Communication Architecture in the DALI Logic
Programming Agent-Oriented Language

Stefania Costantini Arianna Tocchio Alessia Verticchio

Universi& degli Studi di LAquila
Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L'Aquila - Italy
{stefcost,tocchio }@di.univag.it

Abstract. In this paper we describe the communication architecture of the DALI
Logic Programming Agent-Oriented language. We have implemented the rele-
vant FIPA compliant primitives, plus others which we believe to be suitable in a
logic setting. We have designed a meta-level where: on the one hand the user can
specify, via two distinguished primitives tell/told, constraints on communication
and/or a communication protocol; on the other hand, meta-rules can be defined
for filtering and/or understanding messages via applying ontologies and forms
of commonsense and case-based reasoning. These forms of meta-reasoning are
automatically applied when needed by a form of reflection.

1 Introduction

Interaction is an important aspect of Multi-agent systems: agents exchange messages,
assertions, queries. This, depending on the context and on the application, can be either
in order to improve their knowledge, or to reach their goals, or to organize useful coop-
eration and coordination strategies. In open systems the agents, though possibly based
upon different technologies, must speak a common language so as to be able to interact.
Agent Communication Languages (ACL), such as the widely-adopted FIPA ACL, pro-
vide standardized catalogues of performatives (communication acts), designed in order
to ensure interoperability among agent systems [12].

However, beyond standard forms of communication, the agents should be capable
of filtering and understanding message contents. A well-understood topic is that of in-
terpreting the content by means of ontologies, which are essentially dictionaries and
descriptions that allow different terminologies to be coped with. In a logic language,
the use of ontologies can be usefully integrated with forms of commonsense and case-
based reasoning, that improve the “understanding” capabilities of an agent. A more
subtle point is that it would be useful for an agent to have the possibility to enforce con-
straints on communication. This implies being able to accept or refuse or rate a message,
based on various conditions like for instance the degree of trust in the sender. This also
implies to be able to follow a communication protocol in “conversations”. Since the
degree of trust, the protocol, the ontology, and other factors, can vary with the context,

* We acknowledge support by th&ormation Society Technologies programme of the European
Commission, Future and Emerging Technologieder the IST-2001-37004 WASP project.

or can be learned from previous experience, in a logic language agent should and might
be able to perform meta-reasoning on communication, so as to interact flexibly with the
“external world.”

This paper presents the communication architecture of the DALI language. DALI
is an Agent-Oriented Logic Programming language designed for executable specifica-
tion of logical agents, that allows one to define one or more agents interacting among
themselves, with other software entities and with an external environment. A main de-
sign objective for DALI has been that of introducing in a declarative fashion all the
essential features, while keeping the language as close as possible to the syntax and
semantics of the traditional Horn-clause language. In practice, most Prolog programs
can be understood as DALI programs. Special atoms and rules have been introduced for
representing: external events, to which the agent is able to respond (reactivity); actions
(reactivity and proactivity); internal events (previous conclusions which can trigger fur-
ther activity); past and present events (to be aware of what has happened), goals (that
the agent can reach). Then, on the line of the arguments proposed in [10], DALI is an
enhanced logic language with fully logical semantics [5], that integrates rationality and
reactivity, where an agent is able of both backwards and forward reasoning, and has the
capability to enforce “maintenance goals” that preserve her internal state, and “achieve-
ment goal” that pursue more specific objectives. An extended resolution is provided,
so that the DALI interpreter is able to answer queries like in the plain Horn-clause
language, but is also able to cope with the different kinds of events.

We have introduced in DALI a communication architecture that specifies in a flexi-
ble way the rules of interaction among agents, according to the above-mentioned crite-
ria. The various aspects are modeled in a declarative way, are adaptable to the user and
application needs, and can be easily composed. Basically, DALI agents communicate
via FIPA ACL, augmented with some primitives which are suitable for a logic lan-
guage. As a first layer of the architecture, we have introduced a check level that filters
the messages. This layer verifies that the message respects the communication protocol
of the agent, as well as some domain-independent coherence properties. Several other
properties to be checked can be however additionally specified, by expanding the defi-
nition of the distinguished predicateal/told. If the message does not pass the check,
it is deleted and does not produce any effect. As a second layer, meta-level reasoning
is exploited so as to try to understand messages coming from other software entities by
using ontologies, and forms of commonsense reasoning.

In summary, when a DALI agent receives a message by another agent, the message
is submitted to a check level that controls if it respects the communication protocol
and the conditions expressed by the check rules. If the message gets over this control,
the agent invokes meta-level reasoning in order to understand its content. The meta-
reasoning process uses the agent’s ontology and other properties of the terms occurring
in the message.

It is important to notice that the definition of the enhanced DALI/FIPA ACL is
imported by the agent’s code as a library, so as in principle DALI agents may adopt dif-
ferent communication protocols. Also, checks and constraints on communication can
be modified without affecting (or without even knowing) the agent’s code. The lay-
ers of message check and understanding have a predefined default part. However, as

mentioned before they can be extended, improved and adapted to the specific user or
application needs by adding rules to the definition of some distinguished predicated.

In this paper we will not be concerned with formal aspects. Rather, we mean to
illustrate the communication architecture, and to demonstrate its usefulness mainly by
means of significant examples.

The paper is organized as follows. We start by shortly describing the main features
of DALI in Section 2. In Section 3 we discuss the new DALI/FIPA protocol and in
Section 4 we introduce DALI communication filter. Then, in Sections 5 and 6 we sum-
marize the meta-reasoning layer and how the new architecture works. In Section 7 we
show an example of communication between DALI agents, and then conclude in Sec-
tion 8 with some final remarks.

2 The DALI language

DALI [4] [5] is an Active Logic Programming language designed for executable spec-
ification of logical agents. A DALI agent is a logic program that contains a particular
kind of rules, reactive rules, aimed at interacting with an external environment. The
environment is perceived in the form of external events, that can be exogenous events,
observations, or messages by other agents. In response, a DALI agent can perform ac-
tions, send messages, invoke goals. The reactive and proactive behavior of the DALI
agent is triggered by several kinds of events: external events, internal, present and past
events. It is important to notice that all the events and actions are timestamped, so as to
record when they occurred. The new syntactic entities, i.e., predicates related to events
and proactivity, are indicated with special postfixes (which are coped with by a pre-
processor) so as to be immediately recognized while looking at a program.

2.1 External Events

The external events are syntactically indicated by the postfi*hen an event comes

into the agent from its “external world”, the agent can perceive it and decide to react.
The reaction is defined by a reactive rule which has in its head that external event.
The special toker>, used instead of —, indicates that reactive rules performs forward
reasoning. E. g., the body of the reactive rule below specifies the reaction to the external
eventbell_ringsE that is in the head. In this case the agent performs an action, postfix
A, that consists in opening the door.

bell _ringsE :> open_the_doorA.

The agent remembers to have reacted by converting the external evenpagbevent
(time-stamped).

Operationally, if an incoming external event is recognized, i.e., corresponds to the
head of a reactive rule, it is added into a list called EV and consumed according to the
arrival order, unless priorities are specified. Priorities are listed in a separate file of di-
rectives, where (as we will see) the user can “tune” the agent’s behaviour under several
respect. The advantage introducing a separate initialization file is that for modifying the
directives there is no need to modify (or even to understand) the code.

2.2 Internal Events

The internal events define a kind of “individuality” of a DALI agent, making her proac-
tive independently of the environment, of the user and of the other agents, and allowing
her to manipulate and revise her knowledge [3]. An internal event is syntactically in-
dicated by the postfix, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, procedures, etc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a default frequency customizable
by means of directives in the initialization file. The user’s directives can tune several
parameters: at which frequency the agent must attempt the internal events; how many
times an agent must react to the internal event (forever, once, twice,...) and when (for-
ever, when triggering conditions occur, ...); how long the event must be attempted
(until some time, until some terminating conditions, forever).

For instance, consider a situation where an agent prepares a soup that must cook
on the fire for K minutes. The predicates with postiare past events, i.e., events or
actions that happened before, and have been recorded. Then, the first rule says that the
soup is ready if the agent previously turned on the fire, and K minutes have elapsed
since when she put the pan on the stove. The goapreadywill be attempted from
time to time, and will finally succeed when the cooking time will have elapsed. At that
point, the agent has to react to this (by second rule) thus removing the pan and switching
off the fire, which are two actions (postf.

soup_ready : — turn_on_the_fireP, put_pan_on_the_stoveP : T,
cooking_time(K), time_elapsed(T, K).
soup_readyl :> take_of f_pan_from_stoveA,turn_of f the_fireA.

A suitable directive for this internal event can for instance state that it should
be attempted every 60 seconds, starting from wpenthe panon_the stove and
turn_on_the fire have become past events.

Similarly to external events, internal events which are true by first rule are inserted
in a set IV in order to be reacted to (by their second rule). The interpreter, interleaving
the different activities, extracts from this set the internal events and triggers the reaction
(again according to priorities). A particular kind of internal event isgbal, postfixG,
that stop being attempted as soon as it succeeds for the first time.

2.3 Present Events

When an agent perceives an event from the “external world”, it doesn’t necessarily
react to it immediately: she has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is indicated by the Buffix

2.4 Actions

Actions are the agent’s way of affecting her environment, possibly in reaction to an
external or internal event. In DALI, actions (indicated with pos#jxmay have or not

preconditions: in the former case, the actions are defined by actions rules, in the latter
case they are just action atoms. An action rule is just a plain rule, but in order to empha-
size that it is related to an action, we have introduced the new teketihus adopting

the syntaxaction :< preconditions. Similarly to external and internal events, actions
are recorded as past actions.

2.5 Pastevents

Past events represent the agent’'s “memory”, that makes her capable to perform its fu-
ture activities while having experience of previous events, and of its own previous con-
clusions. As we have seen in the examples, past event are indicated by the postfix
For instancealarm_clock ringsPis an event to which the agent has reacted and which
remains in the agent’s memory. Each past event has a timestamp T indicating when the
recorded event has happened. Memory of course is not unlimited, neither conceptually
nor practically: it is possible to set, for each event, for how long it has to be kept in
memory, or until which expiring condition. In the implementation, past events are kept
for a certain default amount of time, that can be modified by the user through a suitable
directive in the initialization file. Implicitly, if a second version of the same past event
arrives, with a more recent timestamp, the older event is overridden, unless a directive
indicates to keep a number of versions.

3 DALI/FIPA Agent Communication Language

An agent communication language (ACL) is a set of primitives and rules that guide
the interaction among several agents [7]. There are a number of standardized languages
that the agents can use for communication. The most widely acknowledged is the FIPA
ACL, which for the sake of interoperability we have adopted (with few extensions) for
DALI. The specification of FIPA messages has the following structure:

receiver: name of the agent that receives the message;

language:the language in which the message is expressed;

ontology: the vocabulary of the words in the message, or, more generally, the de-
scription of conceptual relationships between terms and sentences of the same do-
main, which are expressed in a different terminology;

sender:name of the agent that sends the message;

— content: the content of the message, which is the main part, discussed in detail
below.

In DALLI, a message which has to be sent has the format:

primitive(content)

whereprimitive is what is called &aommunication performativé.e., the specification

of the intended meaning of the message, which is then further specifiedrignt

For instancepropose(content)s a performative aimed at asking another agent to do
something, where what should be done is specifiedditent The DALI interpreter

automatically adds the missing FIPA parameters, thus creating the structure which is
actually sent, i.e.:

message(receiver_address, receiver _name, sender_address, sender_name,
language, ontology, primitive(content, sender))

Symmetrically, from a message which is received the interpreter extracts the part
primitive(Content,Senderhat is what the receiver agent has to consider. In most cases,
the receiver will record the iteprimitive(Content,Sendegs a past event. Please notice
thatcontentmay be a conjunction, as the FIPA performatives have different arities.

In the rest of this section, we illustrate the main performatives we adopt. In brackets
we indicate if the primitive is FIPA or if it is peculiar of DALI. In most cases, the
receiver will record the iterprimitive(Content,Sendegs a past event.

sendmessagdDALI)

send-message(external_event, sender_agent)

The act of sending a message to a DALI agent that the receiver will perceive as the
communication that the given external event has happened.

propose(FIPA)

propose(action, [preconditions, ..., preconditiony], sender_agent).

The act of asking another agent to perform a certain action, given certain preconditions.
A DALI agent accepts a proposal if the preconditions are all true, else she rejects the
proposal.

acceptproposal (FIPA)

accept_proposal(action_accepted, [conditions, ..., condition,], sender_agent)or
accept_proposal(action_accepted, [conditions, ..., conditiony], in_response_to(),

sender_agent)
The action of accepting a previously received proposal to perform an action where the
the conditions of the agreement are enclosed.

reject_proposal (FIPA)

reject_proposal(action_rejected, [reasony, ..., reasony], sender_agent)or
reject_proposal(action_rejected, [reasoni, ..., reasony], in_response_to(),
sender_agent)

The action of rejecting a proposal to perform some action during a negotiation, listing
the reasons for rejection.

failure (FIPA)

failure(action_failed, motivation, sender_agent)

The action of telling another agent that an action was attempted but the attempt failed,
enclosing the motivation of the failure.

cancel(FIPA)

cancel(action_to_cancel, sender_agent).

The action of canceling some previously requested action which had a temporal extent
(i.e. cannot be instantaneous).

executeproc (DALI)

execute_proc(call_procedure, sender_agent).
The act of invoking a procedure inside a DALI program.
query_ref (FIPA)

query-ref(property, N, sender_agent)

The action of asking another agent for the object referred to by an expression containing
free variablesPropertyis the string on which the matching is attempted, and N is the
requested number of matches for the object to be identified.

inform (FIPA)

inform(something, sender_agent) or
inform(primitive, values/motivation, sender_agent)

The sender informs the receiver that a certain “something” is happened.
is_a fact (DALI)

is_a-fact(proposition, sender_agent)
The act of asking if the proposition indicated in the primitive is true.
refuse (FIPA)

refuse(action_re fused, motivation, sender_agent)

The action of refusing to perform a given action, and of explaining the reason for the
refusal. For example,a DALI agent refuses to do an action if the preconditions of the
corresponding active rules in the DALI logic program are false. The refusal is recorded
as a past event.

confirm (FIPA)

con firm(proposition, sender_agent)

The sender informs the receiver that a given proposition is true, where the receiver is
supposed to be uncertain about the proposition. The proposition is asserted as a past
event.

disconfirm (FIPA)

discon firm(proposition, sender_agent)

The sender informs the receiver that a given proposition is false, where the receiver is
instead supposed to believe that the proposition is true. Then, this proposition is deleted
from past events.

4 DALI communication filter

In real applications, the interaction between agents raises the problem of security. If
an agent is not sufficiently self-defending, she can suffer from damages to either her
knowledge base or her rules. It may happen in fact that an agent sends to another one a
message with a wrong content, intentionally or not, thus potentially bringing a serious
damage. How to recognize a correct message? And a wrong message?

The solution adopted in DALI is aimed at providing a tool for coping, as far as pos-
sible, with these problems. When a message is received, it is examined by a check layer
composed of a structure which is adaptable to the context and modifiable by the user.
This filter checks the content of the message, and verifies if the conditions for the recep-
tion are verified. If the conditions are false, this security level eliminates the supposedly
wrong message. We have constrained the reception of messages by restricting the range
of allowed utterances to the FIPA/DALI primitives, according to additional conditions
defined by the user, or, in perspective, learned by the agent herself. For instance, filtering
conditions can be based upon reliability of the sender agent. The DALI filter is spec-
ified by means of meta-level rules defining the distinguished prediteiteandtold.

These meta-rules are contained in a separate file, and can be changed without affecting
or even knowing the DALI code. Then, communication in DALI is elaboration-tolerant
with respect to both the protocol, and the filter.

4.1 Filter for the incoming messages

Whenever a message is received, with contentgartitive(Content,Sendethe DALI
interpreter automatically looks for a correspondialgl rule, which is of the form:

told(Sender, primitive(Content)) : —constraints, ..., constrainty,.

whereconstraint_i can be everything expressible either in Prolog or in DALI. If
such a rule is found, the interpreter attempts to prove told(Sender, primitive(Content)).
If this goal succeeds, then the message is accepted, and primitive(Content)) is added to
the set of the external events incoming into the receiver agent. Otherwise, the message
is discarded. Semantically, this can be understood as implicit reflection up to the filter
layer, followed by a reflection down to whatever activity the agent was doing, with or
without accepting the message. For a detailed and general semantic account of this kind
of reflection, the reader may refer to [1].

Below we propose a number of examples of filtering rules. Notice that each agent
can have her own set of filtering rules. Since she takes these rules from a separate file,
her filtering criteria can vary (by importing a different file) according to the context she
is presently involved into.

The following rule accepts sendmessagerimitive if the receiver agent remem-
bers (presumably from past experience) that the sender is reliable, and believes that the
content is worth knowing.

told(Sender_agent, send_message(External_event)) : —
not(unreliable P(Sender_agent)), interesting(External_event).

Similarly, the request of either executing a procedure or asserting a fact is taken
into consideration if the agent who is asking us is reliable, and in the former case if we
actually have the code of that procedure, in the latter case if we are interested in the new
fact.

told(Sender_agent, execute_proc(Procedure)) : —
not(unreliable P(Sender_agent)), know(Procedure).

told(Sender_agent,is_a_fact(Proposition)) : —
not(unreliable P(Sender_agent)), interesting(Proposition).

8

A querycref is acceptable, according to the constraint below, if the Sender agent is
reliable and friendly.

told(Sender_agent, query_ref(Proposition, 3)) : —
not(unreliable P(Sender_agent)), friendly(Sender_agent).
The agent acceptsanfirmprimitive if the Sender is reliable and the proposition
is consistent with her knowledge base. The proposition is recorded as a past event and
kept, according to the directive specified in this rule, for 200 seconds. Vice versa, the
agent disconfirms a proposition that she knows if the Sender is reliable.

told(Sender_agent, con firm(Proposition),200) : —
not(unreliable P(Sender_agent)),
consistent_with_knowledge_base(Proposition).
told(Sender_agent, discon firm(Proposition)) : —
not(unreliable P(Sender_agent)), in_knowledge_base(Proposition).
The proposal to do an action is acceptable if the agent is specialized for the action
and the Sender is reliable.

told(Sender_agent, propose(Action, Preconditions)) : —
not(unreliableP(Sender_agent)), specialized_for(Action).

The following constraint checks if the communication protocol is respected. An
agent in fact can receive atceptproposalonly in response tpropose The agent re-
members as a past event (for 200 seconds) that she has accepted the proposal to perform
an action. This information can be used by an internal event for further inferences.

told(Sender_agent, accept_proposal(Action, Conditions),
in_response_to(Message), 200) : —
not(unreliable P(Sender_agent)),
functor(Message, F, _), F = propose.

We have a similar approach for the other FIPA/DALI primitivesect proposal
failure, refuseandinform.

As the previous examples may have suggested, this model allows one to integrate
into the filtering rules the concept the degree of trust. Trust derives from the credibility
of the beliefs and of their sources, from the sources’ number, convergence, and reliabil-
ity. All those parameters are easily expressible intthé rules. Finally, we emphasize
how this communication filter can express constraints not only for a generic communi-
cation primitive but also for different contents of the same primitive. For example, we
can write:

told(Sender_agent, con firm(love_me(julie)), forever) : —
not(unreliableP(Sender_agent)), ...

When a message is deleted, the DALI interpreter displays the primitive that has not
been accepted and the reason on the operator console. The console is a special window
which is used to activate/stop agents. The user can optionally keep it open in order
either to monitor the agents behaviour, or to participate to the conversation by sending
messages to the agents.

4.2 Filter layer for outcoming messages

Symmetrically totold rules, the messages that an agent sends are subjected to a check
via tell rules. There is, however, an important difference: the user can choose which
messages must be checked and which not. The choice is made by setting some param-
eters in the initialization file. The syntax otell rule is:

tell(Receiver, Sender, primitive(Content)) : —constrainty, ..., constraint,

For every message that is being sent, the interpreter automatically checks whether
an applicabléell rule exists. If so, the message is actually sent only upon success of the
goaltell(Receiver, Sender, primitive(Content)).

Below we show as an example two of the default rules coping with the DALI/FIPA
primitives. The firstell rule authorizes the agent to send the message with the primitive
inform if the receiver is active in the environment and is presumably interested to the
information: via rules like this one we can considerably reduce useless exchange of
messages. According to the second rule, the agent samfisseonly if the requested
primitive isis_a_fact or queryref.

tell(Agent_To, Agent_From,inform(Proposition)) : —
active_in_the_world(Agent To),
specialized(Agent_To, Specialization),
related_to(Specialization, Proposition).

tell(Agent_To, Agent_From,refuse(Something, Motivation)) : —
arg(1l, Something, Primitive),
functor(Primitive, F), (F = is_a_fact; F = query_ref).

5 Meta-reasoning layer

In heterogeneous Multi-agent Systems, in general not all the components speak the
same language, and not all of them use the same words to express a concept. The agent
that doesn’t understand a proposition can either accept the defeat and ignore the mes-
sage, or try to apply a reasoning process in order to interpret the message contents. The
latter solution can be more easily put at work by taking advantage of meta-reasoning
capabilities of a logic language. In fact, the useoafologies which are dictionaries

of equivalent terms, can be integrated with several kinds of commonsense reasoning.
The ontology of a DALI agent is in a file .txt containing equivalent terms and other
properties useful in the meta-reasoning process. E.g., égéistontology can be the
following, wheresymmetrids a property of relations, which is asserted to hold of predi-
catefriend), and allows him to conclude bottiend(bob,lucyrndfriend(lucy,bobeven

if originally he could derive only one. The name of the agent enclosed to each item of
the ontology allows a group of agents to use the same ontology file, though sharing the
contents only partially.

ontology(bob, rain, water_falling_from_sky).
ontology(bob, friend, amico).
. symmetric(friend).

10

Each DALI agent is provided (again in a separate file) with a distinguished pro-
cedure callednetg to support the meta-reasoning process. This procedure by default
includes a number of rules for coping with domain-independent standard situations. The
user can add other rules, thus possibly specifying domain-dependent commonsense rea-
soning strategies for interpreting messages, or implementing a learning strategy to be
applied when all else fails. Below we report some of the default meta-reasoning rules
that apply the equivalences listed in the ontology, and possibly also exploit symmetry
(for binary predicates only):

meta(Initial _term, Final_term, Agent_Sender) : —
clause(agent(Agent_Receiver), _),
functor (Initial_term, Functor, Arity), Arity = 0,
((ontology(Agent_Sender, Functor, Equivalent_term);
ontology(Agent_Sender, Equivalent_term, Functor));
(ontology(Agent_Receiver, Functor, Equivalent_term);
ontology(Agent_Receiver, Equivalent_term, Functor))),
Final_term = Equivalent_term.

meta(Initial _term, Final_term, Agent_Sender) : —

functor (Initial term, Functor, Arity), Arity = 2,

symmetric(Functor), Initial term = ..List,

delete(List, Functor, Result_list),

reverse(Result_list, Reversed_list),

append([Functor], Reversed_list, Final_list),

Final_term = ..Final_list.

The procedure meta is automatically invoked, again via reflection, by the interpreter.

It is necessary to avoid unwanted variable bindings while meta-reasoning about mes-
sages. In DALI, message contents are always reified, i.e., transformed into a ground
term, before they are sent, and thus they are received in reified form. Then, the inter-
preter includes facilities for “reification”, or “naming”, and “de-reification”, or “un-
naming” of language expressions (also this issue is discussed at length in [1]).

6 DALI Communication Architecture

In this section we summarize the overall DALI communication architecture, that puts
together the functionalities of filter, meta-reasoning and the protocol layers. The archi-
tecture consists of three levels: the first level implements the protocol and the filter,
i.e., the first two layers of the communication structure; the second level includes the
meta-reasoning layer; the third level consists of the DALI interpreter, which is able to
activate the agents. Each agent is defined by a .txt file, containing the agent code written
in DALI. When an agent receives an external event through the prinsiéadmessage

the DALI interpreter calls the filter layer by invoking its internal rule:

receive(send_message(External event, Agent_Sender)) : —
told(Agent_Sender, send_message(External_event)), ...

If the message overcomes the security check, then the interpreter automatically in-
vokes the meta-level in order to understand the external event. The meta reasoning pro-

11

cess initially has to “un-name” the message content, so as to verify if (an instance of)
Externaleventbelong to the set of external events known by the agent without applying
the meta procedure. If it is the case, then the agent reacts directly, else the interpreter
takes advantage of meta reasoning capabilities for finally finding a reactive rule of the
logic program applicable to the context.

Similarly, the meta reasoning level is called for the primitivesopose exe-
cuteproc, queryref andis_a_fact The procedurenetain fact contains a special rule for
each different communication act. E. g., the code for the primjiieposeis reported
below: if the action proposed belong to the actions occurring in the logic program of
agent, then the interpreter sends back to the proposer agent a massagproposal
else areject proposal

receive(propose(Action, Conditions, Sender_Agent)) : —
told(Sender_Agent, propose(Action, Conditions)), ...,
call_meta_propose(Action, Conditions, Sender_Agent).
call_meta_propose(Action, Conditions, Sender_Agent) : —
once(call_propose(Action, Conditions, Sender_Agent)).
call_propose(Action, Conditions, Sender_Agent) : —
denaming(Action, New_action), exists_action(New_action),
execute_propose(New_action, Conditions, Sender_Agent).
call_propose(Action, Conditions, Sender_Agent) : —
meta(Action, New_term, _), denaming(New_term, New_action),
exists_action(New_action),
execute_propose(New_action, Conditions, Sender_Agent).

In the first rule ofcall_proposethe interpreter, after the de-naming of the term, ver-
ifies whether the agent knows the action, without applying either the ontology or other
properties. In the second rule, called if the first one fails, the interpreter changes the
name of the action by applying the meta reasoning and, after the de-naming, checks
again if (an instance of) the required action exists among those feasible by the agent.
The link with the part of the DALI interpreter that handles events, goals and actions is
represented by the procedweecutepropose Via this procedure the action, if recog-
nized, is put into the queue of actions that are waiting to be executed.

7 Example: an Italian client in an English pub

We propose an example of interaction between DALI agents employing the communi-
cation architecture that we have discussed. We consider four agemtge(i) waiter:
he is a pub (or cafeteria) waiter that receives orders and serves drinks to clients; (ii)
agentgino: an italian client, who walks into the cafeteria and orders a beer incorrectly;
(i) agentwife: wife of another clientbob, who is a drunkard and never finds his way
home; (iv)agentfriend: friend of the italian cliengino.

The italian clientgino walks into the pub and orders a beer, mixing Italian and
English languages and mispelling the wdekr He sends to the waiter the message:

send_message(voglio(gino, ber), gino).

12

The waiter speaks a bit of italian, i.e., he applies the item of his ontology:
ontology(voglio, request), and understands thabglio is equivalent tarequest But
he still doesn't understarukr, and thus informgino about this problem.

not_know(C, P) : — requestP(C, P),not(clause(product(P,_),_)).
not_know(C, P) : — requestP(C, _, P), not(clause(product(P,),)).
not_knowlI(C, P) :> clause(agent(A),y,
messageA(C,in form(not_know(P), A)).
gino, not speaking English very well, asks friend for how to formulate his request
correctly:

E
):

ask_to_friend(F) : — informP(not_know(F),waiter).
ask_to_friendI(F') :> clause(agent(Agent),),
messageA(friend, send_message(how_tell(F, Agent), Agent)).
The agenfriend, aware of the poor English @fino, by using the ontology he has
learned during their acquaintance (that thus contains theofaotogy(gino,ber,beey)
informs the waiter thaber is equivalent tdeer

how_tell E(F, Agent) :> clause(agent(Ag), -),
clause(ontology(Ag, F, P1),),
messageA(waiter, in form(how_tell(Agent, F, P1), Ag)).
The waiter, when receives the information about the teemadds it to his ontology
and serves the beer (if available).

request(Agent, F, P1) : — informP(how_tell(Agent, F, P1), _).
requestI (Agent, F, P1) : — assert(ontology(Agent, F, P1)).
serve_drink(C,F) : — requestP(C, _, F), available(F).
serve_drinkI(C, F) :> serveA(C, F).

The agenwife, if the husbandobisn’'t back home by 11 p.m., tries to go to the
pub in order to find out ibob is there. She asks the waiter (by using the primitive
is_afact) if bobis in the pub. The waiter responds by the primitiwform, according to
the DALI/FIPA protocol.

not_at_home(Husband, Today) : — missing_-husbandP(Husband),

datime(T), arg(3, T, Today),

arg(4,T, Hour), Hour >= 23.
not_at_homel (Husband, Today) :> clause(agent(Agent),), go-to_pubA,

messageA(waiter,

is_a_fact(in_pub(M, Today), Agent)).
Then, by exploiting the content of the primitiweform sent back by the waiter (who
records all clients that enter and exit the pub), knows that the husband is at the pub. She
reacts by screaming, taking her husband home and telling to the waiter that he mustn’t
serve alcoholic drinks to her husband (including wine).

husband_in_pub : — informP(agree(in_pub(gino,9)), values(yes), waiter),
messageA(waiter, in form(not_serve(gino, wine), wife)),
messageA(waiter, con firm(alcoholic(wine), wife)).
The inform and confirm primitives sent to the waiter are used by the told rule of
waiter's check layer:

13

told(Ag, send-message(request(Ag, P))) : —
not(informP(not_serve(Ag, P),wife)), alcoholicP(P).
When the drunkard husband will ask for an alcoholic drink in the future, the mes-
sage will be eliminated.

8 Conclusions

This paper has discussed how communication has been designed and implemented in
the DALI Logic Programming Agent-Oriented language. We have shown the kinds of
interaction and the abstract roles that the DALI/FIPA protocol supports and the func-
tionalities of the check and meta-reasoning layers. We have noticed that the proposed
architecture takes profit of features which are proper of logic languages, such as meta-
reasoning and logical reflection.

There are other FIPA-compliant agent frameworks. A future aim of our experiments
in fact is that of ensuring interoperability between DALI and these other approaches.
A relevant one is JADE, a FIPA-compliant framework fully developed in Java. Each
agent platform, written in Java and importing the JADE libraries, can be split on sev-
eral hosts. Each agent is implemented as a Java thread, and Java events are used for
effective and light-weight communication between agents on the same host. A num-
ber of FIPA-compliant DFs (Directory Facilitators) agents can be started at run time in
order to implement multi-domain applications. About security, JADE provides proper
mechanisms to authenticate and verify the rights assigned to agents. [2]

The 3APL platform is the first platform that has supported easy and direct imple-
mentation and execution of cognitive agents. The platform can be distributed across
different machines connected in a network. Moreover, the 3APL platform is FIPA com-
pliant in the sense that agents running on this platform can in principle communicate
with agents that run on a different FIPA compliant platforms such as JADE. [11]

However, the DALI project demonstrates that a logic programming language with a
logic semantics [5] is able to exhibit, also for communication, features that are as pow-
erful (and even more flexible) as those of approaches that are either not fully logical,
or semantically more complex. The DALI implementation cannot currently compete
in efficiency with others like JADE, which have been developed in the industry, and
on which a lot of effort has been spent by several companies and universities. Never-
theless, DALI is competitive from the point of view of the ease and flexibility of use,
for every kind of application, but especially where context-sensitivity, adaptability and
intelligence are needed. We have equipped DALI with an interface with Java, that has
allowed us to develop applications (hamely in component management and reconfigura-
tion in distributed systems [3]) where the Java part is able to interact at a low level with
legacy systems, and the DALI part implements intelligent reasoning and sophisticated
interaction. The declarative semantics of DALI has been defined in [5]. The operational
semantics is being defined in a Ph.D. Thesis. The behaviour of DALI interpreter has
been modeled and checked by using the ¢mmodel checker [9]. A future aim of this
research is that of developing and experimenting cooperative models for DALI logical
agents, also based on game theory. As a first step, we are studying formal models for

14

making DALI agents adaptive with respect to the level of trust that they assign to the
other agents.

References

1.

10.

11.

12.

J. Barklund, S. Costantini, P. DellAcqua e G. A. Lanzaromeflection Principles in
Computational Logic Journal of Logic and Computation, Vol. 10, N. 6, December 2000,
Oxford University Press, UK.

. F. Bellifemine, A. Poggi, G. RimassaADE: A FIPA-compliant agent framewarkn: Proc.

of the 4th International Conference and Exhibition on The Pratical Application of Intelligent
Agents and Multiagentseld in London,UK, December 1999.

. M. Castaldi, S. Costantini, S. Gentile, A. Tocchifo]ogic-Based Infrastructure for Recon-

figuring Applications In: J. A. Leite, A. Omicini. L. Sterling, P. Torroni (edsReclarative
Agent Languages and Technologies, Proc. of the 1st International Workshop, DALT 2003
(held in Melbourne, Victoria, July 2003), Available also on-line, URL
http://centria.di.fct.unl.pt/ jleite/dalt03/papers/dalt2003proceedings.pdf.

. S. Costantini. Towards active logic programming. In A. Brogi and P. Hill, edifnss;. of

2nd International Workshop on component-based Software Development in Computational
Logic (COCL'99) PLI'99, (held in Paris, France, September 1999), Available on-line, URL
http://www.di.unipi.it/ brogi/ResearchActivity/ COCL99/proceedings/index.html.

. S. Costantini and A. TocchioA Logic Programming Language for Multi-agent Systems

In S. Flesca, S. Greco, N. Leone, G. lanni (edsogics in Atrtificial Intelligence, Proc. of
the 8th Europ. Conf., JELIA 2002held in Cosenza, Italy, September 2002), LNAI 2424,
Springer-Verlag, Berlin, 2002.

. U. Endriss, N. Maudet, F. Sadri, F. TonLogic-based Agent Communication Protocols

In: Lecture Notes in Computer Science, Advances in Agent Communication, Proc. of the
International Workshop on Agent Communication Languages AC9&d in Melbourne,
Australia, July 14 2003), LNCS 2922, Springer-Verlag, Berlin, 2004.

. M.-P. Huget, J.-L. Koninginteraction Protocol Engineerindn: Lecture Notes in Computer

Science, Communication in Multiagent Systems, Agent Communication Languages and Con-
versation PoliciesLNCS 2650, Springer-Verlag, Berlin, 2003.

. M. N. Huhns, L. M. Stepheng\ultiagent System and Societies of Agerits Multiagent

Systems: A modern Approach to Distributed Artificial Intelligeric99.

. B. Intrigila, I. Melatti, A. Tocchio,Model-checking DALI with Mu$, Tech. Rep., Univ. of

L'Aquila, 2004.

R. A. Kowalski,How to be Artificially Intelligent - the Logical WayDraft, revised February
2004, Available on line, URL

http://www-Ip.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

E.C. Van der Hoeve, M. Dastani, F. Dignum, J.-J. Me$APRL Platform In: Proc. of the The
15th Belgian-Dutch Conference on Artificial Intelligence(BNAIC2003Id in Nijmegen,
The Netherlands, 2003.

J. M. Serrano, S. Ossowslkn Organisational Approach to the Design of Interaction Pro-
tocols In: Lecture Notes in Computer Science, Communications in Multiagent Systems:
Agent Communication Languages and Conversation Politil€S 2650, Springer-Verlag,
Berlin, 2003.

15

