
Combining logic programming and domain
ontologies for text classification

Chiara Cumbo2, Salvatore Iiritano1, and Pasquale Rullo2

1 Exeura s.r.l., iiritano@exeura.it
2 Dipartimento di Matematica, Università della Calabria, 87030 Rende (CS), Italy,

{cumbo,rullo}@mat.unical.it

Abstract This paper describes a prototypical system supporting the
entire classification process: document storage and organization, pre-
processing, ontology construction and classification. Document classi-
fication relies on two basic ideas: first, using ontologies for the formal
representation of the domain knowledge; second, using a logic language
(an extension of Datalog by aggregate functions that we call Datalogf)
as the categorization rule language. Classifying a document w.r.t. an on-
tology means associating it with one or more concepts of the ontology.
Using Datalogf provides the system with a natural and powerful tool for
capturing the semantics provided by the domain ontology and describing
complex patterns that are to be satisfied by (pre-processed) documents.
The combined use of ontologies and Datalogf allows us to perform a
high-precision document classification.

1 Introduction

Managing the huge amount of textual documents available on the web and the
intranets has become an important problem of knowledge management. For this
reason, modern Knowledge Management Systems need for effective mechanisms
to classify information and knowledge embedded in textual documents [1,2].
A number of classification approaches have been so far proposed, such as those
based on machine learning [3] and those based on clustering techniques using
the vector space model [4,5,6].
In this paper we describe a prototypical classification system which relies on two
basic ideas: first, using ontologies for the formal representation of the domain
knowledge and, second, using a logic language as the categorization rule lan-
guage.
An ontology is a formal representation of an application domain [7,8]. In the
context of a classification process, an ontology is intended to provide the spe-
cific knowledge concerning the universe of discourse (categorization based on the
domain context). Classifying a document w.r.t. a given ontology means associ-
ating it with one or more concepts of the ontology. To this end, each concept
is equipped with a set of logic rules that describe features of a document that
may relate to the given concept. The logic language we use in our system is an
extension of Datalog [9] with aggregate functions [10]. Throughout this paper

we refer to this language as Datalogf . The advantage of using Datalogf as the
categorization rule language is twofold: first, we can exploit its expressive power
to capture the domain semantics provided by the ontology and describe com-
plex patterns that are to be satisfied by documents; second, the encoding of such
patterns is very concise, simple, and elegant. We notice that others rule-based
techniques have been proposed by several authors, but they are mainly devoted
to the resolution of linguistic problems, such as the disambiguation of terms for
the reduction of the vector dimensions [11], or for the improvement of the results
of the classification task [3].
The execution of Datalogf programs is carried out by the DLV system [12], which
is part of our categorization engine. DLV is a well-known reasoning system which
supports a completely declarative style of programming based on a bottom-up
evaluation of the stable model semantics of disjunctive logic programs.

The paper is organized as follows. In Section 2 we provide an overview of
the system. In Section 3 we describe the ontology management. In Section 4 we
discuss the pre-processing phase and in Section 5 we present our classification
technique based on Datalogf . Finally, we give our conclusions.

2 A system overview

The prototype is intended as a corporate classification system supporting the
entire process life-cycle: document storage and organization, ontology construc-
tion, pre-processing and classification. It has been developed as a Web appli-
cation based jsp-pages on the client side. A sketch of its architecture is shown
in figure 1. In the following sections we shall focus our attention on ontology
management, pre-processing and classification.

3 Ontology Management

Ontologies in our system provide the knowledge needed for a high-precision
classification. The ontology specification language supports the following basic
constructs: Concepts, Attributes, Properties (attribute values), Taxonomic (is-
a and part-of) and Non-Taxonomic binary associations, Association cardinality
constraints, Concept Instances, Links (association instances), Synonyms. The
creation of an ontology is supported by the Ontology Editor which provides a
powerful visual interface based on a graph representation.

Example 1. KIMOS is an ontology developed within Exeura (www.exeura.it)
with the purpose of classifying all company’s software resources and the respec-
tive documentation. A fragment of KIMOS is given in figure 2. Here, the central
concept is ”Software” which is related to the other concepts by both taxonomic
and non-taxonomic relations. For an instance, the edge connecting ”Software”
with ”Language” represents the (many-to-many) relation ”developed-in”, while
the one between ”Software” to ”OS Compatible” represents the relation ”runs-
on”; the concept ”Software” is subdivided into a number of sub-concepts that

..

Database

Document

Collector

Interface

Conceptual

Search

Textual

Document

Repository

Server Side

Client Side

Ontology Editor

Document

Collector

Pre-Processor

Module

Corpus

Manager

Repository Manager

Classification

Engine

DLV

System

Classification Manager

Corpus Interface

Ontology

Browser

Ontology Manager

Logic Rule Base

Rules Editor

Figure 1. The System Architecture

group the different instances of ”Software” into the appropriate categories. In
figure we have reported only the concept ”DB” that represents the class of soft-
wares for databases. This concept is related to ”Software” by an is-a relation
and it is classified into ”DBMS” and ”DB Tool”. In turn, ”DBMS” is classified
as either ”Relational DBMS” or ”Others” (i.e., DBMS of different types). An
instance of ”Relational DBMS” is ”MySQL” which is related to ”Unix-C” (an
instance of ”OS Compatible”) by the link ”runs-on”. 2

Once created, the user can navigate the ontology using the Ontology Browser
which offers the following basic facilities:

– for a given concept, the user can easily explore its sub-concepts or, viceversa,
collapse the underlying hierarchies

– the user can select the relationships whereby moving away from a given
concept

– the user can filters the (possibly large) list of instances of a given concept.

Internally, an ontology is stored as a set of facts. As we will see in section 5,
these facts represent an input to categorization programs.

Example 2. The internal representation of KIMOS consists of facts representing:

– concepts, e.g., concept(DB);

..

Figure 2. The KIMOS Ontology

– attributes, each identified by an Id, a Data-Type and the Id of the concept
which belongs to; for instance, attribute(size-MB,real,Software) represents
the attribute ”size-MB”, of type real, of the concept ”Software”;

– Properties (i.e., attribute instances) each characterized by an attribute name
and a value; for instance, property(size-MB,1.35);

– Taxonomic relationships of the form is-a(DB,Software);
– Non-taxonomic relationships such as association(runs-on,Software,OS Com-

patible) which represents the relation ”runs-on” between ”Software” and ”OS
Compatible”; we represent also the inverse inverse-of(runs-on, supports);

– association cardinality constraints, e.g., cardinality(runs-on, ”> 1”) and car-
dinality(supports, ”> 1”);

– Link associations (i.e., binary association between instances), e.g., link(runs-
on, MySql ,Unix-C);

– Concept Instances such as instance-of(Relational DBMS,MySql);
– Synonyms such as synonym(Database,DB).

2

4 Pre-processing

The aim of the Pre-Processing step is to obtain a machine-readable represen-
tation of textual documents [13]. This is done by annotating documents with
meta-textual information obtained by a linguistic and structural analysis.
The Pre-Processor module supports the following tasks:

– Pre-Analysis, based on three main activities: Document Normalization, Struc-
tural Analysis and Tokenization.

– Linguistic Analysis, based on the following steps:
• Lexical Analysis: for each token, the morpho-syntactical features are

obtained (the stem and the Part of Speech - PoS). The PoS Tagging
step is based on a variant of the Brill Tagger (a rule-based Pos-Tagger
[14]).

• Quantitative Analysis which provides, for a given document, information
about the number of different tokens and stems as well as the absolute
frequency for each token and stem.

The output of the Pre-Processing phase is a set of facts representing the
relevant information about the processed document. As we shall see in section
5, these facts represent an input to our categorization programs.

Example 3. Consider, for example, a textual document about databases, with
247 different tokens, and suppose that the third paragraph of this document
contains the following fragment of text: ”... A database is a structured.... ”.
The representation of this paragraph is like this:
...
word(57,’a’,’a’,’at’).
word(58,’database’,’databas’,’nn’).
word(59,’is’,’is’,’bez’).
word(60,’a’,’a’,’at’).
word(61,’structured’,’structur’,’vbn’).
bold(58).
par(3,57,148).
tokenFrequency(’database’,13).
stemFrequency(’databas’,16).
numberOfTokens(247).
numberOfStems(218). 2

5 Document Classification

The basic idea is that of using logic programs to recognize concepts within texts.
Logic rules, indeed, provide a natural and powerful way to describe features of
document contents that may relate to concepts. To this end, we use the logic
language Datalogf [10], an extension of Datalog by aggregate functions. The
module of our system which supports the classification process is the Classifi-
cation Engine which relies on DLV system [12] for the bottom-up evaluation of
Datalogf programs.

5.1 The Datalogf language

We call Datalogf the logic language obtained by extending Datalog [9] by ag-
gregate functions. A function has the form f(V ars : Conj) where f is the
name (count, sum, min, max, sum) and V ars a set of variables occurring in
the conjunction Conj. Intuitively the expression V ars : Conj represents the

set of values assumed by the variables in V ars making Conj true. An aggre-
gate atom is an expression of the type Lg ≤ f(V ars : Conj) ≤ Ug where Lg
and Ug are positive integer constants or variables called guards. For instance,
count{V : a(V)} < value is an aggregate atom whose informal meaning is: the
number of ground instances of a(V) must be less than value. A Datalogf pro-
gram is a logic program in which aggregate literals can occur in the body of
rules. Rules with aggregate atoms are required to be safe [10]. It is worth notic-
ing that the result of an aggregate function can be saved by an assignment. For
instance in the following rule h(X) : −X = #count{V : a(V)}, all the ground
instances of a(V) are counted up and the value of count is assigned to X.

5.2 Categorization programs

By combining the expressive power of Datalog with that of aggregate functions,
Datalogfprovides a natural and powerful tool for describing categorization rules
within our system. A categorization program relies on a number of predefined
predicates, that are of two types:

1. Pre-processing predicates representing information generated by the pre-
processing phase; examples of such predicates are:

word(Id, Token, Stem,PoS)
title(Id, Token, Stem,PoS)

where Id represents the position of Token within the text, Stem is the stem
of the token and PoS its Part-of-Speech, and

tokenFrequency(Token, Number)
which represents the number of times Token occurs in the text.

2. Ontology predicates representing the domain ontology; examples of this kind
of predicates are the following: instance of(I, C) (I is instance of the concept
C), synonym(C1, C2), isa(C1, C2), part of(C1, C2), association(A,C1, C2),
etc..

In addition, we use the predicate relevant(D, C) to state that document D is
relevant for concept C.
Now, we equip each concept C of a given ontology with a set of Datalogf rules,
the categorization program PC of C, used to recognize C within a given document
D. The set of facts of PC consists of the facts representing the domain ontology
(see Section 3) as well as those representing the pre-processed document (see
Section 4). The rules of PC represent conditions that are to be satisfied in order
D be considered relevant for C.

Example 4. We next provide an incremental construction of a categorization pro-
gram associated with the concept ”DB” of the KIMOS ontology (see example 1).

Rules looking for keyword. We start with the following simple rules looking
for the keyword ”DB”:

r0: t0 : −title(, ”DB”, ,).

r1: t1 : −tokenFrequency(”DB”, F), F > a.

In rule r0 above, the predicate t0 is true if ”DB” occurs in the title, while
t1 in r1 is true if the frequency F of the token ”DB” is greater than a given
constant a.
We can now refine our keyword search by exploiting synonyms; for instance, we
can restate r0 as

r0: t0 : −title(, X, ,), synonym(X, ”DB”).

and replace r1 by the following two rules:

r2: t2(X, F) : −synonym(X, ”DB”), word(, X, ,), tokenFrequency(X,F).

r3: t3 :- F1 = #sum{F,X : t1(F,X)}, F1 > a.

Rule r2 above ”evaluates”, for the concept ”DB” and each of its synonyms,
the respective frequency F ; rule r3, in turn, determines the total number F1 of
times the concept ”DB” and each of its synonyms appears in the text (this is
performed by the aggregate function sum).

Rules looking for terms. Using the next rules we look for the term ”structured
data” within the document:

r4 : t4(I) :- word(I, ”structured”, ,), word(J, ”data”, ,), J = I + 1.

r5 : t5(F) :- F = #count{I : t5(I)}.

We may relax the above condition, requiring the words ”structured” and ”data”
to be found, in the specified order, within a distance of at most 5 words inside
the same paragraph:

r6 : t6(I) :- word(I, ”structured”, ,), word(J, ”data”, ,), J > I,
L = J − I, L <= 5, sameParagraph(I, J).

r7: sameParagraph(I, J) :- par(Id, Init, F in), I >= Init, J <= Fin.

r8 : t8(F) :- F = #count{I : t7(I)}.

Rule r8 above counts the number of times the searched term occurs in the same
paragraph.

Rules matching expressions. Next we write rules to recognize, within a para-

graph, an expression of the following type: a verb with stem ”store”, followed
by a name having ”tabl” or ”relat” as its stem (i.e., we are trying to recognize
sentences such as ”data are stored within tables...”).

r9 : t9(I) :- word(I, , ”store”, ”vb”), word(J, , ”tabl”,), sameParagraph(I, J).

r10 : t10(I) :- word(I, , ”store”, ”vb”), word(J, , ”relat”,), sameParagraph(I, J).

r11 : t11(F) :- F = #count{I : t9(I)}.

Rules exploiting the ontology knowledge. We can improve the precision of the
classification process by using the underlying domain ontology. For instance, if
a document talks about some specific instances of the concept ”db”, such as
Oracle, Access, etc. (note that an instance of ”relational DBMS”, which is a
sub-concept of ”db”, is also an instance of ”DB”), it is quite obvious considering
the document as pertinent to the concept ”db”. So, we write the following rules:

r12 : t12(I, F) :- instance of(”DB”, I), tokenFrequency(I, F).

r13: t13(N) :- N = #count{I : t11(I,)}.

r14 : t14(F) :- F = #sum{F1, I : t11(I, F1)}.

r15 : t15(T) :- T = #count{I : instance of(I, ”DB”)}.

where: r12 provides the number of occurrences of each instance of ”db” in the
document; r13 counts the number of distinct instances of ”db”; r14 provides the
total number of instances (duplicated included) of ”db” and r15 gives the num-
ber of instances of ”db” in the ontology. Finally, the rule

r16 : t16(K, L) :- t13(N), t14(F), t15(T),K = N/T, L = F/N.

expresses a measure, in terms of K (the fraction of the instances of ”db” that
are cited within the document) and L (which takes into account the fact that
each instance might be cited several times), of the presence into the document
of words representing instances of the concept ”db”. 2

As we have mentioned before, we use DLV as the categorization engine in
our system. DLV is a very powerful system for the bottom-up evaluation of
disjunctive logic programs extended by a number of constructs (Datalogf is a
subset of the DLV language). It is used in many real applications where efficiency
is a strong constraint.
The evaluation strategy of categorization programs is based on the following two
observations:

– there are documents that are straightforward to classify, i.e., for which simple
keyword-based rules (like r1 − r2 above) are enough; suppose, for instance,

that the word ”db” is contained in the title or it occurs frequently throughout
the text; in such cases we can confidently classify the document at hand
as relevant for the given concept only by using few simple rules (like r1

and r2) and forgetting of the remaining ones occurring in the rest of the
categorization program;

– a deeper semantic analysis is needed only in case of documents that are
difficult to classify because concepts do not appear explicitly; to this end,
the execution of more complex rules (for instance, rules trying to match
complex expressions) is required.

Now, the implementation of the above evaluation strategy proceeds, roughly
speaking, as follows: we structure the categorization program PC , associated to
the concept C, into a number of components, say, c1, ..., cn. Each component
groups rules performing some specific retrieval task, such as word-based search,
term matching, etc., of increasing semantic complexity – that is, each component
is capable to recognize texts that are possibly inaccessible to the ”previous” ones.
Given a document D, the evaluation of PC (w.r.t. D) starts from c1 (the ”lowest”
component) and, as soon as a component ci, 1 ≤ i ≤ n, is ”satisfied” (by D),
the process stops successfully – i.e., D is recognized to be relevant for C and the
fact relevant(D,C) is stated to be true; if no such a component is found, the
classification task fails.

5.3 Ontology-driven Classification Strategy

Let D be a document that has to be classified w.r.t. an ontology O. As we have
seen in the previous subsection, each concept C of O is equipped with a suitable
categorization program PC whose evaluation determines whether D is relevant
for C or not. An exhaustive approach would require to ”prove” D w.r.t. the
categorization program of each concept of O, and this could result in a rather
heavy computation. However, we can drastically reduce the ”search space” if we
adopt an ontology-driven classification technique which exploits the presence of
taxonomic hierarchies. This technique is based on the principle that if a docu-
ment is relevant for a concept then it is so for all of its ancestors within an is-a
taxonomy (unless the contrary is explicitly stated). This principle is expressed
by the following recursive rule:

relevant(D, X) : −relevant(D, Y), isa(Y, X)

As an example, if a document is relevant for the concept ”Relational DBMS” of
the KIMOS ontology, then it is so for the concepts ”DBMS”, ”DB” and ”Soft-
ware”. If we want to exclude the latter, we simply write:

relevant(D, X) : −relevant(D, Y), isa(Y, X), X <> ”Software”.

The above inheritance principle suggests us a classification strategy where con-
cepts within a sub-class hierarchy are processed in a bottom-up fashion. As soon

as D is found to be relevant for a concept C in the hierarchy H, it is not any
more processed w.r.t. any of the ancestors of C in H. The relevance association
of D to the ancestors of C is automatically performed by the above recursive
rule.

6 Conclusion

We have presented a prototypical text classification system which relies on a
combined use of ontologies and logic programming. The former are used to rep-
resent the domain knowledge, the latter to recognize concepts within texts. To
this end, each concept of an ontology is equipped with a categorization pro-
gram, i.e., a logic program written in Datalogf – an extension of Datalog by
aggregate functions. A categorization program is designed to discover complex
patterns within texts using the knowledge provided by the underlying ontology.
The classification process is ontology-driven and, as a result, provides a relation-
ship between concepts and documents. The categorization engine is based on
the logic programming system DLV.
So far, we have carried out a number of preliminary tests which seem to be very
promising in terms of efficiency even on large documents. For an instance, we can
classify a document of over 70000 words w.r.t. a Kimos Ontology (7 concepts)
in 0.51 seconds. Further experimentation is currently being performed.
Current work is concerned with the extension of Datalogf with external func-
tions for the efficient execution of tasks such as stemming, substring matching,
etc.

References

1. Ciravegna: (LP)2, an Adaptive Algorithm for Information Extraction from Web-
related Texts. In: Proc. IJCAI-2001 Work. on Adaptive Text Extraction and Min-
ing. (2001)

2. Riloff: A Case Study in Using Linguistic Phrases for Text Categorization on the
WWW. In: AAAI/ICML Work.Learning for Text Categorization. (2001)

3. Cohen: Text categorization and relational learning. In: Proc. of ICML-95, 12th
Int. Conference on Machine Learning. (1995)

4. Dı́az, A., Buenaga, M., Urena, L., Garćıa-Vega, M.: Integrating linguistic resources
in an uniform way for text classification tasks. In: Proc. of LREC-98, 1st Int.
Conference on Language Resources and Evaluation. (1998) 1197–1204

5. Hsu: Classification algorithms for NETNEWS articles. In: Proc. of CIKM-99, 8th
ACM Int. Conference on Information and Knowledge Management. (1999) 114–121

6. Brank, J., Grobelnik, M., Milic-Frayling, N., Mladenic, D.: Feature selection using
support vector machines. In: Proc. of the 3rd International Conference on Data
Mining Methods and Databases for Engineering, Finance, and Other Fields. (2002)

7. Decker, S., Erdmann, M., Fensel, D., Studer, R. In: Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Information. Proc. of DS-8. Kluwer
Academic Publ (1999) 351–369

8. Fensel: OIL: An ontology infrastructure for the semantic web. IEIS 16 (2001)
38–45

9. Ullman: Principles of Database and Knowledge-Base Systems, Rockville (Md.)
(1988)

10. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate Functions
in Disjunctive Logic Programming: Semantics, Complexity, and Implementation
in DLV. In: Proc. IJCAI 2003, Acapulco, Mexico, Morgan Kaufmann Publishers
(2003)

11. Paliouras: Learning rules for large vocabulary word sense disambiguation. In:
Proc. of IJCAI-99. (1999) 674–679

12. Faber, W., Pfeifer, G.: DLV homepage (since 1996) http://www.dlvsystem.com/.
13. Yang: A comparative study on feature selection in text categorization. In: Inter-

national Conference on Machine Learning, ACL (1997) 412–420
14. Brill: Tranformation-based error-driven learning and natural language processing:

A case study in part of speech tagging. In: Computational Linguistics. (1995)
543–565

