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Abstract. Inductive learning of recursive logical theories from a set of 
examples is a complex task characterized by three important issues, namely the 
adoption of a generality order stronger than θ-subsumption, the non-
monotonicity of the consistency property, and the automated discovery of 
dependencies between target predicates. Solutions implemented in the learning 
system ATRE are briefly reported in the paper. Moreover, efficiency problems 
of the learning strategy are illustrated and two caching strategies, one for the 
clause generation phase and one for the clause evaluation phase, are described. 
The effectiveness of the proposed caching strategies has been tested on the 
document processing domain. Experimental results are discussed and 
conclusions are drawn. 

1. Introduction 

Inductive Logic Programming (ILP) has evolved from previous research in Machine 
Learning, Logic Programming, and Inductive Program Synthesis. Like Machine 
Learning, it deals with the induction of concepts from observations (examples) and 
the synthesis of new knowledge from experience. Its peculiarity is the use of 
computational logic as the representation mechanism for concept definitions and 
observations.  Typically, the output of an ILP system is a logical theory expressed as 
a set of definite clauses, which logically entail all positive examples and no negative 
example. Therefore, each concept definition corresponds to a predicate definition and 
a concept learning problem is reformulated as a predicate learning problem.  

Learning a single predicate definition from a set of positive and negative examples 
is a classical problem in ILP. In this paper we are interested in the more complex case 
of learning multiple predicate definitions, provided that both positive and negative 
examples of each concept/predicate to be learned are available. Complexity stems 
from the fact that the learned predicates may also occur in the antecedents of the 
learned clauses, that is, the learned predicate definitions may be interrelated and 
depend on one another, either hierarchically or involving some kind of mutual 
recursion. For instance, to learn the definitions of odd and even numbers, a multiple 
predicate learning system will be provided with positive and negative examples of 
both odd and even numbers, and may generate the following recursive logical theory: 

odd(X) ← succ(Y,X), even(Y) 
even(X) ← succ(Y,X), odd(Y) 



even(X) ← zero(X) 
where the definitions of odd and even are interdependent. This example shows that the 
problem of learning multiple predicate definitions is equivalent, in its most general 
formulation, to the problem of learning recursive logical theories. 

There has been considerable debate on the actual usefulness of learning recursive 
logical theories in knowledge acquisition and discovery applications. It is a common 
opinion that very few real-life concepts seem to have recursive definitions, rare 
examples being “ancestor” and natural language [2, 10]. Despite this scepticism, in 
the literature it is possible to find several ILP applications in which recursion has 
proved helpful [7]. Moreover, many ILP researchers have shown some interest in 
multiple predicate learning [6], which presents the same difficulty of recursive theory 
learning in its most general formulation.  

To formulate the recursive theory learning problem and then to explain its main 
theoretical issues, some basic definitions are given below. 

Generally, every logical theory T can be associated with a directed graph 
γ(T)=<N,E>, called the dependency graph of T, in which (i) each predicate of T is a 
node in N and (ii) there is an arc in E directed from a node a to a node b, iff there 
exists a clause C in T, such that a and b are the predicates of a literal occurring in the 
head and in the body of C, respectively. 

A dependency graph allows representing the predicate dependencies of T, where a 
predicate dependency is defined as follows: 

Definition 1 (predicate dependency). A predicate p depends on a predicate q in a 
theory T iff (i) there exists a clause C for p in T such that q occurs in the body of C; or 
(ii) there exists a clause C for p in T with some predicate r in the body of C that 
depends on q. 

Definition 2 (recursive theory). A logical theory T is recursive if the dependency 
graph γ (T) contains at least one cycle. 

In simple recursive theories all cycles in the dependency graph go from a predicate 
p into p itself, that is, simple recursive theories may contain recursive clauses, but 
cannot express mutual recursion.  

Definition 3 (predicate definition). Let T be a logical theory and p a predicate 
symbol. Then the definition of p in T is the set of clauses in T that have p in their 
head. Henceforth, δ(T) will denote the set of predicates defined in T and π (T) will 
denote the set of predicates occurring in T, then δ(T)⊆π (T). 

In a quite general formulation, the recursive theory learning task can be defined as 
follows: 

Given 
• A set of target predicates p1, p2, …, pr to be learned 
• A set of positive (negative) examples Ei

+ ( Ei
- ) for each predicate pi, 1≤i≤r 

• A background theory BK 
• A language of hypotheses LH  that defines the space of hypotheses SH 

Find 
a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr  

(that is, δ(T)={p1, p2, …, pr})  such that for each i, 1≤i≤r, BK∪ T |= Ei
+ (completeness 

property) and BK∪T |≠ Ei
- (consistency property). 



Three important issues characterize recursive theory learning. First, the generality 
order typically used in ILP, namely θ-subsumption [13], is not sufficient to guarantee 
the completeness and consistency of learned definitions, with respect to logical 
entailment [12]. Therefore, it is necessary to consider a stronger generality order, 
which is consistent with the logical entailment for the class of recursive logical 
theories we take into account. 

Second, whenever two individual clauses are consistent in the data, their 
conjunction need not be consistent in the same data [5]. This is called the non-
monotonicity property of the normal ILP setting, since it states that adding new 
clauses to a theory T does not preserve consistency. Indeed, adding definite clauses to 
a definite program enlarges its least Herbrand model (LHM), which may then cover 
negative examples as well. Because of this non-monotonicity property, learning a 
recursive theory one clause at a time is not straightforward. 

Third, when multiple predicate definitions have to be learned, it is crucial to 
discover dependencies between predicates. Therefore, the classical learning strategy 
that focuses on a predicate definition at a time is not appropriate.   

To overcome these problems a new approach to the learning of multiple dependent 
concepts has been proposed in [8] and implemented in the learning system ATRE 
(www.di.uniba.it/∼malerba/software/atre). This approach differs from related works for 
at least one of the following three aspects: the learning strategy, the generalization 
model, and the strategy to recover the consistency property of the learned theory 
when a new clause is added. 

The paper synthesizes and extends the work presented in [8]. In particular, it 
presents a brief overview of solutions proposed and implemented in ATRE to the 
three main issues above. Evolutions of the search strategy are also reported. More 
precisely, two new issues regarding the search space exploration are faced, one 
concerning search bias definition in order to allow the user to guide the search space 
exploration according to his/her preference, and the other one concerning efficiency 
problems due to the computational complexity of the search space. Some solutions 
have been proposed and implemented in a new version of the system ATRE.  

The paper is organized as follows. Section 2 illustrates issues and solutions related 
to the recursive theory learning. Section 3 introduces efficiency problems and 
presents optimization approaches adopted in ATRE. Section 4 illustrates the 
application of ATRE on real-world documents and presents results on efficiency gain. 
Finally, in Section 5 some conclusions are drawn. 

2. Issues and solutions 

2.1 The generality order 

As explained above, in recursive theory learning it is necessary to consider a 
generality order that is consistent with the logical entailment for the class of recursive 
logical theories. A generality order (or generalization model) provides a basis for 
organizing the search space and is essential to understand how the search strategy 
proceeds. The main problem with the well-known θ-subsumption is that the objects 



of comparison are two clauses, say C and D, and no additional source of knowledge 
(e.g., a theory T) is considered. For instance, with reference to the previous example 
on odd and even predicates, the clause: 

C: odd(X) ← succ(Y,X), even(Y) 
logically entails, and hence can be correctly considered more general than  

D: odd(3) ← succ(0,1), succ(1,2), succ(2,3), even(0) 
only if we take into account the theory  

T: even(A) ← succ(B,A), odd(B) 
     even(C) ← zero(C) 
Therefore, we are only interested in those generality orders that compare two 

clauses relatively to a given theory T, such as Buntine's generalized subsumption [3] 
and Plotkin's notion of relative generalization [13, 14].  

Informally, generalized subsumption (≤T) requires that the heads of C and D refer 
to the same predicate, and that the body of D can be used, together with the 
background theory T, to entail the body of C. Unfortunately, generalized subsumption 
is too weak for recursive theories, because in some cases, given two clauses C and D, 
it may happen that T∪{C}|=D holds but it can not be concluded that C≤TD.  

Plotkin's notion of relative generalization [13, 14] was originally proposed for a 
theory T of unit clauses. Buntine [3] reports an extension of relative generalization to 
the case of a theory T composed of definite clauses (not necessarily of unit clauses) 

Definition 4 (relative generalization). Let C and D be two definite clauses. C is 
more general than D under relative generalization, with respect to a theory T, if a 
substitution θ exists such that T = ∀(Cθ ⇒ D). 

The following theorem holds for this extended notion of relative generalization: 
Theorem 1. Let C and D be two definite clauses and T a logical theory. C is more 

general than D under relative generalization, with respect to a theory T, if and only if 
C occurs at most once in some refutation demonstrating T = ∀(C ⇒ D). 

However, this extended notion of relative generalization is still inadequate. From 
one side, it is still weak. Indeed, if we consider the clauses and the theory reported in 
the example above, it is clear that a refutation demonstrating T = ∀(C ⇒ D) involves 
twice the clause C to prove both odd(1) and odd(3).  

Malerba [8] has defined the following generalization order, which proved suitable 
for recursive theories. 

Definition 5 (generalized implication). Let C and D be two definite clauses. C is 
more general than D under generalized implication, with respect to a theory T, 
denoted as C≤T⇒D, if a substitution θ exists such that head(C)θ = head(D) and   
T = ∀(C ⇒ D). 

Decidability of the generalized implication test is guaranteed in the case of Datalog 
clauses [4]. In fact, the restriction to function-free clauses is common in ILP systems, 
such as ATRE, which remove function symbols from clauses and put them in the 
background knowledge by techniques such as flattening [15].  



2.2 The non-monotonicity property 

It is noteworthy that generalized implication compares two definite clauses for 
generalization. This means that the search space structured by this generality order is 
the space of definite clauses. A recursive logical theory is generally composed of 
several clauses, therefore the learning strategy must search for one clause at a time. 
More precisely, a recursive theory T is built step by step, starting from an empty 
theory T0, and adding a new clause at each step. In this way we get a sequence of 
theories  

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T, 
such that Ti+1 = Ti  ∪ {C} for some clause C. If we denote by LHM(Ti) the least 
Herbrand model of a theory Ti, the stepwise construction of theories entails that 
LHM(Ti) ⊆ LHM(Ti+1), for each i∈{0, 1, …, n-1}, since the addition of a clause to a 
theory can only augment the LHM. Henceforth, we will assume that both positive and 
negative examples of predicates to be learned are represented as ground atoms with a 
+ or - label. Therefore, examples may or may not be elements of the models LHM(Ti). 
Let pos(LHM(Ti)) and neg(LHM(Ti)) be the number of positive and negative 
examples in LHM(Ti), respectively. If we guarantee the following two conditions: 

1. pos(LHM(Ti)) < pos(LHM(Ti+1)) for each i∈{0, 1, …, n-1}, and  
2. neg(LHM(Ti)) = 0 for each i∈{0, 1, …, n},  

then after a finite number of steps a theory T, which is complete and consistent, is 
built. This learning strategy is known as sequential covering (or separate-and-
conquer) [9]. 

In order to guarantee the first of the two conditions it is possible to proceed as 
follows. First, a positive example e+ of a predicate p to be learned is selected, such 
that e+ is not in LHM(Ti). The example e+ is called seed. Then the space of definite 
clauses more general than e+ is explored, looking for a clause C, if any, such that 
neg(LHM(Ti ∪ {C})) = ∅. In this way we guarantee that the second condition above 
holds as well. When found, C is added to Ti giving Ti+1. If some positive examples are 
not included in LHM(Ti+1) then a new seed is selected and the process is repeated.  

The second condition is more difficult to guarantee because of the second issue 
presented in the introduction, namely, the non-monotonicity property. Algorithmic 
implications of this property may be effectively illustrated by means of an example. 
Consider the problem of learning the definitions of ancestor and father from a 
complete set of positive and negative examples. Suppose that the following recursive 
theory T2 has been learned at the second step: 

C1: ancestor(X,Y) ← parent(X,Y) 
C2: father(Z,W) ← ancestor(Z,W), male(Z) 

Note that T2 is consistent but still incomplete. Thus a new clause will be generated 
at the third step of the sequential-covering strategy. It may happen that the generated 
clause is the following: 

C: ancestor(A,B) ← parent(A,D),ancestor(D,B) 
which is consistent given T2, but when added to the recursive theory, it makes clause 
C2 inconsistent.  

There are several ways to remove such inconsistency by revising the learned 
theory. Nienhuys-Cheng and de Wolf [11] describe a complete method of 



specializing a logic theory with respect to sets of positive and negative examples. The 
method is based upon unfolding, clause deletion and subsumption. These operations 
are not applied to the last clause added to the theory, but may involve any clause of 
the inconsistent theory. As a result, clauses learned in the first inductive steps could 
be totally changed or even removed. This theory revision approach, however, is not 
coherent with the stepwise construction of the theory T presented above, since it re-
opens the whole question of the validity of clauses added in the previous steps. An 
alternative approach consists of simple syntactic changes in the theory, which 
eventually creates new layers in a logical theory, just as the stratification of a normal 
program creates new strata [1].  

More precisely, a layering of a theory T is a partition of the clauses in T into n 
disjoint sets of clauses or layers Ti such that LHM(T)= LHM(LHM(∪j=0,…,n-2 Tj)∪Tn-1), 
that is, LHM(T) can be computed by iteratively applying the immediate consequence 
operator to Ti, starting from the interpretation LHM(∪j=0,…,i-1 Tj), for each i∈{1, …,n}. 
In [8] an efficient method for the computation of a layering is reported. It is based on 
the concept of collapsed dependency graph and returns a unique layering for a given 
logical theory T. The layering of a theory provides a semi-naive way of computing 
the generalized implication test presented above and provides a solution to the 
problem of consistency recovering when the addition of a clause makes the theory 
inconsistent.   
Theorem. Let T=T0 ∪ … ∪ Ti  ∪ … ∪ Tn-1 be a consistent theory partitioned into n 
layers, and C be a definite clause whose addition to the theory T makes a clause in 
layer Ti  inconsistent. Let p∈{p1, p2, …, pr} be the predicate in the head of C. Let T" be 
a theory obtained from T by substituting all occurrences of p in T with a new 
predicate symbol, p', and T'=T"∪{p(t1, …, tn) ← p'(t1, …, tn)}∪{C}. Then T' is 
consistent and LHM(T) ⊆ LHM(T') \ {p(t1, …, tn) ← p’ (t1, …, tn)}. 

In short, the new theory T' obtained by renaming the predicate p with a new 
predicate name p' before adding C is consistent and keeps the original coverage of T. 
This introduces a first variation of the classical separate-and-conquer strategy 
sketched above, since the addition of a locally consistent clause C generated in the 
conquer stage is preceded by a global consistency check. If the result is negative, the 
partially learned theory is first restructured, and then two clauses, p(t1, …, tn) ← p’ (t1, 
…, tn)  and C, are added. For instance, in the example above the result will be: 

C1': ancestor' (X,Y) ← parent(X,Y) 
C2': father(Z,W) ← ancestor'(Z,W), male(Z) 

  ancestor(U,V) ← ancestor' (U,V) 
C: ancestor(A,B) ← parent(A,D),ancestor(D,B) 

 
It is noteworthy that, in the proposed approach to consistency recovery, new 

predicates are invented, which aim to accommodate previously acquired knowledge 
(theory) with the currently generated hypothesis (clause).  



2.3 Discovering dependencies between predicates 

The third and last issue to deal with is the automated discovery of dependencies 
between target predicates p1, p2, …, pr. A solution to this problem is based on another 
variant of the separate-and-conquer learning strategy. Traditionally, this strategy is 
adopted by single predicate learning systems that generate clauses with the same 
predicate in the head at each step. In multiple predicate learning (or recursive theory 
learning) clauses generated at each step may have different predicates in their heads. 
In addition, the body of the clause generated at the i-th step may include all target 
predicates p1, p2, …, pr for which at least a clause has been added to the partially 
learned theory in previous steps. In this way, dependencies between target predicates 
can be generated.  

Obviously, the order in which clauses of distinct predicate definitions have to be 
generated is not known in advance. This means that it is necessary to generate clauses 
with different predicates in the head and then to pick one of them at the end of each 
step of the separate-and-conquer strategy. Since the generation of a clause depends on 
the chosen seed, several seeds have to be chosen such that at least one seed per 
incomplete predicate definition is kept. Therefore, the search space is actually a forest 
of as many search-trees (called specialization hierarchies) as the number of chosen 
seeds. A directed arc from a node C to a node C' exists if C' is obtained from C by a 
single refinement step. Operatively, the (downward) refinement operator considered 
in this work adds a new literal to a clause. 

The forest can be processed in parallel by as many concurrent tasks as the number 
of search-trees. Each task traverses the specialization hierarchy top-down (or general-
to-specific), but synchronizes traversal with the other tasks at each level. Initially, 
some clauses at depth one in the forest are examined concurrently. Each task is 
actually free to adopt its own search strategy, and to decide which clauses are worth 
to be tested. If none of the tested clauses is consistent, clauses at depth two are 
considered. Search proceeds towards deeper and deeper levels of the specialization 
hierarchies until at least a user-defined number of consistent clauses is found. Task 
synchronization is performed after that all “relevant” clauses at the same depth have 
been examined. A supervisor task decides whether the search should carry on or not 
on the basis of the results returned by the concurrent tasks. When the search is 
stopped, the supervisor selects the “best” consistent clause according to the user’s 
preference criterion. This strategy has the advantage that simpler consistent clauses 
are found first, independently of the predicates to be learned.1 Moreover, the 
synchronization allows tasks to save much computational effort when the distribution 
of consistent clauses in the levels of the different search-trees is uneven. The parallel 
exploration of the specialization hierarchies for odd and even is shown in Fig. 1. 

                                                           
1 Apparently, some problems might occur for those recursive definitions where the recursive 

clause is syntactically simpler than the base clause. However, the proposed strategy does not 
allow the discovery of the recursive clause until the base clause has been found, whatever its 
complexity is. 



 

even(X) ←

even(X) ← zero(X) even(X) ← succ(X,Y) 

odd(X) ← 

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ←zero(X) 
    succ(X,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   succ(X,Z) 

even(0) odd(1) seeds 

Level 0 

Level 1 

Level 2 

even(X) ←

even(X) ← succ(Y,X) even(X) ← succ(X,Y) 

odd(X) ← 

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ← succ(Y,X) 
    succ(Z,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   even(Y) 

even(2) odd(1) seeds 

Level 0 

Level 1 

Level 2 

Fig. 1. Two steps (up and down) of the parallel search for the predicates odd and 
even. Consistent clauses are reported in italics. 

2.4 Some refinements on the learning strategy 

The learning strategy reported in previous section is quite general and there is room 
for several distinct implementations. In particular, the following three points have 
been left unspecified: 1) how seeds are selected; 2) what are the roots of 
specialization hierarchies; 3) what is the search strategy adopted by each task. In this 
section, solutions adopted in the last release of the learning system ATRE are 
illustrated.  

Seed selection is a critical point. In the example of Fig. 1, if the search had started 
from even(2) and odd(1), the first clause added to the theory would have been   
odd(X) ← succ(Y,X), zero(Y), thus resulting in a less compact, though still correct, 
theory for odd and even numbers. Therefore, it is important to explore the 
specialization hierarchies of several seeds for each predicate. When training examples 
and background knowledge are represented either as sets of ground atoms (flattened 
representation) or as ground clauses, the number of candidate seeds can be very high, 
so the choice should be stochastic. The object-centered representation adopted by 
ATRE has the advantage of reducing the number of candidate seeds by partitioning 
the whole set of training examples E into training objects. The main assumption made 
in ATRE is that each object contains examples explained by some base clauses of the 
underlying recursive theory.2 Therefore, by choosing as seeds all examples of 
different concepts represented in one training object, it is possible to induce some of 
the correct base clauses. Since in many learning problems the number of positive 
                                                           
2 Problems caused by incomplete object descriptions violating the above assumption are not 

investigated in this work, since they require the application of abductive operators, which are 
not available in the current version of the system. 



examples in an object is not very high, a parallel exploration of all candidate seeds is 
feasible. Mutually recursive concept definitions will be generated only after some 
base clauses have been added to the theory. 

Seeds are chosen according to the textual order in which objects are input to 
ATRE. If a complete definition of the predicate pj is not available yet at the i-th step 
of the separate-and-conquer search strategy, then there are still some uncovered 
positive examples of pj. The first (seed) object Ok in the object list that contains 
uncovered examples of pj is selected to generate seeds for pj.  

Generally, each specialization hierarchy is rooted in a unit clause, that is, a clause 
with an empty body. However, in some cases, the user has a clear idea of relevant 
properties that should appear in the body of the clauses and is even able to define the 
root of the specialization hierarchies. A language bias has been defined in ATRE to 
allow users to express constraints that should be satisfied by root clauses or by 
interesting clauses in the specialization hierarchy. In its current version, the language 
bias includes the following declarations: 

starting_number_of_literals(pi,N) 
starting_clause(pi,[L1,L2,…,LN]) 

where pi is a target predicate, N is a cardinal number, and [L1,L2,…,LN] represents a 
list of literals. In particular, the starting_number_of_literals declaration specifies the 
initial length of the root clause (at least N literals in the body), while the 
starting_clause declaration specifies a conjunctive constraint on the body of a root 
clause: all literals in the list [L1,L2,…,LN] must occur in the clause. Multiple 
starting_clause declarations for the same target predicate pi specify alternative 
conjunctive constraints for the root clauses of specialization hierarchies associated to 
pi. In addition, the following declaration: 

starting_literal(pi,[L1,L2,…,LN]) 
specifies a disjunctive constraint at literal level for the body of root clauses. Literals 
are expressed as follows: 

f(decl-arg1, …, decl-argn) = Value 
g(decl-arg1, …, decl-argn) ∈ Range 

where decl-arg's are mode declarations for predicate arguments. Declarations are 
applicable only to variables and influence the way of generating variables. Two 
modes are available: old and new. The first mode means that the variable is an input 
variable, that is, it corresponds to a variable already occurring in the clause. The 
second mode means that the variable is a new one. Furthermore, values and ranges of 
predicates can be ground or not. 

The third undefined point of the search strategy concerns the search strategy 
adopted by each task. ATRE applies a variant of the beam-search strategy. The 
system generates all candidate clauses at level l+1 starting from those filtered at level 
l in the specialization hierarchy. During task synchronization, which occurs level-by-
level, the best m clauses are selected from those generated by all tasks. The user 
specifies the beam of the search, that is m, and a set of preference criteria for the 
selection of the best m clauses.  



3. Improving efficiency in ATRE 

In this section we present a novel caching strategy implemented in ATRE to 
overcome efficiency problems. Generally speaking, caching aims to save useful 
information that would be repeatedly recomputed otherwise, with a clear waste of 
time. In ATRE caching affects the two most computationally expensive phases of the 
learning process, namely the clause generation step and the clause evaluation step.  

3.1 Caching for clause generation  
The learning strategy sketched in Section 2.3 presents a large margin for 
optimization. One of the reasons is that every time a clause is added to the partially 
learned theory, the specialization hierarchies are reconstructed for a new set of seeds, 
which may intersect the set of seeds explored in the previous step. Therefore, it is 
possible that the system explores the same specialization hierarchies several times, 
since it has no memory of the work done in previous steps. This is particularly 
evident when concepts to learn are neither recursively definable nor mutually 
dependent. Caching the specialization hierarchies explored at the i-th step of the 
separate-and-conquer strategy and reusing part of them at the (i+1)-th step, seems to 
be a good strategy to decrease the learning time while keeping memory usage under 
acceptable limits.  

First of all, we observe that a necessary condition for reusing a specialization 
hierarchy between two subsequent learning steps is that the associated seed remains 
the same. This means that if the seed of a specialization hierarchy is no longer 
considered at the (i+1)-th step, then the corresponding clauses cached at the i-th step 
can be discarded.  

However, even in the case of same seed, not all the clauses of the specialization 
hierarchy will be actually useful. For instance, the cached copies of a clause C added 
to Ti  can be removed from all specialization hierarchies including it.  Moreover, all 
clauses that cover only positive examples already covered by C can be dropped, 
according to the separate-and-conquer learning strategy. These examples explain why 
a cached specialization hierarchy has to be pruned before considering it at the (i+1)-
th step of the learning strategy.  

Fig.2. An example of search-tree pruning effect on beam-search width. 



In order to maintain unchanged the width of the search beam, some grafting 
operations are necessary after pruning. Indeed, by removing the clauses that will be 
no more examined, the exploration beam decreases. Grafting operations aim to 
consider previous unspecialized clauses in order to restore the beam width, as shown 
in Fig.2. 

Grafting operations are also necessary to preserve the generation of recursive 
clauses. For instance, by looking at the two specialization hierarchies of the predicate 
odd in Fig. 1, it is clear that once the clause  even(X) ← zero(X)  has been added to 
the empty theory (step 1), the consistent clause odd(X) ← succ(Y,X), even(Y)  can be a 
proper node of the specialization hierarchy, since a base clause for the recursive 
definition of the predicate even is already available. Therefore, the grafting operations 
also aim to complete the pruned specialization hierarchy with new clauses that take 
predicate dependencies into account.  

3.2 Caching for clause evaluation  
Evaluating a clause corresponds to determining the lists of positive and negative 
examples covered by the clause itself. This requires a number of generalized 
implication tests, one for each positive or negative example. In ATRE the generalized 
implication test is optimized, however, if the number of tests to perform is high, the 
clause evaluation leads to efficiency problems anyway. To reduce the number of tests, 
we propose to cache the list of positive and negative examples of each clause, as well. 

To clarify this caching technique, we distinguish between dependent clauses, that 
is, clauses with at least one literal in the body whose predicate symbol is a target 
predicate pi, and independent clauses (all the others).  

In independent clauses, the lists of negative examples remain unchanged between 
two subsequent learning steps. Indeed, the addition of a clause C to a partially learned 
theory Ti does not change the set of consequences of an independent clause, whose 
set of negative examples can neither increase nor decrease. Therefore, by caching the 
list of negative examples, the learning system can prevent its computation. 

A different observation concerns the list of positive examples to be covered by the 
partially learned theory. For the same reason reported above it cannot increase, while 
it can decrease since some of the positive examples might have been covered by the 
added clause C. Actually, the set of positive examples of a clause C' generated at the 
(i+1)-th step can be calculated as intersection of the cached set computed at the i-th 
step of the learning strategy and the set of positive examples covered by the parent 
clause of C' in the specialization hierarchy computed at the (i+1)-th step (see Fig. 3). 
In the case of dependent clauses, both lists of the positive and negative examples can 
increase, decrease or remain unchanged, since the addition of a clause C to a partially 
learned theory Ti might change the set of consequences of a dependent clause. 
Therefore, caching the set of positive/negative examples covered by a dependent 
clause is useless.  

It is noteworthy that, differently from the caching technique for clause generation, 
caching for clause evaluation does not require additional memory resources since all 
requested information are kept from the current learning step. 



 

4. Application to document understanding  

The current release of ATRE is implemented in Sictus Prolog and C. It has also been 
integrated in WISDOM++(http://www.di.uniba.it/~malerba/wisdom++), an intelligent 
document processing system, that uses logical theories learned by ATRE to perform 
automatic classification and understanding of document images. In this section we 
show some experimental results for the document image understanding task alone.  

Fig.3. The positive examples list is calculated as intersection of the positive examples
list of the same clause in previous learning step (i) and the positive examples list of the
parent clause in current learning step (i+1). 

Fig. 4. Layout of a document image produced by WISDOM++ (left) and its partial 
description in the logical representation language adopted by ATRE (right). 



A document is characterized by two different structures representing both its 
internal organization and its content: the layout structure and the logical structure. 
The former associates the content of a document with a hierarchy of layout 
components, while the latter associates the content of a document with a hierarchy of 
logical components. Here, the term document understanding denotes the process of 
mapping the layout structure of a document into the corresponding logical structure. 
The document understanding process is based on the assumption that documents can 
be understood by means of their layout structures alone. The mapping of the layout 
structure into the logical structure can be performed by means of a set of rules which 
can be generate automatically by learning from a set of training objects. Each training 
object describes the layout of a document image and the logical components 
associated to layout components (see Fig. 4). 

To empirically investigate the effect of the proposed caching strategies, we 
selected twenty-one papers, published as either regular or short, in the IEEE 
Transactions on Pattern Analysis and Machine Intelligence, in the January and 
February issues of 1996. Each paper is a multi-page document; therefore, the dataset 
is composed by 197 document images in all. Since in the particular application 
domain, it generally happens that the presence of some logical components depends 
on the order page (e.g. author is in the first page), we have decomposed the document 
understanding problem into three learning subtasks, one for the first page of scientific 
papers, another for intermediate pages and the third for the last page. Target 
predicates are only unary and concern the following logical components of a typical 
scientific paper published in a journal: abstract, affiliation, author, biography, 
caption, figure, formulae, index_term, page_number, references, running_head, 
table, title. Some statistics on the dataset obtained from first page documents are 
reported in Table1. 

 

Logical components Number of positive examples 

Abstract 21 
Affiliation 22 
Author 25 
Index_term 11 
Page_number 180 
Running_head 203 
Title 23 
Total 485 

Table 1. Distribution of logical components on first page documents. 

By running ATRE on a document understanding dataset obtained from scientific 
papers, a set of  theories is learned. Some examples of learned clauses follow:  

author(X1)  alignment(X1,X2)=only_middle_col, abstract(X2), 
   height(X1)∈[7..13] 

figure(X1)  type_of(X1)= image, width(X1)∈[12..227], 
   x_pos_centre(X1)∈[335..570] 

references(X1)  to_right(X1,X2), biografy(X2), 



 width(X2)∈[261..265] 
They can be easily interpreted. For instance, the first clause states that if a quite 

short layout component (X1), whose height is between 7 and 13, is centrally aligned 
with another layout component (X2) labelled as the abstract of the scientific paper, 
then it can be classified as the author of the paper. These clauses show that ATRE can 
automatically discover meaningful dependencies between target predicates. 

In the experiments the effect of the caching is investigated with respect to two 
system parameters, the minimum number of consistent clauses found at each learning 
step before selecting the best one and the beam of the search (max_star parameter). 
The former affects the depth of specialization hierarchies, in the sense that the higher 
the number of consistent clauses, the deeper the hierarchies. The latter affects the 
width of the search-tree.  
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Fig. 5 Efficiency gain on "First-page" task on max_star variation. 
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Results for the first page learning task are shown in Figures 5 and 6. Percentages 
refer to reduction of the learning time required by ATRE with caching with respect to 
the original release of the system (without caching). Results show a positive 
dependence between the size of the beam and the reduction of the learning time. On 
the contrary, slight increases in the number of consistent clauses do not seem to 
significantly affect the efficiency gain due to caching. 

5. Conclusions 

In this paper issues and solutions of recursive theory learning are illustrated. 
Evolutions on the proposed search strategy to tackle efficiency problems are 
proposed. They have been implemented in ATRE and tested in the document 
understanding domain. Initial experimental results show that the learning task 
benefits from the caching strategy. As future work we plan to perform more extensive 
experiments to investigate the real efficiency gain in other real-world domains. 
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