
Improving efficiency of recursive theory learning

Antonio Varlaro, Margherita Berardi, Donato Malerba

Dipartimento di Informatica – Università degli Studi di Bari
via Orabona 4 - 70126 Bari

{varlaro, berardi, malerba}@di.uniba.it

Abstract. Inductive learning of recursive logical theories from a set of
examples is a complex task characterized by three important issues, namely the
adoption of a generality order stronger than θ-subsumption, the non-
monotonicity of the consistency property, and the automated discovery of
dependencies between target predicates. Solutions implemented in the learning
system ATRE are briefly reported in the paper. Moreover, efficiency problems
of the learning strategy are illustrated and two caching strategies, one for the
clause generation phase and one for the clause evaluation phase, are described.
The effectiveness of the proposed caching strategies has been tested on the
document processing domain. Experimental results are discussed and
conclusions are drawn.

1. Introduction

Inductive Logic Programming (ILP) has evolved from previous research in Machine
Learning, Logic Programming, and Inductive Program Synthesis. Like Machine
Learning, it deals with the induction of concepts from observations (examples) and
the synthesis of new knowledge from experience. Its peculiarity is the use of
computational logic as the representation mechanism for concept definitions and
observations. Typically, the output of an ILP system is a logical theory expressed as
a set of definite clauses, which logically entail all positive examples and no negative
example. Therefore, each concept definition corresponds to a predicate definition and
a concept learning problem is reformulated as a predicate learning problem.

Learning a single predicate definition from a set of positive and negative examples
is a classical problem in ILP. In this paper we are interested in the more complex case
of learning multiple predicate definitions, provided that both positive and negative
examples of each concept/predicate to be learned are available. Complexity stems
from the fact that the learned predicates may also occur in the antecedents of the
learned clauses, that is, the learned predicate definitions may be interrelated and
depend on one another, either hierarchically or involving some kind of mutual
recursion. For instance, to learn the definitions of odd and even numbers, a multiple
predicate learning system will be provided with positive and negative examples of
both odd and even numbers, and may generate the following recursive logical theory:

odd(X) ← succ(Y,X), even(Y)
even(X) ← succ(Y,X), odd(Y)

even(X) ← zero(X)
where the definitions of odd and even are interdependent. This example shows that the
problem of learning multiple predicate definitions is equivalent, in its most general
formulation, to the problem of learning recursive logical theories.

There has been considerable debate on the actual usefulness of learning recursive
logical theories in knowledge acquisition and discovery applications. It is a common
opinion that very few real-life concepts seem to have recursive definitions, rare
examples being “ancestor” and natural language [2, 10]. Despite this scepticism, in
the literature it is possible to find several ILP applications in which recursion has
proved helpful [7]. Moreover, many ILP researchers have shown some interest in
multiple predicate learning [6], which presents the same difficulty of recursive theory
learning in its most general formulation.

To formulate the recursive theory learning problem and then to explain its main
theoretical issues, some basic definitions are given below.

Generally, every logical theory T can be associated with a directed graph
γ(T)=<N,E>, called the dependency graph of T, in which (i) each predicate of T is a
node in N and (ii) there is an arc in E directed from a node a to a node b, iff there
exists a clause C in T, such that a and b are the predicates of a literal occurring in the
head and in the body of C, respectively.

A dependency graph allows representing the predicate dependencies of T, where a
predicate dependency is defined as follows:

Definition 1 (predicate dependency). A predicate p depends on a predicate q in a
theory T iff (i) there exists a clause C for p in T such that q occurs in the body of C; or
(ii) there exists a clause C for p in T with some predicate r in the body of C that
depends on q.

Definition 2 (recursive theory). A logical theory T is recursive if the dependency
graph γ (T) contains at least one cycle.

In simple recursive theories all cycles in the dependency graph go from a predicate
p into p itself, that is, simple recursive theories may contain recursive clauses, but
cannot express mutual recursion.

Definition 3 (predicate definition). Let T be a logical theory and p a predicate
symbol. Then the definition of p in T is the set of clauses in T that have p in their
head. Henceforth, δ(T) will denote the set of predicates defined in T and π (T) will
denote the set of predicates occurring in T, then δ(T)⊆π (T).

In a quite general formulation, the recursive theory learning task can be defined as
follows:

Given
• A set of target predicates p1, p2, …, pr to be learned
• A set of positive (negative) examples Ei

+ (Ei
-) for each predicate pi, 1≤i≤r

• A background theory BK
• A language of hypotheses LH that defines the space of hypotheses SH

Find
a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr

(that is, δ(T)={p1, p2, …, pr}) such that for each i, 1≤i≤r, BK∪ T |= Ei
+ (completeness

property) and BK∪T |≠ Ei
- (consistency property).

Three important issues characterize recursive theory learning. First, the generality
order typically used in ILP, namely θ-subsumption [13], is not sufficient to guarantee
the completeness and consistency of learned definitions, with respect to logical
entailment [12]. Therefore, it is necessary to consider a stronger generality order,
which is consistent with the logical entailment for the class of recursive logical
theories we take into account.

Second, whenever two individual clauses are consistent in the data, their
conjunction need not be consistent in the same data [5]. This is called the non-
monotonicity property of the normal ILP setting, since it states that adding new
clauses to a theory T does not preserve consistency. Indeed, adding definite clauses to
a definite program enlarges its least Herbrand model (LHM), which may then cover
negative examples as well. Because of this non-monotonicity property, learning a
recursive theory one clause at a time is not straightforward.

Third, when multiple predicate definitions have to be learned, it is crucial to
discover dependencies between predicates. Therefore, the classical learning strategy
that focuses on a predicate definition at a time is not appropriate.

To overcome these problems a new approach to the learning of multiple dependent
concepts has been proposed in [8] and implemented in the learning system ATRE
(www.di.uniba.it/∼malerba/software/atre). This approach differs from related works for
at least one of the following three aspects: the learning strategy, the generalization
model, and the strategy to recover the consistency property of the learned theory
when a new clause is added.

The paper synthesizes and extends the work presented in [8]. In particular, it
presents a brief overview of solutions proposed and implemented in ATRE to the
three main issues above. Evolutions of the search strategy are also reported. More
precisely, two new issues regarding the search space exploration are faced, one
concerning search bias definition in order to allow the user to guide the search space
exploration according to his/her preference, and the other one concerning efficiency
problems due to the computational complexity of the search space. Some solutions
have been proposed and implemented in a new version of the system ATRE.

The paper is organized as follows. Section 2 illustrates issues and solutions related
to the recursive theory learning. Section 3 introduces efficiency problems and
presents optimization approaches adopted in ATRE. Section 4 illustrates the
application of ATRE on real-world documents and presents results on efficiency gain.
Finally, in Section 5 some conclusions are drawn.

2. Issues and solutions

2.1 The generality order

As explained above, in recursive theory learning it is necessary to consider a
generality order that is consistent with the logical entailment for the class of recursive
logical theories. A generality order (or generalization model) provides a basis for
organizing the search space and is essential to understand how the search strategy
proceeds. The main problem with the well-known θ-subsumption is that the objects

of comparison are two clauses, say C and D, and no additional source of knowledge
(e.g., a theory T) is considered. For instance, with reference to the previous example
on odd and even predicates, the clause:

C: odd(X) ← succ(Y,X), even(Y)
logically entails, and hence can be correctly considered more general than

D: odd(3) ← succ(0,1), succ(1,2), succ(2,3), even(0)
only if we take into account the theory

T: even(A) ← succ(B,A), odd(B)
 even(C) ← zero(C)
Therefore, we are only interested in those generality orders that compare two

clauses relatively to a given theory T, such as Buntine's generalized subsumption [3]
and Plotkin's notion of relative generalization [13, 14].

Informally, generalized subsumption (≤T) requires that the heads of C and D refer
to the same predicate, and that the body of D can be used, together with the
background theory T, to entail the body of C. Unfortunately, generalized subsumption
is too weak for recursive theories, because in some cases, given two clauses C and D,
it may happen that T∪{C}|=D holds but it can not be concluded that C≤TD.

Plotkin's notion of relative generalization [13, 14] was originally proposed for a
theory T of unit clauses. Buntine [3] reports an extension of relative generalization to
the case of a theory T composed of definite clauses (not necessarily of unit clauses)

Definition 4 (relative generalization). Let C and D be two definite clauses. C is
more general than D under relative generalization, with respect to a theory T, if a
substitution θ exists such that T = ∀(Cθ ⇒ D).

The following theorem holds for this extended notion of relative generalization:
Theorem 1. Let C and D be two definite clauses and T a logical theory. C is more

general than D under relative generalization, with respect to a theory T, if and only if
C occurs at most once in some refutation demonstrating T = ∀(C ⇒ D).

However, this extended notion of relative generalization is still inadequate. From
one side, it is still weak. Indeed, if we consider the clauses and the theory reported in
the example above, it is clear that a refutation demonstrating T = ∀(C ⇒ D) involves
twice the clause C to prove both odd(1) and odd(3).

Malerba [8] has defined the following generalization order, which proved suitable
for recursive theories.

Definition 5 (generalized implication). Let C and D be two definite clauses. C is
more general than D under generalized implication, with respect to a theory T,
denoted as C≤T⇒D, if a substitution θ exists such that head(C)θ = head(D) and
T = ∀(C ⇒ D).

Decidability of the generalized implication test is guaranteed in the case of Datalog
clauses [4]. In fact, the restriction to function-free clauses is common in ILP systems,
such as ATRE, which remove function symbols from clauses and put them in the
background knowledge by techniques such as flattening [15].

2.2 The non-monotonicity property

It is noteworthy that generalized implication compares two definite clauses for
generalization. This means that the search space structured by this generality order is
the space of definite clauses. A recursive logical theory is generally composed of
several clauses, therefore the learning strategy must search for one clause at a time.
More precisely, a recursive theory T is built step by step, starting from an empty
theory T0, and adding a new clause at each step. In this way we get a sequence of
theories

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T,
such that Ti+1 = Ti ∪ {C} for some clause C. If we denote by LHM(Ti) the least
Herbrand model of a theory Ti, the stepwise construction of theories entails that
LHM(Ti) ⊆ LHM(Ti+1), for each i∈{0, 1, …, n-1}, since the addition of a clause to a
theory can only augment the LHM. Henceforth, we will assume that both positive and
negative examples of predicates to be learned are represented as ground atoms with a
+ or - label. Therefore, examples may or may not be elements of the models LHM(Ti).
Let pos(LHM(Ti)) and neg(LHM(Ti)) be the number of positive and negative
examples in LHM(Ti), respectively. If we guarantee the following two conditions:

1. pos(LHM(Ti)) < pos(LHM(Ti+1)) for each i∈{0, 1, …, n-1}, and
2. neg(LHM(Ti)) = 0 for each i∈{0, 1, …, n},

then after a finite number of steps a theory T, which is complete and consistent, is
built. This learning strategy is known as sequential covering (or separate-and-
conquer) [9].

In order to guarantee the first of the two conditions it is possible to proceed as
follows. First, a positive example e+ of a predicate p to be learned is selected, such
that e+ is not in LHM(Ti). The example e+ is called seed. Then the space of definite
clauses more general than e+ is explored, looking for a clause C, if any, such that
neg(LHM(Ti ∪ {C})) = ∅. In this way we guarantee that the second condition above
holds as well. When found, C is added to Ti giving Ti+1. If some positive examples are
not included in LHM(Ti+1) then a new seed is selected and the process is repeated.

The second condition is more difficult to guarantee because of the second issue
presented in the introduction, namely, the non-monotonicity property. Algorithmic
implications of this property may be effectively illustrated by means of an example.
Consider the problem of learning the definitions of ancestor and father from a
complete set of positive and negative examples. Suppose that the following recursive
theory T2 has been learned at the second step:

C1: ancestor(X,Y) ← parent(X,Y)
C2: father(Z,W) ← ancestor(Z,W), male(Z)

Note that T2 is consistent but still incomplete. Thus a new clause will be generated
at the third step of the sequential-covering strategy. It may happen that the generated
clause is the following:

C: ancestor(A,B) ← parent(A,D),ancestor(D,B)
which is consistent given T2, but when added to the recursive theory, it makes clause
C2 inconsistent.

There are several ways to remove such inconsistency by revising the learned
theory. Nienhuys-Cheng and de Wolf [11] describe a complete method of

specializing a logic theory with respect to sets of positive and negative examples. The
method is based upon unfolding, clause deletion and subsumption. These operations
are not applied to the last clause added to the theory, but may involve any clause of
the inconsistent theory. As a result, clauses learned in the first inductive steps could
be totally changed or even removed. This theory revision approach, however, is not
coherent with the stepwise construction of the theory T presented above, since it re-
opens the whole question of the validity of clauses added in the previous steps. An
alternative approach consists of simple syntactic changes in the theory, which
eventually creates new layers in a logical theory, just as the stratification of a normal
program creates new strata [1].

More precisely, a layering of a theory T is a partition of the clauses in T into n
disjoint sets of clauses or layers Ti such that LHM(T)= LHM(LHM(∪j=0,…,n-2 Tj)∪Tn-1),
that is, LHM(T) can be computed by iteratively applying the immediate consequence
operator to Ti, starting from the interpretation LHM(∪j=0,…,i-1 Tj), for each i∈{1, …,n}.
In [8] an efficient method for the computation of a layering is reported. It is based on
the concept of collapsed dependency graph and returns a unique layering for a given
logical theory T. The layering of a theory provides a semi-naive way of computing
the generalized implication test presented above and provides a solution to the
problem of consistency recovering when the addition of a clause makes the theory
inconsistent.
Theorem. Let T=T0 ∪ … ∪ Ti ∪ … ∪ Tn-1 be a consistent theory partitioned into n
layers, and C be a definite clause whose addition to the theory T makes a clause in
layer Ti inconsistent. Let p∈{p1, p2, …, pr} be the predicate in the head of C. Let T" be
a theory obtained from T by substituting all occurrences of p in T with a new
predicate symbol, p', and T'=T"∪{p(t1, …, tn) ← p'(t1, …, tn)}∪{C}. Then T' is
consistent and LHM(T) ⊆ LHM(T') \ {p(t1, …, tn) ← p’ (t1, …, tn)}.

In short, the new theory T' obtained by renaming the predicate p with a new
predicate name p' before adding C is consistent and keeps the original coverage of T.
This introduces a first variation of the classical separate-and-conquer strategy
sketched above, since the addition of a locally consistent clause C generated in the
conquer stage is preceded by a global consistency check. If the result is negative, the
partially learned theory is first restructured, and then two clauses, p(t1, …, tn) ← p’ (t1,
…, tn) and C, are added. For instance, in the example above the result will be:

C1': ancestor' (X,Y) ← parent(X,Y)
C2': father(Z,W) ← ancestor'(Z,W), male(Z)

 ancestor(U,V) ← ancestor' (U,V)
C: ancestor(A,B) ← parent(A,D),ancestor(D,B)

It is noteworthy that, in the proposed approach to consistency recovery, new

predicates are invented, which aim to accommodate previously acquired knowledge
(theory) with the currently generated hypothesis (clause).

2.3 Discovering dependencies between predicates

The third and last issue to deal with is the automated discovery of dependencies
between target predicates p1, p2, …, pr. A solution to this problem is based on another
variant of the separate-and-conquer learning strategy. Traditionally, this strategy is
adopted by single predicate learning systems that generate clauses with the same
predicate in the head at each step. In multiple predicate learning (or recursive theory
learning) clauses generated at each step may have different predicates in their heads.
In addition, the body of the clause generated at the i-th step may include all target
predicates p1, p2, …, pr for which at least a clause has been added to the partially
learned theory in previous steps. In this way, dependencies between target predicates
can be generated.

Obviously, the order in which clauses of distinct predicate definitions have to be
generated is not known in advance. This means that it is necessary to generate clauses
with different predicates in the head and then to pick one of them at the end of each
step of the separate-and-conquer strategy. Since the generation of a clause depends on
the chosen seed, several seeds have to be chosen such that at least one seed per
incomplete predicate definition is kept. Therefore, the search space is actually a forest
of as many search-trees (called specialization hierarchies) as the number of chosen
seeds. A directed arc from a node C to a node C' exists if C' is obtained from C by a
single refinement step. Operatively, the (downward) refinement operator considered
in this work adds a new literal to a clause.

The forest can be processed in parallel by as many concurrent tasks as the number
of search-trees. Each task traverses the specialization hierarchy top-down (or general-
to-specific), but synchronizes traversal with the other tasks at each level. Initially,
some clauses at depth one in the forest are examined concurrently. Each task is
actually free to adopt its own search strategy, and to decide which clauses are worth
to be tested. If none of the tested clauses is consistent, clauses at depth two are
considered. Search proceeds towards deeper and deeper levels of the specialization
hierarchies until at least a user-defined number of consistent clauses is found. Task
synchronization is performed after that all “relevant” clauses at the same depth have
been examined. A supervisor task decides whether the search should carry on or not
on the basis of the results returned by the concurrent tasks. When the search is
stopped, the supervisor selects the “best” consistent clause according to the user’s
preference criterion. This strategy has the advantage that simpler consistent clauses
are found first, independently of the predicates to be learned.1 Moreover, the
synchronization allows tasks to save much computational effort when the distribution
of consistent clauses in the levels of the different search-trees is uneven. The parallel
exploration of the specialization hierarchies for odd and even is shown in Fig. 1.

1 Apparently, some problems might occur for those recursive definitions where the recursive

clause is syntactically simpler than the base clause. However, the proposed strategy does not
allow the discovery of the recursive clause until the base clause has been found, whatever its
complexity is.

even(X) ←

even(X) ← zero(X) even(X) ← succ(X,Y)

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y)

even(X) ←zero(X)
 succ(X,Y)

even(X) ←succ(X,Y)
 succ(Y,Z)

odd(X) ← succ(Y,X)
 zero(Y)

odd(X) ← succ(Y,X)
 succ(X,Z)

even(0) odd(1) seeds

Level 0

Level 1

Level 2

even(X) ←

even(X) ← succ(Y,X) even(X) ← succ(X,Y)

odd(X) ←

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y)

even(X) ← succ(Y,X)
 succ(Z,Y)

even(X) ←succ(X,Y)
 succ(Y,Z)

odd(X) ← succ(Y,X)
 zero(Y)

odd(X) ← succ(Y,X)
 even(Y)

even(2) odd(1) seeds

Level 0

Level 1

Level 2

Fig. 1. Two steps (up and down) of the parallel search for the predicates odd and
even. Consistent clauses are reported in italics.

2.4 Some refinements on the learning strategy

The learning strategy reported in previous section is quite general and there is room
for several distinct implementations. In particular, the following three points have
been left unspecified: 1) how seeds are selected; 2) what are the roots of
specialization hierarchies; 3) what is the search strategy adopted by each task. In this
section, solutions adopted in the last release of the learning system ATRE are
illustrated.

Seed selection is a critical point. In the example of Fig. 1, if the search had started
from even(2) and odd(1), the first clause added to the theory would have been
odd(X) ← succ(Y,X), zero(Y), thus resulting in a less compact, though still correct,
theory for odd and even numbers. Therefore, it is important to explore the
specialization hierarchies of several seeds for each predicate. When training examples
and background knowledge are represented either as sets of ground atoms (flattened
representation) or as ground clauses, the number of candidate seeds can be very high,
so the choice should be stochastic. The object-centered representation adopted by
ATRE has the advantage of reducing the number of candidate seeds by partitioning
the whole set of training examples E into training objects. The main assumption made
in ATRE is that each object contains examples explained by some base clauses of the
underlying recursive theory.2 Therefore, by choosing as seeds all examples of
different concepts represented in one training object, it is possible to induce some of
the correct base clauses. Since in many learning problems the number of positive

2 Problems caused by incomplete object descriptions violating the above assumption are not

investigated in this work, since they require the application of abductive operators, which are
not available in the current version of the system.

examples in an object is not very high, a parallel exploration of all candidate seeds is
feasible. Mutually recursive concept definitions will be generated only after some
base clauses have been added to the theory.

Seeds are chosen according to the textual order in which objects are input to
ATRE. If a complete definition of the predicate pj is not available yet at the i-th step
of the separate-and-conquer search strategy, then there are still some uncovered
positive examples of pj. The first (seed) object Ok in the object list that contains
uncovered examples of pj is selected to generate seeds for pj.

Generally, each specialization hierarchy is rooted in a unit clause, that is, a clause
with an empty body. However, in some cases, the user has a clear idea of relevant
properties that should appear in the body of the clauses and is even able to define the
root of the specialization hierarchies. A language bias has been defined in ATRE to
allow users to express constraints that should be satisfied by root clauses or by
interesting clauses in the specialization hierarchy. In its current version, the language
bias includes the following declarations:

starting_number_of_literals(pi,N)
starting_clause(pi,[L1,L2,…,LN])

where pi is a target predicate, N is a cardinal number, and [L1,L2,…,LN] represents a
list of literals. In particular, the starting_number_of_literals declaration specifies the
initial length of the root clause (at least N literals in the body), while the
starting_clause declaration specifies a conjunctive constraint on the body of a root
clause: all literals in the list [L1,L2,…,LN] must occur in the clause. Multiple
starting_clause declarations for the same target predicate pi specify alternative
conjunctive constraints for the root clauses of specialization hierarchies associated to
pi. In addition, the following declaration:

starting_literal(pi,[L1,L2,…,LN])
specifies a disjunctive constraint at literal level for the body of root clauses. Literals
are expressed as follows:

f(decl-arg1, …, decl-argn) = Value
g(decl-arg1, …, decl-argn) ∈ Range

where decl-arg's are mode declarations for predicate arguments. Declarations are
applicable only to variables and influence the way of generating variables. Two
modes are available: old and new. The first mode means that the variable is an input
variable, that is, it corresponds to a variable already occurring in the clause. The
second mode means that the variable is a new one. Furthermore, values and ranges of
predicates can be ground or not.

The third undefined point of the search strategy concerns the search strategy
adopted by each task. ATRE applies a variant of the beam-search strategy. The
system generates all candidate clauses at level l+1 starting from those filtered at level
l in the specialization hierarchy. During task synchronization, which occurs level-by-
level, the best m clauses are selected from those generated by all tasks. The user
specifies the beam of the search, that is m, and a set of preference criteria for the
selection of the best m clauses.

3. Improving efficiency in ATRE

In this section we present a novel caching strategy implemented in ATRE to
overcome efficiency problems. Generally speaking, caching aims to save useful
information that would be repeatedly recomputed otherwise, with a clear waste of
time. In ATRE caching affects the two most computationally expensive phases of the
learning process, namely the clause generation step and the clause evaluation step.

3.1 Caching for clause generation
The learning strategy sketched in Section 2.3 presents a large margin for
optimization. One of the reasons is that every time a clause is added to the partially
learned theory, the specialization hierarchies are reconstructed for a new set of seeds,
which may intersect the set of seeds explored in the previous step. Therefore, it is
possible that the system explores the same specialization hierarchies several times,
since it has no memory of the work done in previous steps. This is particularly
evident when concepts to learn are neither recursively definable nor mutually
dependent. Caching the specialization hierarchies explored at the i-th step of the
separate-and-conquer strategy and reusing part of them at the (i+1)-th step, seems to
be a good strategy to decrease the learning time while keeping memory usage under
acceptable limits.

First of all, we observe that a necessary condition for reusing a specialization
hierarchy between two subsequent learning steps is that the associated seed remains
the same. This means that if the seed of a specialization hierarchy is no longer
considered at the (i+1)-th step, then the corresponding clauses cached at the i-th step
can be discarded.

However, even in the case of same seed, not all the clauses of the specialization
hierarchy will be actually useful. For instance, the cached copies of a clause C added
to Ti can be removed from all specialization hierarchies including it. Moreover, all
clauses that cover only positive examples already covered by C can be dropped,
according to the separate-and-conquer learning strategy. These examples explain why
a cached specialization hierarchy has to be pruned before considering it at the (i+1)-
th step of the learning strategy.

Fig.2. An example of search-tree pruning effect on beam-search width.

In order to maintain unchanged the width of the search beam, some grafting
operations are necessary after pruning. Indeed, by removing the clauses that will be
no more examined, the exploration beam decreases. Grafting operations aim to
consider previous unspecialized clauses in order to restore the beam width, as shown
in Fig.2.

Grafting operations are also necessary to preserve the generation of recursive
clauses. For instance, by looking at the two specialization hierarchies of the predicate
odd in Fig. 1, it is clear that once the clause even(X) ← zero(X) has been added to
the empty theory (step 1), the consistent clause odd(X) ← succ(Y,X), even(Y) can be a
proper node of the specialization hierarchy, since a base clause for the recursive
definition of the predicate even is already available. Therefore, the grafting operations
also aim to complete the pruned specialization hierarchy with new clauses that take
predicate dependencies into account.

3.2 Caching for clause evaluation
Evaluating a clause corresponds to determining the lists of positive and negative
examples covered by the clause itself. This requires a number of generalized
implication tests, one for each positive or negative example. In ATRE the generalized
implication test is optimized, however, if the number of tests to perform is high, the
clause evaluation leads to efficiency problems anyway. To reduce the number of tests,
we propose to cache the list of positive and negative examples of each clause, as well.

To clarify this caching technique, we distinguish between dependent clauses, that
is, clauses with at least one literal in the body whose predicate symbol is a target
predicate pi, and independent clauses (all the others).

In independent clauses, the lists of negative examples remain unchanged between
two subsequent learning steps. Indeed, the addition of a clause C to a partially learned
theory Ti does not change the set of consequences of an independent clause, whose
set of negative examples can neither increase nor decrease. Therefore, by caching the
list of negative examples, the learning system can prevent its computation.

A different observation concerns the list of positive examples to be covered by the
partially learned theory. For the same reason reported above it cannot increase, while
it can decrease since some of the positive examples might have been covered by the
added clause C. Actually, the set of positive examples of a clause C' generated at the
(i+1)-th step can be calculated as intersection of the cached set computed at the i-th
step of the learning strategy and the set of positive examples covered by the parent
clause of C' in the specialization hierarchy computed at the (i+1)-th step (see Fig. 3).
In the case of dependent clauses, both lists of the positive and negative examples can
increase, decrease or remain unchanged, since the addition of a clause C to a partially
learned theory Ti might change the set of consequences of a dependent clause.
Therefore, caching the set of positive/negative examples covered by a dependent
clause is useless.

It is noteworthy that, differently from the caching technique for clause generation,
caching for clause evaluation does not require additional memory resources since all
requested information are kept from the current learning step.

4. Application to document understanding

The current release of ATRE is implemented in Sictus Prolog and C. It has also been
integrated in WISDOM++(http://www.di.uniba.it/~malerba/wisdom++), an intelligent
document processing system, that uses logical theories learned by ATRE to perform
automatic classification and understanding of document images. In this section we
show some experimental results for the document image understanding task alone.

Fig.3. The positive examples list is calculated as intersection of the positive examples
list of the same clause in previous learning step (i) and the positive examples list of the
parent clause in current learning step (i+1).

Fig. 4. Layout of a document image produced by WISDOM++ (left) and its partial
description in the logical representation language adopted by ATRE (right).

A document is characterized by two different structures representing both its
internal organization and its content: the layout structure and the logical structure.
The former associates the content of a document with a hierarchy of layout
components, while the latter associates the content of a document with a hierarchy of
logical components. Here, the term document understanding denotes the process of
mapping the layout structure of a document into the corresponding logical structure.
The document understanding process is based on the assumption that documents can
be understood by means of their layout structures alone. The mapping of the layout
structure into the logical structure can be performed by means of a set of rules which
can be generate automatically by learning from a set of training objects. Each training
object describes the layout of a document image and the logical components
associated to layout components (see Fig. 4).

To empirically investigate the effect of the proposed caching strategies, we
selected twenty-one papers, published as either regular or short, in the IEEE
Transactions on Pattern Analysis and Machine Intelligence, in the January and
February issues of 1996. Each paper is a multi-page document; therefore, the dataset
is composed by 197 document images in all. Since in the particular application
domain, it generally happens that the presence of some logical components depends
on the order page (e.g. author is in the first page), we have decomposed the document
understanding problem into three learning subtasks, one for the first page of scientific
papers, another for intermediate pages and the third for the last page. Target
predicates are only unary and concern the following logical components of a typical
scientific paper published in a journal: abstract, affiliation, author, biography,
caption, figure, formulae, index_term, page_number, references, running_head,
table, title. Some statistics on the dataset obtained from first page documents are
reported in Table1.

Logical components Number of positive examples

Abstract 21
Affiliation 22
Author 25
Index_term 11
Page_number 180
Running_head 203
Title 23
Total 485

Table 1. Distribution of logical components on first page documents.

By running ATRE on a document understanding dataset obtained from scientific
papers, a set of theories is learned. Some examples of learned clauses follow:

author(X1) alignment(X1,X2)=only_middle_col, abstract(X2),
 height(X1)∈[7..13]

figure(X1) type_of(X1)= image, width(X1)∈[12..227],
 x_pos_centre(X1)∈[335..570]

references(X1) to_right(X1,X2), biografy(X2),

 width(X2)∈[261..265]
They can be easily interpreted. For instance, the first clause states that if a quite

short layout component (X1), whose height is between 7 and 13, is centrally aligned
with another layout component (X2) labelled as the abstract of the scientific paper,
then it can be classified as the author of the paper. These clauses show that ATRE can
automatically discover meaningful dependencies between target predicates.

In the experiments the effect of the caching is investigated with respect to two
system parameters, the minimum number of consistent clauses found at each learning
step before selecting the best one and the beam of the search (max_star parameter).
The former affects the depth of specialization hierarchies, in the sense that the higher
the number of consistent clauses, the deeper the hierarchies. The latter affects the
width of the search-tree.

45,204%
52,808%

58,711%

0,000%
10,000%
20,000%
30,000%
40,000%
50,000%
60,000%
70,000%
80,000%
90,000%

100,000%

5 10 15

Beam

ATRE-cache efficiency gain with respect to ATRE

Fig. 5 Efficiency gain on "First-page" task on max_star variation.

53,943% 53,611% 51,535%

0,000%
10,000%
20,000%
30,000%
40,000%
50,000%
60,000%
70,000%
80,000%
90,000%

100,000%

5 10 15

C o nsist ent

A T R E-cache eff ic iency gain with respect to A T R E

Fig. 6. Efficiency gain on "First-page" task on consistent variation.

Results for the first page learning task are shown in Figures 5 and 6. Percentages
refer to reduction of the learning time required by ATRE with caching with respect to
the original release of the system (without caching). Results show a positive
dependence between the size of the beam and the reduction of the learning time. On
the contrary, slight increases in the number of consistent clauses do not seem to
significantly affect the efficiency gain due to caching.

5. Conclusions

In this paper issues and solutions of recursive theory learning are illustrated.
Evolutions on the proposed search strategy to tackle efficiency problems are
proposed. They have been implemented in ATRE and tested in the document
understanding domain. Initial experimental results show that the learning task
benefits from the caching strategy. As future work we plan to perform more extensive
experiments to investigate the real efficiency gain in other real-world domains.

References

1. Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.): Handbook of Theoretical
Computer Science, Vol. B. Elsevier, Amsterdam (1990) 493-574.

2. Boström, H.: Induction of Recursive Transfer Rules. In J. Cussens (ed.), Proceedings of the
Language Logic and Learning Workshop (1999) 52-62.

3. Buntine, W.: Generalised subsumption and its applications to induction and redundancy.
Artificial Intelligence, Vol. 36 (1988) 149-176.

4. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and
never dared to ask). IEEE Trans. on Knowledge & Data Engineering 1(1) (1989) 146-166.

5. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning Journal, 26(2/3) (1997)
99-146.

6. De Raedt, L., Lavrac, N.: Multiple predicate learning in two Inductive Logic Programming
settings. Journal on Pure and Applied Logic, 4(2) (1996) 227-254.

7. Khardon, R.: Learning to take Actions. Machine Learning, 35(1) (1999) 57-90.
8. Malerba, D.: Learning Recursive Theories in the Normal ILP Setting, Fundamenta

Informaticae, 57(1) (2003) 39-77.
9. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997).
10. Muggleton, S., Bryant, C.H.: Theory completion using inverse entailment. In: J. Cussens

and A. Frisch (eds.): Inductive Logic Programming, Proceedings of the 10th International
Conference ILP 2000, LNAI 1866, Springer, Berlin, Germany (2000) 130-146.

11. Nienhuys-Cheng, S.-W., de Wolf, R.: A complete method for program specialization based
upon unfolding. Proc. 12th Europ. Conf. on Artificial Intelligence (1996) 438-442.

12. Nienhuys-Cheng, S.-W., de Wolf, R.: The Subsumption theorem in inductive logic
programming: Facts and fallacies. In: De Raedt, L. (ed.): Advances in Inductive Logic
Programming. IOS Press, Amsterdam (1996) 265-276.

13. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.):
Machine Intelligence 5. Edinburgh University Press, Edinburgh (1970) 153-163.

14. Plotkin, G.D.: A further note on inductive generalization. In: Meltzer, B., Michie, D. (eds.):
Machine Intelligence 6. Edinburgh University Press, Edinburgh (1971) 101-124.

15. Rouveirol, C.: Flattening and saturation: Two representation changes for generalization.
Machine Learning Journal, 14(2) (1994) 219-232.

