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The Paper

Non-Strict Independence-Based
Program Parallelization
Using Sharing and Freeness Information

Daniel Cabeza and Manuel Hermenegildo

Abstract Interpretation, Logic Programming, Parallelism.

Done within the ParForCE project, time of great Pisa-Madrid collaboration.

An attempt to complete some missing parts on this (now old, but relevant) topic.

Provide context: what happened before and after.
˜
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The Original Challenge / Early Steps: Parallelization and Abs. Int.

The original problem: LP parallelization (circa 1983 in US: UT Austin, MCC):

Parallel abstract machine, &-Prolog [ICLP’86, ICLP’87, ...] ⇒ real speedups!
Detecting dependencies (pointer “sharing”) among proc. calls, statements, etc.

Traditional approach (ad-hoc dataflow analysis [Chang, Despain, Degroot ’85]):
correctness? — we wanted something rigorous and more powerful.
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The Original Challenge / Early Steps: Parallelization and Abs. Int.

The original problem: LP parallelization (circa 1983 in US: UT Austin, MCC):

Parallel abstract machine, &-Prolog [ICLP’86, ICLP’87, ...] ⇒ real speedups!
Detecting dependencies (pointer “sharing”) among proc. calls, statements, etc.

Traditional approach (ad-hoc dataflow analysis [Chang, Despain, Degroot ’85]):
correctness? — we wanted something rigorous and more powerful.

Our first “obsession:” correctness/practicality –speedups possible? AI practical?
Built system [Warren, Debray, Herme. “MA3 system” ICSLP’88]

Bruynooghe’s framework [87-91]: multivariance + genericity of framework
–parametric on the domains– (but no tabling or efficient fixpoint).

The fixpoint algorithm and PLAI analyzer: efficient, context sensitive, multivariant,
parametric analysis! [Muthukumar, Herme. NACLP’89]

Tabling, multiple call–success pairs Dependency tracking Interprocedural,
dealing with mutual recursion, etc. (project/extend).

Many useful extensions (1990 on, Spain, mostly at UPM; also UNM): Incremental
framework; CLP; concurrent programs; Extension to Java/Java bytecode
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Some Achievements in Parallelization

Fully automatic parallelizers for logic programs
– arguably the most powerful parallelizers for “irregular” applications.
[ Herme. and Warren, CAN’87, Bueno, G. de la Banda, and Herme. ICLP’94, TOPLAS’99]

Parallelization using non-strict independence [Cabeza and Herme. SAS’94]

Parallelization of constraint programs [G. de la Banda and Herme. PLILP’96]

Perhaps the first fully implemented, practical application of AI?

Prompted considerable abstract domain development :

Set sharing. [Jacobs-Langen NACLP 89, Muthukumar and Herme. NACLP’89 (abstr. unif.)]

Set sharing and freeness. [Muthukumar and Herme. ICLP’91]

Def (propositional horn clauses) [de la Banda/Herme. WSA’92, Sondergaard, Marriott]

Combinations with depth-k, shape analysis (regular types), etc.
Set sharing for Java [Méndez-Lojo, Herme. VMCAI’08]

(C)LP/Prolog/Ciao very useful: allow studying challenging problems (pointers, irregular

computations, irregular data, dynamic heap, dynamic dispatch, etc.) in much better context.
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Some Achievements in Parallelization

Fully automatic parallelizers for logic programs
– arguably the most powerful parallelizers for “irregular” applications.
[ Herme. and Warren, CAN’87, Bueno, G. de la Banda, and Herme. ICLP’94, TOPLAS’99]

Parallelization using non-strict independence [Cabeza and Herme. SAS’94]

Parallelization of constraint programs [G. de la Banda and Herme. PLILP’96]

Perhaps the first fully implemented, practical application of AI?

Prompted considerable abstract domain development :

Set sharing. [Jacobs-Langen NACLP 89, Muthukumar and Herme. NACLP’89 (abstr. unif.)]

Set sharing and freeness. [Muthukumar and Herme. ICLP’91]

Def (propositional horn clauses) [de la Banda/Herme. WSA’92, Sondergaard, Marriott]

Combinations with depth-k, shape analysis (regular types), etc.
Set sharing for Java [Méndez-Lojo, Herme. VMCAI’08]

(C)LP/Prolog/Ciao very useful: allow studying challenging problems (pointers, irregular

computations, irregular data, dynamic heap, dynamic dispatch, etc.) in much better context.

ParForCE and other projects –much collaboration with Giorgio / P isa!
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Parallelization Process

Conditional dependency graph (of some segment, e.g., a clause):

vertices are possible tasks (statements, calls,...),
edges=possible dependency (labels=conditions needed for independence).

Local or global analysis used to reduce/remove checks in the edges.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

( test(1−3) −> ( g1, g2 ) & g3
                  ;   g1, ( g2 & g3 ) )

g1, ( g2 & g3 )Alternative:
"Annotation"

Local/Global analysis 
and simplification
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A Priori Independence: Strict Independence

Correctness and efficiency (search space preservation) guaranteed for p & q if
no shared variables.

The “pointers” view:
correctness and efficiency guaranteed if there are no “pointers” between p and q.

main :- X=f(K,g(K)), Y=a,

Z=g(L), W=h(b,L),

--------------------->

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are strictly independent, but q and r are not.
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Independence – Non-Strict Independence

Pure goals: only one thread “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = f(X).

Impure goals: only rightmost “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = a. p(X) :- var(X), ..., X=b, ...

Very important in programs using “incomplete structures.”

flatten(Xs,Ys) :- flatten(Xs,Ys,[]).

flatten([], Xs, Xs).

flatten([X|Xs],Ys,Zs) :- flatten(X,Ys,Ys1), flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs], Xs) :- atomic(X), X \== [].

Another example: qsort with difference lists.

Paper: NSI from sharing+freeness; new run-time tests (allvars, sharedvars).
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Some Speedups (Using Different Abstract Domains)
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Benchmark: ann

(ann is the parallelizer parallelizing itself;
1-10 proc.: actual speedups on Sequent Symmetry; 10+ simulator projections from execution traces)
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The Second Phase: Program Development using AI / Next Gen. LP

The next stage:
not just optimization (parallelization, abstract partial evaluation, ...), but

program development fundamentally based on abstract interpretation.

Great influence of AI and LP in programming language design :
the “Ciao” language and environment design ;
AI-based compiler / env. (assertion based vs. strongly-typed, type systems as
domains, multiparadigm –again, Giorgio–, etc.).

Ideas lurking for a long time, crystallized in first prototypes in 1994-97
[PPCP’94, Ciao system design], and:

Overall design [ILPS’97, AADEBUG’97, ICLP’99, LOPSTR’99, SAS’03, SCP’05]

Assertion language [LNCS 1870]

Modular extensions [Pietrzak, Correas, Puebla, Herme. LPAR’06]

Abstract diagnosis [Alpuente, Comini, Escobar, Falaschi, Lucas, LOPSTR’02] [Gallardo,

Merino, Pimemtel, SAS’02] [Pietrzak, Herme. ICLP’07]

Extensions to Java [Albert, Gómez-Zamalloa, Hubert, Puebla PADL’07]
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The CiaoPP Verification/Diagnosis Framework [AADEBUG’97]

+
PREPROCESSORLibs

Builtins/

:− check
:− entry

Program

P

I

verification

(and possible
warning

run−time error)

compile−time
error

verified

(optimiz

Assertion
Normalizer
& Lib Itf.

Static
Analysis RT tests

:− check

:− false

:− checked
Comparator
Incl. VC gen

Analysis
Info
[[P]]

certificate
(ACC) ed) code

Iα (partial specification) provided via a language of optional assertions.
State properties at relevant points.

Talk about properties which can be predefined or user-defined.
Types, cost, data sizes, termination, pointer aliasing, no-except, ...

Implemented for Ciao and (less mature) for Java and Java bytecode.
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The Abstraction Carrying Code (ACC) Scheme

VCGen

Domain(s)Domain(s)
Safety Policy

PRODUCER CONSUMER

Safety Policy

OK

Abstraction OK

Program Checker

Program

Analyzer

VCGenOK

[[P ]]α = Analysis = lfp(analysis step) Certificate ⊂ [[P ]]α Checker = analysis step
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The Abstraction Carrying Code (ACC) Scheme

VCGen

Domain(s)Domain(s)
Safety Policy

PRODUCER CONSUMER

Safety Policy

OK

Abstraction OK

Program Checker

Program

Analyzer

VCGenOK

[[P ]]α = Analysis = lfp(analysis step) Certificate ⊂ [[P ]]α Checker = analysis step

Basic proposal [Albert, Puebla, Herme. COCV’04, LPAR’04, ICLP’04, PPDP’05, NGC’08]

Incremental version [Albert, Arenas, Puebla LPAR’06]

Certificate reduction (fixpoint compression) [Albert, Arenas, Puebla, Herme. ICLP’06]

MOBIUS project [TGC’06].

Incorporated in CiaoPP for types, modes, shapes, sizes, cost, det, termination,
non-failure, resources, etc.
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Combination with Partial Evaluation; Optimization; Scalability

Combination with Partial Evaluation:
Abstract executability. Multiple abstract specialization [Puebla, Herme. PEPM’95];
application in parallelization [LOPSTR’97, JLP’99]

Full integration of Partial Evaluation and AI [Puebla, Albert, Herme. SAS’06]

→ important contribution to the AI-based program development model.

Application to program optimization (other than parallelization): abstract
machines and native compilation [Morales, Carro, Herme. PADL’04, ICLP’05, LOPSTR’06];
embedded systems [Carro, Morales, Muller, Puebla, Herme. CASES’06].

Modularity, Scalability, Practicality Issues:
Efficient, incremental intermodular analysis / fixpoint calculation [Bueno, G. de la

Banda, Herme., Marriott, Puebla, Stuckey, Correas LOPSTR’01, LOPSTR’04, LOPSTR’05].
Widening of set-sharing [Navas, Bueno, Herme. PADL’06]

Dealing with the full ISO-Prolog standard [Bueno, Cabeza, Herme., Puebla ESOP’96]

Domain combinations, goal-dependent vs. goal indep. analysis (flow sensitivity)
[Codish, Mulkers, Bruy., G. de la Banda, Herme. PEPM’93, LPAR’94, TOPLAS’95, JLP’97]
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Inference of Resource-related and other Complex Properties

Cost, resources (motivated by granularity control –lots of AI!):

Upper bounds (execution steps); application to granularity control
[Debray, Lin, Herme., PLDI’90].
Lower bounds (execution steps) [w/López-Garcı́a, ILPS’97, SAS’94].
Extension to Java bytecode [Albert, Arenas, Genaim, Puebla, Zanardini ESOP’07].
Execution times [Mera, López-Garcı́a, Puebla, Carro, Herme., PADL’07].
User-definable resources for LP [Navas, Mera, López-Garcı́a, Herme., ICLP’07].
Heap space analysis (Java bytecode) [Albert, Genaim, Gómez-Zamalloa, ISMM ’07].

Non-failure / no exceptions
[Bueno, Debray, López-Garcı́a, Herme. ICLP’97]; multivariant version [FLOPS’04].

Determinacy analysis [Bueno, López-Garcı́a, Herme. LOPSTR’04].

Heap / shape analysis (C++/Java) [Marron, Herme., Kapur, Stefanovic LCPC’06,

PASTE’07, CC’08]; Type domains, type widenings [Vaucheret, Bueno SAS’02].

Termination analysis (Java) [Albert, Arenas, Codish, Genaim, Puebla, Zanardini WST’07].
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Final Thoughts / The Next 25 Years!

Go mainstream, make everyday tools! (Ciao, COSTA, ...) –coll. w/Industry (e.g.,
ES PASS).

Further work on scalability, modularity, domains, widenings, ...
Emphasis on resource-related properties; specially user-defined.
Improve diagnosis.
Develop ACC further, apply in practice to, e.g., small devices (MOBIUS).
Multi-language environments.

Back to parallelism! A big push to parallelization, granularity control, ...

Develop new, even more dynamic, multiparadigm, high-level languages,
getting correctness and real speed (without user burden), thanks to LP and AI.
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Final Thoughts / The Next 25 Years!

Go mainstream, make everyday tools! (Ciao, COSTA, ...) –coll. w/Industry (e.g.,
ES PASS).

Further work on scalability, modularity, domains, widenings, ...
Emphasis on resource-related properties; specially user-defined.
Improve diagnosis.
Develop ACC further, apply in practice to, e.g., small devices (MOBIUS).
Multi-language environments.

Back to parallelism! A big push to parallelization, granularity control, ...

Develop new, even more dynamic, multiparadigm, high-level languages,
getting correctness and real speed (without user burden), thanks to LP and AI.

But, mainly, thanks Giorgio –what an adventure!
Look forward to the next 25 years together!
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Conditions for Non-Strict Independence Based on ShFr Info

We consider the parallelization of pairs of goals.

Let the situation be: {̂β} p {̂ψ} . . . q.
We define:

S(p) = {L ∈ ̂βSH | L ∩ (6= ∅}
SH = S(p)∩S(q) = {L∈ ̂βSH | L ∩ (6=∅

∧L ∩ (6=∅}

Conditions for non-strict independence for p and q:

C1 ∀L ∈ SH L ∩ ̂ψFR 6= ∅
C2 ¬ (∃N1...Nk ∈ S(p) ∃L ∈ ̂ψSH

L =
⋃k

i=1 Ni ∧ N1,N2 ∈ SH

∧∀i, j 1≤ i<j≤k Ni ∩ Nj ∩
̂βFR = ∅)

C1: preserves freeness of shared variables.

C2: preserves independence of shared variables.

More relaxed conditions if information re. partial answers and purity of goals.
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Run-Time Checks for NSI Based on ShFr Info

Run-time checks can be automatically included to ensure NSI when the previous
conditions do not hold.

The method uses analysis information.

Possible checks are:

ground(X): X is ground.

allvars(X,F): every free variable in X is in the list F .

indep(X,Y): X and Y do not share variables.

sharedvars(X,Y,F): every free variable shared by X and Y is in the list F .

The method generalizes the techniques previously proposed for detection of SI.

Even when only SI is present, the tests generated may be better than the
traditional tests.
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