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Abstract. Cellular Automata are a powerful formal model for describ-
ing physical and computational processes. Qualitative analysis of Cellular
Automata is in general a hard problem. In this paper we will investigate
the applicability of modern SAT solvers to this problem. For this purpose
we will define an encoding of reachability problems for Cellular Automata
into SAT. The encoding is built in a modular way and can be used to
test inverse reachability problems in a natural way. In the paper we will
present experimental results obtained using the SAT-solver zChaff.

1 Introduction

Cellular Automata (CAs) [18] are decentralized spatial extended systems con-
sisting of large numbers of simple identical components with local connectivity.
Such systems have the potential to perform complex computations with a high
degree of efficiency and robustness, as well as to model the behavior of com-
plex systems in nature. For these reasons CAs have been studied extensively in
natural sciences, mathematics, and in computer science. For instance, they have
been used as parallel computing devices for image processing, and as abstract
models for studying cooperative or collective behavior in complex systems (see
e.g. [2,3,21,11]).

Quantitative vs Qualitative Analysis Several tools have been used to animate
specifications of CAs and to perform statistical analysis of their behavior, e.g.,
for car traffic or artificial life processes simulation (for a survey see e.g. [22]).
Simulation amounts to compute all possible reachable configurations. For deter-
ministic CAs this operation is fairly simple but some care must be taken in the
way the transition rule is stored.

Differently from plain simulation, a qualitative analysis of the behavior of a CA
can be a difficult problem to solve. In fact, problems like reachability of sub-
configurations or existence of a predecessor configuration for generic CAs have
been shown to be exponentially hard [6,19,20]. The hardness of some computa-
tional problems for CAs has been exploited for interesting applications. As an
example, reversibility (undecidable in general [10]) has been used for designing
cryptographic systems based on CAs [9].



Towards a Practical Solution of Hard Problems In recent years practical so-
lutions to large instances of known hard problems like SAT (satisfiability of
propositional formulas, a well known NP-complete problem) have been made
possible by the application of specialized search algorithms and pruning heuris-
tics. The connection between the complexity of some interesting problems for
CAs and SAT (see e.g. [6]) suggests us a possible new application of all these
technologies.

Technical Contribution In this paper we will investigate in fact the applicabil-
ity of SAT solvers to the qualitative analysis of CAs. Specifically, following the
Bounded Model Checking (BMC) philosophy introduced in [1], we will define a
polynomial time encoding of a bounded number of evolution steps of a CA into a
formula in propositional logic. Our encoding allows us to specify in a declarative
and modular way several decision problems for CAs like (inverse) reachability
as a SAT problem. As a result, we obtain an effective verification procedure for
the analysis of CAs by resorting to efficient-in-practice existing SAT solvers like
[7,8,16,14].

As preliminary experiments, we have selected a non-trivial example of CA,
namely Mazoyer’s solution to the Firing Squad Synchronization Problem [12].
In this example the length of the evolution (the diameter of the model in the
terminology of BMC) leading to a successful final configuration depends on the
dimension of the cellular space. For this reason, this problem is adequate to check
qualitative problems that can be encoded as bounded reachability, e.g., checking
if the final solution is the correct one, computing predecessor configurations,
computing alternative initial configurations leading to the same solution, etc.
We will use this case-study to test the performance of one of the fastest exist-
ing SAT-solvers called zChaff [14]. zChaff [14] can handle problems with up to
106 propositional variables. In our setting zChaff returns interesting results for
problems of reasonable size (e.g. cellular spaces with 70 cells and evolution of
140 steps). Some built-in heuristics of zChaff however turned out to be inade-
quate for CA-problems like inverse reachability. We believe that specialization of
SAT-solving algorithms to problems formulated on CAs could be an interesting
future direction of research.

Plan of the Paper In Section 2 we introduce the notion of Cellular Automata.
In Section 3 we define the encoding of the evolution of a CA and of its quali-
tative problems into a SAT formula. In Section 4 we encode several interesting
properties of CAs. In Section 5 we discuss experimental results obtained with
existing solvers. In Section 6 we discuss related works and future directions of
this research.

2 Cellular Automata (CAs)

A CA consists of two components. The first component is a cellular space, i.e. a
collection of identical finite-state machines (cells), each with an identical pattern



of local connection to other cells. Let S be the set of states of each automata.
Each cell is denoted by an index i. The neighborhood of a cell i is the set of cells
of the network which will locally determine the evolution of i.
The second component is a transition rule δ that gives the update state for each
cell i in function of the state of the cells in its neighborhood. In a CA a discrete
global clock provides an update signal for all cells: at each time step all cells
update their states synchronously according to δ.
Formally, we have the following definition.

Definition 1. A d-CA A is a tuple 〈d, S, N, δ〉 where

- d ∈ N is the dimension of the cellular space (Zd);
- S is the finite set of states of A;
- N ⊆ Zd is the neighborhood of A and | N |= n;
- δ : Sn+1 → S is the transition rule of A.

The meaning of the neighborhood ofA is as follows. Suppose that N = {v1, . . . ,vn}.
Given a cell i, its neighborhood is obtained then by considering the cells i, i +
v1, . . . , i+vn}. A classical examples is von Neumann’s neighborhood defined as
NN = {(1, 0), (0, 1), (−1, 0), (0,−1)} for 2-CA.

2.1 Evolution of a CA

The computational meaning of a d-CA A = 〈d, S, N, δ〉 with N = {v1, . . . ,vn}
is defined as follows.
A configuration of a A is defined as a function c : Zd → S that assigns a state to
each cell of the cellular space. We will use C to denote the set of configurations.
The global evolution function GA associated to A is a transformation from con-
figurations to configurations such that

GA(c)(i) = δ(〈c(i), c(i + v1), ..., c(i + vn)〉) for any c ∈ C, i ∈ Zd.

Given an initial configuration c0, the evolution of A, written EvA(c0), is a se-
quence {ct}t≥0 of configurations such that ct+1 = GA(ct) for any t ≥ 0. A
configuration c′ is reachable in k steps from configuration c0 if there exists an
evolution {ct}t≥0 such that c′ = ck. A configuration c′ is reachable from c0 if it
is reachable in k ≥ 0 steps.

Previous definitions are for infinite cellular spaces but computer simulations
are obviously constrained on finite spaces, hence periodic boundary conditions
(for example, the cellular space is defined as a ring) or the definition of constant
boundary cells are necessary.

Example 1. Fig. 1 illustrates an example of local rule defined over S = {0, 1}
and N = {−1, 1}, given in a tabular form, and of an evolution on a circular
cellular space. In the table representing the local rule the two columns Ct and
Ct+1 denote the state of a cell at time t and t + 1 respectively, whereas columns
N t

1 and N t
2 denote the state of cells in the neighborhood. In the evolution we

highlight the neighborhood to which a rule is applied.



Local Rule Evolution
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0 0 0 1
0 0 1 1
0 1 0 0
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1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0
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Fig. 1. A simple CA.

2.2 Expressiveness and Computational Complexity

CAs are a powerful computational model. In fact, it is sufficient to consider one-
dimensional CAs to simulate Turing Machines. Given the richness of the model,
several decision problems related to the computational interpretation of the evo-
lution of CAs are hard or impossible to solve. The hardest problems are often
related to the inverse exploration of the configuration space of a CA. Note, in
fact, that the past history of a configuration contains non-deterministic choices
for its predecessors. For instance, let us consider the Predecessor Existence Prob-
lem, defined as follows:

(PEP) Given a d-CA A and x ∈ C, ∃y ∈ C such that x = GA(y)?

PEP is in NP for “finite” d-CAs, NP-complete for d > 1, and NLOG for 1-
CAs. Proofs of NP-completeness of this kind of problems are often given via
reductions of 3SAT into the decision problem taken into consideration. In this
paper we will try to exploit reductions going in the opposite direction, namely
from CA to SAT, in order to obtain an effective and flexible method for the
analysis of difficult decision problems for CAs.

3 From Cellular Automata to Propositional Logic

In this section we will define a representation of a finite prefix of the evolution
of a CA in propositional logic. The resulting formula will be used later to define
several interesting decision problems for CAs in a formal and modular way.
Furthermore, it represents the first step towards the use of SAT solvers for the
analysis of CAs.

Symbolic Representation of Configurations Given a CA A, we first repre-
sent its set of states S = {s1, . . . , sn} using a binary encoding over m = dlog2ne
bits of a given choice of ordering numbers. Let us call S′ = {w1, . . . , wn} be
the resulting set of binary representations, where each wi ∈ {0, 1}m (sequence



of m bits). As an example, for S = {red, blue, yellow} we can use 2 bits and
the following encoding wred = 00, wblue = 01, and wyellow = 10. Every state
represented in binary can be naturally encoded as a propositional formula as
follows. Let ` be a label (i.e. a string used later for stamping predicate symbols
with time and position) and w a sequence of m bits b1 . . . bm. Furthermore, let
. be an operator for concatenating labels. Then, we define the formula encoding
b as follows:

Codw(w, `) .=
m∧

i=1

Codb(bi, i.`) where Codb(b, `)
.=

{
x` if b = 1
¬x` if b = 0

Going back to our example, assume that 0.0 represents a cell in position 0 at time
0, then Codw(wblue, 0.0) = ¬x1.0.0∧x2.0.0. Generalizing this idea, in the following
we will use strings of the form p.t, where p is denotes a position and t a time-
stamp, as labels for encoding the evolution of configurations using propositional
formulas.

Specifically, let us assume that the cellular space is linearized into the range
1, . . . , N . Then, a configuration is simply a tuple c = 〈〈1, w1〉, . . . , 〈N,wN 〉〉,
where wi is the binary representation of a state of A.

The encoding of c at instant t is defined then as follows:

Codc(c, t)
.= Codw(w1, 1.t) ∧ . . . ∧ Codw(wN , N.t)

Thus, Codc(c, t) gives rise to a conjunction of literals over the set of predicate
symbols xb.p.t where b ∈ {1, . . . ,m}, p ∈ {1, . . . , N}. For instance, the encoding
of the configuration of c0 = 〈〈1, wred〉, 〈2, wred〉, 〈3, wblue〉〉 is the formula

¬x1.1.0 ∧ ¬x2.1.0︸ ︷︷ ︸
red

∧¬x1.2.0 ∧ ¬x2.2.0︸ ︷︷ ︸
red

∧¬x1.3.0 ∧ x2.3.0︸ ︷︷ ︸
blue

We are ready now to encode a transition rule.

Symbolic Representation of the Transition Rules A CA is usually given
in form of a table: each row is transition rule for one possible global state of
the neighborhood of a generic cell. Let us call Rp the set of rows of the table
relative to a cell in position p. Let us assume that the neighborhood is v1, . . . , vn.
Let R ∈ Rp be a rule that, at time t, operates on the neighborhood of a cell p,
namely 〈〈p, w〉, 〈(p + v1, w1〉, . . . , 〈p + vn, wn〉〉, and that updates its state into
w′. Then, the encoding of R is the formula

Codr(R, p, t) .= Codw(w, p.t) ∧
n∧

i=1

Codw(wi, (p + vi).t) ∧ Codw(w′, p.(t + 1))

We can extend this encoding to Rp in the natural way:

CodR(Rp, t)
.=

∨
R∈Rp

Codr(R, p, t)



Using this disjunctive formula we can express one evolution step without having
to specify the initial configuration (we let open all possible choices of rules in
Rp). Note that to obtain a total transition function with respect to the set of
variables used in the encoding we need to add identity rules

Symbolic Representation of the CA-Evolution Specifically, the formula
EvA(N, k) that describes all possible evolutions in k steps of a CA with N cells
is defined as follows

EvA(N, k) .=
k−1∧
t=0

N∧
i=1

CodR(Ri, t)

Note that the formula EvA(N, k) is not in conjunctive normal form (CNF). The
following properties formalize the connection between the evolution of a CA and
the formula EvA(N, k).

Proposition 1. Given a CA A, every assignment ρ satisfying of the formula
EvA(N, k) represents a possible evolution {ct}t≥0 of A such that ρ satisfies
Cod(ct, t) for any t ≥ 0.

As a consequence, we have the following link between k-reachability and satisfi-
ability of EvA(N, k).

Theorem 1. Given a CA A and two configurations c and c′, c′ is reachable in
k-steps from c if and only if the formula

REACHk
.= Codc(c, 0) ∧ EvA(N, k) ∧ Codc(c′, k)

is satisfiable.

As a final remark, it is easy to check that the size of the encoding is polynomial
in the size of the cellular space, size of the neighborhood and in the number of
steps taken into consideration.

Example 2. Let A be a 1-CA, with S = {0, 1}, circular boundary conditions and
neighborhood I = {−1} (i.e. we only look at the left neighbor’s cell) and rule
described in Fig. 2. In the left table of Fig. 2 we use the variable xit to denote
the value of cell i a time t. The column xit+1 denotes the new state of cell i at
time t + 1. The right table of Fig. 2 shows the corresponding encoding of the
local rule when interpreting 0 and 1 as truth values. A configuration c = 〈0, 1〉
with 2 cells at time 0 can be encoded as the conjunction of literals ¬x1.0 ∧ x2.0.
Thus, the evolution from t = 0 to t = 1 of cell c can be represented as follows

¬x1.0 ∧ x2.0 ∧



¬x1.0 ∧ ¬x2.0 ∧ x2.1

∨
¬x1.0 ∧ x2.0 ∧ ¬x2.1

∨
x1.0 ∧ ¬x2.0 ∧ ¬x2.1

∨
x1.0 ∧ x2.0 ∧ x2.1


∧



¬x2.0 ∧ ¬x1.0 ∧ x1.1

∨
¬x2.0 ∧ x1.0 ∧ ¬x1.1

∨
x2.0 ∧ ¬x1.0 ∧ ¬x1.1

∨
x2.0 ∧ x1.0 ∧ x1.1


∧ ¬x1.1 ∧ ¬x2.1



xi−1t xit xit+1

0 0 1
0 1 0
1 0 0
1 1 1

⇒

(¬xi−1.t ∧ ¬xi.t ∧ xi.t+1)
∨

(¬xi−1.t ∧ xi.t ∧ ¬xi.t+1)
∨

(xi−1.t ∧ ¬xi.t ∧ ¬xi.t+1)
∨

(xi−1.t ∧ xi.t ∧ xi.t+1)

Fig. 2. Encoding of the local rule.

As expected, the valuation

v : {x1.0 7→ F, x2.0 7→ T, x1.1 7→ F, x2.1 7→ F}

satisfies the resulting propositional formula. If we do not specify the final con-
figuration, a solution to the SAT-problem

¬x1.0 ∧ x2.0 ∧



¬x1.0 ∧ ¬x2.0 ∧ x2.1

∨
¬x1.0 ∧ x2.0 ∧ ¬x2.1

∨
x1.0 ∧ ¬x2.0 ∧ ¬x2.1

∨
x1.0 ∧ x2.0 ∧ x2.1


∧



¬x2.0 ∧ ¬x10 ∧ x1.1

∨
¬x2.0 ∧ x1.0 ∧ ¬x1.1

∨
x2.0 ∧ ¬x1.0 ∧ ¬x1.1

∨
x2.0 ∧ x1.0 ∧ x1.1


allows us to compute the successor configuration by simply projecting the result-
ing valuation on variables stamped with time index 1. In the following section
we will formalize more precisely how to specify reachability properties using
SAT-encoding of CA-evolutions.

4 SAT-based Qualitative Reasoning

The formula EvA(N, k) represents an encoding of all possible CA-evolutions of
length k independently from any initial or target configuration. This property
allows us to encode in a modular way several interesting properties of CAs in
terms of satisfiability of a propositional formula. In the rest of the section we
will discuss some examples.

Reachability Given an initial configuration c and a configuration c′, we can
decide whether c′ is reachable in k-steps from c by solving the satisfiability
problem for the formula

REACHk
.= Codc(c, 0) ∧ EvA(N, k) ∧ Codc(c′, k)

Actually, we can also compute all configurations reachable in at most k-steps.
We first solve the satisfiability problem for the formula

CREACHk
.= Codc(c, 0) ∧ EvA(N, k)



and then extract the configurations ct for 0 ≤ t ≤ k from the resulting satisfying
assignment ρ.

Note that the formula CREACHk is always satisfiable if the rule table con-
tains a totally defined rule, otherwise we have to choose accurately the initial
state.
(C)REACHk can be refined in order to be satisfiable only if the evolution is
acyclic. The acyclicity test ACY CLICk amounts to require that the assignment
to predicates at time t is distinct from all assignments at time t′ < t for any pair
of values of t and t′ between 0 and k. Thus, for finite CA we can explore all the
reachable configurations by iterative deepening on k until the ACY CLICk fails.
This way we can solve reachability problems and compute the reachability set
of a CA.

Inverse Reachability Compared to approaches based on simulation, a dis-
tinguishing feature of our encoding is that the formula EvA(N, k) is indepen-
dent from the search strategy (e.g. forward exploration/backward exploration).
we adopt for the analysis of a CA. This feature makes easy the encoding of
inverse reachability problems in terms of reachability. For instance, given a
(sub)configuration c and a configuration c′, we can decide whether c′ is a prede-
cessor of c by solving the satisfiability problem for the formula

PEP
.= Codc(c′, 0) ∧ EvA(N, 1) ∧ Codc(c, 1)

Note that, if c is a subconfiguration, in its encoding all unspecified cells will be
represented with predicates without constraints on its truth values. Similarly,
given a (sub)configuration c and a configuration c′, we can decide whether c′ is
a predecessor in k-steps of c by solving the satisfiability problem for the formula

PREPk
.= Codc(c′, 0) ∧ EvA(N, k) ∧ Codc(c, k)

Finally, as for forward reachability, we can also compute a possible trace in the
CA-evolution (and the corresponding initial state) of k steps that leads to an
encoded configuration c at time k. We first solve the satisfiability problem for
the formula

IREACHk
.= EvA(N, k) ∧ Codc(c, k)

and then extract the configurations ct for 0 ≤ t ≤ k from the resulting satisfying
assignment ρ. In order to find the set of all predecessors of a configuration
c we can use the following procedure: (1) set F to IREACH1; (2) solve the
satisfiability problem for the formula F (that gives us as a result one possible
predecessor); (3) if the problem is unsatisfiable exit the procedure, otherwise
(4) extract the formula G corresponding to the computed predecessor, set F to
F ∧ ¬G and go back to (2).

4.1 Goal-driven SAT-encoding

Inverse reachability is the more difficult problem among the one listed in the
previous section. This is due to the non-determinism in the computation of the
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Fig. 3. Example of cone of influence associated to a given final subconfiguration.

cone(i, 0) = {〈i, 0〉}
cone(i, t) = {〈i, t〉} ∪ cone(i, t− 1) ∪

⋃n
j=1 cone(i + vj , t− 1), for t > 0

Fig. 4. Definition of the cone of influence of a given cell.

preimage of a given configuration. To reduce the complexity of the SAT-solving
procedure we can try to reduce the size of the SAT-formula encoding the CA-
evolution and specialize it to the goal we are looking for. For example, suppose
that for a 1-CA with N cells we want to compute the initial (sub)configurations
that lead to a certain state for cell i in k steps. To optimize the encoding of this
problem, we can apply a version of the cone of influence introduced in [1] to stat-
ically compute the set of variables that influence the evolution of cell i. In Fig.
3 an example of cone of influence is presented for 2 cells after 5 evolution-step of
a 1-CA with neighborhood of unitary radius. The gray zone shows the union of
the useful cones for the considered cells. The Fig. 4 we define a procedure cone
for computing the cone of influence associated to a given cell i at time t. The
procedure only depends on the definition of the neighborhood. Our goal is to
reduce the number of variables in the encoding of the CA-evolution by choosing
only necessary cells for the encoded properties. Suppose that c is the subconfig-
uration for which we want to compute the predecessors in k-steps. Then, the set
of variables computed by the algorithm in Fig. 4 can be used during the con-
struction of the SAT-formula as follows. We first construct the cone of influence
for all cells i contained in c. Then, we generate the formula Codr(R, i′, t′) if and
only if 〈i′, t′ + 1〉 ∈ cone(i, t). The quality of this heuristic clearly depends on
the locality of the neighborhood and on the final subconfiguration.

To limit the number of variables in the SAT-formula, we can exploit the fact
that boundary cells (i.e. cells that encode the boundary of the cellular space)
never change state. Thus, we only need to encode boundary cells at time zero
and refer to this encoding in every step of the construction of the SAT-formula.
This optimization preserves the correctness of the encoding.

In the following section we will discuss a practical evaluation of the proposed
SAT-based methodology and related heuristics/optimizations.



5 Experimental Results

In order to test the effectiveness of the SAT-based analysis we have performed
several experiments using the SAT-solver zChaff [14]. zChaff implements the
Davis-Putnam algorithm [5] and it is considered as one of the fastest existing
solvers. In general zChaff manages formulas with about 106 propositional vari-
ables and about 107 clauses. In some preliminary experiments presented in [4] we
have compared zChaff with other solvers like ICS [8], SIMO [16] and HeerHugo
[7] on problems related to CAs. zChaff always gave us the best results in terms
of execution time. The input for zChaff is a CNF-formula written in DIMACS
format. By using the structure-preserving algorithm of [15], we have built a front
end to put the formula resulting from the encoding of a CA-evolution in CNF.
The algorithm makes use of a polynomial number of auxiliary variables (one per
each row of a CA-table). All experiments are performed on a Pentium4 2 GHz,
with 1Gb of RAM.

5.1 Tested Example

As main example we have considered a solution to the Firing Squad Synchro-
nization Problem (FSSP). FSSP was introduced by Moore in [13]. One considers
here a finite ordered line of n finite-state machines. At time 0, the leftmost cell
is distinguished (general) from the others (soldiers). These machines work syn-
chronously; the state of a machine i at time t + 1 depends only on the states
at time t of the machines i − 1, i and i + 1. The problem is to define finite
sets of states and transition rules so that all machines enter for the first time a
distinguished state (fire) at the very same moment. This problem can be solved
by defining a 1-CA with n cells representing the firing squad and the general.
Mazoyer [12] has given a six-state (plus a cell for the boundary of the cellular
space) minimal time solution in which the general creates two waves that prop-
agates through the squad at different speed so as to reach a solution in exactly
2 ∗ #cells − 2. This problem is thus adequate for testing bounded reachability
problems. Mazoyer’s CA is defined via 120 interesting rows (the total transition
relation has 73 rows, the remaining 223 rows do not change the cell state).

5.2 Tested Properties

In Table 1 we illustrate the type of reachability properties we have tested on
FSSP. Specifically, we have considered reachability problems in which either
the initial and final configuration are completely specified or part of them are
left unconstrained. For instance, I−nF denotes a reachability problem in which
n cells of the initial configuration are left unconstrained (i.e. we considered a
subconfiguration of the initial configuration); F denotes a problem in which
only the final state is specified. The properties nF + B and F + B + nL listed
in Table 1 are related to special tricks we used to exploit an heuristic called
VSIDS of zChaff. The heuristic VSIDS is used to choose a starting variable
for the resolution algorithm between those that appear most frequently in the



Added to EvA Description

I Initial configuration (i.e. CREACH).

I−n Initial subconfiguration in which n cells are unconstrained.

F Final configuration (i.e. IREACH)

F 1 One cell of the final configuration.

B Boundary cells.

I + F Initial configuration (i.e. REACH).

F + B Final configuration and boundary cells.

I−n + F Initial configuration without n cells and a final configuration.

F 1 + B Only one cell of the final configuration and boundary cells

nF + B Final configuration with n-copies of formula F .

F + B + nL F + B and n-copies of the last step of the evolution formula.

Table 1. List of reachability properties considered in the experiments.

formula. In order to exploit this heuristic we can either put n-copies of the
formula encoding F (property nF + B) or put n-copies of the last step of the
formula representing the evolution (i.e. the clauses leading to variables occurring
in F ) (property F + B + nL). This way when computing predecessors of a
configuration we force the SAT-solver to choose the variables that encode the
final configuration, i.e., those with the smaller number of occurrences in EvA

but with trivial truth assignment.

5.3 Outcomes of the Experiments

All the experiments require a preliminary compilation phase in which the SAT-
formula is built up starting from a CA rule table. The time required for the
biggest example is around 20 minutes due to the huge size of the resulting output.
In the following we will focus however on the performance of the solver on SAT-
formula of different size and on properties taken from Table 1.

I +F and I−n +F Properties In a first series of experiments we have tested
I+F -like properties on the CA-solution to FSSP. The results are shown in Table
2. The final configuration considered here is the one in which all soldiers in the
firing squad have received the fire command. For this kind of problems, the size
of the formulas that zChaff manages to solve scales up smoothly to formulas
with one million variables. For instance, on a cellular space of dimension 70 and
with 138 evolution steps it requires 1 minute to check that the CA solves FSSP.
We considered then problems of the form I−nF . Since there might be several
initial states (legal or illegal) containing the subconfiguration I−n and leading
to the same final state F , the resulting SAT problem becomes more difficult.
As expected, on this new kind of problems the performance of zChaff decreases
with the number of cells n removed from I. As an example, for a CA with 15
cells (hence 28 steps) it takes more 11m to solve the I−4 + F problem.



Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

I + F 15 28 12.18 51708 655713 3s

I + F 29 56 51.76 199842 2535241 13s

I + F 40 78 101.8 383883 4870563 25s

I + F 50 98 165.57 602853 7649203 39s

I + F 70 138 340.21 1118393 15079683 1m 22s

I−1 + F 15 28 12.18 51708 655710 3s

I−2 + F 15 28 12.18 51708 655707 69s

I−3 + F 15 28 12.18 51708 655704 65s

I−4 + F 15 28 12.18 51708 655701 30m53s

Table 2. Experiments on I + F -like problems.

Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

I 15 28 12.18 51708 655668 3s

I 29 56 51.76 199842 2535154 13s

I 50 98 165.57 602853 7649053 40s

I 70 138 340.21 1118393 15079473 1m 06s

I−1 15 28 12.18 51708 655665 3s

I−2 15 28 12.18 51708 655662 7m 21s

I−3 15 28 12.18 51708 655659 4s

I−4 15 28 12.18 51708 655656 10s

I−5 15 28 12.18 51708 655653 3m 22s

I−7 15 28 12.18 51708 655647 35m 36s

Table 3. Experiments on I and I−n problems.

I and I−n Properties In a second series of experiments we have tested I-like
properties that can be used to compute reachable states. The results are shown
in Table 3. Unexpectedly, the behavior of zChaff is quite irregular with respect
to the growth of the size of the SAT formulas. The average of the execution times
tends to grow exponentially with the number of cells removed from the initial
configuration until the problem becomes trivial (i.e. when we do not have neither
I nor F ). Other examples we tested in [4] did not suffer from this anomaly.

F Properties In the third series of experiments we have considered different
types of F -like properties that can be used to compute predecessor configurations
of a given final configuration. This is a hard problem in general. As expected, we
had to reduce the size of the SAT-formulas in order to get reasonable execution
times. In Table 4 we have considered inverse reachability starting from F . For
a cellular space of dimension 10 it takes about 9m to solve the problem F .
Adding a constraint on the boundary cells, i.e. property F +B, we dramatically
decrease the execution time (2m). In this example zChaff infers the correct initial



Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

F 10 18 5 22173 281010 9m 40s

F + B 10 18 5 22173 281013 2m 27s

F + B + 2L 10 18 5 22173 296623 35s

10F + B 10 18 5 22173 281043 39s

400F + B 10 18 5 22173 292983 1m 50s

Table 4. Experiments on F -like problems.

Problem C.o.I. #Cells #Steps Input(MB) #Vars #Clauses ExTime

F 1 + B 10 18 5 22173 280987 1m 48s

F 1 + B
√

10 18 4 16773 241961 1m 59s

F 1 + B + 10L 10 18 5 22173 296605 2m 05s

F 1 + B + 10L
√

10 18 4 16773 257561 1m 40s

F 1 + B + 30L 10 18 5 22173 330962 54s

F 1 + B + 30L
√

10 18 4 16773 288791 59s

100F 1 + B 10 18 4 22173 281283 2m20s

100F 1 + B
√

10 18 4 16773 241961 2m

C.o.I.=Reduction of the SAT-formula via the Cone of Influence

Table 5. Experiments on F 1-like problems.

configuration. The execution time further improves when forcing zChaff to select
the variables occurring in F with the trick discussed at the beginning of this
section. Specifically, when duplicating the last step of the formula EvA zChaff
takes 35s to solve the same problem (see prop. F + B + 2L in Table 4). Similar
results are obtained by simply copying F 10 times in the input formula given to
zChaff (see prop. 10F + B in Table 4). Tuning the heuristics might be difficult
(without modifying the code of zChaff) as shown by further experiments (like
100F + B) where the performance gets worse again.

F 1 Properties In order to study the effectiveness of the cone of influence
reduction we have also considered F−1 + B properties as shown in Table 5. The
use of this reduction alone does not improve the execution time much (see F 1+B
with and without C.o.I. in Table 5). However, when coupled with the n-copy of
the last step of EvA (to force the selection of variables in F ) then it seems to
work (see F 1+B+10L with and without C.o.I. in Table 5). Copying the formula
F does not seem to work well in this examples. Again tuning the parameters
used in heuristic like the number of copies n in . . . + nL might be difficult by
simply using zChaff as a black box.



Problem #Cells #Steps #Vars #Clauses Input(MB) ExTime

I 10 18 738044 12534004 237.00 5s

I 15 1 61564 1044495 17.26 5s

I 15 2 123064 2088990 36.02 9s

I 15 3 123064 3133485 56.23 14s

I 15 10 651064 10445014 197.70 48s

I 15 15 922564 15667489 299.00 1m54s

I 15 17 1045564 17756479 341.00 2m00s

I 15 20 1230064 20889964 410.41 ABORT

Table 6. Experiments on a CA with 4096 table rows.

5.4 Other Examples

In the last series of experiments we have randomly generated a CA with more
than 4000 table rows and tested on it I-properties of increasing size. The aim here
was to reach the limit of zChaff w.r.t. number of variables and clauses generated
by the encoding on an easy problem. As shown in Table 6, zChaff gets in trouble
when the formula has more than one million variables and about 20 millions of
clauses (15 cells, 20 steps), while it can handle problems with 17 millions clauses
(15 cells, 17 steps). This kind of analysis can be useful to evaluate the size of
CAs we can handle with non-specialized SAT solvers.

6 Conclusions and Related Work

Although several CAs programming and simulation tools have been developed
(see e.g. the survey of [22]), we are not aware of general frameworks for perform-
ing qualitative analysis of CAs automatically. In this paper we have proposed
a SAT-based methodology for attacking this problem. One of the advantages of
the proposed method is that, once the encoding of the CA-evolution has been
computed, several different reachability problems can be formulated as simple
propositional queries to a SAT-solver. The formula encoding the evolution can
then be reused in a modular way (we can shrink or extend it easily and attach to
it different initial/final configurations). Hard problems like inverse reachability
can be attacked then by using modern SAT-solvers like zChaff that seems to
perform well on problems with millions of variables and clauses.
Although this seems a new approach for checking properties of CAs, SAT tech-
nology is widely used for computer aided verification of hardware and software
design. As an example, tools for Bounded Model Checking like nuSMV [1] au-
tomatically generate an unfolding of the transition relation of a high level de-
scription of a reactive system and then use a SAT-solver to test LTL properties.
The reason why we did not resort to existing SAT-based verification tools like
nuSMV is that we wanted to have complete control over the SAT-formula gener-
ated by the encoding of a CA-evolution. This way we were able to test different



kind of properties and heuristics on zChaff directly.
In our preliminary experiments we have obtained interesting results for CAs of
reasonable size (e.g. 70 cells, 140 steps, 120 rules). We believe that it might
be possible to manage larger problems by a specialization of the SAT-solving
algorithm (and, especially, of its heuristics) that could benefit from structural
properties of CAs. This might be an interesting future direction for our research.
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