
40 Years of Adventure in
Abstract Interpretation of Logic Programs

Manuel Hermenegildo

with lots of help over the years from (among others):

D. Cabeza, E. Albert, P. Arenas, F. Bueno Carrillo, M. Carro, A. Casas, M. Codish, J. Correas,
S.K. Debray, M. Garcı́a de la Banda, S. Genaim, N.-W. Lin, P. López-Garcı́a, K. Marriott,
M. Marron, E. Mera, J. Morales, K. Muthukumar, M. Méndez-Lojo, J. Navas, P. Pietrzak,
G. Puebla, F. Rossi, P. Stuckey, C. Vaucheret, R. Warren, D. Zanardini

CS Dept., T.U. Madrid, Spain CS and EECE Depts., U. of New Mexico, USA
CS Dept., U. of Texas at Austin, USA Microel. and Computer Tech. Corp. (MCC), USA

CS Dept., Complutense U. Madrid, Spain IMDEA SW Development Technology Institute, Spain

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

40 25 Years of Adventure in
Abstract Interpretation of Logic (and Imperative) Programs

Manuel Hermenegildo

with lots of help over the years from (among others):

D. Cabeza, E. Albert, P. Arenas, F. Bueno Carrillo, M. Carro, A. Casas, M. Codish, J. Correas,
S.K. Debray, M. Garcı́a de la Banda, S. Genaim, N.-W. Lin, P. López-Garcı́a, K. Marriott,
M. Marron, E. Mera, J. Morales, K. Muthukumar, M. Méndez-Lojo, J. Navas, P. Pietrzak,
G. Puebla, F. Rossi, P. Stuckey, C. Vaucheret, R. Warren, D. Zanardini

CS Dept., T.U. Madrid, Spain CS and EECE Depts., U. of New Mexico, USA
CS Dept., U. of Texas at Austin, USA Microel. and Computer Tech. Corp. (MCC), USA

CS Dept., Complutense U. Madrid, Spain IMDEA SW Development Technology Institute, Spain

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

40 25 Years of Adventure in
Abstract Interpretation of Logic (and Imperative) Programs

Or: From Parallelism to Program Development and Back

Manuel Hermenegildo

with lots of help over the years from (among others):

D. Cabeza, E. Albert, P. Arenas, F. Bueno Carrillo, M. Carro, A. Casas, M. Codish, J. Correas,
S.K. Debray, M. Garcı́a de la Banda, S. Genaim, N.-W. Lin, P. López-Garcı́a, K. Marriott,
M. Marron, E. Mera, J. Morales, K. Muthukumar, M. Méndez-Lojo, J. Navas, P. Pietrzak,
G. Puebla, F. Rossi, P. Stuckey, C. Vaucheret, R. Warren, D. Zanardini

CS Dept., T.U. Madrid, Spain CS and EECE Depts., U. of New Mexico, USA
CS Dept., U. of Texas at Austin, USA Microel. and Computer Tech. Corp. (MCC), USA

CS Dept., Complutense U. Madrid, Spain IMDEA SW Development Technology Institute, Spain

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 1

The Paper

Non-Strict Independence-Based
Program Parallelization
Using Sharing and Freeness Information

Daniel Cabeza and Manuel Hermenegildo

Abstract Interpretation, Logic Programming, Parallelism.

Done within the ParForCE project, time of great Pisa-Madrid collaboration.

An attempt to complete some missing parts on this (now old, but relevant) topic.

Provide context: what happened before and after.
˜

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 2

The Original Challenge / Early Steps: Parallelization and Abs. Int.

The original problem: LP parallelization (circa 1983 in US: UT Austin, MCC):

Parallel abstract machine, &-Prolog [ICLP’86, ICLP’87, ...] ⇒ real speedups!
Detecting dependencies (pointer “sharing”) among proc. calls, statements, etc.

Traditional approach (ad-hoc dataflow analysis [Chang, Despain, Degroot ’85]):
correctness? — we wanted something rigorous and more powerful.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 2

The Original Challenge / Early Steps: Parallelization and Abs. Int.

The original problem: LP parallelization (circa 1983 in US: UT Austin, MCC):

Parallel abstract machine, &-Prolog [ICLP’86, ICLP’87, ...] ⇒ real speedups!
Detecting dependencies (pointer “sharing”) among proc. calls, statements, etc.

Traditional approach (ad-hoc dataflow analysis [Chang, Despain, Degroot ’85]):
correctness? — we wanted something rigorous and more powerful.

Our first “obsession:” correctness/practicality –speedups possible? AI practical?
Built system [Warren, Debray, Herme. “MA3 system” ICSLP’88]

Bruynooghe’s framework [87-91]: multivariance + genericity of framework
–parametric on the domains– (but no tabling or efficient fixpoint).

The fixpoint algorithm and PLAI analyzer: efficient, context sensitive, multivariant,
parametric analysis! [Muthukumar, Herme. NACLP’89]

Tabling, multiple call–success pairs Dependency tracking Interprocedural,
dealing with mutual recursion, etc. (project/extend).

Many useful extensions (1990 on, Spain, mostly at UPM; also UNM): Incremental
framework; CLP; concurrent programs; Extension to Java/Java bytecode

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 3

Some Achievements in Parallelization

Fully automatic parallelizers for logic programs
– arguably the most powerful parallelizers for “irregular” applications.
[Herme. and Warren, CAN’87, Bueno, G. de la Banda, and Herme. ICLP’94, TOPLAS’99]

Parallelization using non-strict independence [Cabeza and Herme. SAS’94]

Parallelization of constraint programs [G. de la Banda and Herme. PLILP’96]

Perhaps the first fully implemented, practical application of AI?

Prompted considerable abstract domain development :

Set sharing. [Jacobs-Langen NACLP 89, Muthukumar and Herme. NACLP’89 (abstr. unif.)]

Set sharing and freeness. [Muthukumar and Herme. ICLP’91]

Def (propositional horn clauses) [de la Banda/Herme. WSA’92, Sondergaard, Marriott]

Combinations with depth-k, shape analysis (regular types), etc.
Set sharing for Java [Méndez-Lojo, Herme. VMCAI’08]

(C)LP/Prolog/Ciao very useful: allow studying challenging problems (pointers, irregular

computations, irregular data, dynamic heap, dynamic dispatch, etc.) in much better context.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 3

Some Achievements in Parallelization

Fully automatic parallelizers for logic programs
– arguably the most powerful parallelizers for “irregular” applications.
[Herme. and Warren, CAN’87, Bueno, G. de la Banda, and Herme. ICLP’94, TOPLAS’99]

Parallelization using non-strict independence [Cabeza and Herme. SAS’94]

Parallelization of constraint programs [G. de la Banda and Herme. PLILP’96]

Perhaps the first fully implemented, practical application of AI?

Prompted considerable abstract domain development :

Set sharing. [Jacobs-Langen NACLP 89, Muthukumar and Herme. NACLP’89 (abstr. unif.)]

Set sharing and freeness. [Muthukumar and Herme. ICLP’91]

Def (propositional horn clauses) [de la Banda/Herme. WSA’92, Sondergaard, Marriott]

Combinations with depth-k, shape analysis (regular types), etc.
Set sharing for Java [Méndez-Lojo, Herme. VMCAI’08]

(C)LP/Prolog/Ciao very useful: allow studying challenging problems (pointers, irregular

computations, irregular data, dynamic heap, dynamic dispatch, etc.) in much better context.

ParForCE and other projects –much collaboration with Giorgio / P isa!

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 4

Parallelization Process

Conditional dependency graph (of some segment, e.g., a clause):

vertices are possible tasks (statements, calls,...),
edges=possible dependency (labels=conditions needed for independence).

Local or global analysis used to reduce/remove checks in the edges.

foo(...) :-

g1(...),

g2(...),

g3(...).

g1 g3

g2

g1 g3

g2

icond(1−3)

icond(1−2) icond(2−3)

g1 g3

g2

test(1−3)

(test(1−3) −> (g1, g2) & g3
 ; g1, (g2 & g3))

g1, (g2 & g3)Alternative:
"Annotation"

Local/Global analysis
and simplification

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 5

A Priori Independence: Strict Independence

Correctness and efficiency (search space preservation) guaranteed for p & q if
no shared variables.

The “pointers” view:
correctness and efficiency guaranteed if there are no “pointers” between p and q.

main :- X=f(K,g(K)), Y=a,

Z=g(L), W=h(b,L),

--------------------->

p(X,Y),

q(Y,Z),

r(W).

aY

gZ L

g

W h b

X f K

p and q are strictly independent, but q and r are not.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 6

Independence – Non-Strict Independence

Pure goals: only one thread “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = f(X).

Impure goals: only rightmost “touches” each shared variable. Example:

main :- t(X,Y), p(X), q(Y).

t(X,Y) :- Y = a. p(X) :- var(X), ..., X=b, ...

Very important in programs using “incomplete structures.”

flatten(Xs,Ys) :- flatten(Xs,Ys,[]).

flatten([], Xs, Xs).

flatten([X|Xs],Ys,Zs) :- flatten(X,Ys,Ys1), flatten(Xs,Ys1,Zs).

flatten(X, [X|Xs], Xs) :- atomic(X), X \== [].

Another example: qsort with difference lists.

Paper: NSI from sharing+freeness; new run-time tests (allvars, sharedvars).

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 7

Some Speedups (Using Different Abstract Domains)

L/N
S
P*SF/P*S/SF/P

1 4 7 10 13 16 19 22 25 28 31 34
0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Number of Processors

S
pe

ed
up

Benchmark: mmatrix

N
L
S
P
P*SF/SF
P*S

1 2 3 4 5 6 7 8 9 10 11
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Number of Processors

S
pe

ed
up

Benchmark: ann

(ann is the parallelizer parallelizing itself;
1-10 proc.: actual speedups on Sequent Symmetry; 10+ simulator projections from execution traces)

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 8

The Second Phase: Program Development using AI / Next Gen. LP

The next stage:
not just optimization (parallelization, abstract partial evaluation, ...), but

program development fundamentally based on abstract interpretation.

Great influence of AI and LP in programming language design :
the “Ciao” language and environment design ;
AI-based compiler / env. (assertion based vs. strongly-typed, type systems as
domains, multiparadigm –again, Giorgio–, etc.).

Ideas lurking for a long time, crystallized in first prototypes in 1994-97
[PPCP’94, Ciao system design], and:

Overall design [ILPS’97, AADEBUG’97, ICLP’99, LOPSTR’99, SAS’03, SCP’05]

Assertion language [LNCS 1870]

Modular extensions [Pietrzak, Correas, Puebla, Herme. LPAR’06]

Abstract diagnosis [Alpuente, Comini, Escobar, Falaschi, Lucas, LOPSTR’02] [Gallardo,

Merino, Pimemtel, SAS’02] [Pietrzak, Herme. ICLP’07]

Extensions to Java [Albert, Gómez-Zamalloa, Hubert, Puebla PADL’07]

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 9

The CiaoPP Verification/Diagnosis Framework [AADEBUG’97]

+
PREPROCESSORLibs

Builtins/

:− check
:− entry

Program

P

I

verification

(and possible
warning

run−time error)

compile−time
error

verified

(optimiz

Assertion
Normalizer
& Lib Itf.

Static
Analysis RT tests

:− check

:− false

:− checked
Comparator
Incl. VC gen

Analysis
Info
[[P]]

certificate
(ACC) ed) code

Iα (partial specification) provided via a language of optional assertions.
State properties at relevant points.

Talk about properties which can be predefined or user-defined.
Types, cost, data sizes, termination, pointer aliasing, no-except, ...

Implemented for Ciao and (less mature) for Java and Java bytecode.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 10

The Abstraction Carrying Code (ACC) Scheme

VCGen

Domain(s)Domain(s)
Safety Policy

PRODUCER CONSUMER

Safety Policy

OK

Abstraction OK

Program Checker

Program

Analyzer

VCGenOK

[[P]]α = Analysis = lfp(analysis step) Certificate ⊂ [[P]]α Checker = analysis step

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 10

The Abstraction Carrying Code (ACC) Scheme

VCGen

Domain(s)Domain(s)
Safety Policy

PRODUCER CONSUMER

Safety Policy

OK

Abstraction OK

Program Checker

Program

Analyzer

VCGenOK

[[P]]α = Analysis = lfp(analysis step) Certificate ⊂ [[P]]α Checker = analysis step

Basic proposal [Albert, Puebla, Herme. COCV’04, LPAR’04, ICLP’04, PPDP’05, NGC’08]

Incremental version [Albert, Arenas, Puebla LPAR’06]

Certificate reduction (fixpoint compression) [Albert, Arenas, Puebla, Herme. ICLP’06]

MOBIUS project [TGC’06].

Incorporated in CiaoPP for types, modes, shapes, sizes, cost, det, termination,
non-failure, resources, etc.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 11

Combination with Partial Evaluation; Optimization; Scalability

Combination with Partial Evaluation:
Abstract executability. Multiple abstract specialization [Puebla, Herme. PEPM’95];
application in parallelization [LOPSTR’97, JLP’99]

Full integration of Partial Evaluation and AI [Puebla, Albert, Herme. SAS’06]

→ important contribution to the AI-based program development model.

Application to program optimization (other than parallelization): abstract
machines and native compilation [Morales, Carro, Herme. PADL’04, ICLP’05, LOPSTR’06];
embedded systems [Carro, Morales, Muller, Puebla, Herme. CASES’06].

Modularity, Scalability, Practicality Issues:
Efficient, incremental intermodular analysis / fixpoint calculation [Bueno, G. de la

Banda, Herme., Marriott, Puebla, Stuckey, Correas LOPSTR’01, LOPSTR’04, LOPSTR’05].
Widening of set-sharing [Navas, Bueno, Herme. PADL’06]

Dealing with the full ISO-Prolog standard [Bueno, Cabeza, Herme., Puebla ESOP’96]

Domain combinations, goal-dependent vs. goal indep. analysis (flow sensitivity)
[Codish, Mulkers, Bruy., G. de la Banda, Herme. PEPM’93, LPAR’94, TOPLAS’95, JLP’97]

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 12

Inference of Resource-related and other Complex Properties

Cost, resources (motivated by granularity control –lots of AI!):

Upper bounds (execution steps); application to granularity control
[Debray, Lin, Herme., PLDI’90].
Lower bounds (execution steps) [w/López-Garcı́a, ILPS’97, SAS’94].
Extension to Java bytecode [Albert, Arenas, Genaim, Puebla, Zanardini ESOP’07].
Execution times [Mera, López-Garcı́a, Puebla, Carro, Herme., PADL’07].
User-definable resources for LP [Navas, Mera, López-Garcı́a, Herme., ICLP’07].
Heap space analysis (Java bytecode) [Albert, Genaim, Gómez-Zamalloa, ISMM ’07].

Non-failure / no exceptions
[Bueno, Debray, López-Garcı́a, Herme. ICLP’97]; multivariant version [FLOPS’04].

Determinacy analysis [Bueno, López-Garcı́a, Herme. LOPSTR’04].

Heap / shape analysis (C++/Java) [Marron, Herme., Kapur, Stefanovic LCPC’06,

PASTE’07, CC’08]; Type domains, type widenings [Vaucheret, Bueno SAS’02].

Termination analysis (Java) [Albert, Arenas, Codish, Genaim, Puebla, Zanardini WST’07].

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 13

Final Thoughts / The Next 25 Years!

Go mainstream, make everyday tools! (Ciao, COSTA, ...) –coll. w/Industry (e.g.,
ES PASS).

Further work on scalability, modularity, domains, widenings, ...
Emphasis on resource-related properties; specially user-defined.
Improve diagnosis.
Develop ACC further, apply in practice to, e.g., small devices (MOBIUS).
Multi-language environments.

Back to parallelism! A big push to parallelization, granularity control, ...

Develop new, even more dynamic, multiparadigm, high-level languages,
getting correctness and real speed (without user burden), thanks to LP and AI.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 13

Final Thoughts / The Next 25 Years!

Go mainstream, make everyday tools! (Ciao, COSTA, ...) –coll. w/Industry (e.g.,
ES PASS).

Further work on scalability, modularity, domains, widenings, ...
Emphasis on resource-related properties; specially user-defined.
Improve diagnosis.
Develop ACC further, apply in practice to, e.g., small devices (MOBIUS).
Multi-language environments.

Back to parallelism! A big push to parallelization, granularity control, ...

Develop new, even more dynamic, multiparadigm, high-level languages,
getting correctness and real speed (without user burden), thanks to LP and AI.

But, mainly, thanks Giorgio –what an adventure!
Look forward to the next 25 years together!

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 14

Conditions for Non-Strict Independence Based on ShFr Info

We consider the parallelization of pairs of goals.

Let the situation be: {̂β} p {̂ψ} . . . q.
We define:

S(p) = {L ∈ ̂βSH | L ∩ (6= ∅}
SH = S(p)∩S(q) = {L∈ ̂βSH | L ∩ (6=∅

∧L ∩ (6=∅}

Conditions for non-strict independence for p and q:

C1 ∀L ∈ SH L ∩ ̂ψFR 6= ∅
C2 ¬ (∃N1...Nk ∈ S(p) ∃L ∈ ̂ψSH

L =
⋃k

i=1 Ni ∧ N1,N2 ∈ SH

∧∀i, j 1≤ i<j≤k Ni ∩ Nj ∩
̂βFR = ∅)

C1: preserves freeness of shared variables.

C2: preserves independence of shared variables.

More relaxed conditions if information re. partial answers and purity of goals.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

Slide 15

Run-Time Checks for NSI Based on ShFr Info

Run-time checks can be automatically included to ensure NSI when the previous
conditions do not hold.

The method uses analysis information.

Possible checks are:

ground(X): X is ground.

allvars(X,F): every free variable in X is in the list F .

indep(X,Y): X and Y do not share variables.

sharedvars(X,Y,F): every free variable shared by X and Y is in the list F .

The method generalizes the techniques previously proposed for detection of SI.

Even when only SI is present, the tests generated may be better than the
traditional tests.

From Parallelism to Program Development and Back M. Hermenegildo – Pisa, Italy – Oct 23, 2009

