
Integrating tuProlog into DCaseLP to Engineer
Heterogeneous Agent Systems?

Ivana Gungui and Viviana Mascardi

Dipartimento di Informatica e Scienze dell’Informazione – DISI,
Universit̀a di Genova, Via Dodecaneso 35, 16146, Genova, Italy.

1995s133@educ.disi.unige.it, mascardi@disi.unige.it

Abstract. This paper discusses the integration of a Prolog implementation, tuPro-
log, into the DCaseLP environment for building prototypes of multi-agent sys-
tems (MASs). DCaseLP aims at providing the MAS developer with a plethora
of specification and implementation languages in order to allow him/her to adopt
the best language for each view of the system under specification/implementation.
The integration of tuProlog into DCaseLP represents a step forward in this direc-
tion and allows the re-use of tools and mechanisms previously developed for the
DCaseLP predecessor, CaseLP.

1 Introduction

Multiagent Systems (MASs) involve heterogeneous components which have different
ways of representing their knowledge about the world, about themselves, and about
other agents, and which adopt different mechanisms for reasoning about this knowl-
edge. Despite heterogeneity, agents need to interact and exchange information in order
to cooperate or compete for the control of shared resources; this interaction may follow
sophisticated communication protocols.

For these reasons and due to the complexity of agents behaviour, MASs are difficult
to be correctly and efficiently engineered. Even developing a working prototype may
require a long time and a lot of different skills. In fact, the prototype can involve agents
that would be better modelled and implemented by means of a language based on Horn
clauses, agents that would be easily defined using an expert system-like language, and
others that should be directly implemented in some implementation language, in order
to access existing software packages or the web. Moreover, some general aspects of
the MAS can be better specified with ad-hoc specification languages. For example, the
MAS architecture, the internal agent architecture and the interaction protocols among
agents can be easily specified using graphical tools and languages.

The development of a prototype system of heterogeneous agents can be carried
on in different ways. A first -trivial- solution consists of developing all the agents by
means of the same implementation language and to execute the obtained program. If
this approach is adopted, during the specification stage it would be natural to select
a specification language that can be either directly executed or easily translated into
code, and to specify all the agents in the MAS using it. An opposite solution would

? Parts of this document appear in [5].

be to specify each “view” of the MAS (including the MAS architecture, the interaction
protocols among agents, the internal architecture and functioning of each agent) using
the most suitable language capable to deal with the MAS’s peculiar features, and to
verify, execute, or animate the obtained specifications inside an integrated environment.
Such an environment should offer the means to select the proper specification language
for each view of the MAS, and to check the specifications. This check may be carried
out thanks to formal validation and verification methods or by producing an executable
code and running the prototype thus obtained.

Despite its greater complexity, the last solution has many advantages over the first,
trivial one.

1. By allowing the use of different specification languages for each view of the MAS,
it supports the progressive refinement of specifications: for example, the specifica-
tion of an interaction protocol performed during the early analysis stage does not
need to be as detailed as the complete specification of an agent performed during
the design stage; details can be progressively added while the engineering process
goes on.

2. By allowing the use of different specification languages for the internal architecture
and functioning of each agent,it respects the differences existing among agents,
namely the way they reason and the way they represent their knowledge, the other
agents, and the world.

3. By allowing different implementation languages to be integrated inside the same
running prototype,it allows the direct implementation of some of the agents, skip-
ping the specification stage.

4. In case more than one language fits the requirements of an agent/view under speci-
fication,it allows the developer to choose the language he/she knows best and likes,
thus leading to more reliable specifications and implementations.

Currently, solid and complete environments that allow the integration of hetero-
geneous specification and implementation languages in a seamless way do not exist
yet, but some preliminary steps have been made in this direction, and some initial re-
sults have already been achieved with the development of prototypical environments for
engineering heterogeneous agents. DCaseLP (Distributed CaseLP), integrates a set of
specification and implementation languages in order to model and prototype MASs and
defines a methodology which covers the engineering stages from requirements analysis
to prototype execution, which relies on the use of AUML (Agent UML, [14]) both at
the requirement analysis level and for describing theinteraction protocolsfollowed by
the agents. Although the first release of DCaseLP [12,1] demonstrates that the concepts
underlying the “integrated environment for engineering heterogeneous MAS” can be
put into practice and can give interesting results, it suffers from two limitations that
affect its applicability:

1. it does not provide the means to re-use the code and instruments already developed
for the predecessor of DCaseLP, CaseLP [13]; and

2. it does not provide tools and languages for reasoning about properties of the inter-
actions occurring among the agents.

The last limitation can be addressed by translating AUML interaction protocols
into the DyLOG language [8,4,6], and then integrating DyLOG into DCaseLP. The
exploitation of DyLOG to address the problems of protocol selection, composition and
implementation conformance w.r.t. an AUML sequence diagram is dealt with in [7],
while the integration of DyLOG into DCaseLP is discussed in [5].

The first limitation can be overcome by extending DCaseLP with the ability to inte-
grate agents specified as Prolog theories, as shown in this paper.

The structure of the paper is the following: Section 2 overviews the DCaseLP envi-
ronment and discusses the outcomes of integrating an existing Prolog implementation,
tuProlog, into DCaseLP, while Section 3 discusses the technical details of this integra-
tion. Section 4 shows an example of use of DCaseLP extended by tuProlog; conclusions
follow.

2 The DCaseLP environment

DCaseLP is a prototyping environment where agents specified and implemented in a
given (and fairly limited!) set of languages can be seamlessly integrated. DCaseLP pro-
vides an agent-oriented software engineering methodology to guide the MAS developer
during the analysis of the MAS requirements, the MAS design, and the development of
a working MAS prototype. The methodology is shown in Figure 1. Solid arrows rep-
resent the information flow from one step to the next one. Dotted arrows represent the
iterative refinement of previous choices. The first release of DCaseLP did not deal with
all the stages of the methodology. In particular, the verification stage was not addressed.
In the same way as the integration of DyLOG into DCaseLP will allow us to formally
verify properties of communication protocols, the integration of tuProlog into DCaseLP
discussed in Section 3 will allow us to address the verification phase by re-using the ver-
ification mechanisms developed for CaseLP ([13], Sections 3.3 and 4.4).

DCaseLP is the result of the effort to re-implement CaseLP [13] in order to over-
come its main limitations, namely:

1. its centralization,
2. its poor support to concurrency, and
3. its lack of adherence to existing standards.

The tools and languages supported by the first release of DCaseLP, discussed in
[12,1], are represented in Figure 2 by means of the darker boxes. Lighter boxes represent
the desired extensions in respect to that release. Some of these extensions have already
been made, while some are currently being made, and some others are just part of our
future work.

DCaseLP adopts an existing multiview, use-case driven and UML-based method
[2,3] in the phase of requirements analysis.

Once the requirements of the application have been clearly identified, the developer
can use UML and its agent-oriented extension AUML to describe the interaction pro-
tocols followed by the agents, the general MAS architecture and the agent classes and
instances. Moreover, the developer can also automatically create the rule-based code
for the agents in the MAS in such a way that the UML/AUML specification is satisfied.

Fig. 1.DCaseLP methodology.

Fig. 2.Tools and languages supported by DCaseLP, first release.

In the following, we will assume to use AUML during the requirements analysis stage,
although the translation from AUML into rule-based code is not fully automated (while
the translation from pure UML into code is).

The rule-based language used for the implementation of DCaseLP agents is Jess
[11]. The Jess code obtained from the translation of AUML diagrams must be manually
completed by the developer with the behavioural knowledge which was not explicitly
provided at the specification level. On the one hand, the developer does not need a deep
insight in rule-based languages in order to complete the Jess code, since he/she is guided
by comments included in the automatically generated code. In this way, a developer who
is not confident with rule-based languages can concentrate on the AUML specification
and make a little effort to complete the rule-based code in order to make it executable.
On the other hand, the developer who prefers to define agents in a declarative language
can skip the AUML specification stage and directly write the Jess code.

The choice of Jess as the language for implementing agents was lead by two con-
siderations:

1. being a rule-based language, Jess is suitable for representing both the event-driven
and the goal-driven behaviours of the agents;

2. being implemented in Java, Jess can be easily integrated into the FIPA-compliant
JADE platform.

JADE (Java Agent Development Framework, [9]) provides both a middle-ware that
complies with the FIPA specifications [10] and a set of graphical tools that support the
debugging and deployment phases. The agents can be distributed across several ma-
chines and they can run concurrently. The adoption of JADE as the underlying platform
for implementing DCaseLP was a must in order to overcome the three limitations of
CaseLP. In fact, JADE is distributed, allows the concurrent execution of agents, and is
FIPA-compliant. By integrating Jess into JADE, we were able to easily monitor and de-
bug the execution of Jess agents thanks to the monitoring facilities that JADE provides.
The experiments carried out with the first release of DCaseLP were on a single machine
(see Figure 2: there is only one dark box labelled with “PC” under the JADE box).

The possibility of running the prototype allowed the first release of DCaseLP to
demonstrate its ability in checking the coherence of the AUML diagrams produced dur-
ing the requirements analysis step. Performing such a check is a well known and still
open problem that we could face without additional effort. Nevertheless, that release
still suffered from one limitation: it was not able to integrate any Prolog implementa-
tion. The predecessor of DCaseLP, namely CaseLP, is implemented in Sicstus Prolog
[15], and a lot of work has been done to study and define semi-automatic translators
from high-level specification languages into CaseLP agents, namely agents described
in Sicstus Prolog extended with communication primitives. Limited support to formal
verification of specifications – completely missing in DCaseLP – is indeed provided by
CaseLP. Without the integration of Prolog into DCaseLP, all that work would have been
lost. Recently, we have extended DCaseLP with the ability to integrate agents specified
as Prolog theories. Section 3 discusses how we have integrated an existing Prolog im-
plementation, tuProlog [16], into DCaseLP. The choice of tuProlog was due to two of
its features:

1. it is implemented in Java, which makes its integration into JADE easier, and
2. it is very light, which ensures a certain level of efficiency to the prototype.

The integration of tuProlog into DCaseLP has been completed very recently. Due to
the syntactic differences existing between Sicstus Prolog and tuProlog, CaseLP agents
specified using Sicstus Prolog cannot be simply treated as if they were DCaseLP agents
specified using tuProlog: a translation step from “Sicstus Prolog for CaseLP agents” to
“tuProlog for DCaseLP agents” is necessary. We guess that this translation step can be
easily automatised, thus allowing us to re-use the tools developed for CaseLP inside
DCaseLP; however, its implementation has not been completed due to lack of time.
Again due to time limitations, we did not verify the ability to run JADE, Jess and tuPro-
log agents as part of the same, heterogeneous, MAS. At the time of writing, we have
only developed some examples (one of which is discussed in Section 4) that demon-
strate that tuProlog agents are able to interact with both tuProlog and JADE agents by
taking advantage of the underlying communication middle-ware provided by JADE,
and that the execution of the resulting MAS can be monitored using the tools offered by
JADE. When the translator “Sicstus Prolog→ tuProlog” will be ready, and when the
compatibility between Jess and tuProlog agents will be fully established, DCaseLP will
be closer than now to the integrated environment for engineering heterogeneous MASs
envisaged in Section 1. In particular,

1. It will support the progressive refinement of specifications: for example, the in-
teractions among agents belonging to the MAS and among internal components
of the same agent will be specified in some suitable language (AUML, other lan-
guages provided by CaseLP), will be then formally verified, and will be finally
implemented by adding all the details needed by the MAS or by the single agent to
work.

2. It will respect the differences existing among agents: an agent which reasons in a
goal-driven, backward fashion will be easily defined by means of a tuProlog theory;
a rule-based agent will be better defined using Jess.

3. It will allow the direct implementation of some of the agents: JADE agents are
basically Java agents and thus they are implemented agents, rather than specified
agents.

4. It will allow the developer to choose the language he/she knows best and likes: it
will provide a bunch of languages to choose from.

3 Integrating tuProlog into DCaseLP

The integration of tuProlog into DCaseLP has been carried out in order to provide the
developer of the MAS with a means to define the behaviour of an agent by using another
declarative language besides Jess, and to re-use the code and instruments previously
developed for CaseLP. To do so, tuProlog has been integrated into JADE.

JADE includes a specific package to develop Java agents and a programmer’s guide
containing implementation guidelines that the developer should follow to code his/her
agents in Java. Any Java class that extends the classAgent defined in the package
jade.core of JADE can be considered as a JADE agent. To add tuProlog in DCaseLP,
three Java classes have been defined in a package namedtuPInJADE :

1. the classJadeShell42P , which represents a tuProlog agent in JADE;
2. the classJadeShell42PGui that provides an additional GUI at the loading of

the agent; and
3. the classTuJadeLibrary , which is a tuProlog library (developed in Java) nec-

essary to a tuProlog agent in order to communicate in the JADE platform.

As the name of the class suggests,JadeShell42P behaves as a shell for a tuPro-
log engine. To execute aJadeShell42P agent in JADE, the programmer has to
give, in input, the name of a file containing a tuProlog theory that represents the be-
haviour of the agent (Figure 3). The classJadeShell42PGui differs from class

Fig. 3.JADE shell for a tuProlog engine.

JadeShell42P in the fact that, when loaded into JADE, it does not need the name
of the theory file in the command line: it loads the pop-up window shown in Figure 4
with which the user can browse the file system and select from the list of files the one
defining a tuProlog theory to be used as behaviour of the agent. Such a tuProlog the-

Fig. 4.Window for theory selection.

ory file has only one restriction: it has to begin with the definition of a predicate called

main/0 . When a tuProlog agent is loaded into JADE, it first creates a tuProlog engine
that supports the standard tuProlog libraries and then extends them by loading the ad-
hoc tuProlog library namedTuJadeLibrary . The behaviour of any tuProlog agent
is to use the tuProlog engine, created during its initialisation phase, to always solve the
predicatemain . A typical main predicate calls predicates to read a new message, han-
dle it and carry out some actions such as update of the agent’s knowledge and message
delivery.

The goal’s demonstration is not visible to the programmer: if he/she wants to be
informed of the variable’s bindings made during resolution, he/she has to explicitly
write the variables on the standard output or in some files that he/she can subsequently
go to and read. The only explicit information which is provided for the user regards
the failure of the goal’s demonstration and other situations which raise an error dur-
ing the resolution process. To make this information visible, the packagetuPInJADE
defines the Java classErrorMsg , that is used by the tuProlog agents as a pop-up
window displaying error and failure messages, like the one shown in Figure 5. The

Fig. 5.Window for error and failure messages.

Java classJadeShell42P defines the inner classShell42PBehaviour (named
Shell42PBehaviourGui in the classJadeShell42PGui) that extends the Java
classCyclicBehaviour defined in the packagejade.core.behaviours of
JADE.

Shell42PBehaviour implements the only behaviour of aJadeShell42P
agent: every time the agent is scheduled by the JADE’s scheduler, it tries to fulfill only
one activity, that is, the resolution of the goalmain . The Shell42PBehaviour
models a cyclic task and cannot be interrupted while executing its action method. The
result is the same as if the agent performed a “while true do main ” statement,
with main being dealt with as an atomic action.

The Java classTuJadeLibrary is the core class dealing with communication
of tuProlog agents in JADE. This library defines the predicatessend andreceive :
they are the directives implementing the sending and receiving of the FIPA compliant
and asynchronous messages to and from agents of a JADE platform. Thesend and
receive predicates simply invoke thesend andreceive methods of a JADE agent,
therefore they not only allow communication among tuProlog agents but also among
ordinary JADE agents and tuProlog agents.

The arguments of thesend predicate are: the performative, the content and the
JADE address/list of addresses of the receiver/receivers of the message. The arguments
of the receive predicate are: the performative, the content and the JADE address of
the sender of the message. Actually, since JADE agents have the possibility to stop their

activity while waiting for a message to arrive in their messages queue, theTuJadeLi-
brary also defines twoblocking receive predicates: one without a timeout and
the other with a timeout. These predicates correspond to theblockingReceive
method of an ordinary JADE agent.

Finally, TuJadeLibrary defines two predicates for converting strings into terms
and vice-versa, namedpack andunpack . They allow tuProlog agents to send strings
as the content of their messages, and to reason over them as if they were tuProlog terms.

4 Example

To show how DCaseLP can be used to develop a working MAS prototype, we use a
simple example drawn from a distributed marketplace scenario.

In such a marketplace, there are two agents (buyer1 and buyer2) that want
to buy some fruit (oranges, apples and kiwi) from three agents (seller , seller1
andseller2). Agentsbuyer1 , buyer2 , seller1 andseller2 are all tuProlog
agents, whileseller is an ordinary JADE agent.

The agents that sell fruit can receive two kinds of FIPA ACL messages from the
buyers:

1. a request for price: the message received has the performativeREQUESTand the
contentprice(Fruit) , whereFruit is oranges or apples or kiwi;

2. a request for buying: the message received has the performativeREQUESTand
the contentbuy(Fruit, Amount) , whereFruit is oranges or apples or kiwi,
while Amount is the quantity of fruit that the buyer wants to buy.

A seller replies to a price request made by a buyer by sending anINFORMmessage
that has the contentprice(Fruit, Price) , whereFruit is oranges or apples or
kiwi andPrice is the corresponding price.

The reply to a request for buying depends on whether or not the seller has enough
fruit to sell: in case the quantity of fruit that the buyer is willing to buy is less or equal
to the one possessed by the seller, the seller will send the buyer anINFORMmessage
with the contentbought(Fruit) , to inform the buyer that the fruitFruit has been
sold. On the other hand, if the seller does not own enough fruit, it sends the buyer an
INFORMmessage with the contentno more(Fruit) , so the buyer will know it can
no longer buyFruit from that seller.

At the beginning, the buyers send a request for the price of all the fruit to all the
sellers. Once they know the prices of the fruit, they send requests for buying fruit to the
agents that sell it at the cheapest price. The buyers keep sending messages requesting
to buy fruit while they still have money and the sellers have enough fruit to sell.

To give the flavor of how a tuProlog agent looks like, the code below shows a piece
of the tuProlog theory defining the behaviour ofbuyer1 .

main :-
handle msgs,
ask prices,
buy goods.

goods possessed(oranges, 0) :- true.
goods possessed(apples, 0) :- true.
goods possessed(kiwi, 0) :- true.

buys(goods(oranges), quantity(2)) :- true.
buys(goods(apples), quantity(3)) :- true.
buys(goods(kiwi), quantity(12)) :- true.

money(200) :- true.

sellers addresses(["seller1@gruppoai:1099/JADE",
"seller2@gruppoai:1099/JADE",
"seller@gruppoai:1099/JADE"]) :- true.

.............

handle msgs :-
receive(Performative, Message, Sender),
select(Performative, Message, Sender).

select(Performative, Message, Sender) :-
bound(Performative),
bound(Message),
address name(Sender, Name),
unpack(Message,TermMsg),
handle(Performative, TermMsg, Sender).

select(, ,) :- true.

handle("INFORM",
bought(Goods),
Sender) :-

bound(Goods),
address name(Sender,S),
price(S,Goods,P),
retract(money(M)),
retract(goods possessed(Goods,X)),
buys(goods(Goods),quantity(Q)),
N is X + Q,
P \= na,
NM is M - P,
assert(money(NM)),
assert(goods possessed(Goods,N)).

The main predicate defines three activities which consist in handling incoming
messages, asking the price of fruit from sellers (only at the beginning, when the buyer
does not yet know the prices) and buying fruit. After defining themain predicate,
the theory declares the initial state of the buyer:buyer1 possesses no fruit, buys or-
anges in stocks of 2 kilograms, apples in stocks of 3 kilograms and kiwi in stocks of
12 kilograms, and has 200 Euro to spend. The list of addresses of the sellers follows
(sellers addresses), together with other information not relevant in this context.

The handling of messages consists of receiving one message (calling thereceive
predicate provided by theTuJadeLibrary and introduced in Section 3) and trans-
forming its content, which is a string, into a tuProlog term (calling the user-defined
predicateselect). Theselect predicate calls theunpack predicate provided by
the TuJadeLibrary in order to transform the string that represents the content of
the message into a term, and then it calls the user-definedhandle predicate on the
performative of the message, the obtained term, and the sender of the message.

In the example considered, a buyer receives a message whose content is the string
bought(Goods) . The buyer knows the price ofGoods (by solving the goalprice(S,
Goods,P)) and it knows the quantity ofGoods it bought (by solving the goalbu-
ys(goods(Goods),quantity(Q))). Having succeeded in buyingGoods, the
buyer must update both the possessed amount ofGoods and the remaining money
(calls to standard Prolog predicatesretract , is andassert). Similar definitions
of the predicatehandle are provided for any other message that the buyer may receive.

The ordinary JADE agent,seller , is characterised by a Java code partly shown
below.

package tuPInJADE;

import jade.core.Agent;
import jade.core.AID;
import jade.core.behaviours.CyclicBehaviour;
import jade.lang.acl.ACLMessage;

public class Seller extends Agent
{ private int orangesAmount = 5;

private int applesAmount = 5;
private int kiwiAmount = 10;
private int orangesPrice = 105;
private int applesPrice = 80;
private int kiwiPrice = 100;

protected void setup()
{ SellBehaviour p = new SellBehaviour(this);
addBehaviour(p);
}}

class SellBehaviour extends CyclicBehaviour

{ private static boolean done = false;

public SellBehaviour(Agent a)
{ super(a); }

public void action()
{ ACLMessage msg;
while (!done)
{ msg = myAgent.receive();
if (msg != null) handleMsgs(msg); }}

TheSeller class extends the JADEAgent class as any agent running in JADE
must do. The behaviour of the seller is a cyclic behaviour (classSellBehaviour ex-
tendsCyclicBehaviour) which continuously checks for a message (msg = myA-
gent.receive()) and, if a message is present, handles it (if (msg != null)
handleMsgs(msg)).

Once all the agents have been specified using tuProlog or JADE, they can be loaded
into JADE and the execution of the obtained prototype can start. JADE offers the possi-
bility to follow the communication between the agents by means of the “sniffer” agent
which is a GUI whose output is shown in Figure 6.

Fig. 6.Output of the JADE sniffer agent.

The state of the agents’ mailboxes can be inspected thanks to the introspector agent,
a GUI too. Figure 7 shows the state of the mailbox ofbuyer2 . This screen-shot was
taken at the beginning of the simulation; all theINFORMmessages shown are answers
to price requests previously issued bybuyer2 to the sellers.

Fig. 7.JADE window showing the communication among agents.

Details on the messages exchanged can also be inspected. Figure 8 shows the re-
quest for the price of kiwi sent bybuyer2 to seller1 . Figure 9 shows the answer to
this request.

Fig. 8.Price request frombuyer2 to seller1 .

The execution and monitoring of the prototype, obtained by exploiting the tools pro-
vided by JADE, allow the developer to verify whether the agents work well according

Fig. 9.Price answer fromseller1 to buyer2 .

to their intended behaviour. The sniffer agent also allows to save into a file the messages
exchanged by the agents. When that file is loaded by the user through the sniffer agent,
it is possible to view the details of each message by clicking on the arrow representing
the exchange of a message. A user can then check if the messages have been sent in the
expected order (for example, that all the buyers ask for the price of fruit first, and start
buying fruit afterwards), by viewing the content of every single message displayed in
the canvas of the agent sniffer. Without the integration of tuProlog into JADE, verifying
the correctness of communication between agents implemented in Prolog could only
be done by hand: the developer had to put breakpoints in his/her code or he/she had
to write messages on the standard output or in a separate file in order to follow what
was going on during the prototype execution. CaseLP offers graphical debugging tools
more sophisticated than this “by-hand” inspection. Nevertheless, the adoption of the
instruments already provided by a standard, FIPA-compliant and open-source platform,
represents an improvement to the use of proprietary instruments offered by CaseLP.

5 Conclusions and future work

In this paper we have discussed the integration of a Prolog implementation, tuProlog,
into the DCaseLP prototyping environment. Recently, the integration of the DyLOG
executable logic-based language into DCaseLP has been designed, thus enriching the
set of specification/implementation languages supported by DCaseLP. The integration
of tuProlog into DCaseLP represents another step forward in this direction and gives us
two main advantages:

1. It allows us to re-use the work previously done with CaseLP regarding the study and
the definition of semi-automatic translators from high-level specification languages
into Prolog-based communicative agents.

2. It represents a relevant example that we can follow to implement a new DyLOG
interpreter in Java, and to integrate this new interpreter into DCaseLP.

Currently, the two advantages above cannot be exploited in practice because we
did not have time enough to implement all the components, so we need to make the
integration of DyLOG and the languages provided by CaseLP usable. Our future efforts
will be channelled in this implementative direction, in order to make DCaseLP the
integrated environment for engineering and prototyping heterogeneous MAS that it was
intended to be.

References

1. E. Astesiano, M. Martelli, V. Mascardi, and G. Reggio. From Requirement Specification to
Prototype Execution: a Combination of a Multiview Use-Case Driven Method and Agent-
Oriented Techniques. In J. Debenham and K. Zhang, editors,Proc. of SEKE’03. The Knowl-
edge System Institute, 2003.

2. E. Astesiano and G. Reggio. Knowledge Structuring and Representation in Requirement
Specification. InProc. of SEKE’02. ACM Press, 2002.

3. E. Astesiano and G. Reggio. Tight Structuring for Precise UML-based Requirement Specifi-
cations: Complete Version. Technical Report DISI–TR–03–06, DISI, Università di Genova,
Italy, 2003.

4. M. Baldoni, C. Baroglio, L. Giordano, A. Martelli, and V. Patti. Reasoning about communi-
cating agents in the semantic web. In F. Bry, N. Henze, and J. Maluszynski, editors,Proc. of
PPSWR’03, Springer-Verlag, 2003.

5. M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mascardi, V. Patti, and
C. Schifanella. Reasoning about agents’ interaction protocols inside DCaseLP. InProc. of
DALT’04. To appear.

6. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction protocols for
web service composition. In M. Bravetti and G. Zavattaro, editors,Proc. of the WS-FM’04.
Elsevier Science Direct, 2004. Electronic Notes in Theoretical Computer Science.

7. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about logic-based agent inter-
action protocols. In this volume.

8. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming rational agents in a modal
action logic. Annals of Mathematics and Artificial Intelligence, Special issue on Logic-Based
Agent Implementation. To appear.

9. F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE – a white paper. Available at
http://jade.cselt.it/papers/WhitePaperJADEEXP.pdf , 2003.

10. FIPA Specifications.http://www.fipa.org .
11. Jess home page.http://herzberg.ca.sandia.gov/jess/ .
12. M. Martelli and V. Mascardi. From UML diagrams to Jess rules: Integrating OO and rule-

based languages to specify, implement and execute agents. In F. Buccafurri, editor,Proc. of
AGP’03, 2003.

13. M. Martelli, V. Mascardi, and F. Zini. CaseLP: a prototyping environment for heteroge-
neous multi-agent systems. Available athttp://www.disi.unige.it/person/
MascardiV/Download/aamas-journal-MMZ04.ps.gz .

14. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. InProc. of AOIS’00,
2000.

15. SICStus Prolog home page.http://www.sics.se/isl/sicstuswww/site/
index.html .

16. TuProlog home page.http://lia.deis.unibo.it/research/tuprolog/ .

