
Constraint Based Protein Structure Prediction
Exploiting Secondary Structure Information

Alessandro Dal Palù2, Sebastian Will1, Rolf Backofen1, and Agostino Dovier2

1 Jena Center of Bioinformatics, Institute of Computer Science,
Friedrich-Schiller-University, Jena. Ernst-Abbe-Platz 2, 07743 Jena (Germany).

2 Department of Mathematics and Computer Science, University of Udine. Via delle
Scienze 206, 33100 Udine (Italy).

Abstract. The protein structure prediction problem is one of the most
studied problems in Computational Biology. It can be reasonably ab-
stracted as a minimization problem. The function to be minimized de-
pends on the distances between the various amino-acids composing the
protein and on their types. Even with strong approximations, the prob-
lem is shown to be computationally intractable. However, the solution of
the problem for an arbitrary input size is not needed. Solutions for pro-
teins of length 100–200 would give a strong contribution to Biotechnol-
ogy. In this paper, we tackle the problem with constraint-based methods,
using additional constraints and heuristics coming from the secondary
structure of a protein that can be quickly predicted with acceptable ap-
proximation. Our prototypic implementation is written using constraints
over finite domains in the Mozart programming system. It improves over
any previous constraint-based approach and shows the power and flexi-
bility of the method. Especially, it is well suited for further extensions.

1 Introduction

A protein is identified by a finite list of amino-acids, which we can represent as
symbols of an alphabet of 20 elements. The protein structure prediction (PSP)
problem is the problem of predicting the 3D structure of the protein (its na-
tive conformation) when the list of amino-acids is known. Native conformation
determines the Biological function of the protein. It is accepted that the na-
tive conformation is the state of minimum free energy. Up to now, though, a
definitive energy model has not been yet devised. The energy of a conforma-
tion depends partially on the distances between all pairs of amino-acids and on
their type. Thus, the PSP problem can be simplified to that of minimizing a
suitable energy function generated by the protein 3D conformations. Although
the problem, even with some simplifications, is NP-complete [9], it deserves to be
attacked, because a solution for ‘small’ proteins (100–200 amino-acids) would be
anyhow extremely important in Biology and Biotechnology. The problem is ap-
proached in several ways (see [7, 14] for a review). Prediction methods make use
of statistical information available from more than 24, 000 structures deposited
in the Protein Data Bank (PDB) [5]. The correct fold for a new sequence can be
obtained when homology (sequence similarity) is detected with a sequence for

which the structure is available. Another approach tries to superimpose (thread)
a chain on known structures and evaluates the plausibility of the fold.

Ab-initio methods, instead, try to find the native conformation without direct
reference to a structural model. In this context, a constraint-based encoding of
the problem is extremely natural. A first abstraction is the choice of a spatial
model for the admissible positions of the various amino-acids. Lattice models are
used to formalize the PSP problem as a minimization problem on finite domains.
It has been shown [4, 3, 12] that the Face-Centered-Cubic lattice (FCC) provides
the best lattice approximation of proteins. Moreover, it has been shown that the
residue neighbors in real proteins are clustered in a rather dense way, occupying
positions closely approximating those of a distorted FCC packing. It is believed
that this packing is a direct manifestation of the hydrophobic effect. Recall that
FCC is the closest packing of spheres, which was proven only recently [8].

The FCC lattice is exploited in [1, 16] for solving proteins of length up to 160
with the further abstraction of splitting the amino-acids in two families (H and
P). However, the HP abstraction does not ensure that the result is the native
conformation; in particular, the local sub-conformations of the form of α-helices
or β-strands (cf. Sect. 2) are often lost. These structures are often generated early
in the real folding process and, moreover, the structures can be predicted with
good approximation [13]. These two observations suggest to include secondary
structures in the constraint-based definition of the (complete, non-HP) problem.
This is done in [10] using CLP (FD) constraints in SICStus Prolog; proteins of
length 50–60 can be predicted.

In this paper we extend the results of [10] in three ways. First, a precise math-
ematical formalization of secondary structure is given and results are obtained,
which allow for easy breaking of symmetries, cheap computation of energy, and
an effective, but computationally inexpensive, search strategy during the con-
straint search. Then we split the energy function into 4 families and we observe
that the energy contribution of one of them is sensibly greater than the others:
we use this information for developing heuristics for the solution’s search pro-
cess. Finally, we take advantages from using the constraint propagation of Oz
3.0 language and in particular we implement specially tailored propagators that
allow to solve the problem efficiently. The preliminary results obtained show a
huge speed-up w.r.t. the results of [10].

The paper is organized as follows: in Section 2 we provide some biological
background needed through the paper. In Section 3 we describe the spatial and
protein models. In Section 4 we define the problem and introduce our solving
strategy. In Sections 5 and 6 we provide technical details to handle secondary
structure elements. In Section 7 we describe the constraint framework. In Sec-
tion 8 we present some preliminary results and we conclude with Section 9.

2 Biological Background

The Primary structure of a protein is a finite sequence of linked units (or
residues), that define uniquely the molecule. Each residue is an amino-acid,

denoted by one of the 20 elements in the alphabet set Σ. A protein (primary)
sequence is thus a string s ∈ Σ∗.

Native conformations are largely built from Secondary Structure elements
(SSEs), which are local motifs consisting of short, consecutive parts of the amino
acid sequence having a very regular conformation. Some of them are α-helices,
β-sheets, and βαβ turns. In this paper we model the first two motifs: α-helices
are constituted by 5 to 40 residues arranged in a regular right-handed helix with
3.6 residues per turn. This local structure is stabilized by local interactions and
can be thought as a rigid cylinder. β-sheets are constituted by extended strands
of 5 to 10 residues. Each strand is made of contiguous residues, but strands
participating in the same sheet are not necessarily contiguous in sequence. There
are algorithms based on neural networks that can predict with high accuracy
(75% [7]) the secondary structure of a protein. Formally, a secondary structure
for a protein sequence s = s1 . . . sn is a list sse of k triples SSEi = (ti, bi, ei),
where for 0 ≤ i < k, ti ∈ {ααα,βββ}, 0 ≤ bi < ei < n, and for 0 ≤ i < k − 1,
ei < bi+1. Later, we will use the notation |s| = n, and | sse | = k. Given a
secondary structure sse for a protein sequence s, then the sub-sequence of the
i-th SSE is the string sbi

. . . sei
.

In nature, each protein always reaches a specific 3D conformation, called na-
tive conformation or tertiary structure. This conformation determines the func-
tion of the protein. The protein structure prediction problem is the problem of
determining the tertiary structure of a protein given its primary structure. It is
accepted that the primary structure uniquely determines the tertiary structure.
Due to entropic considerations, it is also accepted that the tertiary structure min-
imizes the global energy of the protein. Though, is not yet uniquely accepted
which energy function describes this phenomenon.

3 Formalizing the Models

3.1 The Lattice Model

In this section, we introduce the spatial model and its properties. The protein is
represented as a succession of three dimensional points. Each point corresponds
to an amino-acid3. In our approach we restrict the point’s domain to be in the
face-centered-cubic lattice (FCC). Fig 1a) shows its unit cell. The FCC is the set
of points FCC = {(x, y, z)|x, y, z ∈ Z, x + y + z is even}.

We discuss now some important properties of this lattice. First, note that
the FCC has 48 automorphisms, which are represented by orthogonal matrices
M , where the column vectors are a permutation of (±1, 0, 0), (0,±1, 0), and
(0, 0,±1). As we now will explain, we use only 24 of these automorphisms, due
to the chirality of proteins.

Chirality is an important property of protein structures and sub-structures.
Two objects are chiral if they are identical except for a mirror reflection (differ-
ent handedness). In nature, a sequence of amino-acids, when folded (e.g. right
3 In particular, we associate each point to the position of the α-carbon lying in the

backbone of the amino-acid, which can be assumed to be its steric center.

handed α-helices), has a specific handedness and usually it can not generate the
symmetric folding as well. In our model, when we apply transformations, we
are interested in preserving the natural handedness. Since reflections invert the
handedness, we restrict to automorphisms with an orthogonal matrix with pos-
itive determinant. Note that half of the possible automorphisms are reflections,
since the determinant associated to the matrix is negative. This leads us to the
following definition of the basic transformation that we apply to points:

Definition 1. A matrix M is called rotational, if it is orthogonal, det(M) = 1
and each of its elements is in Z. An isometric mapping 〈M, t〉, where t ∈ FCC
and M is a rotational matrix, is a function from points to points of the form
〈M, t〉 : p → Mp + t. We identify this function with its extension to sets of
points. M is called the transformation matrix of the isometric mapping 〈M, t〉
and t its translation vector.

The composition A2 ◦ A1 of two isometric mappings A2 = 〈M2, t2〉 and
A1 = 〈M1, t1〉, i.e. the application of A2 after A1 equals

〈M2, t2〉 ◦ 〈M1, t1〉 = 〈M2M1,M2t1 + t2〉.

Note that A2 ◦ A1 is again an isometric mapping, since M2M1 is rotational.
Due to this definition, there is also an inverse for an isometric mapping 〈M, t〉,
namely 〈M, t〉−1 , 〈M−1,−M−1t〉. We define the FCC-norm of a point (x, y, z):

‖p‖fcc = max
{
|x|, |y|, |z|, |x|+ |y|+ |z|

2

}
.

A vector v ∈ FCC is called a unit vector if ‖v‖fcc = 1. The FCC-distance of two
points p, q ∈ FCC is ‖p−q‖fcc. Let us observe that in the FCC lattice, each walk
from (0, 0, 0) to (x, y, z) ∈ FCC, needs at least ‖(x, y, z)‖fcc lattice unit vectors.
We also use the standard Euclidean norm ‖〈x, y, z〉‖2 =

√
x2 + y2 + z2.

3.2 The Protein Model

We provide here the formal definition of our 3D model and energy function. The
tertiary structure of a protein can be modeled as a function ω : [0 .. n−1] → FCC.
The position of the i-th monomer in the protein corresponds to the point ω(i).

Definition 2. The function ω is a folding for the primary sequence s, iff

bond-constraint: ∀i . 0 ≤ i < |s| − 1 : ‖ω(i)− ω(i + 1)‖fcc = 1, and
angle-constraint: ∀i . 0 ≤ i < |s|−2 : ∠(ω(i), ω(i+1), ω(i+2)) ∈ {90◦, 120◦, 180◦}.

Note that we allow only angles of 90◦, 120◦, and 180◦, whereas in the FCC
lattice, three consecutive monomers can also form angles of 0◦ and 60◦. We
exclude the angles less than 90◦ for sterical reasons, since the first and third
amino-acid would be too close. Note that in [10] the 180◦ angle was excluded
as well, since it is unfavorable in real proteins. In our approach we allow this
angle, since simpler constraints can be used (especially when linking SSEs to

neighbors). Moreover, when discretizing the protein on FCC lattice, 180◦ angles
can be required to fit more accurately the native state. For example, the modeling
of α-helices in the FCC lattice, is not able to represent the typical periodicity of
the pattern.

A folding ω satisfies a secondary structure sse = (ti, bi, ei)0≤i<| sse | if and
only if for every i ∈ [0..| sse | − 1], the positions ω(bi), . . . , ω(ei) approximate a
right-handed α-helix on the FCC if ti = ααα and approximate a β-strand on the FCC
if ti = βββ. We give a formal definition of these approximations in Subsection 5.1.

The modeling of the folding energy is a delicate issue: a large set of phe-
nomena can be included to produce a refined energy function. In this paper we
restrict to one kind of interaction between elements, namely the contact energy
between pairs of amino-acids and we use the matrix developed in [6]. ppot(a, b)
denotes the potential of the amino-acids a and b. The potential is only con-
tributed to the total energy if the two amino-acids are in close contact. If two
monomers are too close, they are clashing, in this case the total energy is ∞,
since for steric reasons two residues repel each other.

Definition 3 (Energy). For two amino-acids a, b ∈ Σ and two positions p, q ∈
FCC, we define

E(a, b, p, q) =

ppot(a, b) ‖q − p‖2 = 2
∞ ‖q − p‖2 < 2
0 otherwise.

The energy of a protein conformation with protein sequence s and folding
ω : [0 .. |s| − 1] → FCC is EC(s, ω) =

∑
0≤i,j<|s|,i+2<j E(si, sj , ω(i), ω(j)).

Note that due to our definition, every sub-sequence up to 3 consecutive
amino-acids in the primary structure, does not contribute to the energy. This
is an empirical choice. Basically, if three consecutive amino-acids formed an an-
gle of 90◦ the first and third amino-acid would form a pair contributing to the
energy, whereas if they formed an angle of 120◦ there would be no contribu-
tion. The energy contribution of an amino-acid pair is negative on average and
thus, angles of 90◦ would be always favoured. This is true in the lattice, but
not in nature, and thus we avoid this a-priori preference by removing the energy
contribution of the pair of amino-acids si and si+2.

We report here a part of the potential table of [6], also available at http:
//www.dimi.uniud.it/dovier/PF/.

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY

CYS -3.477 -2.240 -2.424 -2.410 -2.343 -2.258 -2.080 -1.892 -1.700 -1.101
MET -2.240 -1.901 -2.304 -2.286 -2.208 -2.079 -2.090 -1.834 -1.517 -0.897
PHE -2.424 -2.304 -2.467 -2.530 -2.491 -2.391 -2.286 -1.963 -1.750 -1.034
· · · · · ·

4 Problem Definition and Solving Strategy

We define the protein structure prediction problem when the secondary structure
information is taken into account. Given a sequence s and a secondary structure

sse, the problem is to find the folding ω that satisfies sse and has minimal energy
EC(s, ω). The energy function can be partitioned as a sum of four energy terms,
namely the energy contribution by pairs of amino-acids, where

1. both are in the same SSE,
2. both are in SSEs, but not in the same,
3. one is in a SSE and the other is not,
4. both are not in SSEs.

Formally, these contributions, whose sum is EC(s, ω) are defined as

1. Es(s, sse, ω) =
∑

0≤r<| sse |
∑

br≤i+2<j≤er
E(si, sj , ω(i), ω(j))

2. Ess(s, sse, ω) =
∑

0≤r<r′<| sse |
∑

br≤i≤er

∑
b′r≤j≤e′r,i+2<j E(si, sj , ω(i), ω(j))

3. Esn(s, sse, ω) =
∑

i∈D

∑
0≤j<|s|,j 6∈D,i+2<j E(si, sj , ω(i), ω(j))

4. Enn(s, sse, ω) =
∑

0≤i<j<|s|,i,j 6∈D,i+2<j E(si, sj , ω(i), ω(j)),

where D is the set of positions in SSE, i.e.
⋃

0≤r<| sse |[br .. er]. The first term
Es(s, sse, ω) is constant for each folding ω that satisfies a given secondary struc-
ture sse. Thus, optimizing EC(s, ω) it is equivalent to optimize Ess(s, sse, ω) +
Esn(s, sse, ω) + Enn(s, sse, ω).

From a set of 500 selected PDB-proteins, we estimated the average contribu-
tions of the last three terms to their sum in the native state, which is given by the
following distributions: Ess 49% , Esn 36%, and Enn 15%. Note that half of the
energy is contributed by interaction between SSEs. This suggests a heuristic to
solve the structure prediction problem. Thus, first we place the SSEs optimally
according to Ess. Then, for fixed SSEs, we place the remaining amino-acids while
optimizing EC(s, ω).

During the optimization of Ess, the SSEs are placed in the FCC lattice. The
elements are treated as rigid blocks that can be shifted and oriented in the
lattice. It is fundamental to be independent from global rigid transformations,
which give the same isomorphic results. In the next section, we introduce the
notion of relative position between two SSEs. This concept is the base to ab-
stract from the symmetries of the problem. Note that all energy terms are based
on the notion of distance between amino-acids, thus they are invariant under
rigid transformations. The relative position description, thus, is suitable to be
associated to a specific energy contribution provided by the represented class.

5 Absolute and Relative Positions

In this section, we discuss a formalism to describe the SSEs and their placement
in the lattice. We specify an object (later denoted by template) by a list of FCC
points. The object is placed in the space by transforming these points by means
of rotating and translating. This transformation defines the absolute position
of the placed object (later denoted by instance). We also introduce the relative
position of two SSEs, which is the transformation required to map the absolute
position of the first element into the one of the second. Fig. 1b) provides an
illustration of the concepts that are introduced in this section.

(a)

2

3

4

1

A

C

B

(b)

Fig. 1. a) Unit Cell of the face-centered cubic lattice (FCC). There is one point in each
corner of a cube and one point in the center of each face. We show the connections by
unit vectors. b) Idea of absolute and relative positions. The figure shows instances a
helix template of length 8 and type 0 and a sheet template of length 6. If the instances 1
and 2 are in absolute position id, then A (resp. B) is the absolute position of the instance
3 (resp. 4). C = ρ(A, B) is the relative position between the instances (from A to B).
We show local coordinate systems for each instance to illustrate the transformation.

5.1 Templates

A template is a function T : [0 .. ` − 1] → FCC, where ` ∈ N is its length. We
introduce two classes of templates, namely α-helices and β-sheets. In these cases,
a template is the geometric description of a helix (sheet) starting from (0, 0, 0).

Definition 4 (Templates for SSEs). Let a function h : N→ FCC be given by
h(4i+0) = (0, 0, 0)+ i dh, h(4i+1) = (1, 0, 1)+ i dh, h(4i+2) = (2, 0, 0)+ i dh,
and h(4i + 3) = (2, 1,−1) + i dh for i ∈ N, where dh = (2, 2, 0). Then, the helix
template of length n and type τ , where n ∈ N and τ ∈ {0, 1}, is the function
helixτ

n : [0 .. n− 1] → FCC, helixτ
n(i) = h(i− τ) (i ∈ [0 .. n− 1]).

Furthermore, let a function sheetn : [0 .. n−1] → FCC, be given by s(2i+0) =
(0, 0, 0) + i ds and s(2i + 1) = (1, 1, 0) + i ds for i ∈ N, where ds = (2, 0, 0).

Note that the helix templates of type 0 (resp. 1) describe helices, where the
first three points form an angle of 90◦ (resp. 120◦).

5.2 Position of an Instance

Definition 5 (Absolute Position, Instance). An absolute position is an
isometric mapping. An instance I with absolute position 〈M, t〉 of a template T
is a pair I = 〈M, t〉♦T. The instance function of I, denoted by I fun, is 〈M, t〉◦T .

For i ∈ Z, we use the short notations I(i) for I fun(i) and dom(I) for dom(I fun).
The image of an instance I is img(I) = {I(i)|i ∈ dom(I)}.

The instance function of the instance 〈id, (0, 0, 0)〉♦T is 〈id, (0, 0, 0)〉◦T = T .

Definition 6 (Relative Position). For instances Ii with absolute positions Ai

(i = 1, 2), the relative position ρ(A1, A2) from A1 to A2 is the isometric mapping,
where ρ(A1, A2) = A−1

1 ◦A2. Then, ρ(A1, A2) is also called the relative position
of the instances I1 and I2.

The relative position between two instances Ii = Ai♦Ti (i = 1, 2) can be used
to obtain the second instance from the first instance as I2 = A1 ◦ ρ(A1, A2)♦T2,
since by definition A2 = A1 ◦ ρ(A1, A2).

The following proposition claims that the relative position of two instances
is invariant under global transformations.

Proposition 1. Given the instances Ii = Ai♦Ti, I
′
i = A′i♦T ′i (i=1,2), the rel-

ative positions R = ρ(A1, A2), R′ = ρ(A′1, A
′
2) and the isometric mappings Ci,

such that A′i = Ci ◦Ai, then R = R′ if and only if C1 = C2.

Note that by Proposition 1, ρ(M ◦ A1,M ◦ A2) = ρ(A1, A2) for isometric
mappings M , A1, and A2. Especially, for every relative position ρ(A1, A2), there
is an identical relative position of the form ρ(id, B) = B for some isometric
mapping B, namely B = A−1

1 ◦A2.

6 Energy contribution of instance pairs

In the first phase of the algorithm, we pre-compute the energy contribution
of a pair of instances in every relevant placement. Therefore, we enumerate
the set of relative positions between the instances of two templates, where the
two instances interact sterically. Only for those relative positions, the energy
contribution is not equal to zero.

Definition 7 (Interaction). Two instances I1 and I2 interact, if and only if
there exist i1 ∈ dom(I1), i2 ∈ dom(I2), such that ‖I2(i2) − I1(i1)‖2 ≤ 2. We
define the interaction set of templates T1 and T2 as InteractionSet(T1, T2) =

{R = ρ(id, R) | I1 = id ♦T1, I2 = R♦T2, I1 and I2 interact}.
Note that in the definition, we have in mind to fix the first instance (here

to id) and move the second instance to every interacting position. Nevertheless,
due to Proposition 1, the interaction set contains all relative positions between
arbitrary instances that are interacting. Note that the interaction set is finite,
since the instances are finite.

If we define neighVecs as a tuple of the 19 vectors p ∈ FCC with ‖p‖2 ≤ 2
in arbitrarily fixed order, then for a template T , we define an extended template
T ext by T ext(19 · i + j) = T (i) + neighVecsj , for i ∈ dom(T) and 0 ≤ j < 19.

We say that two instances intersect if and only if their images have a non-
empty intersection.

Proposition 2. Two instances I1 = A1♦T1 and I2 = A2♦T2 interact if and
only if Iext

1 = A1♦T ext
1 and I2 intersect.

Definition 8 (Energy Contribution). Two instances of templates Ti with
sequence si (i = 1, 2) with relative position R give an energy contribution of

ET(s1, s2, T1, T2, R) =
∑

0≤j<|s1|,0≤k<|s2|
E(s1j , s2k, id ♦T1(j + b1), R♦T2(k + b2)), (1)

where b1 = min(dom(T1)) and b2 = min(dom(T2)).

Recall that for the templates T1 and T2, there are only finitely many relative
positions R, such that id ♦T1 and R♦T2 interact, i.e. InteractionSet(T1, T2) is
finite. By merging the two definitions of interaction and the energy contribution
of a pair of amino-acids, if ET(s1, s2, T1, T2, R) is different from 0, then id ♦T1 and
R♦T2 interact. Note that from the interaction of id ♦T1 and R♦T2, we can not
conclude that ET(s1, s2, T1, T2, R) 6= 0, since depending on the table of pairwise
potentials certain interaction patterns of the two instances could sum up to 0.

Due to this, in order to completely give the energy for every relative posi-
tion R it suffices to consider all R ∈ InteractionSet(T1, T2). Now, the problem
discussed in this subsection reduces to generate InteractionSet(T1, T2). Instead
of enumerating the relative positions, where instances of T1 and T2 interact, we
equivalently enumerate the relative positions, where instances of T ext

1 and T2

intersect. Due to the following proposition, we can completely enumerate the set
InteractionSet(T1, T2).

Proposition 3. For templates T1 and T2,

InteractionSet(T1, T2) =
⊎

M rot. matrix

{〈M, t〉|∃j1, j2 : id ♦T ext
1 (j1) = 〈M, t〉♦T2(j2)}.

Proof. Obviously, one can partition any interaction set by the rotation matrices
of the relative positions. Then, the proposition is a consequence of Proposition 2.

For the inclusion ⊆, let R = 〈M, t〉 in InteractionSet(T1, T2). Then, the in-
stances id ♦T1 and R♦T2 interact, i.e. the instances id ♦T ext

1 and R♦T2 intersect.
For the inclusion ⊇, for any R = 〈M, t〉 in one of the subsets {〈M, t〉|∃j1, j2 :

id ♦T ext
1 (j1) = 〈M, t〉♦T2(j2)}, the instances id♦T ext

1 and R♦T2 intersect. Thus,
id ♦T1 and R♦T2 interact. ¤

The proposition suggests the following algorithm. For every rotation matrix
M , for every pair of indices j1 ∈ dom(T1) and j2 ∈ dom(T2), collect the unique
translation vectors t, where id ♦T ext

1 (j1) = 〈M, t〉♦T2(j2).
Note that there is indeed a unique t for every M , j1 and j2, which is calculated

in constant time. Also note that whereas this algorithm can enumerate a vector
t more than once, the algorithm still calculates only a limited number of 24 ×
| img(T ext

1)| × | img(T2)| many vectors t.

7 Constraint Model

Recall, that we discuss the problem of finding the folding ω for a given protein
sequence s and a given secondary structure sse = (ti, bi, ei)0≤i<| sse |, that satisfies
sse and has minimal energy EC(s, ω). We already suggested a heuristic for the
minimization, which consists of two separate phases and uses the outcome of the
already described computation of energy contributions of instances.

In a first branch-and-bound search, we place the secondary-structure ele-
ments (SSEs) while optimizing the energy contribution Ess, i.e. we search for
a folding ω that satisfies sse and has minimal energy Ess(s, sse, ω) and a finite

total energy EC(s, ω). For finite energy EC(s, ω), there must not be clashes in
the tertiary-structure. When we place only the SSEs, we can not check the non-
clashing of the remaining amino-acids efficiently by consistency methods. Hence,
we search for one consistent placing of the remaining amino-acids each time we
find a new placement of the SSEs. Then, a second branch-and-bound search
computes a placement of SSEs and remaining amino-acids that optimizes the
total energy EC(s, ω) and places the SSEs nearly optimally w.r.t. Ess.

All the constraints and the enumeration strategy are common for the two
phases. Due to this, we are able to give only a common description as well as to
implement only a single solver in our implementation language Oz 3.0 [15].

The constraint model as well as our enumeration strategy divides into two
parts. The first part deals with the placement of the SSEs, whereas the second
part handles the placement of the remaining amino-acids. The focus of our work
is on the first part and only this part shall be described in more detail.

In the first part, we use the pre-computed energy contributions of instance
pairs. Therefore, we start with relating our placement problem to the notion of
templates and instances.

We define templates for every SSE in sse. For each SSE k, we introduce
an absolute position Ak and a type τk ∈ {0, 1, 2}, where 0 ≤ k < | sse |. Such
a type τk combines the distinction between α-helix and β-sheet with the types
of helix-templates (cf. Def 4). For a helix, this type gives just the type 0 or 1
of the corresponding helix-template and for sheets this type is always 2. For
0 ≤ k < | sse |, where tk = ααα, we define T τ

k = helixτ
ek−bk+1 (τ = 0, 1) and where

tk = βββ, we define T 2
k = sheetek−bk+1. Let sk denote the sub-sequence of the

k-th SSE. We define Iτ
k as Ak♦T τ

k for absolute positions Ak. Now, the tertiary-
structure ω is related to the instances, by ω(i) = Ak♦T τk

k (i−bk) for i ∈ [bk .. ek].
Then, for given template definitions, the positions of amino-acids in SSEs

are completely specified by (Ak)0≤k<| sse | and (τk)0≤k<| sse |. Due to this, we can
equivalently investigate the problem in terms of instances. The relation between
the instances determines the energy term Ess. In the same time the relations are
constrained by the properties of a folding.

We choose to enumerate the relative positions of the elements instead their
absolute positions.4 Besides breaking of symmetries5, there are several advan-
tages in enumerating relative positions instead absolute positions. Most notably,
there is a direct correspondence between the relative position and the energy
contribution of a pair of SSEs. This immediate relation is used to dynamically
guide the search, i.e. we enumerate highly contributing relations between SSEs
first. Furthermore, enumerating relative positions is more general than enumer-
ating absolute positions. Imagine, that we enumerate absolute positions. Then,
after w.l.o.g. fixing the absolute position of the first instance to 〈id,0〉, enumerat-
ing the absolute positions of the remaining elements is equivalent to enumerating

4 Notably, the energy contribution Ess is determined only from the relative positions.
5 Note that by using relative positions instead absolute positions, we break all geo-

metrical symmetries in the problem for free. In general, breaking of symmetries in
constraint modeling is a non-trivial task and a broadly discussed topic (e.g. see [2]).

their relative positions to the first element. In contrast, our more flexible enu-
meration strategy can dynamically decide to enumerate relations earlier that
contribute stronger to the total energy than any relation to the first element.

As described in the previous section, we are able to calculate the energy con-
tribution of two instances in every relative position and in particular enumerate
the finite list of relative positions, where this energy contribution differs from
zero. For every pair of SSEs in sse, we generate such a list of relative positions
and corresponding energy contributions. Since for α-helices there are two types
of helix-templates, we also include the information on the type in the list for
each pair of SSEs. Here, it is convenient to partition the list into two tables:
NTabij and CTabij . In the former table, we include every relative position that
produces a finite, non-zero energy (i.e. there is an interaction but no clash for this
relative position), and in the latter we collect all relative positions, where the ele-
ments i and j clash (infinite energy). In preparation of our enumeration strategy,
the tables NTabij are ordered by increasing energy-values. For being uniform,
we generate for every pair of secondary-structure elements i and j, the tables
NTabij and CTabij , which consist of all records (σi, σj , R, E), where σi (resp.
σj) is a possible value for the type τi (resp. τj) and R ∈ InteractionSet(T σi

i , T
σj

j).
Then, E is the corresponding energy contribution ET(si, sj , T

σi
i , T

σj

j , R). 6

7.1 Variables and Constraints

First, for 0 ≤ i < j < | sse | we introduce finite-domain variables Xij , where the
domain of the variable Xij is [0 .. |NTabij | − 1]] {∆}. The value of Xij is either
an index in the table NTabij or ∆. In the first case, the relation (i.e. relative
position Rij and helix-types) between the SSEs i and j is specified by the Xij-th
entry in the table NTabij . The case Xij = ∆ represents those relative positions
that provide no energy contribution, but cause a distance of elements i and j
that still allows to connect the elements in a folding.

Since the variables Xij completely specify the relative positions only for
Xij 6= ∆, we introduce an explicit representation of relative positions for en-
suring consistency. The relative position between the elements i and j is given
by variables RM

ij , which encodes for the transformation matrix of Rij , and Rx
ij ,

Ry
ij , and Rz

ij , which represent the coordinates of the translation vector of Rij .
The domain of RM

ij is finite, since there are only 24 rotational matrices. Also
the variables Rx

ij , R
y
ij , and Rz

ij have finite-domains, since the number of transla-
tions is limited due to the bond-constraint connecting the amino-acids between
elements i and j. Since the tuple (RM

ij , Rx
ij , R

y
ij , R

z
ij) represents one relative po-

sition, we address this tuple as the variable Rij . For 0 ≤ i < | sse |, we add
variables Typei ∈ {0, 1, 2}, which correspond to the types τi of the SSEs. If
ti = ααα, the value of Typei gives the type of the helix 0 or 1. For ti = βββ, we set
Typei = 2. The variables Rij , Typei and Typej are related to the variable Xij via

6 Note that in these tables we represent the rotational matrices of the relative positions
by unique indices in the interval [0 .. 23]. This representation is also used to model
domains of matrices with integer finite domain variables.

the table NTabij . This relation is handled by a native propagator7, which does
only cheap propagation, if sufficiently many variables are ground. Furthermore,
it checks the validity of the encoded isometric mapping (w.r.t. clashes and the
bond-constraint). Also the relation between the relative position variables Rij

that corresponds to the transitivity Rij ◦ Rjk = Rik is only propagated in such
simple cases.

Finally, the energy contribution Ess is computed in a variable Energyss as the
sum of variables Energyij . These variables denote the energy that is contributed
by the elements i and j in the relation that is specified by Xij .

The essential propagation in our approach is done by a propagator for the
transitivity constraint Rij ◦Rjk = Rik on the variables Xij . This propagator has
to relate the indices in the domains of the variables Xij to the corresponding
relations. Moreover, it has to handle ∆-values in the domains correctly. For this
reason, this propagator distinguishes several cases. Case 1) At least two of the
variables are determined to ∆. In this case no further propagation can be applied.
Case 2) The domains of all three variables contain ∆. Then, at this stage we
can not derive any information. Case 3) The domains of exactly two variables
contain ∆. Here, the domain without ∆ is used to prune the other two domains.
W.l.o.g. let us assume that Xjk and Xik contain ∆. We now describe how to
prune the domain of Xjk. For every isometric mapping B indexed by Xjk we
check if there exists at least one isometric mapping A indexed by Xij such that
A ◦ B is indexed by a value of Xik. If there is no support, the index is removed
from the domain of Xjk. The analogous procedure is applied to prune Xik. Case
4) The domain of at most one variable contains ∆. W.l.o.g. assume that Xik

contains ∆. Then, we collect the composition of every pair from the domains of
Xij and Xjk and intersect the result with the domain of Xik. Moreover, we prune
the domains of Xij and Xjk using the technique of the previous item. Note that
during this propagation, we compose only isometric mappings from the tables
with consistent types in the same table rows.

To give some implementation details, note that in Oz, every index variable
has a range that begins from 1. Moreover, since Oz does not support nega-
tive values in finite domains, we shift the domains of variables Rx

ij , R
y
ij , R

z
ij and

in all energy variables accordingly. For convenience, we represent the ∆ value
differently for each i, j with the integer value |NTabij |. Due to the complex
propagation of the transitivity constraint for the variables Xij , we preferred to
implement the propagator in C++, recalling it inside the Mozart code.

7.2 Search Strategy

For placing the SSEs, we enumerate the variables Xij in a dynamic enumeration
order, which combines a first-fail strategy with a preference for variables Xij that
allow a strong contribution to the energy Ess. Here, we find the best contribution
that is allowed by the variable Xij , if we look up in the table NTabij using the
lowest possible value of Xij as index. Recall that the tables NTabij are ordered
7 In Oz, a native propagator is a propagator implemented in C++. For the purpose

of writing special propagators, Oz is extensible via its C++-interface [11].

by increasing energy, in particular for this purpose. As value we will always select
the minimal value in the domain, which again corresponds to the optimal energy
contribution of the elements i and j.

We will only enumerate the variables Xij in order to find a good placement of
SSEs. Note that since we can assign ∆ to variables Xij , not every assignment of
these variables completely determines a placement. However, we will only con-
sider placements that are completely determined after the enumeration of the
variables Xij . This is justified as a heuristic, since we only search for energeti-
cally good placements and such placements will have many strong interactions
between the elements. In this situation, there are usually many variables Xij 6= ∆,
which then determine the remaining relative positions.

In practice, we apply also a filtering of the domains of the variables Xij by
their energy. Since the special element ∆ also represents the filtered elements,
the constraint problem is not changed, except that the energy is calculated less
accurately. Filtering these domains has two conflicting impacts. Whereas strong
filtering on the domain sizes results in faster enumeration, larger domains achieve
a stronger propagation (due to the transitivity constraints). For that reason, we
apply two filters. First, we filter the tables NTab to contain only entries with
energies in a range of x% of the optimal energy. The filtered tables constitute the
domains of the variables Xij. The second filtering affects only the enumeration,
where we enumerate only values within a range of y% (y < x) of the optimum.
With careful filtering we are able to reduce search times, while preserving a
good quality of the results. The strategy is justified, since good placements have
usually sufficiently many high scoring pairwise energy contributions.

After the SSEs are placed, we compute absolute positions of their amino-
acids by fixing the absolute position of the first element (thereby breaking the
symmetries). Then, the positions of the remaining amino-acids are enumerated
using a first-fail strategy combined with a preference for good energy contribu-
tion. Constraints ensure non-clashing and calculate the remaining energy term
Enn +Esn in a variable Energynss.

8 Results

We implemented the described constraint-model in the programming language
Oz 3.0 [15] using its most recent implementation Mozart 1.3.0. We extended the
language by special constraint propagators written in C++. Also the computa-
tion of the energy contributions of instance-pairs is implemented in C++. The
implementations are available via http://www.bio.inf.uni-jena.de.

For evaluating our result, we ran the prediction for proteins with known
structure from the PDB [5]. All predictions are performed on a Pentium 4 at
2.4GHz. Figure 2 shows our prediction for the protein domain “Maternal effect
protein Staufen” with PDB-code 1STU in comparison to the known tertiary
structure. The protein consists of 68 residues, forming two α-helices and three
β-sheets. The computation of the energy contribution of instances was performed
in 14 seconds. In the first search, we found a good placement of the SSEs in 3.5

a) b)

Fig. 2. “Maternal effect protein Staufen”. a) backbone of the structure in the PDB
(1STU, model 1) b) prediction of our algorithm

minutes, which we could not improve in 7 minutes of search. For the optimal
placement of the secondary structure from the first search, we performed a second
search for an energetically good tertiary structure placing the remaining amino-
acids. The shown solution was found after 9m and could not be improved in
20m. Note that we find structures with only slightly lower energy after 62s of
search. We applied the filtering described in Sub-section 7.2 using 30% and 20%.

Furthermore, we compared our approach to the one of [10]. We predicted
structures for three proteins from the PDB, which were folded there also. We
list PDB-code, number of residues, numbers of SSEs, and run-times for each
protein. For our approach, we list the run-times of the three phases separately.

length number of SSEs run-times of phases run-times of [10]
α-helices β-sheets 1 2 3

1VII 36 3 0 1.6s 3.1s 32s 6m56s
1E0M 37 0 3 0.3s 17s 1m42s 9m45s
2GP8 40 2 0 3.1s 60ms 1.8s 9m0s

Currently, we do not always find good solutions by applying our strategy.
Possible reasons and improvements are discussed in the next section.

9 Conclusion and Future Work

We present a novel application of constraint programming to the protein struc-
ture prediction problem. The proposed approach combines the use of secondary
structure annotation with a strategy that bases tertiary-structure predictions on
energetically good placements of SSEs. As we demonstrate using examples from
nature, this approach improves in effectivity and application range over recent
constraint-based structure prediction algorithms.

However, our main goal in this work is to investigate a basic pattern of a
constraint-based protein structure prediction algorithm that is based on secondary-
structure information. We plan build on this work in order to improve both,
efficiency of the structure prediction and accuracy in modeling proteins.

Regarding the efficiency of structure prediction, please note again, that this
work focuses on the placement of SSEs. In consequence, the placement of the
remaining amino-acids leaves room for further optimization. Nevertheless, the
current strategy turned out to be effective in the discussed application range. A
more sophisticated strategy becomes in particular important when investigating
improvements in terms of accuracy.

For the aspect of accuracy, we consider it promising to investigate in par-
ticular four improvements: refinement of solutions by stochastic optimization,
using more complex energy functions (e.g., Lennard-Jones potential), modeling
the tertiary-structure off-lattice, and modeling sidechains of amino-acids.

Acknowledgments

The authors thank Federico Fogolari for several useful discussions. A. Dal Palù
and A. Dovier are partially supported by MIUR Project Verifica di sistemi reat-
tivi basata su vincoli (COVER) and by FSE project Misura D4.

References

1. R. Backofen. The protein structure prediction problem: A constraint optimization
approach using a new lower bound. Constraints, 6(2–3):223–255, 2001.

2. R. Backofen and S. Will. Excluding symmetries in constraint-based search. Con-
straints, 7(3):333–349, 2002.

3. Z. Bagci, R. L. Jernigan, and I. Bahar. Residue coordination in proteins conforms
to the closest packing of spheres. Polymer, 43:451–459, 2002.

4. Z. Bagci, R. L. Jernigan, and I. Bahar. Residue packing in proteins: Uniform
distribution on a coarse-grained scale. J Chem Phys, 116:2269–2276, 2002.

5. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Research,
28:235–242, 2000. http://www.rcsb.org/pdb/.

6. M. Berrera, H. Molinari, and F. Fogolari. Amino acid empirical contact energy
definitions for fold recognition in the space of contact maps. BMC Bioinformatics,
4(8), 2003.

7. R. Bonneau and D. Baker. Ab initio protein structure prediction: progress and
prospects. Annu. Rev. Biophys. Biomol. Struct., 30:173–89, 2001.

8. B. Cipra. Packing challenge mastered at last. Science, 281:1267, 1998.
9. P. Crescenzi, D. Goldman, C. Papadimitrou, A. Piccolboni, and M. Yannakakis.

On the complexity of protein folding. In Proc. of STOC, pages 597–603, 1998.
10. A. Dal Palù, A. Dovier, and F. Fogolari. Protein folding in CLP (FD) with empir-

ical contact energies. In Recent Advances in Constraints, volume 3010 of Lecture
Notes in Computer Science, pages 250–265. Springer-Verlag, Berlin, 2004.

11. T. Müller and J. Würtz. Interfacing propagators with a concurrent constraint
language. In JICSLP96 Post-conference workshop and Compulog Net Meeting on
Parallelism and Implementation Technology for (Constraint) Logic Programming
Languages, pages 195–206, 1996.

12. B. H. Park and M. Levitt. The complexity and accuracy of discrete state models
of protein structure. Journal of Molecular Biology, 249(2):493–507, 1995.

13. B. Rost and C. Sander. Prediction of protein secondary structure at better than
70% accuracy. Journal of Molecular Biology, 232(2):584–99, 1993.

14. J. Skolnick and A. Kolinski. Computational studies of protein folding. Computing
in Science and Engineering, 3(5):40–50, 2001.

15. G. Smolka. The Oz programming model. In Computer Science Today: Recent
Trends and Developments. Springer-Verlag, Berlin, 1995.

16. S. Will. Constraint-based hydrophobic core construction for protein structure pre-
diction in the face-centered-cubic lattice. In Proceedings of the Pacific Symposium
on Biocomputing 2002 (PSB 2002).

