
Ontological encapsulation of many-valued logic

Zoran Majkíc

Dipartimento di Informatica e Sistemistica, University of Roma “La Sapienza”
Via Salaria 113, I-00198 Rome, Italy

majkic@dis.uniroma1.it
http://www.dis.uniroma1.it/∼ majkic/

Abstract. Large databases obtained by the data integration of different source
databases can be incomplete and inconsistent in many ways. The classical logic
is not the appropriate formalism for reasoning about inconsistent databases. Cer-
tain local inconsistencies should not be allowed to significantly alter the intended
meaning of such logic programs. The variety of semantical approaches that have
been invented for logic programs is quite broad. In particular we are interested
for many-valued logics with negation, based on bilattices. We present a 2-valued
logic, based on an Ontological Encapsulation of Many-Valued Logic Program-
ming, which overcome some drawbacks of the previous research approaches in
many-valued logic programming. We defined a Model theory for Herbrand in-
terpretations of ontologically encapsulated logic programs, based on a semantic
reflection of the epistemic many-valued logic.

1 Introduction to Many-valued logic programming

Semantics of logic programs are generally based on a classical 2-valued logic by means
of stable models, [1,2]. Under these circumstances not every program has a stable
model. Three-valued, or partial model semantics had an extensive development for logic
programs generally, [3,4]. Przymusinski extended the notion of stable model to allow
3-valued, or partial, stable models, [5], and showed every program has at least one par-
tial stable model, and the well-founded model is the smallest among them, [6]. Once
one has made the transition from classical to partial models allowingincompleteinfor-
mation, it is a small step to also allow models admittinginconsistentinformation. Doing
so provides a natural framework for the semantic understanding of logic programs that
are distributed over several sites, with possibly conflicting information coming from
different places. As classical logic semantics decrees that inconsistent theories have no
models, classical logic is not the appropriate formalism for reasoning about inconsistent
databases: certain ”localizable” inconsistences should not be allowed to significantly al-
ter the intended meaning of such databases.
So far, research in many-valued logic programming has proceeded along different di-
rections:Signedlogics [7,8] andAnnotatedlogic programming [9,10] which can be
embedded into the first,Bilattice-basedlogics, [11,12], andQuantitative rule-sets,
[13,14]. Earlier studies of these approaches quickly identified various distinctions be-
tween these frameworks. For example, one of the key insights behind bilattices was
the interplay between the truth values assigned to sentences and the (non classic) no-
tion of implication in the language under considerations. Thus, rules (implications) had

weights (or truth values) associated with them as a whole. The problem was to study
how truth values should be propagated ”across” implications. Annotated logics, on the
other hand, appeared to associate truth values with each component of an implication
rather than the implication as a whole. Roughly, based on the way in which uncertainty
is associated with facts and rules of a program, these frameworks can be classified into
implication based(IB) andannotation based(AB).
In the IB approach a rule is of the formA←α B1, .., Bn , which says that the certainty
associated with the implication isα. Computationally, given an assignmentI of logical
values to theBis, the logical value ofA is computed by taking the ”conjunction” of
logical valuesI(Bi) and then somehow ”propagating” it to the rule headA.
In the AB approach a rule is of the formA : f(β1, .., βn) ← B1 : β1, ..., Bn : βn ,
which asserts ”the certainty of the atomA is least (or is in)f(β1, .., βn), whenever the
certainty of the atomBi is at least (or is in)βi, 1 ≤ i ≤ n”, wheref is an n-ary com-
putable function andβi is either constant or a variable ranging over many-valued logic
values.
The comparison in [15] shows:
1- while the way implication is treated on the AB approach is closer to the classical
logic, the way rules are fired in the IB approach has definite intuitive appeal.
2- the AB approach is strictly more expressive than IB. The down side is that query
processing in the AB approach is more complicated, e.g. the fixpoint operator is not
continuous in general, while it is in the IB approaches.
3- the Fitting fixpoint semantics for logic programs, based exclusively on a bilattice-
algebra operators, suffer two drawbacks: the lack of the notion of tautology (bilattice
negation operator is anepistemicnegation) leads to difficulties in defining proof proce-
dures and to the need for additional complex truth-related notions as ”formula closure”;
there is an unpleasant asymmetry in the semantics of implication (which is strictly 2-
valued) w.r.t. all other bilattice operators (which produce any truth value from the bi-
lattice) - it is a sign that strict bilattice language is not enough expressive for logic
programming, and we need some reacher (different) syntax for logical programming.
From the above points, it is believed that IB approach is easier to use and is more
amenable for efficient implementations, but also annotated syntax (but with IB seman-
tics) is useful to overcome two drawbacks above: the syntax of new encapsulated many-
valued logic (in some sense ’meta’-logic for a many-valued bilattice logic) will be 2-
valued and can be syntactically seen as a kind of very simple annotated syntax. Thus
the implication (and classical negation also), not present in a bilattice algebra operators,
will have a natural semantic interpretation in this enriched framework.
In [10] it is shown how the Fitting’s 3-valued bilattice logic can be embedded into
an Annotated Logic Programming which is computationaly very complex. The aim of
this work is (1) to extend the Fittihg’s fixpoint semantics to deal with inconsistencies
also, and (2) to define the notion of a model for such many-valued logic programs by
some kind of ’minimal’ (more simple and less computationally expensive than APC)
logic. In order to respond to these questions we (1) introducebuilt-in predicatesin the
heads of clauses, and (2)encapsulatethe ’object’ epistemic many-valued logic pro-
grams into 2-valued ’meta’ ontological logic programs. We argue that such logic will
be good framework for supporting the data integration systems with key and foreign

key integrity constraints with incomplete and inconsistent source databases, with less
computation complexity for certain answers to conjunctive queries [16,17].
The plan of this paper is the following: Section 2 introduce the Belnap’s bilattice con-
cepts and the particular 4-valued version,B4, used in this paper. In Section 3 is pre-
sented an inference framework for a 4-valued bilattice based logic, particularly for
derivation ofpossiblefacts (w.r.t. true and false facts as in 3-valued strong Kleene’s
logic) and is given a representation theorem for this 4-valued logic. In Section 4 is
developed conceptual framework for encapsulation of this epistemic ’object’ 4-valued
logic into an ontological ’meta’ 2-valued logic by mean ofsemantic reflection. More-
over, is given the definition for a 4-valued implication useful for inconsistent databases
and an example where inconsistency is managed by clauses with built-in predicate in a
head. Finally, Section 5 defines the syntax and themodel theoreticHerbrand semantics
for the ontological encapsulation of many-valued logic programs.

2 Many-valued epistemic logic based on a Bilattice

In [18], Belnap introduced a logic intended to deal in a useful way with inconsis-
tent or incomplete information. It is the simplest example of a non-trivial bilattice and
it illustrates many of the basic ideas concerning them. We denote the four values as
{t, f,ᵀ,⊥}, wheret is true, f is false, ᵀ is inconsistent (both true and false) orpos-
sible, and⊥ is unknown. As Belnap observed, these values can be given two natural
orders:truth order,≤t, andknowledgeorder,≤k, such thatf ≤t ᵀ ≤t t, f ≤t⊥≤t t,
and⊥≤k f ≤k ᵀ, ⊥≤k t ≤k ᵀ. This two orderings define corresponding equivalences
=t and=k. Thus any two membersα, β in a bilattice are equal,α = β, if and only if
(shortly ’iff’) α =t β andα =k β.
Meet and join operators under≤t are denoted∧ and∨; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join under≤k are denoted
⊗ (consensus, because it produces the most information that two truth values can agree
on) and⊕ (gullibility , it accepts anything it’s told), such that hold:
f ⊗ t =⊥, f ⊕ t = ᵀ, ᵀ∧ ⊥= f andᵀ∨ ⊥= t.
There is a natural notion of truth negation, denoted∼, (reverses the≤t ordering, while
preserving the≤k ordering): switchingf and t, leaving⊥ andᵀ, and corresponding
knowledge negation, denoted− (reverses the≤k ordering, while preserving the≤t or-
dering), switching⊥ andᵀ, leavingf and t. These two kind of negation commute:
− ∼ x =∼ −x for every memberx of a bilattice.
It turns out that the operations∧,∨ and∼, restricted to{f, t,⊥} are exactly those of
Kleene’s strong 3-valued logic. Any bilattice〈B,≤t,≤k〉 is:
1. Interlaced, if each of the operations∧,∨,⊗ and⊕ is monotone with respect to both
orderings (for instance,x ≤t y impliesx⊗z ≤t y⊗z , x ≤k y impliesx∧z ≤k y∧z).
2. Infinitarily interlaced, if it is complete and four infinitary meet and join operations
are monotone with respect to both orderings.
3. Distributive, if all 12 distributive laws connecting∧,∨,⊗ and⊕ are valid.
4. Infinitarily distributive, if it is complete and infinitary, as well as finitary, distributive
laws are valid. (Note that a bilattice iscompleteif all meets and joins exist, w.r.t. both
orderings. We denote infinitary meet and join w.r.t.≤t by

∧
and

∨
, and by

∏
and

∑

for the≤k ordering; for example, the distributive law for⊗ and
∧

may be given by
x⊗

∧
i yi =

∧
i(x⊗ yi)).

A more general information about bilattice may be found in [19]: he also definesexact
members of a bilattice, whenx = −x (they are 2-valued consistent), andconsistent
members, whenx ≤k −x (they are 3-valued consistent), but a specific 4-valued consis-
tence will be analyzed in the following paragraphs.
The Belnap’s 4-valued bilattice is infinitary distributive. In the rest of this paper we de-
note byB4 a special case of the Belnap’s bilattice. In this way we consider thepossible
value as weak true value and not as inconsistent (that is true and false together). We
have more knowledge for ground atom with such value, w.r.t. the true ground atom,
because we know also that if we assign the true value to such atom we may obtain an
inconsistent database.

3 Representation theorem

Ginsberg [11] defined a world-based bilattices, considering a collection of worldsW ,
where by world we mean some possible way of things might be, and where[U, V] is
a pair of subsets ofW which express truth of some sentencep, with ≤t,≤k truth and
knowledge preorders relatively, as follows:
1.U is a set of worlds wherep is true,V is a set of worlds wherep is false,P = U

⋂
V

is a set wherep is inconsistent (both true and false), andW − (U
⋃
V) is a set wherep

is unknown.
2. [U, V] ≤t [U1, V1] iff U ⊆ U1 and V1 ⊆ V
3. [U, V] ≤k [U1, V1] iff U ⊆ U1 and V ⊆ V1

Such definition is well suited for the 3-valued Kleene logic, but for the 4-valued logic
used to overcome ”localizable” inconsistencies it is not useful, mainly for two follow-
ing reasons:
1. Theinconsistent(both true and false) top knowledge value in the Belnap’s bilattice
can’t be assigned to sentences, otherwise we will obtain an inconsistent logic theory;
because of that consistent logics in this interpretation can have only three remaining
values. Thus we interpret it aspossiblevalue, which will be assigned to mutually incon-
sistent sentences, and we obtain possibility to have consistent 4-valued logic theories in
order to overcome such inconsistencies.
2. Let denote byT = U − P , F = V − P , whereP is a set of worlds wherep has a
possible logic value. Then we obtain that[U, V] ≤t [U1, V1] also whenT ⊃ T1, which
is in contrast with our intuition. Consequently, we adopt a triple[T, P, F] of mutually
disjoint subsets ofW to express truth of some sentencep (W − T

⋃
P

⋃
F are worlds

wherep is unknown), with the following definition for their truth and knowledge orders:
2.1 [T, P, F] ≤t [T1, P1, F1] iff T ⊆ T1 andF1 ⊆ F
2.2 [T, P, F] ≤k [T1, P1, F1] iff T ⊆ T1, P ⊆ P1 andF ⊆ F1.
Let us try now to rendermore rationalthese two intuitions described above. In order
to obtain a new bilattice abstraction rationality, useful to manage logic programs with
possible ’localizable’ inconsistencies, we need to consider more deeply thefundamental
phenomenain such one framework. In the process of derivation of new facts, for a given
logic program, based on the ’immediate consequence operator’, we have the following

three truth transformations for ground atoms in a Herbrand base of such program:
1. When ground atom pass fromunknownto true logic value, without generating incon-
sistence. Let denote this action by↑1:⊥� t. The preorder of this 2-valued sublattice
of B, L1 = {⊥, t}, defined by the direction of this transformation, ’truth increasing’,
is ≤1 ≡ ≤t. The meet and join operators for this lattice are∧,∨ respectively. It is also
knowledge increasing.
2. When some ground atom, try to pass from unknown to true/false value, generating an
inconsistency, then is applied theinconsistency repairing, that is thetrue value of the
literal of this atom, in a body of a violated clause with built-in predicate, is replaced by
possiblevalue. Let denote this action by↑2: t � ᵀ. The preorder of this 2-valued sub-
lattice ofB, L2 = {t,ᵀ}, defined by the direction of this transformation, ’knowledge
increasing’. The meet and join operators for this lattice, w.r.t. this ordering are⊗,⊕
respectively. Notice that this transformationdoes not changethe truth ordering because
the ground atom pass from unknown to possible value.
3. When ground atom pass fromunknownto falselogic value, without generating incon-
sistence. Let denote this action by↑3:⊥� f . The preorder of this 2-valued sublattice
of B, L3 = {⊥, f}, defined by the direction of this transformation, ’falsehood increas-
ing’ (inverse of ’truth increasing’), is≤3 ≡ ≤−1

t . The meet and join operators for this
lattice are∨,∧ respectively. It is also knowledge increasing.
Thus, any truth transformation in some multi-valued logic theory (program) can be seen
as composition of these three orthogonal dimensional transformations,i.e. by triples (or
multi-actions), [a1, a2, a3], acting on the idle (default) state[⊥, t,⊥]; for instance the
multi-action [, , ↑3], composed by the singe action↑3, applied to the default state
generates the ”false” state[⊥, t, f]. The default state[⊥, t,⊥] in this 3-dimensional
space has role as unknown value for single-dimensional bilattice transformations, that
is it is a ”unknown” state. Consequently, we define this space of states by the cartesian
product of single-dimensional lattices,L1 × L2 × L3, composed by triples[x, y, z],
x ∈ L1 = {⊥, t}, y ∈ L2 = {t,ᵀ} andz ∈ L3 = {⊥, f}.

Definition 1. By L1 � L2 � L3 we mean the bilattice< L1 × L2 × L3,≤B
t ,≤B

k >
where, given anyX = [x, y, z], andX1 = [x1, y1, z1]:
1. Considering that the second transformation does not influence the truth ordering,
X ≤B

t X1 if x ≤1 x1 andz ≤3 z1 , i.e., if x ≤t x1 andz ≥t z1
2. Considering that all three transformations are knowledge increasing, we have
X ≤B

k X1 if x ≤k x1 andy ≤k y1 andz ≤k z1
3.X ∧B X1 =def [(x ∧1 x1, y ∧1 y1), z ∧3 z1] = [x ∧ x1, y ∧ y1, z ∨ z1]
4.X ∨B X1 =def [x ∨1 x1, (y ∨3 y1, z ∨3 z1)] = [x ∨ x1, y ∧ y1, z ∧ z1]
5.X ⊗B X1 =def [x⊗ x1, y ⊗ y1, z ⊗ z1]
6.X ⊕B X1 =def [x⊕ x1, y ⊕ y1, z ⊕ z1]

These three bilattice transformations can be formally defined by lattice homomor-
phisms.

Proposition 1 The following three lattice homomorphisms defines the 3-dimensional
truth transformations:
1. Truth dimension, θ1 = ∨ ⊥: (B,∧,∨,⊗,⊕)→ (L1,∧1,∨1,⊗,⊕),
with ∧1 = ∧, ∨1 = ∨. This is a strong positive transformation, which transforms

falsehood into unknown and possibility in truth.
2. Possibility dimension,θ2 = ∨ ∼ ∨ ᵀ : (B,⊗,⊕) → (L2,⊗,⊕). This is a weak
knowledge transformation which transform unknown into possibility.
3. Falsehood dimension,θ3 = ∧ ⊥: (B,∨,∧,⊗,⊕)→ (L3,∧3,∨3,⊗,⊕),
with∧3 = ∨, ∨3 = ∧. This is a strong negative transformation, which transforms truth
into unknown and possibility into falsehood.
We define the following two mappings between Belnap’s and its derived bilattice:
Dimensional partitioning: θ =< θ1, θ2, θ3 >: B → L1 � L2 � L3 and
Collapsing:ϑ : L1 � L2 � L3 → B, such thatϑ(x1, x2, x3) =def (x1 ⊕ x3) ∧ x2.

These three lattice homomorphisms preserves the bilattice structure ofB into the space
of statesL1 � L2 � L3. That is we have that (′ ′ represents no action)
θ(⊥) = [, ,]([⊥, t,⊥]) = [⊥, t,⊥], unknown state
θ(f) = [, , ↑3]([⊥, t,⊥]) = [⊥, t, f], false state
θ(t) = [↑1, ,]([⊥, t,⊥]) = [t, t,⊥], true state
θ(ᵀ) = [↑1, ↑2, ↑3]([⊥, t,⊥]) = [t,ᵀ, f], possible state.
Notice that the multi-action[↑1, ↑2, ↑3] represents two cases for repairing inconsis-
tencies: first, when unknown value of some ground atom tries to become true (action
↑1) but makes inconsistency, thus is applied also action↑2 to transform it into possible
value; second, when unknown value of some ground atom tries to become false (action
↑3) but makes inconsistency, thus is applied also action↑2 to transform it into possible
value. Notice that the isomorphism between the set of states and the set of multi-actions
{[a1, a2, a3] | a1 ∈ {↑1, }, a2 ∈ {↑2, }, a3 ∈ {↑3, }} defines thesemanticsto the
bilatticeL1 � L2 � L3.

Proposition 2 Let Imθ ⊆ L1 � L2 � L3 be the bilattice obtained by image of Di-
mensional partitioning. It has also unary operators:
Negation, ∼B = θ ∼ ϑ , and conflation, −B = θ − ϑ.

It is easy to verify thatϑ ◦ θ = idB is an identity onB, and thatϑ is surjective with
θ ◦ ϑ = idImθ. The negation∼B preserves knowledge and inverts truth ordering and
∼B∼B X = X; the conflation−B preserves truth and inverts knowledge ordering
and−B −B X = X; and holds the commutativity∼B −B = −B ∼B . (for example,
∼B −B = θ ∼ ϑθ−ϑ = θ ∼ idB−ϑ = θ ∼ −ϑ = θ− ∼ ϑ = θ−ϑθ ∼ ϑ = −B ∼B).
So, we obtain that, for anyX = [x, y, z], hold ∼B X =def [∼ z, y,∼ x] and
−BX =def [θ1(−z), θ2(−ϑ(X)), θ3(−x)].
Theorem 1. (Representation theorem) IfB is a 4-valued distributive lattice then there
are its distributive sublattices,L1, L2, L3, such thatB is isomorphic to the sublattice
of L1 � L2 � L3 defined by image of Dimensional partitioningImθ . Moreover the
following diagram (on the left) of bilattice homomorphisms commute

L1 � L2 � L3
θϑ- Imθ

'π1×π3 - L1 � L3 L2(possibility)

@
@

@
@

ϑ
R 	�

�
�

�

'3

B

'4

?
(falsehood)L3

�θ3 B

θ2

6

θ1- L1(truth)

where'π1×π3 is a projection isomorphism,'3 is the isomorphism (restriction ofϑ to
the projectionL1�L3) of Fitting’s representation Th. [20] valid for a 3-valued logics,
and'4 is new 4-valued isomorphism (restriction ofϑ to Imθ , and inverse toθ).
If B has negation and conflation operators that commute with each other, they are pre-
served by all isomorphisms of the right commutative triangle.

Proof. It is easy to verify that all arrows are homomorphisms (w.r.t. binary bilattice
operators). The following table represents the correspondence of elements of these bi-
lattices defined by homomorphisms:

Multi− actions L1 � L2 � L3 Imθ L1 � L3 B
[, ,] [⊥, t,⊥] [⊥, t,⊥] [⊥,⊥] ⊥
[, ↑2,] [⊥,ᵀ,⊥]
[, , ↑3] [⊥, t, f] [⊥, t, f] [⊥, f] f
[, ↑2, ↑3] [⊥,ᵀ, f]
[↑1, ,] [t, t,⊥] [t, t,⊥] [t,⊥] t
[↑1, ↑2,] [t,ᵀ,⊥]
[↑1, ↑2, ↑3] [t,ᵀ, f] [t,ᵀ, f] [t, f] ᵀ
[↑1, , ↑3] [t, t, f]

Let prove, for example, that the isomorphismθ : B → Imθ preserves negation and
conflation: ∼B θ(x) = θ ∼ ϑθ(x) = θ ∼ idB(x) = θ(∼ x) , and
−Bθ(x) = θ − ϑθ(x) = θ − idB(x) = θ(−x).

4 Semantic reflection of the epistemic logic

We assume that the Herbrand universe isΓU = Γ
⋃
Ω, whereΓ is ordinary domain

of database constants, andΩ is an infinite enumerable set of marked null values,Ω =
{ω0, ω1,}, and for a given logic programP composed by a set of predicate and
function symbols,PS , FS respectively, we define a set of all terms,TS , and its subset
of ground termsT0, then atoms are defined as:
AS = {p(c1, .., cn) | p ∈ PS , n = arity(p) and ci ∈ TS}
The Herbrand base,HP , is the set of all ground (i.e., variable free) atoms. A (ordinary)
Herbrand interpretation is a many-valued mappingI : HP → B. If P is a many-valued
logic program with the Herbrand baseHP , then the ordering relations and operations
in a bilatticeB4 are propagated to the function spaceBHP

4 , that is the set of all Herbrand
interpretations (functions),I = vB : HP → B4, as follows:

Definition 2. Ordering relations are defined on the Function spaceBHP
4 pointwise, as

follows: for any two Herbrand interpretationsvB , wB ∈ BHP
4

1. vB ≤t wB if vB(A) ≤t wB(A) for all A ∈ HP .
2. vB ≤k wB if vB(A) ≤k wB(A) for all A ∈ HP .
3.∼ vB is the interpretation such that(∼ vB)(A) =∼ (vB(A)).
4.−vB is the interpretation such that(−vB)(A) = −(vB(A)).

It is straightforward [19] that this makes a function spaceBHP
4 itself a complete infini-

tary distributive bilattice.

One of the key insights behind bilattices [11,12] was the interplay between the truth
values assigned to sentences and the (non classic) notion ofimplication. The problem
was to study how truth values should be propagated ”across” implications. In [21] is
proposed the following IB based approach to the ’object’ 4-valued logic programming,
which extends the definition given for a 3-valued logic programming [5]:

Definition 3. LetPB be the set of built-in predicates. The valuation,vB : HP → B4, is
extended to logic implication of a ground clausep(c)← B , whereB = B1 ∧ ..∧Bn,
as follows:
vB(B → p(c)) = t , iff vB(p(c)) ≥t vB(B) or (vB(B) = ᵀ and p ∈ PB)

Inconsistency acceptance: if p ∈ PB is a built-in predicate, this clause is satisfied also
when vB(p(c)) = f and vB(B) = ᵀ . This principle extends the previous definition
of implication based only on truth ordering.
In order to obtain such many-valued definition, which generalize the 2-valued definition
given above we will consider the conservative extensions of Lukasiewicz’s and Kleene’s
strong 3-valued matrices (where third logic value⊥ is considered as unknown). So we
obtain the following matrix,f← : B × B → B, for implication (α = t andα =⊥ for
Lukasiewicz’s and Kleene’s case, respectively):

→ t ⊥ ᵀ f
t t ⊥ ᵀ f
⊥ t α ᵀ ⊥
ᵀ t t t t
f t t t t

For our purpose we assume the Lukasiewicz’s extension, i.e.α = t, in order to have
a tautologya ← a for any formulaa, and also to guarantee the truth of a clause (im-
plication) p(c) ← B , whenevervB(p(c)) ≥t vB(B) , as used in fixpoint semantics
for ’immediate consequence operators’. Such conservative extensions are based on the
following observation: the problem to study how the truth values should be propagated
”across” implications can be restricted only totrue implications (in fact we don’t use
implications when are not true, because the ’immediate consequence operator’ derives
new facts only fortrueclauses, i.e. when implication is true).
Example 1: The built-in predicates(ex, =,≤,≥, ..) may be used for integrity con-
straints: letp(x, y) be a predicate and we define the key-constraint for attributes inx by
(y = z) ← p(x, y), p(x, z), where the atomy = z is based on the built-in predicate
′ =′. Let consider a program : p(x, y)← r(x, y) , (y = z)← p(x, y), p(x, z)
wherer is a source database relation with two tuples,(a, b), (a, c), p is a virtual rela-
tion of this database with key constraint, andx, y, z are object variables. The built-in
predicates have the same prefixed extension inall models of a logic program, and that
their ground atoms aretrue or false. If we assume that,r(a, b), r(a, c) are true, then
such facts are mutually inconsistent forp because of key constraint (b = c is false).
Thus, only one of them may be true in any model of this logic program, for example
r(a, b) . So, if we assign the ’possible’ valueTto r(a, c) (or to both of them), we obtain
that the clause(b = c) ← p(a, b), p(a, c), thanks to theinconsistency acceptance, is
satisfied.

EachHerbrand interpretationis a valuation. Valuations can be extended to maps from
the set of all ground (variable free) formulas toB in the following way:

Definition 4. LetPS be the set of all predicate symbols (PB ⊆ PS is a subset of built-
in predicates), e the special (error) singleton, andI : HP → B be a many-valued
Herbrand interpretation. A valuationI determines:
1. A Generalized interpretation mappingI : PS ×

⋃
i≤ω T i

0 → B
⋃
{e}, such that for

anyc = (c1, .., cn) ∈ T n
0 , I(p, c) = I(p(c)) iff arity(p) = n ; e otherwise.

2. A unique valuation map, also denotedvB : L → B, on the set of all ground formulas
L, according to the following conditions:
2.1.vB(∼ X) =∼ vB(X)
2.2.vB(X } Y) = vB(X) } vB(Y), where} ∈ {∧,∨,⊗,⊕ ←}
3. A truth assignmentuB : L → B will be called an extension of a truth assignment
vB if uB(ψ) ≥k vB(ψ) for all ψ ∈ L. If uB is an extension ofvB , we will write
uB ≥k vB .

The ’object’ many-valued logic is based on four bilattice values which areepistemic.
Sentences are to be marked with some of these bilattice logic values, according as to
what the computer has been told; or, with only a slight metaphor, according to what it
believes or knows. Of course these sentenceshavealso Frege’s ontological truth-values
(true and false), independently of what the computer has been told: we want that the
computer can use also these ontological ’meta’ knowledge. Let, for example, the com-
puter believes that the sentencep has a valueT (possible); then the ’meta’ sentence,”I
(computer) believe thatp has a possible value” isontologically true. The many-valued
encapsulation, defined as follows, is just the way to pass from the epistemic (’object’)
many-valued logic into ontological (’meta’) 2-valued logic.
Such encapsulation is characterized by having capability forsemantic-reflection: intu-
itively, for each predicate symbol we need some function whichreflectsits logic seman-
tic over a domainΓU . Let introduce also the set of functional symbolsκp over a domain
ΓU in our logical language in order to obtain an enriched logical language where we
can encapsulate the ’object’ (ordinary) many-valued logic programming. Such set of
functional symbols will be derived from the following Bilattice-semantic mappingK:

Definition 5. A semantic-reflection is a mappingK : PS → (B
⋃
{e})

⋃
i≤ω
T i
0 , and

we denote shortlyκp = K(p) :
⋃

i≤ω T i
0 → B

⋃
{e}, p ∈ PS , such that for any

c = (c1, .., cn) ∈ T n
0 , holds: κp(c) = e iff arity(p) 6= n.

If p is a built-in predicate, then a mappingκp is uniquely defined by: for anyc ∈
T n

0 , n = arity(p), holds thatκp(c) = t if p(c) is true; f otherwise.

5 Ontological encapsulation programming language

The many-valued ground atoms of a bilattice-based logical languageLB can be trans-
formed in ’encapsulated’ atoms of a 2-valued logic in the following simple way: the
original (many-valued) fact that the ground atomA = p(c1, .., cn), of the n-ary pred-
icate p, has an epistemic valueα = κp(c1, .., cn) in B4, we transform in encapsu-
lated atompA(c1, .., cn, α) with meaning ”it is true thatA has a valueα”. Indeed,

what we do is toreplacethe original n-ary predicatep(x1, .., xn) with n+1-ary predi-
catepA(x1, .., xn, α), with the added logic-attributeα. It is easy to verify that for any
given many-valued valuationvB, every ground atompA(c1, .., cn, α) is ontologically
true (whenα = vB(p(c1, .., cn))) or false. Let EMV denote this new 2-valued encap-
sulation of many-valued logicfor logic programming.

5.1 Syntax

We distinguish between what the reasoner believes in (at theobject(epistemic many-
valued sublanguage) level), and what is actually true or false in the real world (at the
EMV ontological ’meta’ level), thus, roughly, the ’meta’ level is an (classic) encapsu-
lation of the object level. Thus, we introduce the modal operator of encapsulationE as
follows:

Definition 6. LetP be an ’object’ many-valued logic program with the set of predicate
symbolsPS . The translation in the encapsulated syntax version inPA is as follows:
1. Each positive literal inP , E(p(x1, .., xn)) = pA(x1, .., xn, κp(x1, .., xn));
2. Each negative literal inP , E(∼ p(x1, .., xn)) = pA(x1, .., xn,∼ κp(x1, .., xn));
3. E(φ ∧ ϕ) = E(φ) ∧ E(ϕ);
4. E(φ ∨ ϕ) = E(φ) ∨ E(ϕ) ;
5.E(φ← ϕ) = E(φ)←A E(ϕ) , where←A is a new syntax symbol for the implication
at the encapsulated 2-valued ’meta’ level.
Thus, the obtained ’meta’ program is equal toPA = {E(φ) | φ is a clause inP},
with the 2-valued Herbrand baseHA

P = { pA(c1, .., cn, α) | p(c1, .., cn) ∈ HP and
α ∈ B}

This embedding of the many-valued ’object’ logic programP into a 2-valued ’meta’
logic programPA is anontologicalembedding: views formulae ofP as beliefs and
interprets negation∼ p(x1, .., xn) in rather restricted sense - as belief in the falsehood
of p(x1, .., xn), rather as not believing thatp(x1, .., xn) is true (like in an ontological
embedding for classical negation).
Like for Moore’s autoepistemic operator, for the encapsulation modal operatorE , Eφ
is intended to capture the notion of, ”I know thatφ has a valuevB(φ) ”, for a given
valuationvB of the ’object’ logic program.
LetL be the set of all ground well-formed formulae defined by this Herbrand baseHP

and bilattice operations (included many-valued implication← also), withB ⊆ L. We
define the set of all well-formed encapsulated formulae by:
LA =def {E(ψ) | ψ ∈ L}, so thatHA

P ⊆ LA, thus, we can extend operatorE to all
formulas inL (also to bilattice logic values, such thatE : B → 2), so, we obtain

Proposition 3 The encapsulation operatorE is :
1. Nondeductive modal operator, such that, for anyα ∈ B, E(α) = t if α = t; f
otherwise. It cannot be written in terms of the bilattice operations∧,∨,⊗,⊕ and∼.
2. Homomorphism between the ’object’ algebra(L,∧,∨,←) with carrier set of
(positive and negative) literals, and ’meta’ algebra(LA,∧A,∨A,←A), where∧A,∨A

are 2-valued reductions of bilattice meet and join, respectively, denoted by∧,∨ also.

5.2 Semantics

The modal operatorE is more selective than Moore’s modal operatorM (which returs
the truth also when its argument has a possible value). In factM(α) = E(α∨ ⊥).
Notice, that with the transformation of the original ’object’ logic programP into its
annotated ’meta’ version programPA we obtainalways positiveconsistent logic pro-
gram.
A Herbrand interpretation ofPA is a 2-valued mappingIA : HA

P → 2. We denote by

2HA
P the set of all a-interpretations (functions) fromHA

P into 2, and byBHP the set of
all consistentHerbrand many-valued interpretations, fromHP to the bilatticeB. The
meaning of theencapsulationof this ’object’ logic programP into this ’meta’ logic
programPA is fixed into the kind of interpretation to give to such new introduced func-
tional symbolsκp = K(p): in fact we want [21] that they reflect (encapsulate) the
semantics of the ’object’ level logic programP .

Definition 7. (Satisfaction) Theencapsulationof an epistemic ’object’ logic program
P into an ’meta’ programPA means that, for anyconsistentmany-valued Herbrand
interpretationI ∈ BHP and its extensionvB : L → B , the function symbolsκp =
K(p), p ∈ PS reflects this semantics (is compatible to it), i.e.

for any tuple c ∈ T arity(p)
0 , κp(c) = I(p(c)).

So, we obtain a mapping,Θ : BHP → 2HA
P , such thatIA = Θ(I) ∈ 2HA

P with: for
any ground atomp(c) , IA(E(p(c))) = t , if κp(c) = I(p(c)); f otherwise.
Let g be a variable assignment which assigns values fromΓU to object variables. We
extent it to atoms with variables, so thatg(E(p(x1, .., xn))) = E(p(g(x1), .., g(xn))),
and to all formulas in the usual way:ψ/g denotes a ground formula obtained fromψ
by assignmentg, then
1. IA �g E(p(x1, .., xn)) iff κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
IA �g E(∼ p(x1, .., xn)) iff ∼ κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
2. IA �g E(φ ∧ ψ) iff IA �g E(φ) and IA �g E(ψ).
3. IA �g E(φ ∨ ψ) iff IA �g E(φ) or IA �g E(ψ).
4. IA �g E(φ ← ψ) iff vB(φ/g ← ψ/g) is true.

Notice that in this semantics the ’meta’ implication←A , in E(φ) ←A E(ψ) =
E(φ ← ψ) , is based on the ’object’ epistemic many-valued implication← (which is
not classical, i.e.,φ ← ψ 6= φ∨ ∼ ψ) and determines how the logical value of a body
of clause ”propagates” to its head.

Theorem 1 The semantics of encapsulationE is obtained by identifying the semantic-
reflection with theλ-abstraction of Generalized Herbrand interpretation,K = λI , so
that the semantics of many-valued logic programs can be determined byI (at ’object’
level) or, equivalently, by its reflectionK (at encapsulated or ’meta’ level).

Proof. From K = λI we obtain that for anyp(c) ∈ HP holds I(p(c)) = I(p, c) =
λI(p)(c) = K(p)(c) = κp(c), what is the semantic of encapsulation.

We can consider theλ-abstraction of Generalized Herbrand interpretation as an epis-
temic semantics, because, given a Herbrand (epistemic) interpretationI : HP → B,

then for any predicate symbolp and constantc ∈ T arity(p)
0 , holds λI(p)(c) = I(p(c)).

Then the semantic of encapsulation may be defined as follows:

” ontological semantic-reflection≡ epistemic semantics”, that is,K = λI .

Recently, in [22], this semantics is used to give a coalgebraic semantics for
logic programs. Notice that at ’meta’ (ontological) level (differently from∧,∨, which
are classic 2-value boolean operators), the semantics for ’meta’ implication operator,
IA �g E(φ ← ψ) , is not defined onIA �g E(φ) and IA �g E(ψ) . For example, let
IA �g E(p(c)) and IA �g E(q(d)) , with κp(c) = f andκq(d) = t: thenp(c)← q(d)
is false and, consequently, does not holdIA � E(p(c)← q(d)).

Proposition 4 IA �g E(φ) ←A E(ψ) implies IA �g E(φ) and IA �g E(ψ) ,
but not viceversa. The truth ofE(φ/g) and E(ψ/g) are necessary but not sufficient
conditions for the truth ofE(φ/g) ←A E(ψ/g) .

More over ←A has aconstructivisticviewpoint (notice that the implication←A is
satisfied when the body and the head of such clause aretrue, while in the ’object’ logic
program such clause may be satisfied when their body and the headare not truealso).
Thus, by encapsulation of a many-valued ’object’ logic program into a 2-valued ’meta’
logic program we obtain a constructive logic program: in each clause we derive from
the true facts in its body other new true facts.
Following the standard definitions, we say that an interpretationIA, of a programPA,
is amodelof aPA if and only if every clause ofPA is satisfied inIA. In this way we
define amodel theoreticsemantics for encapsulated logic programs.
A set of formulasS, of encapsulated logic EMV,logically entailsa formulaφ, denoted
S � φ, if and only if every model ofS is also a model ofφ.

6 Conclusion

We have presented a programming logic capable of handling inconsistent beliefs and
based on the 4-valued Belnap’s bilattice, which has clear model theory. In the process
of the encapsulation we distinguish two levels: the ’object’ many-valued level of or-
dinary logic programs with epistemic negation based on a bilattice operators, and the
encapsulated or ’meta’ logic programs. In this approach, ’inconsistent’ logic program
(which minimal stable models contain at least an ’inconsistent’ ground atom) at object
level is classic consistent logic program at ’meta’ level also. In such abstraction we
obtained a kind of a minimal Constructivistic Logic where fixpoint ’immediate conse-
quence’ operator is always continuous, and which iscomputationally equivalentto the
standard Fitting’s fixpoint semantics. Following this approach we are able to define a
unique many-valued Herbrand model for databases with inconsistencies based on the
fixpoint of a monotonic (w.r.t. knowledge ordering) immediate consequence operator,
and the inference closure for many-valued logic programming also.
This research is partially supported by the project NoE INTEROP-IST-508011 and the
project SEWASIE-IST-2001-3425. The autor wishes to thank Tiziana Catarci and Mau-
rizio Lenzerini for their support.

References

1. M.Gelfond and V.Lifshitz, “The stable model semantics for logic programming,”In Proc.
of the Fifth Logic Programming Symposium, Cambridge, MA. MIT Press, pp. 1070–1080,
1988.

2. K.Fine, “The justification of negation as failure,”In Logic, Methodology and Philosophy of
Science VIII, Amsterdam, North-Holland, pp. 263–301, 1989.

3. M.C.Fitting, “A kripke/kleene semantics for logic programs,”Journal of Logic Programming
2, pp. 295–312, 1985.

4. K.Kunen, “Negation in logic programming,”Journal of Logic Programming 4, pp. 289–308,
1987.

5. T.Przymusinski, “Every logic program has a natural stratification and an iterated fixed point
model,” In Eighth ACM Symposium on Principles of Databases Systems, pp. 11–21, 1989.

6. T.Przymusinski, “Well-founded semantics coincides with thre-valued stable-semantics,”
Fundamenta Informaticae 13, pp. 445–463, 1990.

7. G.Escalada Imaz and F.Manyá, “The satisfiability problem for multiple-valued horn formu-
lae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE
Press, Los Alamitos, pp. 250–256, 1994.

8. B.Beckert, R.Hanhle, and F.Manyá, “Transformations between signed and classical clause
logic,” In Proc. 29th Int.Symposium on Multiple-Valued Logics, Freiburg,Germany, pp. 248–
255, 1999.

9. M.Kifer and E.L.Lozinskii, “A logic for reasoning with inconsistency,”Journal of Automated
reasoning 9(2), pp. 179–215, 1992.

10. M.Kifer and V.S.Subrahmanian, “Theory of generalized annotated logic programming and
its applications,”Journal of Logic Programming 12(4), pp. 335–368, 1992.

11. M.Ginsberg, “Multivalued logics: A uniform approach to reasoning in artificial intelligence,”
Computational Intelligence, vol.4, pp. 265–316, 1988.

12. M.C.Fitting, “Billatices and the semantics of logic programming,”Journal of Logic Pro-
gramming,11, pp. 91–116, 1991.

13. M.H.van Emden, “Quantitative deduction and its fixpoint theory,”Journal of Logic Pro-
gramming,4,1, pp. 37–53, 1986.

14. S.Morishita, “A unified approach to semantics of multi-valued logic programs,”Tech. Report
RT 5006, IBM Tokyo, 1990.

15. V.S.Laksmanan and N.Shiri, “A parametric approach to deductive databases with uncer-
tainty,” IEEE Transactions on Knowledge and Data Engineering,13(4), pp. 554–570, 2001.

16. A.Cal̀ı, D.Calvanese, G.De Giacomo, and M.Lenzerini, “Data integration under integrity
constraints,” inProc. of the 14th Conf. on Advanced Information Systems Engineering
(CAiSE 2002), 2002, pp. 262–279.

17. Z. Majkić, “Fixpoint semantic for query answering in data integration systems,”AGP03 -
8.th Joint Conference on Declarative Programming, Reggio Calabria, pp. 135–146, 2003.

18. N.D.Belnap, “A useful four-valued logic,”In J-M.Dunn and G.Epstein, editors, Modern
Uses of Multiple-Valued Logic. D.Reidel, 1977.

19. M.C.Fitting, “Billatices are nice things,”Proceedings of Conference on Self-Reference,
Copenhagen, 2002.

20. M.C.Fitting, “Kleene’s three valued logics and their children,”Fundamenta Informaticae,
vol. 26, pp. 113–131, 1994.

21. Z. Majkić, “Two-valued encapsulation of many-valued logic programming,”Technical Re-
port, University ’La Sapienza’, Roma, in http://www.dis.uniroma1.it/∼ majkic/., 2003.

22. Z. Majkić, “Coalgebraic semantics for logic programming,”18th Worshop on (Constraint)
Logic Programming, WLP 2004, March 04-06, Berlin, Germany, 2004.

