

At this stage, we already know something about the ab-
stract domain we are designing. In particular, we have pos-
itive and negated atoms, the requirement of describing pro-
gram predicates of any arity implies that arbitrary conjunc-
tions of these atomic formulas must be allowed and, finally,
it is not difficult to observe that the merge-over-all-paths op-
erations [16] will be logical disjunction, so that the domain
will have to be closed under this operation. This means
that the carrier of our domain must be able to express any
Boolean function: Bfun is the carrier.

Definition 12. (γF : Bfun → ℘(RSubst).) The function
hval : RSubst → Bval is defined, for each σ ∈ RSubst and
each x ∈ VI, by

hval(σ)(x) = 1
def⇐⇒ x ∈ hvars(σ).

The concretization function γF : Bfun → ℘(RSubst) is given,
for each φ ∈ Bfun, by

γF (φ)
def
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ
(
hval(τ)

)
= 1

}
.

Finite-tree dependencies only capture information that can-
not be withdrawn by any forward computation.

Proposition 12. Let σ, τ ∈ RSubst and φ ∈ Bfun, where
σ ∈ γF (φ) and τ ∈ ↓σ. Then τ ∈ γF (φ).

Proof. By the hypothesis, τ ∈ ↓σ, so that, for each
υ ∈ ↓ τ , υ ∈ ↓σ. Therefore, as σ ∈ γF (φ), it follows from
Definition 12 that, for all υ ∈ ↓ τ , φ

(
hval(υ)

)
= 1 and hence

τ ∈ γF (φ).

As a consequence, every element of the codomain of γF con-
tains equivalence classes with respect to the RT theory.

Corollary 13. Let σ, τ ∈ RSubst, where σ ∈ γF (φ) and
RT ` ∀(σ ↔ τ). Then τ ∈ γF (φ).

By the next lemma, the γF function is meet-preserving
and hence monotonic. This result also implies that the im-
age of Bfun under γF is Moore-closed. Hence [17], γF has
an adjoint (abstraction) function that is given by

αF (Σ)
def
=
∧{

φ ∈ Bfun
∣∣ Σ ⊆ γF (φ)

}
.

Lemma 14. Let φ1, φ2 ∈ Bfun. Then

γF (φ1 ∧ φ2) = γF (φ1) ∩ γF (φ2).

Proof.

γF (φ1 ∧ φ2)

=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : (φ1 ∧ φ2)
(
hval(τ)

)
= 1

}
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ∀i ∈ {1, 2} : φi
(
hval(τ)

)
= 1

}
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ1

(
hval(τ)

)
= 1

}
∩
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ2

(
hval(τ)

)
= 1

}
= γF (φ1) ∩ γF (φ2).

The next theorem considers most of the operators needed
to compute the concrete semantics of a logic program, show-
ing how they can be correctly approximated on the abstract
domain Bfun.

Theorem 15. Let Σ,Σ1,Σ2 ∈ ℘(RSubst) and φ, φ1, φ2 ∈
Bfun, where γF (φ) ⊇ Σ, γF (φ1) ⊇ Σ1, and γF (φ2) ⊇ Σ2.
Let also (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI. Then
the following hold:

γF
(
x↔

∧
vars(t)

)
⊇
{
{x 7→ t}

}
; (15a)

γF (¬x) ⊇
{
{x 7→ t}

}
, if x ∈ vars(t); (15b)

γF (x) ⊇

{
σ ∈ RSubst

∣∣∣∣∣x ∈ gvars(σ)

∩ hvars(σ)

}
; (15c)

γF (φ1 ∧ φ2) ⊇
{

mgs(σ1 ∪ σ2)
∣∣ σ1 ∈ Σ1, σ2 ∈ Σ2

}
; (15d)

γF (φ1 ∨ φ2) ⊇ Σ1 ∪ Σ2; (15e)

γF (∃x . φ) ⊇ ∃∃x . Σ. (15f)

Proof. Assuming the hypothesis of the theorem, we will
prove each relation separately.

(15a). Let σ = {x 7→ t}. Suppose τ ∈ ↓σ. Then, by
Proposition 2, RT ` ∀

(
τ → σ

)
. It follows from Lemma 6

that rt(x, τ) = rt(t, τ) and thus, by case (8b) of Corollary 8,
x ∈ hvars(τ) if and only if vars(t) ⊆ hvars(τ). This is equiv-
alent to

(
x ↔

∧
vars(t)

)(
0
[
1/hvars(τ)

])
= 1 and, by Def-

inition 12, to
(
x ↔

∧
vars(t)

)(
hval(τ)

)
= 1. As this holds

for all τ ∈ ↓σ, by Definition 12, σ ∈ γF
(
x↔

∧
vars(t)

)
.

(15b). Let σ = {x 7→ t}, where x ∈ vars(t). By Defi-
nition 10, we have x /∈ hvars(σ). By case (9a) of Proposi-
tion 9, for all τ ∈ ↓σ, we have hvars(τ) ⊆ hvars(σ). Thus
x /∈ hvars(τ) and (¬x)

(
hval(τ)

)
= 1. Therefore, by Defini-

tion 12, σ ∈ γF (¬x).

9

(15c). Let σ ∈ RSubst such that x ∈ gvars(σ) ∩ hvars(σ).
By case (9b) of Proposition 9, we have x ∈ hvars(τ) for all
τ ∈ ↓σ. So (x)

(
hval(τ)

)
= 1. Therefore, by Definition 12,

σ ∈ γF (x).
(15d). Let σ1 ∈ Σ1 and σ2 ∈ Σ2. Then, by hypothesis

σ1 ∈ γF (φ1) and σ2 ∈ γF (φ2). Let τ ∈ mgs(σ1 ∪ σ2). By
definition of mgs, RT ` ∀(τ → σ1) and RT ` ∀(τ → σ2).
Thus, by Proposition 2, we have τ ∈ ↓σ1 ∩ ↓σ2. Therefore,
by Proposition 12, τ ∈ γF (φ1) ∩ γF (φ2). The result then
follows by Lemma 14.

(15e).

γF (φ1 ∨ φ2)

=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : (φ1 ∨ φ2)
(
hval(τ)

)
= 1

}
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ∃i ∈ {1, 2} . φi
(
hval(τ)

)
= 1

}
⊇
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ1

(
hval(τ)

)
= 1

}
∪
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ2

(
hval(τ)

)
= 1

}
= γF (φ1) ∪ γF (φ2)

⊇ Σ1 ∪ Σ2.

(15f). Let σ ∈ Σ and let σ′ ∈ ∃∃x . {σ}. We will show
that σ′ ∈ γF (∃x . φ).

Let τ ′ ∈ ↓σ′. Then there exists σ′1 ∈ RSubst such that
RT ` ∀

(
τ ′ ↔ (σ′ ∪ σ′1)

)
. Let σ1 ∈ ∃∃x . {σ′1} and let

W
def
= (Vars \ VI) ∪ {x}. Then, by Definition 5, it follows

RT ` ∀
(
∃W . (σ′ ↔ σ)

)
and RT ` ∀

(
∃W . (σ′1 ↔ σ1)

)
. As

a consequence

RT ` ∀
(
∃W . (σ′ ∪ σ′1)↔ ∃W . (σ ∪ σ1)

)
.

Therefore σ ∪ σ1 is satisfiable so that, for some τ ∈ RSubst ,
RT ` ∀

(
τ ↔ (σ ∪ σ1)

)
. Thus RT ` ∀(∃W . τ ↔ ∃W . τ ′).

By Proposition 10, hvars(τ ′) \W = hvars(τ) \W so that

(hvars(τ ′) ∩VI) ∪ {x} = (hvars(τ) ∩VI) ∪ {x}. (14)

Let c
def
= hval(τ)(x). Then, since τ ∈ ↓σ and, by hypothesis,

σ ∈ γF (φ), we have the following chain of implications:

φ
(
hval(τ)

)
= 1 [by Defn. 12]

φ
(
hval(τ)[c/x]

)
= 1 [by Defn. 2]

φ
(
0
[
1/hvars(τ) ∩VI

]
[c/x]

)
= 1 [by Defn. 12]

φ
(
0
[
1/
(
hvars(τ) ∩VI

)
∪ {x}

]
[c/x]

)
= 1 [by Defn. 2]

φ
(
0
[
1/
(
hvars(τ ′) ∩VI

)
∪ {x}

]
[c/x]

)
= 1 [by (14)]

φ
(
0
[
1/hvars(τ ′) ∩VI

]
[c/x]

)
= 1 [by Defn. 2]

φ
(
hval(τ ′)[c/x]

)
= 1 [by Defn. 12]

φ[c/x]
(
hval(τ ′)

)
= 1. [by Defn. 3]

From this last relation, since φ[c/x] |= ∃x . φ, it follows that
(∃x . φ)

(
hval(τ ′)

)
= 1. As this holds for all τ ′ ∈ ↓σ′, by

Definition 12, σ′ ∈ γF (∃x . φ).

Cases (15a), (15b), and (15d) of Theorem 15 ensure that
the following definition of amguF provides a correct approx-
imation on Bfun of the concrete unification of rational trees.

Definition 13. The function amguF : Bfun×Bind→ Bfun
captures the effects of a binding on a finite-tree dependency
component. Let φ ∈ Bfun and (x 7→ t) ∈ Bind. Then

amguF (φ, x 7→ t)
def
=

{
φ ∧

(
x↔

∧
vars(t)

)
, if x /∈ vars(t);

φ ∧ ¬x, otherwise.

Other semantic operators, such as the consistent renaming of
variables, are very simple and, as usual, their approximation
does not pose any problem.

The next theorem suggests how finite-tree dependencies
can be exploited in order to improve the finiteness informa-
tion encoded in the h component of the domain H × P .

Theorem 16. Let h ∈ H and φ ∈ Bfun. Let also

h′
def
= true

(
φ ∧

∧
h
)
.

Then

γH(h) ∩ γF (φ) = γH(h′) ∩ γF (φ).

Proof. Since h ⊆ h′, by the monotonicity of γH we have
γH(h) ⊇ γH(h′), so that we obtain one of the inclusions:
γH(h) ∩ γF (φ) ⊇ γH(h′) ∩ γF (φ).

In order to establish the other inclusion, we now prove
that σ ∈ γH(h′) assuming σ ∈ γH(h) ∩ γF (φ). To this end,
by Definition 11, it is sufficient to prove that h′ ⊆ hvars(σ).

Let z ∈ h′ and let ψ =
(
φ ∧

∧
h
)
, so that, by hypothesis,

h′ = true(ψ). Therefore, we have ψ |= z. Consider now
ψ′ =

(
φ ∧

∧
hvars(σ)

)
. Since σ ∈ γH(h), by Definition 11

we have h ⊆ hvars(σ), so that ψ′ |= ψ and thus ψ′ |= z.
Since σ ∈ γF (φ), by Definition 12 we have φ

(
hval(σ)

)
= 1.

Also note that
(∧

hvars(σ)
)(

hval(σ)
)

= 1. From these, by
the definition of conjunction for Boolean formulas, we obtain
ψ′
(
hval(σ)

)
= 1. Thus we can observe that

ψ′
(
hval(σ)

)
= 1 ⇐⇒ (ψ′ ∧ z)

(
hval(σ)

)
= 1

=⇒ z ∈ hvars(σ).

Example 2. Consider the following program, where it is
assumed that the only “external” query is ?- r(X, Y).

p(X, Y) :- X = f(Y,).

q(X, Y) :- X = f(, Y).

r(X, Y) :- p(X, Y), q(X, Y), acyclic term(X).

Consider the call at the predicate p/2 in the body of the
clause defining r/2. The predicate p/2 is called with vari-
ables X and Y both unbound. When computing on the ab-
stract domain H × P , we obtain a finiteness description
hp ∈ H such that hp = {x, y}, expressing the fact that
both X and Y are bound to finite terms. When computing
finite-tree dependencies on Bfun, the abstract semantics of
p/2 is expressed by the Boolean formula φp = x → y (Y is
finite if X is so).

Considering now the call to the predicate q/2, we note
that, since variable X is already bound to a non-variable term
sharing with Y, all the finiteness information encoded by H
will be lost (i.e., hq = ∅). So, both X and Y are detected
as possibly cyclic. However, the finite-tree dependency in-
formation is preserved, because φq = (x → y) ∧ (x → y) =
x→ y.

Finally, consider the effect, on the semantics of r/2, of the
abstract evaluation of the built-in acyclic_term(X). On the
H × P domain we can only infer that variable X cannot be
bound to an infinite term, while Y will be still considered as
possibly cyclic, so that hr = {x}. On the domain Bfun we
can just confirm that the finite-tree dependency computed
so far still holds, so that φr = x→ y (no stronger finite-tree

10

dependency can be inferred, since the finiteness of X is only
contingent). Thus, by applying the result of Theorem 16,
we can recover the finiteness of variable y:

h′r = true
(
φr ∧

∧
hr
)

= true
(
(x→ y) ∧ x

)
= {x, y}.

A safe strategy to exploit finite-tree dependencies in the
analysis is to apply the reduction step of Theorem 16 im-
mediately after any application of any abstract operator.
For instance, this is how predicates like acyclic_term/1 are
handled: the variables of the argument are added to the H
component and this is followed by reduction. However, the
approach of always performing reduction is unnecessarily
inefficient since it is possible to identify cases when Theo-
rem 16 cannot lead to a precision improvement.

Theorem 17. Let x ∈ VI, h, h′ ∈ H and φ, φ′ ∈ Bfun,

where h ⊇ true
(
φ∧
∧
h
)

and h′ ⊇ true
(
φ′∧

∧
h′
)

. Let also

h1
def
= h ∩ h′, h2

def
= h ∪ {x},

φ1
def
= φ ∨ φ′, φ2

def
= ∃x . φ.

Then, for i = 1, 2,

hi ⊇ true
(
φi ∧

∧
hi
)
.

Proof. We assume the hypotheses and prove each state-
ment in turn. For the case where i = 1 we have:

h1
def
= h ∩ h′

⊇ true
(
φ ∧

∧
h
)
∩ true

(
φ′ ∧

∧
h′
)

⊇ true
(
φ ∧

∧
(h ∩ h′)

)
∩ true

(
φ′ ∧

∧
(h ∩ h′)

)
= true

(
φ ∧

∧
(h ∩ h′) ∨ φ′ ∧

∧
(h ∩ h′)

)
= true

(
(φ ∨ φ′) ∧

∧
(h ∩ h′)

)
= true

(
φ1 ∧

∧
h1

)
.

For the case where i = 2 we have:

h2
def
= h ∪ {x}

⊇ true
(
φ ∧

∧
h
)
∪ {x}

⊇ true
(

(∃x . φ) ∧
∧
h
)
∪ {x}

= true
(

(∃x . φ) ∧
∧(

h ∪ {x}
))

= true
(
φ2 ∧

∧
h2

)
.

Information encoded in H×P and Bfun is not completely
orthogonal and the following result provides a kind of con-
sistency check.

Theorem 18. Let h ∈ H and φ ∈ Bfun. Then

γH(h) ∩ γF (φ) 6= ∅ =⇒ h ∩ false(φ) = ∅.

Proof. Suppose that there exists σ ∈ γH(h) ∩ γF (φ).
By Definition 12, since σ ∈ ↓σ, we have φ

(
hval(σ)

)
= 1;

therefore, we also have

hvars(σ) ∩ false(φ) = ∅;

by Definition 11, we have h ⊆ hvars(σ), so that we can
conclude h ∩ false(φ) = ∅.

Note however that, provided the abstract operators comput-
ing on the two components are correct, the computed de-
scriptions will always be mutually consistent, unless φ = ⊥.

5. GROUNDNESS DEPENDENCIES
Since information about the groundness of variables is cru-

cial for many applications, it is very natural to consider a
static analysis domain including both a finite-tree compo-
nent and a groundness component. As a matter of fact, any
reasonably precise implementation of the parameter compo-
nent P of the abstract domain specified in [3] will include
some kind of groundness information.7 In this section we
will highlight similarities, differences and connections relat-
ing the domain Bfun for finite-tree dependencies to the well-
known abstract domain Pos for groundness dependencies.
Note however that many of the established results hold also
when considering a combination of Bfun with the ground-
ness domain Def [1].

Definition 14. (γG : Pos → ℘(RSubst).) The auxiliary
function gval : RSubst → Bval is defined as follows, for each
σ ∈ RSubst and each x ∈ VI:

gval(σ)(x) = 1
def⇐⇒ x ∈ gvars(σ).

The concretization function γG : Pos → ℘(RSubst) is given,
for each ψ ∈ Pos, by

γG(ψ)
def
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ψ
(
gval(τ)

)
= 1

}
.

As was the case for finite-tree dependencies, groundness
dependencies only capture permanent information, therefore
preserving the equivalence relation induced by RT . More-
over, the γG function is meet-preserving.

Proposition 19. Let σ, τ ∈ RSubst and ψ ∈ Pos, where
σ ∈ γG(ψ) and τ ∈ ↓σ. Then τ ∈ γG(ψ).

Proof. By the hypothesis, τ ∈ ↓σ, so that, for each
υ ∈ ↓ τ , υ ∈ ↓σ. Therefore, as σ ∈ γG(φ), it follows from
Definition 14 that, for all υ ∈ ↓ τ , ψ

(
gval(υ)

)
= 1 and hence

τ ∈ γG(φ).

Corollary 20. Let σ, τ ∈ RSubst and ψ ∈ Pos, where
σ ∈ γG(ψ) and RT ` ∀(σ ↔ τ). Then τ ∈ γG(ψ).

Lemma 21. Let ψ1, ψ2 ∈ Pos. Then

γG(ψ1 ∧ ψ2) = γG(ψ1) ∩ γG(ψ2).

7One could define P so as it explicitly contains the abstract
domain Pos. Even when this is not the case, it should be
noted that, as soon as the parameter P includes the set-
sharing domain of Jacobs and Langen [28], then it will sub-
sume the groundness information captured by the domain
Def [9, 14].

11

Proof.

γG(ψ1 ∧ ψ2)

=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : (ψ1 ∧ ψ2)
(
gval(τ)

)
= 1

}
=

{
σ ∈ RSubst

∣∣∣∣∣∀τ ∈ ↓σ : ∀i ∈ {1, 2} :

ψi
(
gval(τ)

)
= 1

}
=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ψ1

(
gval(τ)

)
= 1

}
∩
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ψ2

(
gval(τ)

)
= 1

}
= γG(ψ1) ∩ γG(ψ2).

The following is a simple variant of the standard abstract
unification operator defined for groundness analysis over
finite-tree domains: the only difference concerns the case
of cyclic bindings [2].

Definition 15. The function amguG : Pos × Bind → Pos
captures the effects of a binding on a groundness dependency
component. Let ψ ∈ Pos and (x 7→ t) ∈ Bind. Then

amguG(ψ, x 7→ t)
def
= ψ ∧

(
x↔

∧(
vars(t) \ {x}

))
.

Since non-ground terms can be made cyclic by instantiat-
ing their variables, those terms detected as definitely finite
on Bfun are also definitely ground.

Lemma 22. Let x ∈ VI. Then γF (x) ⊆ γG(x).

Proof. Suppose that σ ∈ γF (x). Then, by Definition 12,
(x)
(
hval(τ)

)
= 1 for all τ ∈ ↓σ, so that x ∈ hvars(τ); in

particular, x ∈ hvars(σ). We prove x ∈ gvars(σ) by contra-
diction. That is, we show that if x ∈ hvars(σ) \ gvars(σ),
then there exists τ ∈ ↓σ for which x /∈ hvars(τ).

Suppose therefore that x ∈ hvars(σ) \ gvars(σ). Then,
by Proposition 7, rt(x, σ) ∈ HTerms \ GTerms. Hence, by
Proposition 1, there exists i ∈ N such that rt(x, σ) = xσi

and there exists y ∈ vars(xσi)\dom(σ). As we assumed that
Sig contains a function symbol of non-zero arity, there exists
t ∈ HTerms \ {y} for which {y} = vars(t). It follows that
σ′ = {y 7→ t} ∈ RSubst and, by Definition 10, y /∈ hvars(σ′).
Since y /∈ dom(σ), by Lemma 3, τ = σ ∪ σ′ ∈ RSubst .
Since τ ∈ ↓σ′ then, by case (9a) of Proposition 9, we have
y /∈ hvars(τ).

By Lemma 4, RT ` ∀
(
σ → (x = xσi)

)
. Thus, since we

also have τ ∈ ↓σ, we obtain RT ` ∀
(
τ → (x = xσi)

)
. By

applying Lemma 6, we have rt(x, τ) = rt(xσi, τ) so that,
by case (8b) of Corollary 8, we obtain x ∈ hvars(τ) if and
only if vars(xσi) ⊆ hvars(τ). However, as observed before,
y ∈ vars(xσi) \ hvars(τ), so that we also have x /∈ hvars(τ).

Therefore x ∈ gvars(σ) ∩ hvars(σ) and, by case (9b) of
Proposition 9, for all τ ∈ ↓σ, x ∈ gvars(τ) ∩ hvars(τ). As
a consequence, for all τ ∈ ↓σ, (x)

(
gval(τ)

)
= 1, so that, by

Definition 14, we can conclude that σ ∈ γG(x).

The following theorem specifies a reduction process that
can improve the precision of the groundness dependencies
(Pos) component by exploiting the information available in
the finite-tree dependencies (Bfun) component.

Theorem 23. Let φ ∈ Bfun and ψ ∈ Pos. Let ν ∈ Pos
be defined as ν =

∧
true(φ). Then

γF (φ) ∩ γG(ψ) = γF (φ) ∩ γG(ψ ∧ ν).

Proof. Since ψ ∧ ν |= ψ, the inclusion

γF (φ) ∩ γG(ψ) ⊇ γF (φ) ∩ γG(ψ ∧ ν)

follows by the monotonicity of γG. To prove the inclusion

γF (φ) ∩ γG(ψ) ⊆ γF (φ) ∩ γG(ψ ∧ ν)

we will show that γF (φ) ⊆ γG(ν). The thesis will follow as,
by Lemma 21, γG(ψ ∧ ν) = γG(ψ) ∩ γG(ν). We have

γF (φ) ⊆ γF (ν) [since φ |= ν]

=
⋂{

γF (x)
∣∣ x ∈ true(φ)

}
[by Lemma 14]

⊆
⋂{

γG(x)
∣∣ x ∈ true(φ)

}
[by Lemma 22]

= γG(ν). [by Lemma 21]

The following two examples shows that, when comput-
ing on rational trees, finite-tree dependencies may provide
groundness information that is not captured by the usual
approaches.

Example 3. Consider the following program:

p(a, a).

p(X, Y) :- X = f(X,).

q(X, Y) :- p(X, Y), X = a.

Consider first the predicate p/2. Concerning finite-tree de-
pendencies, the abstract semantics of p/2 is expressed by
the Boolean formula φp = x → y (y is finite if x is so). In
contrast, the Pos-groundness abstract semantics of p/2 is a
plain “don’t know”: the Boolean formula ψp = >. In fact,
the groundness of X and Y can be completely decided by the
call-pattern of p/2.

Consider now the predicate q/2. The finiteness semantics
of q/2 is φq = (x→ y)∧x = x∧ y, whereas the Pos formula
expressing groundness dependencies is ψq = > ∧ x = x. By
applying the reduction process of Theorem 23, we obtain

ψ′q = ψq ∧
∧

true(φq) = x ∧ y,

therefore recovering the groundness of variable y.

Example 4. Consider the program:

p(a, Y).

p(X, a).

q(X, Y) :- p(X, Y), X = f(X, Z).

The abstract semantics of predicate p/2, for both finite-tree
and groundness dependencies, is φp = ψp = x ∨ y.

Consider now the predicate q/2. Concerning finite-tree
dependencies, the abstract semantics of q/2 is expressed by
the Boolean formula φq = (x ∨ y) ∧ ¬x = ¬x ∧ y (x is
definitely cyclic and y is definitely finite). On the domain
Pos, by applying Definition 15, we compute

ψq = ∃z .
(
(x ∨ y) ∧ (x↔ z)

)
= x ∨ y.

Thus we can apply Theorem 23 and improve the groundness
dependencies description by computing

ψ′q = ψq ∧
∧

true(φq) = y.

12

Since groundness information, besides being useful in it-
self, also has the potential of improving the precision of
many other analyses, such as sharing information [6, 9], by
applying the reduction step of Theorem 23 we can indeed
trigger some reduction processes affecting the precision of
other components. Theorem 23 can also be exploited in the
application of a widening operator on the groundness de-
pendencies component. However, as was the case for Theo-
rem 16, there are cases when Theorem 23 cannot provide a
precision gain.

Theorem 24. Let φ, φ′ ∈ Bfun and ψ,ψ′ ∈ Pos, where
ψ |=

∧
true(φ) and ψ′ |=

∧
true(φ′). Let also

φ1
def
= φ ∨ φ′, φ2

def
= ∃x . φ,

ψ1
def
= ψ ∨ ψ′, ψ2

def
= ∃x . ψ.

Then, for i = 1, 2,

ψi |=
∧

true(φi).

Proof. Let us assume the hypotheses hold and prove
each statement in turn. For the case where i = 1 we have:

ψ1
def
= ψ ∨ ψ′

|=
∧

true(φ) ∨
∧

true(φ′)

|=
∧

true(φ ∨ φ′)
def
=
∧

true(φ1).

Since by hypothesis we have that ψ |=
∧

true(φ) and exis-
tential quantification is a monotonic operation, for the case
where i = 2 we have:

ψ2
def
= ∃x . ψ

|= ∃x .
∧

true(φ)

=
∧(

true(φ) \ {x}
)

=
∧

true(∃x . φ)

def
=
∧

true(φ2).

Another interesting question is whether or not we can de-
fine a reduction process working the other way round, i.e.,
trying to improve the finite-tree dependencies component
based on the information encoded in the groundness de-
pendencies component. The following theorem shows that
this is theoretically possible, provided the information of the
finiteness component H is also available.

Theorem 25. Let h ∈ H, φ ∈ Bfun and ψ ∈ Pos. Let
ν ∈ Bfun be defined as ν = (∃VI \ h . ψ). Then

γH(h) ∩ γF (φ) ∩ γG(ψ) = γH(h) ∩ γF (φ ∧ ν) ∩ γG(ψ).

Proof. Since φ ∧ ν |= φ, the inclusion

γH(h) ∩ γF (φ) ∩ γG(ψ) ⊇ γH(h) ∩ γF (φ ∧ ν) ∩ γG(ψ)

follows by the monotonicity of γG.

We now prove the reverse inclusion. Let us suppose that
σ ∈ γH(h) ∩ γF (φ) ∩ γG(ψ). By Lemma 14 we have that
γF (φ ∧ ν) = γF (φ) ∩ γF (ν). Therefore it is enough to show
that σ ∈ γF (ν). By hypothesis, ν = ∃VI \ h . ψ. Moreover,
by Definition 11, h ⊆ hvars(σ). Thus, to prove the result, we
will show, by contradiction, that σ ∈ γF

(
∃VI\hvars(σ) . ψ

)
.

Suppose therefore that σ /∈ γF
(
∃VI \ hvars(σ) . ψ

)
. Then

there exists τ ∈ ↓σ such that(
∃VI \ hvars(σ) . ψ

)(
hval(τ)

)
= 0. (15)

Take t ∈ GTerms ∩HTerms and let

υ
def
=
{
y 7→ t

∣∣∣ y ∈ vars(σ) ∩
(
hvars(τ) \ dom(σ)

)}
. (16)

By Lemma 3, τ ′
def
= σ ∪ υ ∈ RSubst is satisfiable in RT .

Let z be any variable in hvars(σ). By case (7b) of Propo-
sition 7, rt(z, σ) ∈ HTerms. By Proposition 1, there exists
i ∈ N such that rt(z, σ) = zσi and vars(zσi) ∩ dom(σ) = ∅.
Therefore, by Definition 10, vars(zσi) ⊆ hvars(σ). Thus, we
have

vars(zσi) ⊆ hvars(σ) \ dom(σ). (17)

By Lemma 4, as τ ∈ ↓σ, RT ` ∀
(
τ → (z = zσi)

)
. By

Lemma 6, we have rt(z, τ) = rt(zσi, τ) so that, by case (8b)
of Corollary 8,

z ∈ hvars(τ) ⇐⇒ vars(zσi) ⊆ hvars(τ). (18)

We now show that

hvars(τ) = hvars(σ) ∩ gvars(τ ′). (19)

Since τ ∈ ↓σ, it follows from case (9a) of Proposition 9
that hvars(τ) ⊆ hvars(σ). Thus, as z ∈ hvars(σ), either
z ∈ hvars(τ) or z ∈ hvars(σ) \ hvars(τ). We consider these
cases separately.

First, assume that z ∈ hvars(τ). Then, by (18), we have
vars(zσi) ⊆ hvars(τ). Also, by case (9a) of Proposition 9,
we have z ∈ hvars(σ), so that we can apply (17) to derive
vars(zσi) ∩ dom(σ) = ∅. Therefore, vars(zσi) ⊆ dom(υ)
and, by Definitions 8 and 10, vars(zσi) ⊆ gvars(υ)∩hvars(υ).
Since τ ′ ∈ ↓ υ, by case (9b) of Proposition 9, we have
vars(zσi) ⊆ gvars(τ ′) ∩ hvars(τ ′). Thus, by Corollary 8,
rt(zσi, τ ′) ∈ GTerms ∩ HTerms. Now τ ′ ∈ ↓σ so that, by
Lemma 4, RT ` ∀

(
τ ′ → (z = zσi)

)
. Thus, by Lemma 6,

rt(zσi, τ ′) = rt(z, τ ′) ∈ GTerms∩HTerms so that, by Propo-
sition 7, z ∈ hvars(τ ′) ∩ gvars(τ ′). Hence, by case (9a) of
Proposition 9, we can conclude z ∈ hvars(σ) ∩ gvars(τ ′).
Thus hvars(τ) ⊆ hvars(σ) ∩ gvars(τ ′).

Secondly, we assume that z ∈ hvars(σ) \ hvars(τ). Since
z /∈ hvars(τ), by (18), there exists y ∈ vars(zσi) \ hvars(τ).
Also, since z ∈ hvars(σ), by (17), y ∈ hvars(σ) \ dom(σ)
so that, by Definition 8, we have y /∈ gvars(σ). By (16),
since y /∈ dom(σ) ∪ hvars(τ), we have y /∈ dom(υ) so that
y /∈ gvars(τ ′). Thus, by case (8a) of Corollary 8, we have
rt(zσi, τ ′) /∈ GTerms. Also, as RT ` ∀

(
τ ′ → (z = zσi)

)
,

by Lemma 6 we have rt(zσi, τ ′) = rt(z, τ ′) /∈ GTerms and
therefore, by case (7a) of Proposition 7, z /∈ gvars(τ ′). Thus
hvars(τ) ⊇ hvars(σ) ∩ gvars(τ ′).

It follows from (15) and (19) that,(
∃VI \ hvars(σ) . ψ

)(
gval(τ ′)

)
= 0. (20)

13

It also holds by hypothesis that σ ∈ γG(ψ), so that, since
τ ′ ∈ ↓σ, by Definition 14 we have ψ

(
gval(τ ′)

)
= 1. There-

fore, as ψ |= ∃VI \ hvars(σ) . ψ,(
∃VI \ hvars(σ) . ψ

)(
gval(τ ′)

)
= 1,

which contradicts (20).

As was the case for Theorems 16 and 23, when abstractly
evaluating the existential quantification and the merge-over-
all-paths operations, the application of the reduction process
of Theorem 25 is unnecessary.

Theorem 26. Let h, h′ ∈ H, φ, φ′ ∈ Bfun, ψ,ψ′ ∈ Pos,
where φ |= (∃VI \ h . ψ) and φ′ |= (∃VI \ h′ . ψ′). Let also

h1
def
= h ∩ h′, h2

def
= h ∪ {x},

φ1
def
= φ ∨ φ′, φ2

def
= ∃x . φ,

ψ1
def
= ψ ∨ ψ′, ψ2

def
= ∃x . ψ.

Then, for i = 1, 2,

φi |= (∃VI \ hi . ψi).

Proof. Let us assume the hypotheses. For the case where
i = 1 we have:

φ1
def
= φ ∨ φ′

|= (∃VI \ h . ψ) ∨ (∃VI \ h′ . ψ′)
|=
(
∃VI \ (h ∩ h′) . ψ

)
∨
(
∃VI \ (h ∩ h′) . ψ′

)
= ∃VI \ (h ∩ h′) . ψ ∨ ψ′

def
= ∃VI \ h1 . ψ1.

Since by hypothesis we have that φ |= ∃VI \ h . ψ and
existential quantification is a monotonic operation, for the
case where i = 2 we have:

φ2
def
= ∃x . φ
|= ∃x . ∃VI \ h . ψ
= ∃VI \ h . ∃x . ψ
= ∃VI \

(
h ∪ {x}

)
. ∃x . ψ

def
= ∃VI \ h2 . ψ2.

We conjecture that Theorem 26 can be strengthened so
that it also applies to the case of abstract unification. How-
ever, when precision is lost due to the use of a widening oper-
ator on the Bfun component, some of this could be recovered
by means of the reduction process given by Theorem 25.

6. CONCLUSION
Several modern logic-based languages offer a computation

domain based on rational trees. On the one hand, the use of
such trees is encouraged by the possibility of using efficient
and correct unification algorithms and by an increase in ex-
pressivity. On the other hand, these gains are countered by
the extra problems rational trees bring with themselves and
that can be summarized as follows: several built-ins, library
predicates, program analysis and manipulation techniques
are only well-defined for program fragments working with

finite trees. For these reasons, applications exploiting ra-
tional trees tend to do so in a very controlled way, that is,
most program variables can only be bound to finite terms.
If we are able to detect with enough precision the program
variables that may be bound to infinite terms, then we can
take advantage of rational trees yet minimizing the impact
of their disadvantages.

In a companion paper [3] we have proposed an initial solu-
tion to the problem, where the composite abstract domain
H × P allows to track, with significant precision, the cre-
ation and propagation of infinite terms. Even though this
information is crucial to any finite-tree analysis, propagating
the guarantees of finiteness that come from several built-ins
(including those that are explicitly provided to test term-
finiteness) is also important. This is what motivates the
work described in this paper, where we have introduced a
domain of Boolean functions that is meant to be coupled to
H × P , supplementing its expressive power.

In this paper we have studied all the theoretical issues
concerning this Boolean domain for finite-tree dependencies.
Since this domain has many similarities with the domain
Pos used for groundness analysis, we have investigated how
these two domains relate to each other and what are the
possibilities when both of them are included in the “global”
domain of analysis. The work described here and in [3] al-
lowed to complete the preparation of the theoretical stage
that is required before proceeding to the implementation
of the overall finite-tree analysis domain. The implemen-
tation of the domains is now in progress. Concerning the
Bfun component things are quite easy, since all the tech-
niques described in [5] (and almost all the code, including
the widenings) can be reused unchanged, obtaining, we be-
lieve, comparable efficiency results.

7. REFERENCES
[1] T. Armstrong, K. Marriott, P. Schachte, and

H. Søndergaard. Two classes of Boolean functions for
dependency analysis. Science of Computer
Programming, 31(1):3–45, 1998.

[2] R. Bagnara. Data-Flow Analysis for Constraint
Logic-Based Languages. PhD thesis, Dipartimento di
Informatica, Università di Pisa, Pisa, Italy, 1997.
Printed as Report TD-1/97.

[3] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella.
Finite-tree analysis for constraint logic-based
languages. Quaderno 251, Dipartimento di
Matematica, Università di Parma, 2001. Available at
http://www.cs.unipr.it/~bagnara/.

[4] R. Bagnara, P. M. Hill, and E. Zaffanella. Efficient
structural information analysis for real CLP
languages. In M. Parigot and A. Voronkov, editors,
Proc. of the 7th International Conference on Logic for
Programming and Automated Reasoning (LPAR
2000), volume 1955 of Lecture Notes in Computer
Science, pages 189–206, Reunion Island, France, 2000.
Springer-Verlag, Berlin.

[5] R. Bagnara and P. Schachte. Factorizing equivalent
variable pairs in ROBDD-based implementations of
Pos. In A. M. Haeberer, editor, Proc. of the “Seventh
International Conference on Algebraic Methodology
and Software Technology (AMAST’98)”, volume 1548
of Lecture Notes in Computer Science, pages 471–485,
Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

14

[6] R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced
sharing analysis techniques: A comprehensive
evaluation. In M. Gabbrielli and F. Pfenning, editors,
Proc. of the 2nd International ACM SIGPLAN
Conference on Principles and Practice of Declarative
Programming, pages 103–114, Montreal, Canada,
2000. Association for Computing Machinery.

[7] J. A. Campbell, editor. Implementations of Prolog.
Ellis Horwood/Halsted Press/Wiley, 1984.

[8] B. Carpenter. The Logic of Typed Feature Structures
with Applications to Unification-based Grammars,
Logic Programming and Constraint Resolution,
volume 32 of Cambridge Tracts in Theoretical
Computer Science. CUP, New York, 1992.

[9] M. Codish, H. Søndergaard, and P. J. Stuckey.
Sharing and groundness dependencies in logic
programs. ACM Transactions on Programming
Languages and Systems, 21(5):948–976, 1999.

[10] A. Colmerauer. Prolog and infinite trees. In K. L.
Clark and S. Å. Tärnlund, editors, Logic
Programming, APIC Studies in Data Processing,
volume 16, pages 231–251. Ac. Press, New York, 1982.

[11] A. Colmerauer. Equations and inequations on finite
and infinite trees. In Proc. of the International
Conference on Fifth Generation Computer Systems
(FGCS’84), pages 85–99, Tokyo, Japan, 1984. ICOT.

[12] A. Colmerauer. An introduction to Prolog-III.
Communications of the ACM, 33(7):69–90, 1990.

[13] A. Cortesi, G. Filé, and W. Winsborough. Prop
revisited: Propositional formula as abstract domain
for groundness analysis. In Proceedings, Sixth Annual
IEEE Symposium on Logic in Computer Science,
pages 322–327, Amsterdam, The Netherlands, 1991.
IEEE Computer Society Press.

[14] A. Cortesi, G. Filé, and W. Winsborough. The
quotient of an abstract interpretation for comparing
static analyses. Theoretical Computer Science,
202(1&2):163–192, 1998.

[15] A. Cortesi, B. Le Charlier, and P. Van Hentenryck.
Combinations of abstract domains for logic
programming: Open product and generic pattern
construction. Science of Computer Programming,
38(1–3), 2000.

[16] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of
the Fourth Annual ACM Symposium on Principles of
Programming Languages, pages 238–252, 1977.

[17] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Proc. of the Sixth
Annual ACM Symposium on Principles of
Programming Languages, pages 269–282, 1979.

[18] P. Cousot and R. Cousot. Abstract interpretation and
applications to logic programs. Journal of Logic
Programming, 13(2&3):103–179, 1992.

[19] P. Cousot and R. Cousot. Abstract interpretation
frameworks. Journal of Logic and Computation,
2(4):511–547, 1992.

[20] P. W. Dart. On derived dependencies and connected
databases. Journal of Logic Programming,
11(1&2):163–188, 1991.

[21] P. R. Eggert and K. P. Chow. Logic programming,

graphics and infinite terms. Technical Report UCSB
DoCS TR 83-02, Department of Computer Science,
University of California at Santa Barbara, 1983.

[22] G. Erbach. ProFIT: Prolog with Features, Inheritance
and Templates. In Proc. of the 7th Conference of the
European Chapter of the Association for
Computational Linguistics, pages 180–187, Dublin,
Ireland, 1995.

[23] M. Filgueiras. A Prolog interpreter working with
infinite terms. In Campbell [7], pages 250–258.

[24] F. Giannesini and J. Cohen. Parser generation and
grammar manipulation using Prolog’s infinite trees.
Journal of Logic Programming, 3:253–265, 1984.

[25] S. Haridi and D. Sahlin. Efficient implementation of
unification of cyclic structures. In Campbell [7], pages
234–249.

[26] P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness,
idempotence and commutativity of set-sharing. Theory
and Practice of Logic Programming, 2001. To appear.
Available at http://arXiv.org/abs/cs.PL/0102030.

[27] B. Intrigila and M. Venturini Zilli. A remark on
infinite matching vs infinite unification. Journal of
Symbolic Computation, 21(3):2289–2292, 1996.

[28] D. Jacobs and A. Langen. Static analysis of logic
programs for independent AND parallelism. Journal
of Logic Programming, 13(2&3):291–314, 1992.

[29] J. Jaffar, J-L. Lassez, and M. J. Maher. Prolog-II as
an instance of the logic programming scheme. In
M. Wirsing, editor, Formal Descriptions of
Programming Concepts III, pages 275–299.
North-Holland, 1987.

[30] T. Keisu. Tree Constraints. PhD thesis, The Royal
Institute of Technology, Stockholm, Sweden, May
1994. SICS Dissertation Series: SICS/D–16–SE.

[31] A. King. Pair-sharing over rational trees. Journal of
Logic Programming, 46(1–2):139–155, 2000.

[32] M. J. Maher. Complete axiomatizations of the
algebras of finite, rational and infinite trees. In
Proceedings, Third Annual Symposium on Logic in
Computer Science, pages 348–357, Edinburgh,
Scotland, 1988. IEEE Computer Society.

[33] K. Marriott and H. Søndergaard. Notes for a tutorial
on abstract interpretation of logic programs. North
American Conference on Logic Programming,
Cleveland, Ohio, USA, 1989.

[34] K. Marriott and H. Søndergaard. Precise and efficient
groundness analysis for logic programs. ACM Letters
on Programming Languages and Systems,
2(1–4):181–196, 1993.

[35] K. Mukai. Constraint Logic Programming and the
Unification of Information. PhD thesis, Department of
Computer Science, Faculty of Engineering, Tokio
Institute of Technology, 1991.

[36] C. Pollard and I. A. Sag. Head-Driven Phrase
Structure Grammar. University of Chicago Press,
Chicago, 1994.

[37] E. Schröder. Der Operationskreis des Logikkalkuls. B.
G. Teubner, Leibzig, 1877.

[38] Gert Smolka and Ralf Treinen. Records for logic
programming. Journal of Logic Programming,
18(3):229–258, 1994.

15

[39] H. Søndergaard. An application of abstract
interpretation of logic programs: Occur check
reduction. In B. Robinet and R. Wilhelm, editors,
Proc. of the 1986 European Symposium on
Programming, volume 213 of Lecture Notes in
Computer Science, pages 327–338. Springer-Verlag,
Berlin, 1986.

[40] Swedish Institute of Computer Science, Programming
Systems Group. SICStus Prolog User’s Manual,
release 3 #0 edition, 1995.

16

