CORAL: a modern C++ library for the manipulation of Boolean functions

Candidato Fabio Bossi
Relatore Roberto Bagnara

Anno Accademico 2007/2008
A mio padre
Abstract

The purpose of this work is to describe the CORAL library, which provides an efficient implementation of Boolean functions; it has been known for a long time that almost all of the interesting computations on Boolean functions, such as the satisfiability problem, are NP-hard, so this is not an easy task. The library was originally designed to be used by the China analyzer, in particular in the context of the groundness analysis problem of CLP languages, for which high performance operations on very large Boolean functions are needed (the internal representation of the functions involved can reach a size in the order of megabytes). However, we are confident that the library can and will be used successfully in other areas of application, and we will not discuss particular applications in this work. In order to perform operations on Boolean functions we need a way to represent them: CORAL utilizes reduced ordered binary decision diagrams (ROBDDs), which means that the most important part of this work will deal with their properties and the algorithms used to manipulate them. We also describe how CORAL supports alternative, mixed representations to optimize efficiency and memory occupation in contexts where entailed, disentailed and/or equivalent variables are frequent.
Contents

1 Boolean functions ... 1
 1.1 Fundamental concepts 1
 1.1.1 Definition of Boolean functions 1
 1.1.2 Denoting specific Boolean functions 1
 1.1.3 Notable sets of variables 2
 1.1.4 Equivalence relations over sets of variables 2
 1.1.5 Projections 3
 1.1.6 Positive Boolean functions 3
 1.1.7 Shannon expansion 4

2 Reduced Ordered Binary Decision Diagrams 5
 2.1 Definition ... 5
 2.1.1 ROBDD definition 5
 2.1.2 ROBDD semantics 6
 2.2 ROBDD properties 7
 2.2.1 Canonicity ... 7
 2.2.2 Influence of variable ordering 7
 2.3 Operations on ROBDDs 8
 2.3.1 Implementation of algebraic operators 8
 2.3.2 Implementation of the restriction operation 10

3 Algorithms in CORAL .. 11
 3.1 Basic data structures 11
 3.1.1 Sets of Boolean variables 11
 3.1.2 Equivalence relations 11
 3.1.3 Hash table 11
 3.1.4 Caches .. 12
 3.2 ROBDD algorithms 12
 3.2.1 Memory management 12
 3.2.2 Algorithms with upward approximation 12
 3.2.3 Complexity limitation 13
 3.2.4 Conjunction and disjunction 13
 3.2.5 if/then/else operator 13
 3.2.6 Specializations of if/then/else 15
 3.2.7 Variables on which a Boolean function depends 17
 3.2.8 Entailed and disentailed variables 17
Organization

Chapter 1. Introduces the fundamental concepts for Boolean functions.

Chapter 2. Introduces ROBDDs, the fundamental data structure used by CORAL to represent and manipulate Boolean expressions, discusses their properties and shows an example of how they can be used to implement operators on Boolean functions.

Chapter 3. Describes CORAL’s fundamental algorithms in detail.

Chapter 4. Discusses how the library supports different internal representations of Boolean expressions in a way that is reasonably transparent to the end user by applying policy-based class design.

Chapter 5. Provides the results of experimental evaluation of CORAL’s performance.

Chapter 6. Briefly draws conclusions.
1 Boolean functions

1.1 Fundamental concepts

1.1.1 Definition of Boolean functions

Boolean functions are functions that depend on a set of Boolean variables. The variables and the function itself have their values in \{0, 1\}. We will also refer to the elements 0 and 1 as false and true respectively. Formally, we denote the infinite and numerable set of Boolean variables as \text{Vars}. We also define a total order relation \prec over \text{Vars} that allows us to assign an index \(i \in \mathbb{N}\) to each variable \(x_i \in \text{Vars}\). We can now give the formal definition of Boolean valuation and Boolean function.

Definition 1. (Boolean valuations and Boolean functions.) The set of Boolean valuations over \text{Vars} is defined as \(\mathcal{A} \overset{\text{def}}{=} \text{Vars} \rightarrow \{0, 1\}\). The set of Boolean functions is defined as \(\mathcal{F} \overset{\text{def}}{=} \mathcal{A} \rightarrow \{0, 1\}\).

Sometimes we may use variable assignment as a synonym for Boolean valuation.

1.1.2 Denoting specific Boolean functions

We will use a simple notation to refer to specific Boolean functions, exploiting the fact that they can all be obtained by applying a few simple operators on a few elementary functions. We can start by defining the Boolean functions \(\bot\) and \(\top\) as the Boolean functions which evaluate to false and true respectively in any given Boolean valuation.

For each variable \(x \in \text{Vars}\), we also write \(x\) to denote the Boolean function \(f\) such that \(\forall a \in \mathcal{A}: f(a) = 1 \iff a(x) = 1\). It should always be clear whether we are referring to the variable or to the function in a specific context.

Now we define a few basic binary operations over \(\mathcal{F}\). For each pair of Boolean functions \(f_1, f_2 \in \mathcal{F}\), we write \(f_1 \land f_2\) to denote the Boolean function \(g \in \mathcal{F}\) such that for each \(a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) = 1 \land f_2(a) = 1)\). We define all other common operations analogously; here is a complete list:

Definition 2. (Binary operators on Boolean functions.) \(\forall f_1, f_2 \in \mathcal{F}:\)

\[f_1 \land f_2 \overset{\text{def}}{=} g \in \mathcal{F}. \forall a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) = 1 \land f_2(a) = 1), \]

\[f_1 \lor f_2 \overset{\text{def}}{=} g \in \mathcal{F}. \forall a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) = 1 \lor f_2(a) = 1), \]

\[f_1 \oplus f_2 \overset{\text{def}}{=} g \in \mathcal{F}. \forall a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) \neq f_2(a)), \]

\[f_1 \iff f_2 \overset{\text{def}}{=} g \in \mathcal{F}. \forall a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) = f_2(a)), \]

\[f_1 \Rightarrow f_2 \overset{\text{def}}{=} g \in \mathcal{F}. \forall a \in \mathcal{A}: g(a) = 1 \iff (f_1(a) = 0 \lor (f_1(a) = 1 \land f_2(a) = 1)). \]
The ∧ operator has precedence over the ∨ operator.

For each \(f \in F \), we define \(\bar{f} \) (sometimes denoted as \(\neg f \)) as the Boolean function such that \(\forall a \in A : \bar{f}(a) = 1 \iff f(a) = 0 \). For each \(i, t, e \in F \) we also define
\[
\text{if } i \text{ then } t \text{ else } e \stackrel{\text{def}}{=} (i \land t) \lor (i \land e).
\]

Finally, we need a notation for Boolean functions obtained by forcing some variables in another Boolean function to a given truth value. For each valuation \(a \in A \), each \(x, y \in \text{Vars} \), and each \(c \in \{0, 1\} \), the valuation \(a[c/x] \in A \) is defined as
\[
a[c/x](y) = \begin{cases}
c, & \text{if } x = y;
a(y), & \text{otherwise.}
\end{cases}
\]

We extend this to a set of variables by defining, for each \(X = \{v_1, v_2, \ldots v_n\} \subseteq \text{Vars} \), the Boolean valuation \(a[c/X] \stackrel{\text{def}}{=} a[c/v_1][c/v_2] \ldots [c/v_n] \). Now we can define, for each \(f \in F \), each \(x \in \text{Vars} \), each \(a \in A \) and each \(c \in \{0, 1\} \), the Boolean function \(f[c/x] \in F \) (also denoted as \(f \mid_{x \leftarrow c} \)) as \(f[c/x](a) \stackrel{\text{def}}{=} f(a[c/x]) \). Like we did with Boolean valuations, we define for each \(X = \{v_1, v_2, \ldots v_n\} \subseteq \text{Vars} \) the Boolean function \(f[c/X] \stackrel{\text{def}}{=} f[c/v_1][c/v_2] \ldots [c/v_n] \). We also define for each \(f \in F \), each \(x, y \in \text{Vars} \), and each \(a \in A \), the Boolean function \(f[x/y] \in F \) as \(f[x/y](a) \stackrel{\text{def}}{=} f(a[a(x)/y]) \).

1.1.3 Notable sets of variables

We now introduce, for any given Boolean function \(f \), the set of variables on which \(f \) depends, the sets of its entailed and disentailed variables, and the equivalence relation representing its equivalent variables; calculating them is necessary for many applications.

Definition 3. (Variable dependency. Entailed, disentailed and equivalent variables.) For each \(f \in F \), the set of variables on which \(f \) depends, the set of entailed variables for \(f \), the set of disentailed variables for \(f \), and the equivalence relation representing the equivalent variables for \(f \) are given, respectively, by:
\[
\begin{align*}
\text{vars}(f) & \stackrel{\text{def}}{=} \{ x \in \text{Vars} \mid \exists a \in A : f(a[0/x]) \neq f(a[1/x]) \}, \\
\text{true}(f) & \stackrel{\text{def}}{=} \{ x \in \text{Vars} \mid \forall a \in A : f(a) = 1 \implies a(x) = 1 \}, \\
\text{false}(f) & \stackrel{\text{def}}{=} \{ x \in \text{Vars} \mid \forall a \in A : f(a) = 1 \implies a(x) = 0 \}, \\
\text{equiv}(f) & \stackrel{\text{def}}{=} \{ (x, y) \in \text{Vars}^2 \mid \forall a \in A : f(a) = 1 \implies a(x) = a(y) \}.
\end{align*}
\]

1.1.4 Equivalence relations over sets of variables

Let \(L \) be the set of all equivalence relations over a finite set of variables and consider a particular equivalence relation \(L \in L \). We define the leader of an equivalence class in \(L \) as the minimum variable in the equivalence class; we also say that variable \(v_i \) is the leader of variable \(v_i \) for \(L \) when \(v_i \) is the leader of the equivalence class in \(L \) that contains \(v_i \) (note that each leader is the leader of itself), and define \(\lambda_L(v_i) \stackrel{\text{def}}{=} v_i \). The set of all leaders for
If \(E_1, E_2 \in \mathcal{L} \) we define
\(E_1 \lor E_2 \) as the intersection of \(E_1 \) and \(E_2 \) and
\(E_1 \land E_2 \) as the transitive closure of the union of \(E_1 \) and \(E_2 \). Formally it is defined inductively, for each \(i \in \mathbb{N}, \ i > 0 \), by:

\[
E_1 \land_0 E_2 \overset{\text{def}}{=} E_1 \cup E_2, \\
E_1 \land_i E_2 \overset{\text{def}}{=} \{(x, z) \in \text{Vars}^2 \mid \exists y \in \text{Vars} . (\exists(x, y), (y, z) \in (E_1 \land_{i-1} E_2))\}, \\
E_1 \land E_2 \overset{\text{def}}{=} \bigcup_{i \in \mathbb{N}} (E_1 \land_i E_2).
\]

Finally, we define the domain of an equivalence relation \(L \in \mathcal{L} \) as

\[
\text{dom}(L) \overset{\text{def}}{=} \{ x \in \text{Vars} . \exists(x, y) \in L \}.
\]

1.1.5 Projections

Given a Boolean function \(f \in \mathcal{F} \) and a variable \(x \in \text{Vars} \), we define the Boolean function

\[
\exists_x f \overset{\text{def}}{=} f[0/x] \lor f[1/x]. \tag{1.1}
\]

This equation is also known as Schröder’s elimination principle and is often exploited by the algorithms that compute projections. Given a finite set of variables \(\{v_1, v_2, \ldots, v_n\} \subseteq \text{Vars} \) we also define the Boolean function

\[
\exists\{v_1, v_2, \ldots, v_n\} f \overset{\text{def}}{=} \exists_{v_1} f \land \exists_{v_2} f \land \ldots \land \exists_{v_n} f.
\]

We finally define the projection of a Boolean function \(f \) onto a finite set of variables \(X \) as the Boolean function

\[
f \mid_X \overset{\text{def}}{=} \exists_{\text{Vars}\setminus X} f.
\]

1.1.6 Positive Boolean functions

We define the set of positive Boolean functions \(\text{Pos} \) as the set of all Boolean functions that evaluate to true in the variable assignment which assigns 1 to all variables in \(\text{Vars} \).

Definition 4. (Positive Boolean functions.) If \(t \in \mathcal{A} \) is the Boolean valuation such that \(\forall v \in \text{Vars} : t(v) = 1 \), we define

\[
\text{Pos} \overset{\text{def}}{=} \{ f \in \mathcal{F} \mid f(t) = 1 \}
\]

Marriott and Søndergaard (see [MS93]) have found this class of Boolean functions to be a good abstract domain for the problem of groundness analysis: that is why CORAL provides some specialized algorithms for it.
1.1.7 Shannon expansion

Theorem 1. (Shannon expansion.) Let $f \in \mathcal{F}$ and $x \in Vars$. Then:

$$f = (x \land f[0/x]) \lor (x \land f[1/x]).$$

Proof. Trivial: simply take a generic variable assignment $a \in A$ and evaluate the function in it for both cases $a(x) = 0$ and $a(x) = 1$.

This is very important for us because operators on Boolean functions commute with the Shannon expansion. For example, if \bullet is a binary operator, then

$$f \bullet g = (x \land (f[0/x] \bullet g[0/x])) \lor (x \land (f[1/x] \bullet g[1/x])).$$

(1.2)

This equation can be easily extended to non-binary operators.
2 Reduced Ordered Binary Decision Diagrams

2.1 Definition

2.1.1 ROBDD definition

Reduced Ordered Binary Decision Diagrams (ROBDDs), first introduced by Randal E. Bryant in [Bry86] along with the basic algorithms that manipulate them, are the fundamental data structure used by CORAL to represent Boolean functions. A ROBDD is a rooted, directed, and acyclic graph where leaf nodes are either 0 or 1 (the terminal nodes) and each non-leaf node \(n \) is labeled with a Boolean variable \(n_{\text{var}} \in \text{Vars} \) on which the represented Boolean function depends (\(n_{\text{var}} \in \text{vars}(f) \)). Each non-leaf node has two successors \(n_{\text{false}} \) and \(n_{\text{true}} \), called the false successor and the true successor respectively. Both successors can be either a leaf node or a non-leaf node labeled with a variable that is greater than \(n_{\text{var}} \) (this explains the Ordered part of the name). Finally, no duplicate nodes must be present (this explains the Reduced part of the name). As Bryant himself showed, it is possible to transform any Ordered Binary Decision Diagram into a ROBDD by applying a few simple reduction rules:

Remove duplicate terminal nodes: Keep no more than one copy of the terminal nodes 0 and 1 and redirect all edges that were directed towards the removed duplicates to the remaining copies.

Remove duplicate non-terminal nodes: If two or more non-terminal nodes are labeled with the same variable and share the same true and false successors, keep only one copy and redirect all edges that were directed towards the removed duplicates to the remaining copy.

Remove nodes having a unique successor: Remove all nodes that have their true successor equal to their false successor and redirect all edges that were directed towards them to their successor.

The rules must be applied repeatedly until a fixpoint is reached, as applying one rule may lead to further reduction possibilities for the others. We now give a formal definition for ROBDDs:

Definition 5. (ROBDDs.) If \(N \) is the set of nodes of a ROBDD then \(N \) satisfies

\[
N \subseteq \{0, 1\} \cup \text{Vars} \times N \times N.
\]
The nodes 0 and 1 are called terminal nodes. All the other nodes in \(N \) are called non-terminal nodes. For each non-terminal node \(n \in N \), \(n = (x, f, t) \), \(n_{\text{var}} \in \text{Vars} \) denotes \(x \), that is the variable associated with \(n \), \(n_{\text{false}} \in N \) denotes \(f \), that is the false successor of \(n \), and \(n_{\text{true}} \in N \) denotes \(t \), that is the true successor of \(n \). With this notation, \(N \) must also satisfy the irredundancy and the ordering conditions: for each non-terminal nodes \(n, m \in N \) \(n_{\text{false}} \neq n_{\text{true}} \) and \((m = n_{\text{false}} \text{ or } m = n_{\text{true}}) \implies (m \in \{0, 1\} \text{ or } n_{\text{var}} \prec m_{\text{var}}) \).

Moreover, \(N \) is rooted and connected, which means that there exists \(r \in N \) (the root) such that

\[
\forall n \in N \setminus \{r\} : \exists m \in N . \ (n = m_{0} \text{ or } n = m_{1}).
\]

A ROBDD is a pair \((r, N)\) that satisfies the above conditions. The set of all ROBDDs is denoted by \(D \). The set of all ROBDD nodes is denoted by \(N \). For each ROBDD \((r, N)\) we also define \(N_{\text{false}} \subset N \) as the set of the nodes of the ROBDD rooted at \(r_{\text{false}} \) and \(N_{\text{true}} \subset N \) as the set of the nodes of the ROBDD rooted at \(r_{\text{true}} \).

For simplicity, we will sometimes confuse a ROBDD with its root note. In particular, we may use 0 and 1 to refer to the ROBDDs \((0, \{0\})\) and \((1, \{1\})\) respectively.

We will represent ROBDDs as graphs in figures, using a dotted line for the edges directed from a node to its false successor (the false edges) and a full line for the edges directed from a node to its true successor (the true edges). Non-terminal nodes will be drawn as circles while terminal nodes will be drawn as squares. An example is given in Figure 2.1.

\[2.1\] ROBDD semantics

The semantics of a ROBDD is very simple: each ROBDD represents a Boolean function \(f \in \mathcal{F} \). For each variable assignment \(a \in \mathcal{A} \), \(f(a) \in \{0, 1\} \) is obtained by traversing the graph starting from the root: whenever we encounter a non-terminal node \(n \), we move...
onto n_{false} if $a(n_{var}) = 0$, otherwise $a(n_{var}) = 1$ and we move onto n_{true}. If we reach the 0 node then $f(a) = 0$, otherwise we reach the 1 node and $f(a) = 1$. The semantics, according to [BS98], can be formally defined by a function which maps each ROBDD into the represented Boolean function:

Definition 6. (Semantics of ROBDDs.) The function $[\cdot]_D : D \rightarrow F$ is given, for each $(r, N) \in D$, by

$$\left[(r, N) \right]_D \overset{\text{def}}{=} \begin{cases} \bot, & \text{if } r = 0; \\ \top, & \text{if } r = 1; \\ (r_{var} \land \left[(r_{true}, N_{true}) \right]_D) \lor (\neg r_{var} \land \left[(r_{false}, N_{false}) \right]_D), & \text{otherwise.} \end{cases}$$

For the sake of simplicity, we will sometimes write $\left[(r) \right]_D$ instead of $\left[(r, N) \right]_D$.

2.2 ROBDD properties

2.2.1 Canonicity

Theorem 2. (Canonicity of ROBDDs.) Given a fixed variable ordering \prec, we have that for each $f \in F$ there exists one and only one ROBDD $(r, N) \in D$ such that $\left[(r, N) \right]_D = f$.

Proof. See [Bry86].

This has many important consequences for the CORAL implementation: for example, we have that two Boolean functions are identical if and only if they are represented by the same ROBDD. CORAL keeps only one copy of each ROBDD into memory, so that equality test on ROBDDs can be performed simply by comparing their memory addresses.

2.2.2 Influence of variable ordering

The number of nodes of ROBDDs is extremely critical for the efficiency of the algorithms used to manipulate them, and the size of the ROBDD which represents a particular Boolean function may vary depending on the chosen variable ordering. Unfortunately, for any fixed variable ordering, it is possible to find some Boolean functions such that their representative ROBDD’s size is exponential in the number of variables. For example, Bryant has verified in [Bry92] that while ROBDDs for symmetric Boolean functions may have sizes that range from being linear to quadratic in the number of variables depending on the chosen ordering, yet ROBDDs for functions representing integer addition may range from linear to exponential; for integer multiplication we even have exponentiality for all variable orderings. This is why some ROBDD implementations have built-in mechanisms for changing variable ordering dynamically, relying for example on heuristical analysis. CORAL instead uses fixed variable ordering and relies on other mechanisms (which will be discussed later) for the purpose of keeping the ROBDDs as small as possible. In Figure 2.2 we give an example of two ROBDDs representing the same Boolean function $(x_1 \land y_1) \lor (x_2 \land y_2) \lor (x_3 \land y_3)$ using two different variable orderings.
Figure 2.2: Two ROBDDs representing the Boolean function \((x_1 \land y_1) \lor (x_2 \land y_2) \lor (x_3 \land y_3)\) using different variable orderings.

2.3 Operations on ROBDDs

2.3.1 Implementation of algebraic operators

The basic idea

We will now show how it is possible to use ROBDDs for implementing operations on Boolean functions, taking the application of a generic binary operator as an example. The fundamental trick consists in exploiting Equation 1.2, combined with the fact that for each ROBDD \((r, N)\) representing the Boolean function \(f = \llbracket (r) \rrbracket_{D}\), for each variable \(v\) such that \(v \preceq r\var\) and for each \(b \in \{0, 1\}\) we have:

\[
f\llbracket b/v \rrbracket = \begin{cases}
 f, & \text{if } v \prec r\var \\
 \llbracket (r_{\text{false}}) \rrbracket_{D}, & \text{if } v = r\var \text{ and } b = 0 \\
 \llbracket (r_{\text{true}}) \rrbracket_{D}, & \text{if } v = r\var \text{ and } b = 1
\end{cases}
\]

(2.1)

Given these results, we can implement a binary operator \(\bullet\) with a recursive procedure starting from the roots of the two arguments, using an algorithm that has been presented in [Bry86] and improved in [Bry92]. Each recursive call considers one node for each of the two ROBDD arguments and generates one node of the resulting ROBDD. The base case is encountered when both nodes are terminal nodes: the result is a terminal node obtained by applying \(\bullet\) on the truth values represented by the two terminal nodes. If the
operator has a dominant value (for example 0 for \land and 1 for \lor), we can define another base case when one of the two nodes is the terminal node corresponding to the dominant value and the other is a generic node (terminal or non-terminal): the result is the terminal node corresponding to the dominant value.

For the non-base case we are considering two nodes n_1 and n_2, where n_1 is a node of the first argument and n_2 is a node of the second argument. We choose $v = \min(n_{\text{var}}^1, n_{\text{var}}^2)$ (or, if one of the two nodes is terminal, the variable by which the other is labeled) as the splitting variable: we can now apply Shannon expansion with respect to variable v to the Boolean functions $f = [n_1^v]_D$ and $g = [n_2^v]_D$. Equation 2.1 allows us to compute $f[0/v], f[1/v], g[0/v]$ and $g[1/v]$: the first two will be represented by two nodes of the first argument, while the last two will be represented by two nodes of the second argument; if one of the two nodes n_1^v or n_2^v was not labeled with the splitting variable, then two of the four computed nodes will of course be, in fact, the same node and will coincide with n_1^v or n_2^v.

The result of the non-base case will be, according to Shannon expansion, a non-terminal node labeled with v; its true successor is obtained by calling the algorithm recursively on the computed nodes representing $f[1/v]$ and $g[1/v]$, while its false successor is obtained by calling the algorithm recursively on the computed nodes representing $f[0/v]$ and $g[0/v]$. This algorithm, without further optimization, produces a correct unreduced graph, but we can do much better while building a reduced graph by adding a few tweaks.

Efficiency tweaks and hash tables

In order to obtain a reduced graph, we apply reduction rules to the result at the end of each recursive call: if the result of the recursive call has its true successor equal to its false successor, we discard the node and connect its predecessor directly to its successor.

In order to avoid duplicate nodes, we keep an hash table with keys in $\text{Vars} \times \mathcal{N} \times \mathcal{N}$: each key refers to a node and contains the variable by which it is labeled, a pointer to its true successor and a pointer to its false successor (of course the two pointers must be different in order to comply with reduction rules), while the value of an entry contains a pointer to the represented node if it is already present in memory or contains NULL otherwise. After each recursive call we look for the resulting node into memory by performing an hash lookup: if the node is found then it is returned as the result, otherwise the new node is created and an hash entry corresponding to it is added. CORAL in fact utilizes a different kind of hash table, as the table would actually grow too large for our applications if we kept an entry for each allocated node. We will not describe the hash function here; just be aware that the value of an entry is not a single pointer but a list of pointers, so a lookup may require non-constant time in the worst case.

For each binary operator, we also keep another hash table that works as a cache for the purpose of avoiding multiple recursive calls on the same pairs of nodes: the table has keys in $\mathcal{N} \times \mathcal{N}$ and values in \mathcal{N}, where each value contains the result of the the application of the binary operator on the pair of nodes represented by the key. At the beginning of each recursive call we check if the resulting node has already been computed by performing an hash lookup: if the result is found then it is returned immediately, otherwise it is
computed normally and an hash entry corresponding to the performed computation is added. Since we perform at most one recursive call for each pair of nodes and provided that our implementation of hash tables is good enough to bring the average cost of each recursive valuation to a constant value, the worst case complexity of the algorithm is in the order of \(nm \), where \(n \) and \(m \) are the number of nodes in the first and the second ROBDD respectively.

The implementation of operators with more than two arguments can be easily extended from this one.

2.3.2 Implementation of the restriction operation

Given a ROBDD representing the Boolean function \(f \), \(v \in \text{Vars} \) and \(b \in \{0, 1\} \), we can compute \(f[b/x] \) with a recursive procedure starting from the root of the ROBDD: each recursive call considers one node of the argument and returns one node of the resulting ROBDD. The base case is when the considered node is labeled with \(v \): here we must simply return its true successor if \(b = 1 \) or its false successor if \(b = 0 \). For the recursive case we simply make recursive calls on both successors. The reduction of the result and the avoidance of multiple recursive calls can be guaranteed by using the usual techniques, with the obvious exception that the keys of the hash table that is used to avoid multiple recursive calls are composed by a single pointer.

The techniques described in this chapter can be used to implement most operations on Boolean functions, although CORAL utilizes a few other tweaks which will be presented in the next two chapters.
3 Algorithms in CORAL

3.1 Basic data structures

3.1.1 Sets of Boolean variables

The type of variable indexes is `index_type`. A single Boolean variable in CORAL is represented by an object of class `Variable`; it is a very simple class whose objects can be built using a constructor that takes an `index_type` which represents the index of the variable. To represent (finite) sets of variables we use the `Bit_Set` class, which in turn represents a set using a bitmap as its private data member: a specific variable v_i is contained in the set if and only if the bit in the position i of the bitmap exists and is set to 1. The type of this bitmap is `mpz_t`, which is provided by the GMP library; using bitmaps allows us to implement the common operations on sets such as union, intersection, difference and inclusion tests efficiently. The end user in fact utilizes class `Variables_Set` instead, which is a simple wrapper for `Bit_Set` that is a bit closer to the concept of variable.

3.1.2 Equivalence relations

An object of class `Equivalence_Relation` represents an equivalence relation $L \in \mathcal{L}$. The internal representation consists of a vector of elements of type `index_type`. Each element of the vector in position i is set to value l if v_l is the leader of v_i for the relation, or to the special value `NOT_IN_DOMAIN` if $v_i \notin \text{dom}(L)$. CORAL provides some functions to perform basic computations on Boolean function such as the intersection \lor and the transitive closure of the union \land.

3.1.3 Hash table

An hash table `hash_table` is used to ensure that there are no duplicate ROBDD nodes, as described in Subsection 2.3.1. Its method `find_or_insert` performs a lookup taking the three components of the key (the variable by which the root of the ROBDD is labeled, a pointer to the true successor and a pointer to the false successor) as its arguments: if an entry is found then the the return value is a pointer to the ROBDD that has already been constructed, otherwise a new node is allocated, a cache entry for it is added and the return value is a pointer to this new node. This method also handles the particular case where the two pointer arguments are in fact the same pointer simply by returning this pointer, in order to respect the third reduction rule. The static method `make_node` of class ROBDD is simply a wrapper for `find_or_insert` that takes the same arguments and returns the same pointer. From now on, whenever we are describing a ROBDD
algorithm and write that a node is created, we will leave the fact that we are calling make_node (thus applying the third reduction rule) implicit.

3.1.4 Caches
Coral keeps associative caches for most of its ROBDD operations. We will not give a list here as their names are easily identifiable by the Cache suffix in the source code. For simplicity we will not mention them in the pseudo-codes.

3.2 ROBDD algorithms

3.2.1 Memory management
Coral’s class ROBDD does not distinguish a ROBDD from its root node and uses its own customized mechanisms for the allocation of ROBDD nodes. ROBDD is derived from the Reference_Counted_Object class in order for ROBDDs to be reference counted, which means that each ROBDD is normally deallocated (by a garbage collection algorithm) only after there are no more references to it. The end user, in fact, does not use ROBDD directly: instead he utilizes the ROBDD_Ptr class, which is nothing more than a wrapper for a ROBDD pointer that also automatically adjusts reference counters of ROBDDs whenever the underlying pointer is changed.

All ROBDD nodes allocated by Coral are kept inside an array with variable length, which is formed by a certain number of memory chunks. Coral counts the number of allocated chunks and will throw an exception of type Too_Many_BDD_Nodes if it exceeds MAX_CHUNKS_BEFORE_EXCEPTION and the public Boolean static member ROBDD::dont_throw is set to false, which means that setting this latter value to false allows the end user to be notified when the memory occupation of ROBDDs is becoming too large. In this case, the normal behavior consists of calling ROBDD::emergency_cleanup() after catching the expression in order to regain some memory.

3.2.2 Algorithms with upward approximation
Algorithms with upward approximation, characterized by the substring up in their names, can be used on large ROBDDs in order to obtain more efficiency at the expense of some precision in the result. Each Boolean function g such that $f \implies g$ is an upward approximation of function f. These algorithms return an upward approximation of the result by trying to perform their corresponding non-approximated algorithm and checking if it throws Too_Many_BDD_Nodes: if the exception is not thrown then the exact result is returned, otherwise we return an upward approximation for it. For example the and_up operator, which is the upward approximation version of the conjunction operator and_ite, approximates $f \land g$ with f when Too_Many_BDD_Nodes is thrown; its implementation is shown in Listing 3.1.
3.2 ROBDD algorithms

3.2.3 Complexity limitation

The static members of class ROBDD equivalent_countdown and rename_countdown are unsigned integers used to provide a complexity upper bound for some operations on ROBDDs: the first is used for operations that look for equivalent variables and the second for operations that perform variable renaming. These operations automatically decrement the counters; when they reach 0 an exception of type Equivalent_Too_Costly or Rename_Too_Costly is thrown.

3.2.4 Conjunction and disjunction

These algorithms, named and_ite and or_ite, are nothing more than a particular case of the application of a binary operator presented in subsection 2.3.1 and differ only for their base cases. For conjunction, the base cases are when one of the two ROBDDs is the 1 or the 0 node. In the first case the result is the other ROBDD, while in the second case the result is 0. For disjunction, the base cases are the same, but we return 1 in the first case and the other ROBDD in the second case. Pseudo-code for conjunction and disjunction is shown in Algorithm 1 and Algorithm 2.

3.2.5 if/then/else operator

The if/then/else operator ite is an example of ternary operator: given three ROBDDs i, t, e representing the Boolean functions i, t and e respectively (note that we deliberately confuse ROBDDs with the represented functions), it computes the ROBDD representing the Boolean function if i then t else e.

Listing 3.1: Implementation of the conjunction operator with upward approximation

```cpp
inline const ROBDD*
ROBDD::and_up(const ROBDD* y) const {
    try {
        return and_cache.find_or_compute(this, y);
    }
    catch(Too_Many_BDD_Nodes) {
        ROBDD::emergency_cleanup();
        // x is a sound approximation of x & y.
        return this;
    }
}
```
Algorithm 1: The and _ite function

Require: two ROBDD nodes \(n \) and \(m \)

function _ite\((n, m)\)

if \(n = 1 \)
 return \(m \)
else if \(m = 1 \)
 return \(n \)
else if \(n = 0 \) or \(m = 0 \)
 return 0
else if \(n_{\text{var}} \prec m_{\text{var}} \)
 return make_node\(n_{\text{var}}, __ite(n_{\text{true}}, m), __ite(n_{\text{false}}, m)\)
else if \(m_{\text{var}} \prec n_{\text{var}} \)
 return make_node\(m_{\text{var}}, __ite(n, m_{\text{true}}), __ite(n, m_{\text{false}})\)
else
 return make_node\(n_{\text{var}}, __ite(n_{\text{true}}, m_{\text{true}}), __ite(n_{\text{false}}, m_{\text{false}})\)

Algorithm 2: The or _ite function

Require: two ROBDD nodes \(n \) and \(m \)

function _ite\((n, m)\)

if \(n = 0 \)
 return \(m \)
else if \(m = 0 \)
 return \(n \)
else if \(n = 1 \) or \(m = 1 \)
 return 1
else if \(n_{\text{var}} \prec m_{\text{var}} \)
 return make_node\(n_{\text{var}}, __ite(n_{\text{true}}, m), __ite(n_{\text{false}}, m)\)
else if \(m_{\text{var}} \prec n_{\text{var}} \)
 return make_node\(m_{\text{var}}, __ite(n, m_{\text{true}}), __ite(n, m_{\text{false}})\)
else
 return make_node\(n_{\text{var}}, __ite(n_{\text{true}}, m_{\text{true}}), __ite(n_{\text{false}}, m_{\text{false}})\)

3.2 ROBDD algorithms
We have four terminal cases (note that there could be more or less: this choice is the result of statistical analysis):

If \(i = 1 \) the result is \(t \).
If \(i = 0 \) the result is \(e \).
If \(t = 1 \) and \(e = 0 \) the result is \(i \).
If \(t = e \) the result is \(t \).

The implementation of operators with more than two arguments can be easily extended from the implementation of a generic binary operator, the main differences being that the splitting is performed on three nodes on each recursive call and the hash table used to avoid duplicate recursive calls uses a triple of ROBDD pointers as its key instead of a couple. Pseudo-code for this algorithm can be found in Algorithm 3.

3.2.6 Specializations of if/then/else

CORAL also provides some specializations of the \(\text{ite} \) operator, the most important being \(\text{var} _\text{ite} \) and \(\text{gen} _\text{var} _\text{ite} \); their purpose is to provide a more efficient implementation of \(\text{ite} \) for some particular cases, which will occur in particular during the algorithm for the elimination of entailed variables that will be presented later.

For example, \(\text{gen} _\text{var} _\text{ite} (i, t, e) \) implements the particular case when \(i \) is a ROBDD whose root has \(1 \) and \(0 \) as its direct true and false successors respectively. \(\text{gen} _\text{var} _\text{ite}_g \) and \(\text{gen} _\text{var} _\text{ite}_h \) are further specializations of \(\text{gen} _\text{var} _\text{ite} \): the first is used when we know that the root of \(i \) is labeled with a variable that is smaller than the one which labels the root of \(t \), while the second is used when we know that the root of \(i \) is labeled with a variable that is smaller than the one which labels the root of \(e \).

\(\text{var} _\text{ite} (i, t, e) \) and its further specializations \(\text{var} _\text{ite}_g \) and \(\text{var} _\text{ite}_h \) are analogous, but we add the hypothesis that the variable which labels the root of \(i \) does not occur in \(t \) and \(e \).

Here’s the list of all cases considered in the implementation of \(\text{gen} _\text{var} _\text{ite} (f, g, h) \). Further informations, along with a correctness proof, can be found in [BS98]. For the sole purpose of writing these cases more simply, we consider \(0 \text{var} \) and \(1 \text{var} \) to be special variables that are greater than all other variables.

Case 1 If \(f \text{var} = g \text{var} = h \text{var} \),

return make_node\((f \text{var}, g \text{true}, h \text{true}) \).

Case 2 If \(f \text{var} < g \text{var} < h \text{var} \) or \(f \text{var} < g \text{var} = h \text{var} \) or \(f \text{var} < h \text{var} < g \text{var} \),

return make_node\((f \text{var}, g, h) \).

Case 3 If \(f \text{var} = g \text{var} < h \text{var} \),

return make_node\((f \text{var}, g \text{true}, h) \).
Require: three ROBDD nodes \(i, t \) and \(e \)

function \(\text{ite}(i, t, e) \)

if \(i = 1 \) then
 return \(t \)
else if \(i = 0 \) then
 return \(e \)
else if \(t = 1 \) and \(e = 0 \) then
 return \(i \)
else if \(t = e \) then
 return \(t \)
else
 \(x_{\text{top}} = \min(\{i_{\text{var}}, t_{\text{var}}, e_{\text{var}}\}) \)
 if \(x_{\text{top}} = i_{\text{var}} \) then
 \(i_{\text{new}} = i_{\text{true}} \)
 \(i_{\text{newf}} = i_{\text{false}} \)
 else
 \(i_{\text{new}} = i_{\text{newf}} = i \)
 if \(x_{\text{top}} = t_{\text{var}} \) then
 \(t_{\text{new}} = t_{\text{true}} \)
 \(t_{\text{newf}} = t_{\text{false}} \)
 else
 \(t_{\text{new}} = t_{\text{newf}} = t \)
 if \(x_{\text{top}} = e_{\text{var}} \) then
 \(e_{\text{new}} = e_{\text{true}} \)
 \(e_{\text{newf}} = e_{\text{false}} \)
 else
 \(e_{\text{new}} = e_{\text{newf}} = e \)
 return make_node(\(x_{\text{top}}, \text{ite}(i_{\text{new}}, t_{\text{new}}, e_{\text{new}}), \text{ite}(i_{\text{newf}}, t_{\text{newf}}, e_{\text{newf}}) \))

Algorithm 3: The \(\text{ite} \) function

3.2 ROBDD algorithms
Case 4 If $f_{\text{var}} = h_{\text{var}} < g_{\text{var}}$, return $\text{make}_\text{node}(f_{\text{var}}, g_{\text{var}}, h_{\text{false}})$.

Case 5 If $g_{\text{var}} < f_{\text{var}} < h_{\text{var}}$, return $\text{make}_\text{node}(g_{\text{var}}, \text{gen}_{\text{var}_\text{ite}}(f_{\text{true}}, h_{\text{true}}), \text{gen}_{\text{var}_\text{ite}_h}(f_{\text{false}}, h_{\text{false}}))$.

Case 6 If $g_{\text{var}} < f_{\text{var}} = h_{\text{var}}$ or $g_{\text{var}} < h_{\text{var}} < f_{\text{var}}$, return $\text{make}_\text{node}(g_{\text{var}}, \text{gen}_{\text{var}_\text{ite}}(f_{\text{true}}, h_{\text{true}}), \text{gen}_{\text{var}_\text{ite}}(f_{\text{false}}, h_{\text{false}}))$.

Case 7 If $g_{\text{var}} = h_{\text{var}} < f_{\text{var}}$, return $\text{make}_\text{node}(g_{\text{var}}, \text{gen}_{\text{var}_\text{ite}}(f_{\text{true}}, h_{\text{true}}), \text{gen}_{\text{var}_\text{ite}}(f_{\text{false}}, h_{\text{false}}))$.

Case 8 If $h_{\text{var}} < f_{\text{var}} < g_{\text{var}}$, return $\text{make}_\text{node}(h_{\text{var}}, \text{gen}_{\text{var}_\text{ite}_g}(f_{\text{true}}, g_{\text{true}}), \text{gen}_{\text{var}_\text{ite}_g}(f_{\text{false}}, g_{\text{false}}))$.

Case 9 If $h_{\text{var}} < f_{\text{var}} = g_{\text{var}}$ or $h_{\text{var}} < g_{\text{var}} < f_{\text{var}}$, return $\text{make}_\text{node}(h_{\text{var}}, \text{gen}_{\text{var}_\text{ite}}(f_{\text{true}}, g_{\text{true}}), \text{gen}_{\text{var}_\text{ite}}(f_{\text{false}}, g_{\text{false}}))$.

The set of cases for var_ite is a strict subset of these cases, obtained by removing the ones where $f_{\text{var}} = g_{\text{var}}$ or $f_{\text{var}} = h_{\text{var}}$ and replacing all calls to $\text{gen}_{\text{var}_\text{ite}}, \text{gen}_{\text{var}_\text{ite}_h}$ and $\text{gen}_{\text{var}_\text{ite}_g}$ with calls to $\text{var}_\text{ite}, \text{var}_\text{ite}_h$ and var_ite_g respectively.

3.2.7 Variables on which a Boolean function depends

The algorithm vars which takes a ROBDD representing the Boolean function f and returns $\text{vars}(f)$ can be easily implemented by visiting the ROBDD and collecting the variables that label the nodes. This algorithm is one of the few ROBDD algorithms in CORAL for which no caching is provided. Pseudo-code is given in Algorithm 4.

```java
Require: a ROBDD node n
function vars(n)
  if n = 0 or n = 1 then
    return ∅
  else
    return {n_{\text{var}}} \cup \text{vars}(n_{\text{true}}) \cup \text{vars}(n_{\text{false}})

Algorithm 4: The vars function
```

3.2.8 Entailed and disentailed variables

The algorithms $\text{entailed}_{\text{vars}}$ and $\text{disentailed}_{\text{vars}}$ (and their counterparts $\text{entailed}_{\text{vars_no_cache}}$ and $\text{disentailed}_{\text{vars_no_cache}}$, which don’t use caching) are used to compute $\text{true}(f)$ and $\text{false}(f)$. In order to compute the set of all entailed variables in a ROBDD, we start from its root node and follow these steps (the algorithm that looks for disentailed variables is very similar):
Step 1 If the false successor is 0 add the variable by which this node is labeled to the set and proceed to the true successor.

Step 2 If the true successor is 0 proceed to the false successor.

Step 3 If both successors are non-terminal nodes, start a new instance of the algorithm on both successors in order to obtain two new sets of variables: the resulting set is the union of the set that has already been computed by this instance with the intersection between these two new sets.

Step 4 Otherwise, stop.

The proof that this algorithm finds all and only the entailed variables can be found in [BS98].

Notice that we don’t consider the case when the ROBDD is 0, as all variables in Vars are entailed and disentailed for ⊥ so we would have to return an infinite set. Pseudo-code for both algorithms is given in Algorithm 5 and Algorithm 6.

Algorithm 5: The entailed_vars function

```
Require: a ROBDD node n
function entailed_vars(n)
if nfalse = 0 then
    return \{n_var\} \cup entailed_vars(ntrue)
else if ntrue = 0 then
    return entailed_vars(nfalse)
else if is_not_leaf(ntrue) and is_not_leaf(nfalse) then
    return entailed_vars(ntrue) \cap entailed_vars(nfalse)
else
    return ∅
```

Algorithm 6: The disentailed_vars function

```
Require: a ROBDD node n
function disentailed_vars(n)
if ntrue = 0 then
    return \{n_var\} \cup disentailed_vars(nfalse)
else if nfalse = 0 then
    return disentailed_vars(ntrue)
else if is_not_leaf(ntrue) and is_not_leaf(nfalse) then
    return disentailed_vars(ntrue) \cap disentailed_vars(nfalse)
else
    return ∅
```

3.2 ROBDD algorithms
3.2.9 Combined search for entailed, disentailed and equivalent variables

The algorithm `equivalent_entailed_disentailed_vars_no_cache` is used to find all equivalent, entailed and disentailed vars in a ROBDD by performing a single visit on it. The logic used for detecting entailed and disentailed variables is the same as the one of the previous algorithm, while for equivalent variables we say that the equivalent variables of a ROBDD having its root labeled with variable \(x \) are the ones that are equivalent for both its true and false successors, plus the equivalences given by the fact that \(x \) is equivalent to the variables that are both entailed in the true successor and disentailed in the false successor. This statement has been proven in [BS98]. We must also consider the fact that all entailed and disentailed variables are equivalent to each other: you can see how we handle this in Algorithm 7.

Note that when whenever we compare the current variable with the maximum variable in a set, we are exploiting the ordering property of ROBDDs.

3.2.10 Build a ROBDD representing some variable equivalences

Given an equivalence relation \(L \) over \(\text{Vars} \), the algorithm `make_equivalent_vars` can be used to build the ROBDD representing the Boolean function that is true if and only if \(\forall (x, y) \in L : x \iff y \). We define the current variable \(x_c \) and the set of true leaders \(T \) (it contains the leaders for \(L \) such that the branch of the ROBDD that we are currently building is reached only when all of these leaders are true); the first is initialized to the smallest variable in \(\text{dom}(L) \), while the second is initialized to \(\emptyset \). The algorithm proceeds as follows:

Step 1 If \(x_c \) is undefined (which means that we have already processed all variables in \(\text{dom}(L) \)) return 1.

Step 2 Let \(x_n \) be the smallest variable in \(\text{dom}(L) \) that is greater than \(x_c \) and \(x_l = \lambda_L(x_c) \). If \(x_l = x_c \) (\(x_c \) is a leader for \(L \)) return the ROBDD having its root labeled with \(x_c \), its false successor being the result of the recursive application of this algorithm with \(x_c = x_n \) and its true successor being the result of the recursive application of this algorithm with \(x_n \) as the current variable and \(T = T \cup \{x_c\} \).

Step 3 Otherwise, if \(x_l \in T \), return the ROBDD having its root labeled with \(x_c \), its true successor being the result of the recursive application of this algorithm with \(x_c = x_n \) and its false successor being 0.

Step 4 Otherwise, return the ROBDD having its root labeled with \(x_c \), its false successor being the result of the recursive application of this algorithm with \(x_c = x_n \) and its true successor being 0.

3.2.11 Projection onto a set

The algorithm `project_set` is used to compute \(f|_X \) given a ROBDD representing \(f \) and a set of variables \(X \). We start from the root and follow these steps:
Algorithm 7: The equivalent_entailed_disentailed_vars function

3.2 ROBDD algorithms
Step 1 If the node is 1 or 0 return this node.

Step 2 If the set is empty or the variable which labels this node is greater than the maximum variable in the set return 1 (the reason for this is that all descendants of this node are necessarily labeled with a greater variable so they must be all projected away).

Step 3 If the variable by which this node is labeled is present in X call the algorithm recursively on the true and false successors: the result will be the ROBDD whose root is labeled by this variable and has the results of the two recursive calls as its true and false successor respectively.

Step 4 Otherwise this node must be projected away. We call the algorithm recursively on the true and false successors: the result will be the disjunction of the results of the two recursive calls, according to Equation 1.1.

The algorithm project_threshold, which projects away all variables in a ROBDD that are greater than a given variable, is analogous. The pseudo-code for both algorithms is given in Algorithm 8 and Algorithm 9.

Algorithm 8: The project_set function

```
Require: a ROBDD node $n$ and a set of variables $V$
function project_set($n, V$)
    if is_leaf($n$) then
        return $n$
    else if max($V$) $<$ $n_{\text{var}}$ or $V = \emptyset$ then
        return 1
    else if $n_{\text{var}} \in V$ then
        return make_node($n_{\text{var}}, \text{project}_\text{set}(n_{\text{true}}, V), \text{project}_\text{set}(n_{\text{false}}, V))$
    else
        return or_ite(project_set($n_{\text{true}}, V), \text{project}_\text{set}(n_{\text{false}}, V))
```

Algorithm 9: The project_threshold function

```
Require: a ROBDD node $n$ and a threshold variable $t$
function project_threshold($n, t$)
    if is_leaf($n$) then
        return $n$
    else if $t$ $<$ $n_{\text{var}}$ then
        return 1
    else
        return make_node($n_{\text{var}}, \text{project}_\text{threshold}(n_{\text{true}}, t), \text{project}_\text{threshold}(n_{\text{false}}, t))$
```

3.2 ROBDD algorithms
3.2.12 Shift renaming

The algorithm \texttt{shift_rename} takes an unsigned integer \(n \) and renames each variable \(v_i \) in a ROBDD to \(v_{i+n} \); it is implemented easily by renaming the root then calling recursively on its true and false successors. Pseudo-code is given in Algorithm 10.

\begin{algorithm}
\begin{algorithmic}
 \Require a ROBDD node \(n \) and an offset \(s \)
 \Function{shift_rename}{n, s}
 \If{is_leaf(n)}
 \State \Return {n}
 \Else
 \State \Return {make_node(x_{variable_index(n)}+s, shift_rename(n\text{true}, s), shift_rename(n\text{false}, s))}
 \EndIf
 \EndFunction
\end{algorithmic}
\end{algorithm}

Algorithm 10: The shift_rename function

3.2.13 Renaming with respect to an equivalence relation

Suppose that we have a ROBDD \(n \) representing the Boolean function \(f \) and an equivalence relation \(R \) and we want to rename each variable in \(n \) to its leader in \(R \). This operation is realized by the rename algorithm.

We start by defining the current variable \(x_c \) and the set of true leaders \(T \). The first is initialized to \(x_0 \), while the second is initialized to \(\emptyset \). The algorithm starts from the root of the ROBDD and proceeds as follows:

\begin{itemize}
 \item \textbf{Step 1} If this node is 0 or 1 or it is labeled with a variable that is greater than the greatest variable in \(\text{dom}(R) \), return this node.
 \item \textbf{Step 2} Let \(x_i \) be the variable by which this node is labeled. If there exists the minimum leader \(x_l \) for \(R \) such that \(x_c \preceq x_l \prec x_i \) return the node that is labeled with \(x_l \), has the result of the recursive application of this algorithm on this same node with \(x_{i+1} \) as the current variable and with \(T = T \cup \{x_l\} \) as its true successor and has the result of the recursive application of this algorithm on this same node with \(x_{i+1} \) as the current variable and with the same old value of \(T \) as its false successor.
 \item \textbf{Step 3} If \(x_i \notin \text{dom}(R) \) return the node that is labeled with \(x_i \) and has the results of the recursive applications of this algorithm on the true and false successors of this node with \(x_{i+1} \) as the current variable and with the same value of \(T \) as its true and false successors respectively.
 \item \textbf{Step 4} If \(\lambda_{R}(x_i) = x_i \) return the node that is labeled with \(x_i \), has the result of the recursive application of this algorithm on the true successor of this node with \(x_{i+1} \) as the current variable and with \(T = T \cup \{x_i\} \) as its true successor and has the result of the recursive application of this algorithm on the false successor of this node with \(x_{i+1} \) as the current variable and with the same old value of \(T \) as its false successor.
\end{itemize}

3.2 ROBDD algorithms
Step 5 If $\lambda_R(x_i) \in T$ return the result of the recursive application of this algorithm on the true successor of this node with x_{i+1} as the current variable and with the same value of T.

Step 6 Here we have that $\lambda_R(x_i) \notin T$, so we return the result of the recursive application of this algorithm on the false successor of this node with x_{i+1} as the current variable and with the same value of T.

A correctness proof can be found, as usual, in [BS98], while the pseudo-code can be found in Algorithm 11.

<table>
<thead>
<tr>
<th>Require: a ROBDD node n and an equivalence relation R</th>
</tr>
</thead>
<tbody>
<tr>
<td>function rename(n, R)</td>
</tr>
<tr>
<td>$T = \emptyset$</td>
</tr>
<tr>
<td>rename_impl($n, R, 1, T$)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function rename_impl(n, R, c, T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>if is_leaf(n) or max(dom(R)) < n_{var} then</td>
</tr>
<tr>
<td>return n</td>
</tr>
<tr>
<td>else if $\exists \min({l \in \text{leaders}(R) . x_c \leq l < n_{var}})$ then</td>
</tr>
<tr>
<td>return make_node(n_{var}, rename_impl(n, R, variable_index(n_{var}) + 1, $T \cup {n_{var}}$), rename_impl(n, R, variable_index(n_{var}) + 1, T))</td>
</tr>
<tr>
<td>else if $n_{var} \notin \text{dom}(R)$ then</td>
</tr>
<tr>
<td>return make_node(n_{var}, rename_impl(n_{true}, R, variable_index(n_{var}) + 1, T), rename_impl(n_{false}, R, variable_index(n_{var}) + 1, T))</td>
</tr>
<tr>
<td>else if $\lambda_R(n_{var}) = n_{var}$ then</td>
</tr>
<tr>
<td>return make_node(n_{var},</td>
</tr>
<tr>
<td>rename_impl(n_{true}, R, variable_index(n_{var}) + 1, $T \cup {n_{var}}$),</td>
</tr>
<tr>
<td>rename_impl(n_{false}, R, variable_index(n_{var}) + 1, T))</td>
</tr>
<tr>
<td>else if $\lambda_R(n_{var}) \in T$ then</td>
</tr>
<tr>
<td>return rename_impl(n_{true}, R, variable_index(n_{var}) + 1, T)</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>return rename_impl(n_{false}, R, variable_index(n_{var}) + 1, T)</td>
</tr>
</tbody>
</table>

Algorithm 11: The rename function

3.2.14 Elimination of entailed and disentailed variables

Let n be the ROBDD representing the Boolean function f and S a finite subset of Vars. The algorithms elim_true_vars and elim_false_vars can be used to compute $f[1/S]$ and $f[0/S]$ respectively. In particular, if S is the set of the entailed variables for f, then the result of the application of elim_true_vars will be the ROBDD obtained by removing all entailed variables from n.

3.2 ROBDD algorithms 23
The algorithm `elim_true_vars` (`elim_false_vars` is analogous) starts from the root of the ROBDD and follows these steps:

Step 1 If this node if 0 or 1 or it is labeled with a variable that is greater than all the variables in S return this node.

Step 2 Let x be the variable by which this node is labeled. If x ∈ S return the result of the recursive application of this algorithm on the true successor.

Step 3 Here we have x ∉ S, so we simply return the node that is labeled with x and has the results of the recursive applications of this algorithm on the true and false successors as its true and false successors respectively.

Pseudo-code for the two algorithms is given in Algorithm 12 and Algorithm 13.

```
Require: a ROBDD node n and a set of variables E
function elim_true_vars(n, E)
    if is_leaf(n) or max(E) < n_var then
        return n
    else if n_var ∈ E then
        return elim_true_vars(n_true, E)
    else
        return make_node(n_var, elim_true_vars(n_true, E), elim_true_vars(n_false, E))

Algorithm 12: The elim_true_vars function
```

```
Require: a ROBDD node n and a set of variables D
function elim_false_vars(n, D)
    if is_leaf(n) or max(D) < n_var then
        return n
    else if n_var ∈ D then
        return elim_false_vars(n_false, D)
    else
        return make_node(n_var, elim_false_vars(n_true, D), elim_false_vars(n_false, D))

Algorithm 13: The elim_false_vars function
```

3.2.15 Elimination of equivalent variables

Let n be the ROBDD representing the Boolean function f and L the (finite) equivalence relation over Vars which represents equiv(f) (and can be obtained by applying the algorithm presented in 3.2.9 on n). The algorithm `squeeze_equivalent_vars` can be used to remove all nodes that are labeled with a variable that is not a leader for L from n.
The implementation is quite simple: we visit the ROBDD as usual. When we encounter a node that is labeled with a leader for \(L \) the result is simply a node having the same label and the results of the recursive calls on the original node’s successors as its successors, otherwise one of the successors of the node must be 0 and we return the result of the recursive call of the algorithm on the other node (thus projecting away this node). You can find the pseudo-code in Algorithm 14.

Require: a ROBDD node \(n \) and an equivalence relation \(L \)

Function \(\text{squeeze_equivalent_vars}(n, L) \)

if \(\text{is_leaf}(n) \) or \(\text{max}(\text{dom}(L)) < n_{\text{var}} \) then
 return \(n \)
else
 if \(n_{\text{var}} \notin \text{dom}(L) \) or \(\lambda_L(n_{\text{var}}) = n_{\text{var}} \) then
 return \(\text{make_node}(n_{\text{var}}, \text{squeeze_equivalent_vars}(n_{\text{true}}, L), \text{squeeze_equivalent_vars}(n_{\text{false}}, L)) \)
 else
 if \(n_{\text{true}} = 0 \) then
 return \(\text{squeeze_equivalent_vars}(n_{\text{false}}, L) \)
 else
 return \(\text{squeeze_equivalent_vars}(n_{\text{true}}, L) \)

Algorithm 14: The \(\text{squeeze_equivalent_vars} \) function

3.2.16 Combined search and elimination of entailed and disentailed variables

Suppose that we have a ROBDD \(n \) for Boolean function \(f \) and we know some (but not necessarily all) entailed variables for \(f \), i.e. we know \(E \subset \text{true}(f) \). The algorithm \(\text{elim_search_true_vars} \) can be used to eliminate all entailed variables in \(E \) from \(n \) while adding some other unknown entailed variables for \(f \) to \(E \). Repeated application of this algorithm on the same ROBDD is guaranteed to reach a fixpoint where \(E \) contains all and only the entailed variables for \(f \) and \(n \) does not have any entailed variable.

Algorithm \(\text{elim_search_false_vars} \) is the analogous for disentailed variables. Pseudo-codes for both can be found in Algorithm 15 and Algorithm 16 (notice that they return a pair \((n, S)\)).

3.2.17 Forcing a set of variables to true or false

Given a ROBDD \(n \) representing the Boolean function \(f \) and a finite set of variables \(S = x_1, x_2, \ldots, x_n \), the algorithm \(\text{and_vs_true} \) computes the ROBDD representing the Boolean function \(f \land x_1 \land x_2 \land \ldots \land x_n \) (the algorithm \(\text{and_vs_false} \) which computes \(f \land \overline{x_1} \land \overline{x_2} \land \ldots \land \overline{x_n} \) is very similar to this one). We traverse the ROBDD starting from the root node, initialize the current variable \(x_c = x_1 \), and apply the following steps:
Algorithm 15: The elim_search_true_vars function.

Algorithm 16: The elim_search_false_vars function.
Step 1 If the node is 0 return this node.

Step 2 If the node is 1 build and return the ROBDD for Boolean function $x_c \land x_{c+1} \land \ldots \land x_n$ (how to build it is trivial and is shown in Algorithm 17).

Step 3 If the variable x by which this node is labeled is smaller than x_c return the ROBDD whose root is labeled by x and whose true and false successors are the results of the application of this algorithm on the true and false successors of this node respectively.

Step 4 Let t be this node if $x_c \preceq x$ or its true successor otherwise. If x_c is the greatest variable in G, then return the ROBDD having its root labeled with c, t as its true successor and 0 as its false successor; otherwise return the ROBDD having its root labeled with c, the result of the recursive application of this algorithm on t as its true successor and 0 as its false successor.

You can find the pseudo-code for both algorithms in Algorithm 17 and Algorithm 18.

```
Require: a ROBDD node $n$ and a set of variables $T$
function and_vs_true($n, T$)
  avt_impl($n, T, 1$)

function avt_impl($n, T, c$)
  if $n = 0$ then
    return 0
  else if $n = 1$ then
    $n_{res} = 1$
    while $x_c \preceq \max(T)$ do
      $n_{res} = \text{make\_node}(\max(T), n_{res}, 0)$
      $T = T \setminus \{\max(T)\}$
    return $n_{res}$
  else if $n_{var} \prec x_c$ then
    return $\text{make\_node}(n_{var}, \text{avt\_impl}(n_{true}, T, c), \text{avt\_impl}(n_{false}, T, c))$
  else
    if $x_c \preceq n_{var}$ then
      $n_{next} = n$
    else
      $n_{next} = n_{true}$
      if $\exists x_{next} = \min(\{x \in T : x_c \prec x\})$ then
        return $\text{make\_node}(x_c, \text{avt\_impl}(n_{next}, T, \text{variable\_index}(x_{next})), 0)$
      else
        return $\text{make\_node}(x_c, n_{next}, 0)$

Algorithm 17: The and_vs_true function
```

3.2 ROBDD algorithms
Require: a ROBDD node n and a set of variables F

function and_vs_false(n, F)

$avf_impl(n, F, 1)$

function $avf_impl(n, F, c)$

if $n = 0$ then
 return n
else if $n = 1$ then
 $n_{\text{res}} = 1$
 while $x_c \preceq \max(F)$ do
 $n_{\text{res}} = \text{make_node}($max($F$), 0, n_{res})
 $F = F \setminus \{\max(F)\}$
 return n_{res}
else if $n_{\text{var}} \prec x_c$ then
 return $\text{make_node}(n_{\text{var}}, avf_impl(n_{\text{true}}, F, c), avf_impl(n_{\text{false}}, F, c))$
else
 if $x_c \preceq n_{\text{var}}$ then
 $n_{\text{next}} = n$
 else
 $n_{\text{next}} = n_{\text{false}}$
 if $\exists x_{\text{next}} = \min\{x \in F . x_c \prec x\}$ then
 return $\text{make_node}(x_c, 0, avf_impl(n_{\text{next}}, F, \text{variable_index}(x_{\text{next}})))$
 else
 return $\text{make_node}(x_c, 0, n_{\text{next}})$

Algorithm 18: The and_vs_false function

3.2 ROBDD algorithms
3.2.18 Forcing some variables to be equivalent in a positive function

The algorithm \texttt{expand_equivalent_vars} can be used to perform efficiently the inverse operation for the one presented in 3.2.15, that is conjuncting a Boolean function with the equivalence conditions given by an equivalence relation, for the case when \(f \in \text{Pos} \).

Given a ROBDD representing \(f \) and the equivalence relation \(L \), we define the current variable \(x_c \) and the set of true leaders \(T \); the first is initialized to the smallest variable in \(\text{dom}(L) \), while the second is initialized to \(\emptyset \). Afterwards, we start from the root of the ROBDD and follow these steps:

\begin{itemize}
 \item [Step 1] If this node is 1 return the result of the application of the algorithm \texttt{make_equivalent_vars} (presented in 3.2.10) on the same relation \(L \), using the same values for \(x_c \) and \(T \).
 \item [Step 2] If this node if 0 return 0.
 \item [Step 3] If \(x_c \) is undefined (which means that we have already processed all variables in \(\text{dom}(L) \)) return the current node.
 \item [Step 4] Let \(x \) be the variable by which this node is labeled. If \(x \prec x_c \) return the node labeled with \(x \) and having the results of the recursive calls of this algorithm (with the same values for \(x_c \) and \(T \)) on the true and false successors of the current node as its true and false successors respectively.
 \item [Step 5] Let \(x_n \) be the smallest variable in \(\text{dom}(L) \) that is greater than \(x_c \). If \(x = x_c \) then \(x_c \) must be a leader for \(L \), so we return the node labeled with \(x_c \), having the result of the recursive application of this algorithm on the true successor of this node with \(x_n \) as the current variable and with \(T = T \cup \{x_c\} \) as its true successor and the result of the recursive application of this algorithm on the false successor of this node with \(x_n \) as the current variable and with the same old value of \(T \) as its false successor.
 \item [Step 6] Otherwise, let \(x_l = \lambda_L(x_c) \). If \(x_l = x_c \) then \(x_c \) is a leader for \(L \) so we return the node labeled with \(x_c \), having the result of the recursive application of this algorithm on this same node with \(x_n \) as the current variable and with \(T = T \cup \{x_c\} \) as its true successor and the result of the recursive application of this algorithm on this same node with \(x_n \) as the current variable and with the same old value of \(T \) as its false successor.
 \item [Step 7] If \(x_l \in T \) return the node labeled with \(x_c \), having the result of the recursive application of this algorithm on this same node with \(x_n \) as the current variable and with the same value of \(T \) as its true successor and 0 as its false successor.
 \item [Step 8] Otherwise, return the node labeled with \(x_c \), having the result of the recursive application of this algorithm on this same node with \(x_n \) as the current variable and with the same value of \(T \) as its false successor and 0 as its true successor.
\end{itemize}
3.2.19 Exotic operators

CORAL also provides a few more specific ROBDD algorithms for the purpose of building (efficiently) some ROBDDs representing particular classes of Boolean functions that are often encountered in groundness analysis.

Functions of type \(v \implies v_1 \land v_2 \land \ldots \land v_n \)

ROBDDs for this class of functions are built by the `if_conj` algorithm, which takes \(v \) and the set of variables \(V = \{ v_1, v_2, \ldots, v_n \}, v \notin V \) as its arguments. If all variables in \(V \) are greater than \(v \) in the ordering the task is trivial, as the result is simply a ROBDD whose root is labeled by \(v \), has 1 as its false successor and has the ROBDD representing \(v_1 \land v_2 \land \ldots \land v_n \) as its true successor: that's why, as for `if_conj`, we start by considering only the greater variables and handle the smaller ones later. Pseudo-code is given in Algorithm 19.

```plaintext
| Require: a variable \( v \) and a set of variables \( V \) |
| function if_conj(\( v, V \)) |
| \( n_v = \text{and}_v\text{_vs}_v\text{_true}(1, \{ x \in V. \ v < x \}) \) |
| \( n_v = \text{make}_v\text{_node}(v, n_v, 1) \) |
| \( S = \{ x \in V. \ x < v \} \) |
| if \( S = \emptyset \) then |
| return \( n_v \) |
| else |
| \( f_v = \text{make}_v\text{_node}(v, 0, 1) \) |
| curr = prev = \( n_v \) |
| while \( S \neq \emptyset \) do |
| \( m = \text{max}_v(S) \) |
| curr = \( \text{make}_v\text{_node}(m, prev, f_v) \) |
| prev = curr |
| \( S = S \setminus \{ m \} \) |
| return curr |

Algorithm 19: The if_conj function.
```

Functions of type \(v \iff v_1 \land v_2 \land \ldots \land v_n \)

ROBDDs for this class of functions are built by the `iff_conj` algorithm, which takes \(v \) and the set of variables \(V = \{ v_1, v_2, \ldots, v_n \}, v \notin V \) as its arguments. As for `if_conj`, the construction is trivial if all variables in \(V \) are greater than \(v \) in the ordering, as the result is simply a ROBDD whose root is labeled by \(v \), has the ROBDD representing \(\neg v_1 \lor \neg v_2 \lor \ldots \lor \neg v_n \) as its false successor and has the ROBDD representing \(v_1 \land v_2 \land \ldots \land v_n \) as its true successor: that’s why, as for `if_conj`, we start by considering only the greater variables and handle the smaller ones later. Pseudo-code is given in Algorithm 20.
Require: a variable v and a set of variables V

function $\text{iff}_\text{conj}(v, V)$

$G = \{ x \in V . v \prec x \}$

$t_v = \text{and}_\text{vs}_\text{true}(1, G)$

$f_{\text{curr}} = f_{\text{prev}} = 0$

while $G \neq \emptyset$ do

$m = \text{max}(G)$

$f_{\text{curr}} = \text{make}_\text{node}(m, f_{\text{prev}}, 1)$

$f_{\text{prev}} = f_{\text{curr}}$

$G = G \setminus \{m\}$

$n_v = \text{make}_\text{node}(v, t_v, f_{\text{curr}})$

$S = \{ x \in V . x \prec v \}$

if $S = \emptyset$ then

return n_v

else

$f_v = \text{make}_\text{node}(v, 0, 1)$

$\text{curr} = \text{prev} = n_v$

while $S \neq \emptyset$ do

$m = \text{max}(S)$

$\text{curr} = \text{make}_\text{node}(m, \text{prev}, f_v)$

$\text{prev} = \text{curr}$

$S = S \setminus \{m\}$

return curr

end

Algorithm 20: The iff_conj function.

3.2 ROBDD algorithms
An even more exotic class of functions

The \texttt{conj} algorithm takes a set of variables \(V = \{v_1, v_2, \ldots, v_n\} \) as its argument and builds the ROBDD for the Boolean function that evaluates to \textit{false} if and only if one and only one variable in \(V \) is false. This function can be viewed as:

\[
(v_0 \leftarrow v_1 \land v_2 \land \ldots \land v_n) \land (v_1 \leftarrow v_0 \land v_2 \land \ldots \land v_n) \land \ldots \land (v_n \leftarrow v_0 \land v_1 \land \ldots \land v_{n-1})
\]

Since we must conjunct a set of clauses, we start by building the ROBDD for the first clause, then we build the ROBDD for the second one and conjunct it with the first one using \texttt{and_ite}, then we conjunct the result with the ROBDD for the third one and so on.

The only problem we still have to solve is how to build the ROBDD for a Boolean function of type \(v \leftarrow t_1 \land t_2 \land \ldots \land t_n \). As with the two previous algorithms, the solution is trivial when the implied variable is greater than all the others: the result is simply a ROBDD whose root is labeled with \(v \), has 1 as its true successor and has the ROBDD for \(\neg t_1 \lor \neg t_2 \lor \ldots \lor \neg t_n \) as its false successor. So we start as usual by considering only the greater variables and building the corresponding ROBDD; afterwards we handle the smaller variables as shown in Algorithm 21.

3.2 ROBDD algorithms

Require: a set of variables V

function conj(V)

$n = 1$

$T = V$

while $T \neq \emptyset$
do

$c = \min(T)$

$f_{curr} = f_{prev} = 0$

$G = \{x \in V : c < x\}$

while $G \neq \emptyset$
do

$m = \max(G)$

$f_{curr} = \text{make_node}(m, f_{prev}, 1)$

$f_{prev} = f_{curr}$

$G = G \setminus \{m\}$

$n_c = \text{make_node}(c, 1, f_{curr})$

$n_{curr} = n_{prev} = n_c$

$S = \{x \in V : x < c\}$

while $S \neq \emptyset$
do

$m = \max(G)$

$n_{curr} = \text{make_node}(m, n_{prev}, 1)$

$n_{prev} = n_{curr}$

$S = S \setminus \{m\}$

$n = \text{and_ite}(n, n_{curr})$

$T = T \setminus \{c\}$

end do

end while

return n

Algorithm 21: The conj function.
4 Policy-based composite representations

4.1 Composite representations of Boolean functions

4.1.1 Beyond ROBDDs

Statistical analysis in CHINA (see [BS98]) has shown that a very consistent part of ROBDDs was used to store informations about entailed and equivalent variables: this has led to the idea that we can keep ROBDDs much smaller (thus improving the efficiency of most algorithms) by keeping the information on entailed and equivalent variables in a separate \textbf{Bit_Set} and an \textbf{Equivalence_Relation} respectively. This can be extended to disentailed variables by using an additional \textbf{Bit_Set} if some other application needs it. Formally, we can represent the Boolean function \(f \in \mathcal{F} \) with four elements \(n \in \mathcal{D}, E, D \in \wp(\mathsf{Vars}) \) and \(L \in \mathcal{L} \) such that:

\[
\text{vars}(\llbracket n \rrbracket_{\mathcal{D}}) \cap E = \text{vars}(\llbracket n \rrbracket_{\mathcal{D}}) \cap D = E \cap D = \emptyset \tag{4.1}
\]

(which means that the function represented by \(n \) must not depend on any variable in \(E \) or \(D \) and a variable cannot be both entailed and disentailed),

\[
\text{dom}(L) \cap \text{vars}(\llbracket n \rrbracket_{\mathcal{D}}) \subseteq \text{leaders}(L) \tag{4.2}
\]

(which means that non-leaders for \(L \) must not occur in the ROBDD \(n \)),

\[
\text{dom}(L) \cap E = \text{dom}(L) \cap D = \emptyset \tag{4.3}
\]

(which means that all variables in \(L \) must not occur in \(E \) and \(D \))

\[
n = 0 \implies E = D = L = \emptyset \tag{4.4}
\]

(which imposes a canonical representation for \(\bot \)) and

\[
f = \llbracket n \rrbracket_{\mathcal{D}} \land \bigwedge_{e \in E} e \land \bigwedge_{d \in D} \overline{d} \land \bigwedge_{(v_1, v_2) \in L} (v_1 \iff v_2) \tag{4.5}
\]

If conditions \([4.1, 4.2, 4.3, 4.4]\) are all met, we say that the representation is \textit{normalized}; otherwise we say that the representation is \textit{not normalized}. For both cases the semantics is given by Equation\([4.5]\). These equations can be trivially extended to the cases where we decide not to use all of the last three components. An algorithm for converting a non-normalized represetation to a normalized one will be given in \([4.2.2]\).
4.1.2 Implementation policies

The \texttt{New_Boolean_Expression} class supports many different internal representations for Boolean functions:

- The information on entailed variables may be stored in the ROBDD or kept separate.
- The information on disentailed variables may be stored in the ROBDD or kept separate.
- The information on equivalent variables may be stored in the ROBDD or kept separate.

Given the fact that some algorithms can be optimized when performed on positive Boolean functions, we also support the option of representing only positive functions so that the optimized algorithms can be used. Finally, we give the option to let CORAL keep the internal representation normalized automatically or to let the user do it when he desires. The class interface should be the same for all cases.

The trivial implementation would be to use 2^5 different classes. This of course is unacceptable for three main reasons: it would be extremely uneasy, the effort required to keep their interfaces coherent would be too big and it would be extremely hard to expand the library to provide new options in the future, as the number of classes would grow exponentially in the number of options. Our solution is to apply \textit{policy-based class design} to \texttt{New_Boolean_Expression}: the implementation options are specified by small policy classes that contain only five static \texttt{bool} data members:

- \texttt{explicit_entailed_vars} is true if we represent entailed variables explicitly.
- \texttt{explicit_disentailed_vars} is true if we represent disentailed variables explicitly.
- \texttt{explicit_equivalent_vars} is true if we represent equivalent variables explicitly.
- \texttt{lazy_normalization} is true if we let the user normalize the internal representation manually.
- \texttt{positive_functions_only} is true if we represent only positive functions and apply the optimized algorithms for them.

Listing 4.1 shows the implementation policy which represents only positive functions by keeping the information on entailed and equivalent variables separate (but not on disentailed variables) and utilizes automatic normalization.

\texttt{New_Boolean_Expression} is a templatic class that takes an implementation policy type \texttt{Policy} as its template argument and is also derived from its template argument type. This allows its methods to adopt different behaviors depending on the chosen policy by checking the values of its static members. This solution is shown in Listing 4.2 along with the trick that is used in order to have different data members according to the chosen internal representation, which consists of using arrays whose lengths can be 0 or 1 depending on the values of the static policy members. The listing also shows the private Boolean data member \texttt{normalized} that is used to record whether the internal representation has already been normalized or not so that we can avoid some unnecessary normalizations.
Listing 4.1: An example of implementation policy

```cpp
struct Record_Positive_Entailed_Equivalent {
    static const bool explicit_entailed_vars = true;
    static const bool explicit_disentailed_vars = false;
    static const bool explicit_equivalent_vars = true;
    static const bool lazy_normalization = false;
    static const bool positive_functions_only = true;
};
```

Listing 4.2: Templatic definition of class `New_Boolean_Expression`

```cpp
template <class Policy>
class China_Original_ROBDD_Library::New_Boolean_Expression : public Policy {

public:
...

private:

    // The ROBDD
    ROBDD_Ptr residue;

    // The entailed variables
    Bit_Set entailed_vars[Policy::explicit_entailed_vars ? 1 : 0];

    // The disentailed variables
    Bit_Set disentailed_vars[Policy::explicit_disentailed_vars ? 1 : 0];

    // The equivalent variables
    Equivalence_Relation equivalent_vars[Policy::explicit_equivalent_vars ? 1 : 0];

    // True when the internal representation is normalized
    bool normalized;
...

};
```

4.1 Composite representations of Boolean functions
4.2 Algorithms with composite representations

4.2.1 Normalization

All algorithms in this section will be described only for the case when entailed, disentailed and equivalent variables are all represented explicitly.

The first and most important algorithm is the normalization algorithm, which allows us to transform an internal representation where conditions 4.1, 4.2, 4.3 and 4.4 are not necessarily met to one where they are all met without changing the semantics given by Equation 4.5. Given this algorithm, all operations on composite representations (with an arbitrary number of arguments) can be implemented, once we have a corresponding implementation on ROBDDs, by this simple algorithm:

Denormalization Denormalize the representation, which means moving, for all the arguments of the operator, all informations on entailed, disentailed and equivalent variables that are stored in E, D and L into the ROBDD n.

Application Apply the corresponding operator on ROBDDs to the denormalized ROBDDs computed in the previous step.

Normalization Normalize the ROBDD computed in the previous step, which means moving all informations on entailed, disentailed and equivalent variables that are stored in the ROBDD into three separate components as described previously.

Of course this trivial implementation is unacceptable, as it goes against the principle of keeping the ROBDDs as small as possible when applying an operator on them in order to improve efficiency. That is why we will present better implementations for these operators right after describing our normalization algorithm.

The result of the application of the normalization function on the composite representation $⟨n, E, D, L⟩$ will be denoted as $η(⟨n, E, D, L⟩)$.

4.2.2 Implementing the normalization algorithm

CORAL’s generic normalization algorithm is an adaptation of an old normalization algorithm that was a part of China and is described in [BS98]. It consists of these steps, which must be applied repeatedly until a fixpoint is reached:

Step 1 If $n = 0$ the final result of the algorithm is $⊥$.

Step 2 Look for all the equivalence classes in L that contain at least one variable in E and add all their variables to E. Do the same for D.

Step 3 Remove all the equivalence classes that were found in the previous step from L.

Step 4 Apply the elim_true_vars algorithm on n with E as its argument, thus eliminating all variables in E from n.

4.2 Algorithms with composite representations
Step 5 Apply the `elim_false_vars` algorithm on \(n \) with \(D \) as its argument, thus eliminating all variables in \(D \) from \(n \).

Step 6 Find all entailed variables in \(n \) using the algorithm `entailed_vars` and add them to \(E \).

Step 7 Find all disentailed variables in \(n \) using the algorithm `disentailed_vars` and add them to \(D \).

Step 8 If \(E \cap D \neq \emptyset \), the final result of the algorithm is \(\perp \).

Step 9 Find all equivalent variables in \(n \) by using the algorithm `equivalent_vars`, put this information in an equivalence relation \(T \) and do the assignment \(L = L \land T \).

Step 10 Eliminate all informations on equivalent variables from \(n \) by applying the algorithm `squeeze_equivalent_vars` with \(T \) as its argument.

Step 11 Rename each variable in \(n \) to its leader in \(L \) by applying the `rename` algorithm.

This algorithm respects the loop invariant which states that after each iteration the semantics given in Equation 4.5 is preserved. Pseudo-code for the normalization algorithm can be found in Algorithm 22.

CORAL also implements a simpler, more efficient specialization of this algorithm for positive functions; in this case, of course, we must not consider disentailed variables. A pseudo-code for this specialized algorithm is shown in Algorithm 23.

4.2.3 Conjunction

The algorithms for conjunction and disjunction are an adaptation of the ones presented in [BS98]. Given two (not necessarily normalized) composite representations \(\langle n_1, E_1, D_1, L_1 \rangle \) and \(\langle n_2, E_2, D_2, L_2 \rangle \), we compute their conjunction as:

\[
\langle n_1', E_1', D_1', L_1' \rangle = \eta(\langle n_1, E_1 \cup E_2, D_1 \cup D_2, L_1 \land L_2 \rangle)
\]

\[
\langle n_2', E_2', D_2', L_2' \rangle = \eta(\langle n_2, E_1 \cup E_2, D_1 \cup D_2, L_1 \land L_2 \rangle)
\]

\[
\langle n_1, E_1, D_1, L_1 \rangle \land \langle n_2, E_2, D_2, L_2 \rangle = \eta(\langle n_1' \land n_2', E_1' \cup E_2', D_1' \cup D_2', L_1' \land L_2' \rangle)
\]

Notice that the initial collection of entailed, disentailed and equivalent variables allows for greater reduction of the ROBDDs when normalization is called (and recall that the `\(\land \)` operator on equivalence relations represents the transitive closure of the union).

CORAL also provides a function `meet_all_assign` (and the corresponding `meet_all_up_assign` that utilizes upward approximation) that conjuncts more than two Boolean functions at the same time. In this case we start by collecting the entailed, disentailed and equivalent variables of ALL functions in order to be able to reduce the ROBDDs.
Require: \((n, E, D, L)\)

function normalize\((n, E, D, L)\)

while \(n_{\text{old}} \neq n\) or \(E_{\text{old}} \neq E\) or \(D_{\text{old}} \neq D\) or \(L_{\text{old}} \neq L\) do

 if \(n = 0\) then
 return \((0, \emptyset, \emptyset, \emptyset)\)

 \(n_{\text{old}} = n\)
 \(E_{\text{old}} = E\)
 \(D_{\text{old}} = D\)
 \(L_{\text{old}} = L\)

 \(E = E \cup \{ y \in \text{Vars} \mid \exists x \in E . (x, y) \in L \}\)
 \(D = D \cup \{ y \in \text{Vars} \mid \exists x \in D . (x, y) \in L \}\)
 \(L = L \setminus \{ (x, y) \mid x \in E \text{ or } x \in D \text{ or } y \in E \text{ or } y \in D \}\)
 \(n = \text{elim_true_vars}(n, E)\)
 \(n = \text{elim_false_vars}(n, D)\)
 \(E = E \cup \text{entailed_vars}(n)\)
 \(D = D \cup \text{disentailed_vars}(n)\)

 if \(E \cap D \neq \emptyset\) then
 return \((0, \emptyset, \emptyset, \emptyset)\)

 \(T = \text{equivalent_vars}(n)\)
 \(L = L \land T\)
 \(n = \text{squeeze_equivalent_vars}(n, T)\)
 \(n = \text{rename}(n, L)\)

return \((n, E, D, L)\)

Algorithm 22: The normalize function

4.2 Algorithms with composite representations
Require: \((n, E, L)\)

function `normalize_positive\((n, E, L)\)`

\[
n_{\text{new}} = n
\]

\[
n_{\text{old}} = \text{NULL}
\]

while \(n_{\text{old}} \neq n_{\text{new}}\) do

\[
(n_{\text{old}}, E, L) = \text{i_normalize1}(n_{\text{new}}, E, L)
\]

\[
n_{\text{new}} = \text{rename}(n_{\text{old}}, L)
\]

return \((n_{\text{new}}, E, L)\)

function `i_normalize1\((n, E, L)\)`

if \(n = 1\) then

\[
E = E \cup \{y \in \text{Vars} \mid \exists x \in E . (x, y) \in L\}
\]

\[
L = L \setminus \{(x, y) \mid x \in E \text{ or } y \in E\}
\]

return \((n, E, L)\)

else

\[
n_{\text{new}} = n
\]

\[
n_{\text{old}} = \text{NULL}
\]

\[
L_{\text{new}} = L
\]

\[
L_{\text{old}} = \text{NULL}
\]

while \(n_{\text{old}} \neq n_{\text{new}}\) or \(L_{\text{old}} \neq L_{\text{new}}\) do

\[
n_{\text{old}} = n_{\text{new}}
\]

\[
L_{\text{old}} = L_{\text{new}}
\]

\[
E = E \cup \text{entailed_vars}(n)
\]

\[
(n_{\text{new}}, E) = \text{elim_search_true_vars}(n_{\text{new}}, E)
\]

\[
E = E \cup \{y \in \text{Vars} \mid \exists x \in E . (x, y) \in L_{\text{new}}\}
\]

\[
L_{\text{new}} = L_{\text{new}} \setminus \{(x, y) \mid x \in E \text{ or } y \in E\}
\]

\[
T = \text{equivalent_vars}(n_{\text{new}})
\]

if \(T \neq \emptyset\) then

\[
n_{\text{new}} = \text{squeeze_equivalent_vars}(n_{\text{new}}, T)
\]

\[
L_{\text{new}} = L_{\text{new}} \land T
\]

return \((n_{\text{new}}, E, L_{\text{new}})\)

Algorithm 23: The `normalize_positive` function

4.2 Algorithms with composite representations
more. Formally, given \(m \) composite representations \(\langle n_1, E_1, D_1, L_1 \rangle, \ldots, \langle n_m, E_m, D_m, L_m \rangle \), their conjunction can be computed, for each \(i \in \mathbb{N} : 1 \leq i \leq m \), by:

\[
\langle n'_i, E'_i, D'_i, L'_i \rangle = \eta(\langle n_i, \bigcup_{j=1}^{m} E_j, \bigcup_{j=1}^{m} D_j, \bigcap_{j=1}^{m} L_j \rangle),
\]

\[
\langle n_1, E_1, D_1, L_1 \rangle \land \ldots \land \langle n_m, E_m, D_m, L_m \rangle = \eta(\bigwedge_{j=1}^{m} n'_j, \bigcup_{j=1}^{m} E'_j, \bigcup_{j=1}^{m} D'_j, \bigcap_{j=1}^{m} L'_j).
\]

The actual implementation, in fact, does not utilize this exact expression: whenever we perform normalization (except, of course, the final normalization) we actually avoid looking for all entailed, disentailed and equivalent variables in the ROBDDs; instead we just reduce the current ROBDD using the information on entailed, disentailed and equivalent variables that we have collected so far by using algorithms elim_search_true_vars, elim_search_false_vars and rename. If elim_search_true_vars or elim_search_false_vars find new entailed or disentailed variables then they are added to the sets of collected variables. We also conjunct each ROBDD immediately after this partial reduction instead of reducing the remaining ones before.

4.2.4 Disjunction

Given the same arguments as conjunction, disjunction can be performed as:

\[
\langle n_1, E_1, D_1, L_1 \rangle \lor \langle n_2, E_2, D_2, L_2 \rangle = \langle n'_1 \lor n'_2, E_1 \land E_2, D_1 \land D_2, L'_1 \lor L'_2 \rangle
\]

where:

\[
L'_1 = L_1 \land \bigwedge_{(x,y) \in E_1 \setminus E_2} \{(x,y)\} \land \bigwedge_{x < y} \{(x,y)\},
\]

\[
L'_2 = L_2 \land \bigwedge_{(x,y) \in E_2 \setminus E_1} \{(x,y)\} \land \bigwedge_{x < y} \{(x,y)\},
\]

\[
E'_1 = \{ \lambda_{L'_1}(x) \mid x \in E_1 \setminus E_2 \},
\]

\[
E'_2 = \{ \lambda_{L'_1}(x) \mid x \in E_2 \setminus E_1 \},
\]

\[
D'_1 = \{ \lambda_{L'_1}(x) \mid x \in D_1 \setminus D_2 \},
\]

\[
D'_2 = \{ \lambda_{L'_1}(x) \mid x \in D_2 \setminus D_1 \},
\]

\[
L''_1 = (L'_1 \setminus L_2) \lor L_1,
\]

\[
L''_2 = (L'_2 \setminus L_1) \lor L_2,
\]

\[
n'_1 = n_1 \land \bigwedge_{x \in E'_1} x \land \bigwedge_{x \in D'_1} \overline{x} \land \bigwedge_{(x,y) \in L''_1} x \Rightarrow y,
\]

\[
n'_2 = n_2 \land \bigwedge_{x \in E'_2} x \land \bigwedge_{x \in D'_2} \overline{x} \land \bigwedge_{(x,y) \in L''_2} x \Rightarrow y.
\]

(recall that the \(\lor \) operator on equivalence relations represents their intersection). If the two arguments were already normalized, then it is proven that the result of the application of this algorithm will be already normalized (otherwise a further call to the normalization operator is required).

4.2 Algorithms with composite representations
4.2.5 Entailed, disentailed and equivalent variables

Operations that search and eliminate entailed, disentailed and equivalent variables are pretty straightforward, provided that the internal representation is already normalized: that’s why these operations start with a call to the normalization algorithm. The operations do nothing more than returning and/or clearing the corresponding part of the internal representation, with the only exception coming from the fact that entailed and disentailed variables are all equivalent to each other.

4.2.6 Projections and variable renaming

Operations that rename variables can be easily implemented by renaming all components of the internal representation separately. Although renaming with respect to an equivalence relation may denormalize the internal representation, shift renaming of course does not.

For projections, the main problem is that we cannot project all components separately, as it is proven that this may alter the semantics for the case where we project away variables that appear in more than one component. Note that this case may also occur in a normalized representation whenever we project away a leader for \(L \) that also labels a node in \(n \). Our solution is to start by normalizing the representation, then replacing each occurrence of all of these leaders \(l \) in \(n \) with the minimum variable that is equivalent to \(l \) in \(L \) and is not going to be projected away. Afterwards we can project on each component separately.
5 Experimental evaluation

5.1 Methodology

Here we report the benchmark results obtained by testing China against all programs from the China Benchmark Suite, for which you can find more informations at http://www.cs.unipr.it/China/Benchmarks/. Each table shows the results obtained by using a specific internal representation and compares the performance of China’s native implementation with the one obtained by integrating CORAL into China. The numbers shown are the user run-times in seconds that are required to perform groundness analysis of each program. We discarded all programs for which the analysis always took less than a tenth of a second and marked all times greater than 300 seconds as TIMEOUTs; the indication of output differences is not significant if a TIMEOUT occurs. We also report whether there are differences between the results of analysis for the two implementations: this is almost always caused by the fact that Too_Many_BDD_Nodes is thrown in different contexts, which leads to different applications of upward approximation (the new implementation usually approximates more). All results were obtained on a AMD Phenom 8650 machine running in 32-bit mode, with 2 GB of RAM and running Linux 2.6.27.

Be aware that CORAL is still penalized by an incomplete integration with China and by a less efficient implementation of class Bit_Set that will be improved in the future.
5.2 Results

5.2.1 Plain ROBDD representation

<table>
<thead>
<tr>
<th>Program</th>
<th>China</th>
<th>China + CORAL</th>
<th>Differs</th>
</tr>
</thead>
<tbody>
<tr>
<td>8puzzle.pl</td>
<td>0.10</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>CoVer.pl</td>
<td>0.08</td>
<td>0.10</td>
<td>No</td>
</tr>
<tr>
<td>QG5-7_mg4.pl</td>
<td>0.10</td>
<td>0.10</td>
<td>No</td>
</tr>
<tr>
<td>XRayVer33.pl</td>
<td>7.67</td>
<td>7.47</td>
<td>No</td>
</tr>
<tr>
<td>aaaaaa.pl</td>
<td>56.28</td>
<td>52.93</td>
<td>No</td>
</tr>
<tr>
<td>aircraft.pl</td>
<td>0.94</td>
<td>0.95</td>
<td>No</td>
</tr>
<tr>
<td>aleph.pl.unsound</td>
<td>200.20</td>
<td>198.06</td>
<td>No</td>
</tr>
<tr>
<td>ann.pl</td>
<td>0.30</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>aqua_c.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>arch1.pl</td>
<td>0.42</td>
<td>0.42</td>
<td>No</td>
</tr>
<tr>
<td>back52.pl.unsound</td>
<td>243.20</td>
<td>232.36</td>
<td>No</td>
</tr>
<tr>
<td>bamspec.pl</td>
<td>94.35</td>
<td>64.18</td>
<td>No</td>
</tr>
<tr>
<td>barnes_hut.pl</td>
<td>0.21</td>
<td>0.20</td>
<td>No</td>
</tr>
<tr>
<td>bmtpl.pl</td>
<td>16.06</td>
<td>15.58</td>
<td>No</td>
</tr>
<tr>
<td>botworld.pl</td>
<td>2.07</td>
<td>2.21</td>
<td>No</td>
</tr>
<tr>
<td>bryant.pl</td>
<td>0.60</td>
<td>0.67</td>
<td>No</td>
</tr>
<tr>
<td>caslog.pl</td>
<td>TIMEOUT</td>
<td>252.50</td>
<td>Yes</td>
</tr>
<tr>
<td>chartgraph.pl</td>
<td>4.17</td>
<td>3.97</td>
<td>No</td>
</tr>
<tr>
<td>chat80.pl</td>
<td>49.29</td>
<td>45.72</td>
<td>No</td>
</tr>
<tr>
<td>chat_parser.pl</td>
<td>2.95</td>
<td>3.01</td>
<td>No</td>
</tr>
<tr>
<td>chess.pl</td>
<td>0.66</td>
<td>0.68</td>
<td>No</td>
</tr>
<tr>
<td>chillin.pl</td>
<td>111.67</td>
<td>100.03</td>
<td>No</td>
</tr>
<tr>
<td>circan.pl</td>
<td>0.14</td>
<td>0.16</td>
<td>No</td>
</tr>
<tr>
<td>cobweb.pl</td>
<td>5.12</td>
<td>5.10</td>
<td>No</td>
</tr>
<tr>
<td>colan-all.pl.unsound</td>
<td>188.78</td>
<td>189.60</td>
<td>No</td>
</tr>
<tr>
<td>cselcomp.pl</td>
<td>229.45</td>
<td>126.03</td>
<td>No</td>
</tr>
<tr>
<td>curry2prolog.pl</td>
<td>27.70</td>
<td>26.55</td>
<td>No</td>
</tr>
<tr>
<td>diagnoser.pl.unsound</td>
<td>3.68</td>
<td>3.72</td>
<td>No</td>
</tr>
<tr>
<td>essln.pl.unsound</td>
<td>0.11</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>ezan.pl</td>
<td>3.40</td>
<td>3.40</td>
<td>No</td>
</tr>
<tr>
<td>fecht.pl</td>
<td>1.43</td>
<td>1.35</td>
<td>No</td>
</tr>
<tr>
<td>genlang-2.5.pl.unsound</td>
<td>15.82</td>
<td>15.20</td>
<td>No</td>
</tr>
<tr>
<td>glop.pl</td>
<td>0.41</td>
<td>0.40</td>
<td>No</td>
</tr>
<tr>
<td>gnup-1.1.0_pl2wam.pl</td>
<td>7.00</td>
<td>7.04</td>
<td>No</td>
</tr>
<tr>
<td>horatio.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>No</td>
</tr>
<tr>
<td>horgen.pl</td>
<td>29.57</td>
<td>29.04</td>
<td>No</td>
</tr>
<tr>
<td>ileanTAP.pl</td>
<td>69.44</td>
<td>67.62</td>
<td>No</td>
</tr>
<tr>
<td>index.pl.unsound</td>
<td>0.58</td>
<td>0.60</td>
<td>No</td>
</tr>
<tr>
<td>indyv1.8.pl</td>
<td>0.45</td>
<td>0.44</td>
<td>No</td>
</tr>
<tr>
<td>k4_tp.pl</td>
<td>0.21</td>
<td>0.18</td>
<td>No</td>
</tr>
<tr>
<td>kilimanjaro-all.pl</td>
<td>103.00</td>
<td>108.63</td>
<td>No</td>
</tr>
<tr>
<td>Program</td>
<td>China</td>
<td>China + CORAL</td>
<td>Differs</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>kish_andi.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>No</td>
</tr>
<tr>
<td>kore-ie.pl.unsound</td>
<td>96.98</td>
<td>87.12</td>
<td>No</td>
</tr>
<tr>
<td>ldl-all.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>No</td>
</tr>
<tr>
<td>lemmatiz.pl</td>
<td>1.16</td>
<td>1.24</td>
<td>No</td>
</tr>
<tr>
<td>lg_sys.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>No</td>
</tr>
<tr>
<td>lgt20.pl.unsound</td>
<td>2.41</td>
<td>2.55</td>
<td>No</td>
</tr>
<tr>
<td>lilp.pl</td>
<td>0.87</td>
<td>0.85</td>
<td>No</td>
</tr>
<tr>
<td>linTAP.pl</td>
<td>66.26</td>
<td>58.58</td>
<td>No</td>
</tr>
<tr>
<td>linger_old.pl.unsound</td>
<td>18.39</td>
<td>19.19</td>
<td>No</td>
</tr>
<tr>
<td>linus.pl.unsound</td>
<td>0.30</td>
<td>0.31</td>
<td>No</td>
</tr>
<tr>
<td>lprover.pl</td>
<td>0.51</td>
<td>0.51</td>
<td>No</td>
</tr>
<tr>
<td>lojban.pl</td>
<td>1.29</td>
<td>1.26</td>
<td>No</td>
</tr>
<tr>
<td>lptp-1.05.pl</td>
<td>1.45</td>
<td>1.38</td>
<td>No</td>
</tr>
<tr>
<td>lptp-1.06.pl</td>
<td>1.32</td>
<td>1.43</td>
<td>No</td>
</tr>
<tr>
<td>map.pl.unsound</td>
<td>6.12</td>
<td>6.12</td>
<td>No</td>
</tr>
<tr>
<td>markus.pl</td>
<td>245.71</td>
<td>203.42</td>
<td>No</td>
</tr>
<tr>
<td>mdgtools-1.0.pl</td>
<td>256.51</td>
<td>240.19</td>
<td>No</td>
</tr>
<tr>
<td>metutor.pl</td>
<td>0.25</td>
<td>0.25</td>
<td>No</td>
</tr>
<tr>
<td>mfoil.pl</td>
<td>25.09</td>
<td>24.51</td>
<td>No</td>
</tr>
<tr>
<td>mgpl4.pl</td>
<td>0.62</td>
<td>0.64</td>
<td>No</td>
</tr>
<tr>
<td>mgtp-g-l-temp.pl</td>
<td>0.14</td>
<td>0.14</td>
<td>No</td>
</tr>
<tr>
<td>mikev203.pl</td>
<td>0.10</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>mixtus-all.pl</td>
<td>62.71</td>
<td>57.97</td>
<td>No</td>
</tr>
<tr>
<td>mm.pl</td>
<td>0.07</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>motel.pl.unsound</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>No</td>
</tr>
<tr>
<td>mt-all.pl.unsound</td>
<td>222.32</td>
<td>231.19</td>
<td>No</td>
</tr>
<tr>
<td>music.pl</td>
<td>7.96</td>
<td>8.19</td>
<td>No</td>
</tr>
<tr>
<td>nand_wamcc.pl</td>
<td>103.05</td>
<td>99.75</td>
<td>No</td>
</tr>
<tr>
<td>newexpobdd.pl</td>
<td>29.20</td>
<td>29.94</td>
<td>No</td>
</tr>
<tr>
<td>muc4-unfixed.pl</td>
<td>16.27</td>
<td>16.21</td>
<td>No</td>
</tr>
<tr>
<td>oldchina.pl</td>
<td>TIMEOUT</td>
<td>97.25</td>
<td>Yes</td>
</tr>
<tr>
<td>pappiall.pl</td>
<td>0.30</td>
<td>0.30</td>
<td>No</td>
</tr>
<tr>
<td>pappienglishall.pl</td>
<td>0.15</td>
<td>0.18</td>
<td>No</td>
</tr>
<tr>
<td>petsan.pl</td>
<td>34.09</td>
<td>32.85</td>
<td>No</td>
</tr>
<tr>
<td>peval.pl</td>
<td>0.08</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>piza-0.9.22.pl.unsound</td>
<td>206.84</td>
<td>191.84</td>
<td>No</td>
</tr>
<tr>
<td>pl2wam.pl</td>
<td>7.02</td>
<td>6.58</td>
<td>No</td>
</tr>
<tr>
<td>plaiclplp.pl</td>
<td>64.50</td>
<td>63.83</td>
<td>No</td>
</tr>
<tr>
<td>pljava.pl</td>
<td>0.23</td>
<td>0.20</td>
<td>No</td>
</tr>
<tr>
<td>pmatch.pl</td>
<td>131.24</td>
<td>127.83</td>
<td>No</td>
</tr>
<tr>
<td>poker.pl</td>
<td>1.88</td>
<td>1.73</td>
<td>No</td>
</tr>
<tr>
<td>prism-1.1.pl.unsound</td>
<td>0.16</td>
<td>0.15</td>
<td>No</td>
</tr>
<tr>
<td>profit.pl.unsound</td>
<td>0.53</td>
<td>0.50</td>
<td>No</td>
</tr>
<tr>
<td>protein.pl.unsound</td>
<td>55.84</td>
<td>55.24</td>
<td>No</td>
</tr>
</tbody>
</table>

5.2 Results
<table>
<thead>
<tr>
<th>Program</th>
<th>China</th>
<th>China + CORAL</th>
<th>Differs</th>
</tr>
</thead>
<tbody>
<tr>
<td>puzzle.pl</td>
<td>TIMEOUT</td>
<td>37.56</td>
<td>Yes</td>
</tr>
<tr>
<td>qdjanus.pl.unsound</td>
<td>1.20</td>
<td>1.21</td>
<td>No</td>
</tr>
<tr>
<td>qmlattice.pl.unsound</td>
<td>0.08</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>raytrace_inst.pl</td>
<td>0.10</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>reform_compiler.pl.unsound</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>reg.pl</td>
<td>3.50</td>
<td>3.33</td>
<td>No</td>
</tr>
<tr>
<td>rubik.pl</td>
<td>185.78</td>
<td>201.85</td>
<td>No</td>
</tr>
<tr>
<td>s4 tp.pl</td>
<td>0.21</td>
<td>0.19</td>
<td>No</td>
</tr>
<tr>
<td>salvini.pl.unsound</td>
<td>0.14</td>
<td>0.16</td>
<td>No</td>
</tr>
<tr>
<td>sax.pl</td>
<td>5.18</td>
<td>5.03</td>
<td>No</td>
</tr>
<tr>
<td>scc.pl</td>
<td>1.41</td>
<td>1.38</td>
<td>No</td>
</tr>
<tr>
<td>scc2.pl</td>
<td>0.76</td>
<td>0.69</td>
<td>No</td>
</tr>
<tr>
<td>semi.pl</td>
<td>0.22</td>
<td>0.23</td>
<td>No</td>
</tr>
<tr>
<td>semigroup.pl</td>
<td>29.69</td>
<td>28.68</td>
<td>No</td>
</tr>
<tr>
<td>sg mc_big.pl</td>
<td>0.97</td>
<td>0.57</td>
<td>No</td>
</tr>
<tr>
<td>sim.pl</td>
<td>161.73</td>
<td>147.79</td>
<td>No</td>
</tr>
<tr>
<td>simple_analyzer.pl</td>
<td>2.32</td>
<td>2.28</td>
<td>No</td>
</tr>
<tr>
<td>slice-all.pl</td>
<td>0.13</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>sprftp.pl.unsound</td>
<td>8.99</td>
<td>8.59</td>
<td>No</td>
</tr>
<tr>
<td>spsys.pl</td>
<td>1.20</td>
<td>1.17</td>
<td>No</td>
</tr>
<tr>
<td>strips.pl</td>
<td>2.82</td>
<td>2.75</td>
<td>No</td>
</tr>
<tr>
<td>synth.pl</td>
<td>2.38</td>
<td>2.25</td>
<td>No</td>
</tr>
<tr>
<td>tictactoe.pl</td>
<td>2.12</td>
<td>2.01</td>
<td>No</td>
</tr>
<tr>
<td>tricia.pl</td>
<td>TIMEOUT</td>
<td>76.43</td>
<td>Yes</td>
</tr>
<tr>
<td>trs.pl</td>
<td>47.02</td>
<td>47.93</td>
<td>No</td>
</tr>
<tr>
<td>vhdl97_parser.pl</td>
<td>3.03</td>
<td>2.97</td>
<td>No</td>
</tr>
</tbody>
</table>

Here the performance shown by the new implementation is very often better; we suspect that the reason lies in an unoptimal use of `and_vs_true` made by the previous implementation.
5.2.2 ROBDD plus entailed variables representation

<table>
<thead>
<tr>
<th>Program</th>
<th>China</th>
<th>China + CORAL</th>
<th>Differs</th>
</tr>
</thead>
<tbody>
<tr>
<td>8puzzle.pl</td>
<td>0.11</td>
<td>0.15</td>
<td>No</td>
</tr>
<tr>
<td>CoVer.pl</td>
<td>0.09</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>QG5-7._mg4.pl</td>
<td>0.09</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>XRayVer33.pl</td>
<td>7.87</td>
<td>12.63</td>
<td>No</td>
</tr>
<tr>
<td>aaaaa.pl</td>
<td>77.50</td>
<td>81.01</td>
<td>Yes</td>
</tr>
<tr>
<td>aircraft.pl</td>
<td>0.16</td>
<td>0.80</td>
<td>No</td>
</tr>
<tr>
<td>aleph.pl.unsound</td>
<td>137.82</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>ann.pl</td>
<td>0.10</td>
<td>0.21</td>
<td>No</td>
</tr>
<tr>
<td>aqua_c.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>arch1.pl</td>
<td>0.48</td>
<td>0.44</td>
<td>No</td>
</tr>
<tr>
<td>back52.pl.unsound</td>
<td>261.87</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>bamspec.pl</td>
<td>92.24</td>
<td>123.12</td>
<td>No</td>
</tr>
<tr>
<td>barnes_hut.pl</td>
<td>0.01</td>
<td>0.06</td>
<td>No</td>
</tr>
<tr>
<td>bmtp.pl</td>
<td>21.61</td>
<td>28.86</td>
<td>No</td>
</tr>
<tr>
<td>botworld.pl</td>
<td>1.51</td>
<td>4.03</td>
<td>No</td>
</tr>
<tr>
<td>bryant.pl</td>
<td>0.22</td>
<td>0.54</td>
<td>No</td>
</tr>
<tr>
<td>caslog.pl</td>
<td>215.46</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>chartgraph.pl</td>
<td>5.44</td>
<td>9.86</td>
<td>No</td>
</tr>
<tr>
<td>chat80.pl</td>
<td>53.82</td>
<td>53.69</td>
<td>Yes</td>
</tr>
<tr>
<td>chat_parser.pl</td>
<td>2.16</td>
<td>3.88</td>
<td>No</td>
</tr>
<tr>
<td>chess.pl</td>
<td>0.54</td>
<td>0.62</td>
<td>No</td>
</tr>
<tr>
<td>chillin.pl</td>
<td>106.51</td>
<td>100.45</td>
<td>Yes</td>
</tr>
<tr>
<td>circan.pl</td>
<td>0.23</td>
<td>0.20</td>
<td>No</td>
</tr>
<tr>
<td>cobweb.pl</td>
<td>1.90</td>
<td>4.14</td>
<td>No</td>
</tr>
<tr>
<td>colan-all.pl.unsound</td>
<td>175.89</td>
<td>256.15</td>
<td>Yes</td>
</tr>
<tr>
<td>cselcomp.pl</td>
<td>170.53</td>
<td>230.85</td>
<td>Yes</td>
</tr>
<tr>
<td>curry2prolog.pl</td>
<td>25.28</td>
<td>28.80</td>
<td>No</td>
</tr>
<tr>
<td>diagnoser.pl.unsound</td>
<td>3.64</td>
<td>3.96</td>
<td>No</td>
</tr>
<tr>
<td>essin.pl.unsound</td>
<td>0.08</td>
<td>0.13</td>
<td>No</td>
</tr>
<tr>
<td>ezan.pl</td>
<td>3.02</td>
<td>3.21</td>
<td>No</td>
</tr>
<tr>
<td>fecht.pl</td>
<td>1.81</td>
<td>1.67</td>
<td>No</td>
</tr>
<tr>
<td>genlang-2.5.pl.unsound</td>
<td>13.74</td>
<td>19.51</td>
<td>Yes</td>
</tr>
<tr>
<td>glop.pl</td>
<td>0.41</td>
<td>0.44</td>
<td>No</td>
</tr>
<tr>
<td>gnup-1.1.0_.pl2wam.pl</td>
<td>7.43</td>
<td>1.17</td>
<td>No</td>
</tr>
<tr>
<td>horatio.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>horgen.pl</td>
<td>39.11</td>
<td>42.60</td>
<td>No</td>
</tr>
<tr>
<td>ileanTAP.pl</td>
<td>73.10</td>
<td>70.52</td>
<td>No</td>
</tr>
<tr>
<td>index.pl.unsound</td>
<td>0.51</td>
<td>0.59</td>
<td>No</td>
</tr>
<tr>
<td>indyv1.8.pl</td>
<td>0.29</td>
<td>0.74</td>
<td>No</td>
</tr>
<tr>
<td>k4_tp.pl</td>
<td>0.20</td>
<td>0.20</td>
<td>No</td>
</tr>
<tr>
<td>kilimanjaro-all.pl</td>
<td>116.38</td>
<td>170.76</td>
<td>Yes</td>
</tr>
<tr>
<td>Program</td>
<td>China</td>
<td>China + CORAL</td>
<td>Differs</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>kish_andi.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>kore-ie.pl.unsound</td>
<td>57.50</td>
<td>144.68</td>
<td>No</td>
</tr>
<tr>
<td>ldl-all.pl</td>
<td>133.08</td>
<td>172.73</td>
<td>Yes</td>
</tr>
<tr>
<td>lemmatiz.pl</td>
<td>1.42</td>
<td>1.60</td>
<td>No</td>
</tr>
<tr>
<td>lg_sys.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>lgt20.pl.unsound</td>
<td>1.13</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>lilp.pl</td>
<td>0.67</td>
<td>0.04</td>
<td>No</td>
</tr>
<tr>
<td>linTAP.pl</td>
<td>64.28</td>
<td>72.00</td>
<td>No</td>
</tr>
<tr>
<td>linger_old.pl.unsound</td>
<td>17.75</td>
<td>22.09</td>
<td>No</td>
</tr>
<tr>
<td>linus.pl.unsound</td>
<td>0.20</td>
<td>0.28</td>
<td>No</td>
</tr>
<tr>
<td>lprover.pl</td>
<td>0.48</td>
<td>0.02</td>
<td>No</td>
</tr>
<tr>
<td>lojban.pl</td>
<td>0.47</td>
<td>1.26</td>
<td>No</td>
</tr>
<tr>
<td>ltp-1.05.pl</td>
<td>1.40</td>
<td>1.39</td>
<td>No</td>
</tr>
<tr>
<td>ltp-1.06.pl</td>
<td>1.42</td>
<td>0.06</td>
<td>No</td>
</tr>
<tr>
<td>map.pl.unsound</td>
<td>5.59</td>
<td>6.13</td>
<td>No</td>
</tr>
<tr>
<td>markus.pl</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>mdgtools-1.0.pl</td>
<td>TIMEOUT</td>
<td>284.69</td>
<td>Yes</td>
</tr>
<tr>
<td>metutor.pl</td>
<td>0.10</td>
<td>0.21</td>
<td>No</td>
</tr>
<tr>
<td>mfoil.pl</td>
<td>19.42</td>
<td>36.54</td>
<td>Yes</td>
</tr>
<tr>
<td>mgpl4.pl</td>
<td>0.45</td>
<td>0.56</td>
<td>No</td>
</tr>
<tr>
<td>mgtp-g-t-temp.pl</td>
<td>0.16</td>
<td>0.16</td>
<td>No</td>
</tr>
<tr>
<td>mikev203.pl</td>
<td>0.10</td>
<td>0.18</td>
<td>No</td>
</tr>
<tr>
<td>mixtus-all.pl</td>
<td>63.20</td>
<td>62.42</td>
<td>No</td>
</tr>
<tr>
<td>mm.pl</td>
<td>0.10</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>motel.pl.unsound</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>mt-all.pl.unsound</td>
<td>237.10</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>music.pl</td>
<td>6.63</td>
<td>8.48</td>
<td>No</td>
</tr>
<tr>
<td>nand_wamcc.pl</td>
<td>94.43</td>
<td>99.13</td>
<td>Yes</td>
</tr>
<tr>
<td>newexpobdd.pl</td>
<td>31.04</td>
<td>34.57</td>
<td>No</td>
</tr>
<tr>
<td>muc4-unfixed.pl</td>
<td>19.21</td>
<td>16.29</td>
<td>No</td>
</tr>
<tr>
<td>oldchina.pl</td>
<td>145.02</td>
<td>230.63</td>
<td>Yes</td>
</tr>
<tr>
<td>pappiall.pl</td>
<td>0.24</td>
<td>0.02</td>
<td>No</td>
</tr>
<tr>
<td>pappienglishall.pl</td>
<td>0.12</td>
<td>0.17</td>
<td>No</td>
</tr>
<tr>
<td>petsan.pl</td>
<td>28.14</td>
<td>34.51</td>
<td>Yes</td>
</tr>
<tr>
<td>peval.pl</td>
<td>0.08</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>piza-0.9.22.pl.unsound</td>
<td>187.16</td>
<td>186.65</td>
<td>Yes</td>
</tr>
<tr>
<td>pl2wam.pl</td>
<td>7.06</td>
<td>6.90</td>
<td>No</td>
</tr>
<tr>
<td>pljava.pl</td>
<td>0.16</td>
<td>0.25</td>
<td>No</td>
</tr>
<tr>
<td>pmatch.pl</td>
<td>148.63</td>
<td>215.16</td>
<td>Yes</td>
</tr>
<tr>
<td>poker.pl</td>
<td>0.48</td>
<td>0.87</td>
<td>No</td>
</tr>
<tr>
<td>prism-1.1.pl.unsound</td>
<td>0.14</td>
<td>0.15</td>
<td>No</td>
</tr>
<tr>
<td>profit.pl.unsound</td>
<td>0.23</td>
<td>0.47</td>
<td>No</td>
</tr>
<tr>
<td>protein.pl.unsound</td>
<td>60.81</td>
<td>83.61</td>
<td>No</td>
</tr>
<tr>
<td>puzzle.pl</td>
<td>48.00</td>
<td>46.54</td>
<td>No</td>
</tr>
</tbody>
</table>

5.2 Results
<table>
<thead>
<tr>
<th>Program</th>
<th>China</th>
<th>China + CORAL</th>
<th>Differs</th>
</tr>
</thead>
<tbody>
<tr>
<td>qdianus.pl.unsound</td>
<td>0.84</td>
<td>1.03</td>
<td>No</td>
</tr>
<tr>
<td>qmlattice.pl.unsound</td>
<td>0.08</td>
<td>0.10</td>
<td>No</td>
</tr>
<tr>
<td>raytrace_inst.pl</td>
<td>0.06</td>
<td>0.02</td>
<td>No</td>
</tr>
<tr>
<td>reform_compiler.pl.unsound</td>
<td>TIMEOUT</td>
<td>TIMEOUT</td>
<td>Yes</td>
</tr>
<tr>
<td>reg.pl</td>
<td>2.78</td>
<td>2.67</td>
<td>No</td>
</tr>
<tr>
<td>rubik.pl</td>
<td>202.56</td>
<td>208.93</td>
<td>No</td>
</tr>
<tr>
<td>s4_tp.pl</td>
<td>0.19</td>
<td>0.21</td>
<td>No</td>
</tr>
<tr>
<td>salvini.pl.unsound</td>
<td>0.12</td>
<td>0.18</td>
<td>No</td>
</tr>
<tr>
<td>sax.pl</td>
<td>3.99</td>
<td>4.70</td>
<td>No</td>
</tr>
<tr>
<td>scc.pl</td>
<td>1.23</td>
<td>0.07</td>
<td>No</td>
</tr>
<tr>
<td>scc2.pl</td>
<td>0.74</td>
<td>0.74</td>
<td>No</td>
</tr>
<tr>
<td>semi.pl</td>
<td>0.01</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>semigroup.pl</td>
<td>11.56</td>
<td>19.96</td>
<td>No</td>
</tr>
<tr>
<td>sg_mc_big.pl</td>
<td>0.02</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>sim.pl</td>
<td>54.22</td>
<td>130.56</td>
<td>Yes</td>
</tr>
<tr>
<td>simple_analyzer.pl</td>
<td>2.07</td>
<td>2.11</td>
<td>No</td>
</tr>
<tr>
<td>slice-all.pl</td>
<td>0.10</td>
<td>0.13</td>
<td>No</td>
</tr>
<tr>
<td>sprftp.pl.unsound</td>
<td>2.96</td>
<td>7.60</td>
<td>No</td>
</tr>
<tr>
<td>spsys.pl</td>
<td>1.14</td>
<td>1.25</td>
<td>No</td>
</tr>
<tr>
<td>strips.pl</td>
<td>2.82</td>
<td>2.75</td>
<td>No</td>
</tr>
<tr>
<td>synth.pl</td>
<td>0.90</td>
<td>2.25</td>
<td>No</td>
</tr>
<tr>
<td>tictactoe.pl</td>
<td>0.60</td>
<td>2.18</td>
<td>No</td>
</tr>
<tr>
<td>tricia.pl</td>
<td>79.28</td>
<td>73.10</td>
<td>No</td>
</tr>
<tr>
<td>trs.pl</td>
<td>74.58</td>
<td>277.57</td>
<td>Yes</td>
</tr>
<tr>
<td>vhdl97_parser.pl</td>
<td>2.32</td>
<td>2.42</td>
<td>No</td>
</tr>
</tbody>
</table>

This representation is better than the previous one only on some examples. The performance of the new implementation is generally not too much worse, except for a few programs.
5.2.3 ROBDD plus entailed and equivalent variables representation

<table>
<thead>
<tr>
<th>Program</th>
<th>China</th>
<th>China + CORAL</th>
<th>Differs</th>
</tr>
</thead>
<tbody>
<tr>
<td>8puzzle.pl</td>
<td>0.06</td>
<td>0.07</td>
<td>Yes</td>
</tr>
<tr>
<td>CoVer.pl</td>
<td>0.06</td>
<td>0.09</td>
<td>No</td>
</tr>
<tr>
<td>QG5-7__mg4.pl</td>
<td>0.00</td>
<td>0.06</td>
<td>No</td>
</tr>
<tr>
<td>XRayVer33.pl</td>
<td>0.11</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>aaaaa.pl</td>
<td>0.66</td>
<td>0.78</td>
<td>Yes</td>
</tr>
<tr>
<td>aircraft.pl</td>
<td>0.05</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>aleph.pl.unsound</td>
<td>0.12</td>
<td>0.18</td>
<td>Yes</td>
</tr>
<tr>
<td>ann.pl</td>
<td>0.00</td>
<td>0.03</td>
<td>Yes</td>
</tr>
<tr>
<td>aqua_c.pl</td>
<td>0.03</td>
<td>0.96</td>
<td>Yes</td>
</tr>
<tr>
<td>arch1.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>back52.pl.unsound</td>
<td>2.12</td>
<td>1.86</td>
<td>Yes</td>
</tr>
<tr>
<td>bamspec.pl</td>
<td>0.16</td>
<td>0.18</td>
<td>Yes</td>
</tr>
<tr>
<td>barnes_hut.pl</td>
<td>0.00</td>
<td>0.01</td>
<td>No</td>
</tr>
<tr>
<td>bmtpl.pl</td>
<td>0.20</td>
<td>0.38</td>
<td>Yes</td>
</tr>
<tr>
<td>botworld.pl</td>
<td>0.01</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>bryant.pl</td>
<td>0.02</td>
<td>0.03</td>
<td>No</td>
</tr>
<tr>
<td>caslog.pl</td>
<td>0.37</td>
<td>0.63</td>
<td>Yes</td>
</tr>
<tr>
<td>chartgraph.pl</td>
<td>0.01</td>
<td>0.03</td>
<td>No</td>
</tr>
<tr>
<td>chat80.pl</td>
<td>0.28</td>
<td>0.37</td>
<td>Yes</td>
</tr>
<tr>
<td>chat__parser.pl</td>
<td>0.00</td>
<td>0.08</td>
<td>Yes</td>
</tr>
<tr>
<td>chess.pl</td>
<td>0.05</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>chillin.pl</td>
<td>0.16</td>
<td>0.23</td>
<td>Yes</td>
</tr>
<tr>
<td>circan.pl</td>
<td>7.80</td>
<td>3.11</td>
<td>Yes</td>
</tr>
<tr>
<td>cobweb.pl</td>
<td>0.04</td>
<td>0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>colan-all.pl.unsound</td>
<td>0.18</td>
<td>0.23</td>
<td>Yes</td>
</tr>
<tr>
<td>ceslcomp.pl</td>
<td>0.19</td>
<td>0.27</td>
<td>Yes</td>
</tr>
<tr>
<td>curry2prolog.pl</td>
<td>0.11</td>
<td>0.18</td>
<td>No</td>
</tr>
<tr>
<td>diagnoser.pl.unsound</td>
<td>0.14</td>
<td>0.26</td>
<td>Yes</td>
</tr>
<tr>
<td>essln.pl.unsound</td>
<td>0.05</td>
<td>0.07</td>
<td>Yes</td>
</tr>
<tr>
<td>ezan.pl</td>
<td>0.08</td>
<td>0.10</td>
<td>Yes</td>
</tr>
<tr>
<td>fecht.pl</td>
<td>0.01</td>
<td>0.01</td>
<td>No</td>
</tr>
<tr>
<td>genlang-2.5.pl.unsound</td>
<td>0.21</td>
<td>0.02</td>
<td>Yes</td>
</tr>
<tr>
<td>gloplp</td>
<td>0.42</td>
<td>0.41</td>
<td>No</td>
</tr>
<tr>
<td>gnup-1.1.0__pl2wam.pl</td>
<td>0.08</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>horatio.pl</td>
<td>0.18</td>
<td>0.25</td>
<td>Yes</td>
</tr>
<tr>
<td>horgen.pl</td>
<td>0.08</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>ileanTAP.pl</td>
<td>0.08</td>
<td>0.07</td>
<td>No</td>
</tr>
<tr>
<td>index.pl.unsound</td>
<td>0.05</td>
<td>0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>indyv1.8.pl</td>
<td>0.14</td>
<td>0.17</td>
<td>No</td>
</tr>
<tr>
<td>k4__tp.pl</td>
<td>0.18</td>
<td>0.16</td>
<td>No</td>
</tr>
<tr>
<td>kilimanjaro-all.pl</td>
<td>3.48</td>
<td>1.47</td>
<td>Yes</td>
</tr>
<tr>
<td>Program</td>
<td>China</td>
<td>China + CORAL</td>
<td>Differs</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>kish_andi.pl</td>
<td>0.33</td>
<td>0.38</td>
<td>Yes</td>
</tr>
<tr>
<td>kore-ie.pl.unsound</td>
<td>0.04</td>
<td>0.09</td>
<td>Yes</td>
</tr>
<tr>
<td>ldI-all.pl</td>
<td>0.70</td>
<td>1.00</td>
<td>Yes</td>
</tr>
<tr>
<td>lemmatiz.pl</td>
<td>1.20</td>
<td>1.64</td>
<td>No</td>
</tr>
<tr>
<td>lg_sys.pl</td>
<td>0.71</td>
<td>0.75</td>
<td>Yes</td>
</tr>
<tr>
<td>lgt20.pl.unsound</td>
<td>0.02</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>lilp.pl</td>
<td>0.02</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>linTAP.pl</td>
<td>0.05</td>
<td>0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>linger_old.pl.unsound</td>
<td>0.00</td>
<td>0.07</td>
<td>Yes</td>
</tr>
<tr>
<td>linus.pl.unsound</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>llprover.pl</td>
<td>0.03</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>lojban.pl</td>
<td>0.04</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>lptp-1.05.pl</td>
<td>0.17</td>
<td>0.28</td>
<td>Yes</td>
</tr>
<tr>
<td>lptp-1.06.pl</td>
<td>0.17</td>
<td>0.26</td>
<td>Yes</td>
</tr>
<tr>
<td>map.pl.unsound</td>
<td>0.22</td>
<td>0.02</td>
<td>Yes</td>
</tr>
<tr>
<td>markus.pl</td>
<td>0.20</td>
<td>0.57</td>
<td>Yes</td>
</tr>
<tr>
<td>mdgtools-1.0.pl</td>
<td>0.47</td>
<td>0.02</td>
<td>Yes</td>
</tr>
<tr>
<td>metutor.pl</td>
<td>0.03</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>mfoil.pl</td>
<td>0.02</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>mgpl4.pl</td>
<td>0.00</td>
<td>0.09</td>
<td>Yes</td>
</tr>
<tr>
<td>mgtp-g-l-temp.pl</td>
<td>0.04</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>mikey203.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>mixtus-all.pl</td>
<td>0.12</td>
<td>0.24</td>
<td>Yes</td>
</tr>
<tr>
<td>mm.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>motel.pl.unsound</td>
<td>TIMEOUT</td>
<td>0.10</td>
<td>Yes</td>
</tr>
<tr>
<td>mt-all.pl.unsound</td>
<td>4.48</td>
<td>2.18</td>
<td>Yes</td>
</tr>
<tr>
<td>music.pl</td>
<td>0.52</td>
<td>0.04</td>
<td>No</td>
</tr>
<tr>
<td>nand_wamcc.pl</td>
<td>0.18</td>
<td>0.17</td>
<td>Yes</td>
</tr>
<tr>
<td>newexpobdd.pl</td>
<td>2.66</td>
<td>2.76</td>
<td>No</td>
</tr>
<tr>
<td>nuc4-unfixed.pl</td>
<td>0.06</td>
<td>0.09</td>
<td>Yes</td>
</tr>
<tr>
<td>oldchina.pl</td>
<td>0.21</td>
<td>0.12</td>
<td>Yes</td>
</tr>
<tr>
<td>pappiall.pl</td>
<td>0.19</td>
<td>0.22</td>
<td>No</td>
</tr>
<tr>
<td>pappienglishall.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>petsan.pl</td>
<td>1.32</td>
<td>4.42</td>
<td>Yes</td>
</tr>
<tr>
<td>peval.pl</td>
<td>0.06</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>piza-0.9.22.pl.unsound</td>
<td>0.61</td>
<td>0.05</td>
<td>Yes</td>
</tr>
<tr>
<td>pl2wam.pl</td>
<td>0.00</td>
<td>0.14</td>
<td>Yes</td>
</tr>
<tr>
<td>plaiclp.pl</td>
<td>0.11</td>
<td>0.19</td>
<td>Yes</td>
</tr>
<tr>
<td>pljava.pl</td>
<td>0.06</td>
<td>0.11</td>
<td>No</td>
</tr>
<tr>
<td>pmatch.pl</td>
<td>0.06</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>poker.pl</td>
<td>0.04</td>
<td>0.08</td>
<td>No</td>
</tr>
<tr>
<td>prism-1.1.pl.unsound</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>profit.pl.unsound</td>
<td>0.05</td>
<td>0.10</td>
<td>No</td>
</tr>
<tr>
<td>protein.pl.unsound</td>
<td>0.54</td>
<td>0.35</td>
<td>Yes</td>
</tr>
<tr>
<td>Program</td>
<td>China</td>
<td>China + CORAL</td>
<td>Differs</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>puzzle.pl</td>
<td>9.43</td>
<td>12.55</td>
<td>Yes</td>
</tr>
<tr>
<td>qdjanus.pl.unsound</td>
<td>0.10</td>
<td>0.16</td>
<td>Yes</td>
</tr>
<tr>
<td>qmlattice.pl.unsound</td>
<td>0.06</td>
<td>0.06</td>
<td>No</td>
</tr>
<tr>
<td>raytrace_inst.pl</td>
<td>0.02</td>
<td>0.03</td>
<td>No</td>
</tr>
<tr>
<td>reform_compiler.pl.unsound</td>
<td>4.86</td>
<td>3.61</td>
<td>Yes</td>
</tr>
<tr>
<td>reg.pl</td>
<td>0.06</td>
<td>0.10</td>
<td>Yes</td>
</tr>
<tr>
<td>rubik.pl</td>
<td>4.19</td>
<td>8.97</td>
<td>No</td>
</tr>
<tr>
<td>s4_tp.pl</td>
<td>0.20</td>
<td>0.17</td>
<td>No</td>
</tr>
<tr>
<td>salvini.pl.unsound</td>
<td>0.04</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>sax.pl</td>
<td>0.31</td>
<td>0.39</td>
<td>Yes</td>
</tr>
<tr>
<td>scc.pl</td>
<td>0.07</td>
<td>0.04</td>
<td>Yes</td>
</tr>
<tr>
<td>scc2.pl</td>
<td>0.03</td>
<td>0.03</td>
<td>Yes</td>
</tr>
<tr>
<td>semi.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>No</td>
</tr>
<tr>
<td>semigroup.pl</td>
<td>0.03</td>
<td>0.09</td>
<td>No</td>
</tr>
<tr>
<td>sg_mc_big.pl</td>
<td>0.01</td>
<td>0.03</td>
<td>No</td>
</tr>
<tr>
<td>sim.pl</td>
<td>0.00</td>
<td>0.00</td>
<td>Yes</td>
</tr>
<tr>
<td>simple_analyzer.pl</td>
<td>0.03</td>
<td>0.04</td>
<td>Yes</td>
</tr>
<tr>
<td>slice-all.pl</td>
<td>0.08</td>
<td>0.12</td>
<td>No</td>
</tr>
<tr>
<td>sprftp.pl.unsound</td>
<td>0.03</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>spsys.pl</td>
<td>0.09</td>
<td>0.10</td>
<td>Yes</td>
</tr>
<tr>
<td>strips.pl</td>
<td>0.06</td>
<td>0.06</td>
<td>Yes</td>
</tr>
<tr>
<td>synth.pl</td>
<td>0.16</td>
<td>0.18</td>
<td>Yes</td>
</tr>
<tr>
<td>tictactoe.pl</td>
<td>0.14</td>
<td>0.16</td>
<td>Yes</td>
</tr>
<tr>
<td>tricia.pl</td>
<td>12.67</td>
<td>28.16</td>
<td>Yes</td>
</tr>
<tr>
<td>trs.pl</td>
<td>0.10</td>
<td>0.11</td>
<td>Yes</td>
</tr>
<tr>
<td>vhdl97_parser.pl</td>
<td>0.46</td>
<td>0.54</td>
<td>Yes</td>
</tr>
</tbody>
</table>

This representation performs much better than the previous ones, although the new implementation is generally less efficient and approximates more.

5.2 Results
6 Conclusions

6.1 Future developments

The efficiency of CORAL, and in particular of the portion of China that utilizes CORAL, must still be improved. While the results of the experimental evaluation were decent, we still haven’t been able to match the efficiency and the precision of the native China implementation: we are currently able to match or beat the native implementation only by applying upward approximation more intensively.

Instead of using a single Boolean data member to record whether each representation $\langle n, E, D, L \rangle$ is normalized or not, we may also consider recording all states of partial normalization. For example, we may use multiple Boolean data members to record:

- Whether we know that there are no entailed variables in n or not.
- Whether we know that all variables in E do not occur in n or not.
- Whether we know that there are no disentailed variables in n or not.
- Whether we know that all variables in D do not occur in n or not.
- ... (etc.)

These informations may allow us to avoid unnecessary operations in various algorithms. Both CORAL and China still need extensive debugging before release.
Bibliography

