
Using a theorem prover for reasoning on

constraint problems

Marco Cadoli and Toni Mancini

Dipartimento di Informatica e Sistemistica
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Abstract. Specifications of constraint problems can be considered logi-
cal formulae. As a consequence, it is possible to infer their properties by
means of automated reasoning tools. The purpose of this paper is exactly
to link two important technologies: automated theorem proving and con-
straint programming. We report the results on using a theorem prover
and a finite model finder for checking existence of symmetries, checking
whether a given formula breaks a symmetry, and checking existence of
functional dependencies among groups of predicates. As a side-effect, we
propose a new domain of application and a brand new set of benchmarks
for ATP systems.

1 Introduction

The style used for the specification of a combinatorial problem varies a lot among
different languages for constraint programming. In this paper, rather than con-
sidering procedural encodings such as those obtained using libraries (in, e.g.,
C++ or prolog), we focus on highly declarative languages. In fact, many
systems and languages for the solution of constraint problems (e.g., ampl [9],
opl [20], gams [5], dlv [7], smodels [18], and np-spec [4]) clearly separate
the specification of a problem, e.g., graph 3-coloring, and its instance, e.g., a
graph, using a two-level architecture for finding solutions: the specification is in-
stantiated (or grounded) against the instance, and then an appropriate solver is
invoked. There are several benefits in this separation: obviously declarativeness
increases, and the solver is completely decoupled from the specification. Ideally,
the programmer can focus only on the specification of the problem, without com-
mitting a priori to a specific solver. In fact, some systems, e.g., ampl [9], are
able to translate –at the request of the user– a specification in various formats,
suitable for different solvers.

Again, the syntax varies a lot among such languages: ampl, opl, and gams

allow the representation of constraints by using algebraic expressions, while dlv,
smodels, and np-spec are rule-based languages. Anyway, from an abstract
point of view, all such languages are extensions of existential second-order logic
(ESO) on finite databases, where the existential second-order quantifiers and
the first-order formula represent, respectively, the guess and check phases of the
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constraint modelling paradigm. In particular, in all such languages it is possible
to embed ESO queries, and the other way around is also possible, as long as only
finite domains are considered.

Since specifications are logical formulae, it is possible to infer their properties
by means of automated reasoning tools. The purpose of this paper is exactly to
link two important technologies: automated theorem proving (ATP) and con-
straint programming. The architecture of the system we envision is represented
in Figure 1.

In particular, we report the results on using a theorem prover and a finite
model finder for reasoning on specifications of constraint problems, represented
as ESO formulae. We focus on two forms of reasoning:

– checking existence of value symmetries, i.e., properties of the specification
that allow to exchange values of the finite domains without losing all solu-
tions; on top of that, we check whether a given formula breaks such symme-
tries;

– checking existence of functional dependencies, i.e., properties that force val-
ues of some guessed predicates to depend on the value of some others.

There are at least two reasons why a system should make automatically such
checks: first of all, it has been proven that solving can be made much more effi-
cient by, e.g., recognizing and breaking symmetries (a wide literature is nowadays
available, cf., e.g., [2, 6]). Secondly, the person performing constraint modelling
may be interested in the above properties: as an example, existence (or lack) of
a dependency may reveal a bug in the specification.

The main result of this paper is that it is actually possible to use ATP tech-
nology to reason on combinatorial problems, and we exhibit several examples
proving it. As a side-effect, we propose a new domain of application and a brand
new set of benchmarks for ATP systems, which is not represented in large repos-
itories, such as TPTP (cf. www.tptp.org).

Relations between constraint satisfaction and deduction have been observed
since several years (cf., e.g., the early work [1], and [12] for an up-to-date report).
The use of automated tools for preprocessing constraint satisfaction problems
(CSPs) has been limited, to the best of our knowledge, to the instance level.
As an example, the use of packages such as nauty [16] for finding symmetries



on CSPs has been proposed in [6]. On the other hand, not much work has
been done on reasoning at the specification level. A limited form of reasoning is
offered by the opl system, which checks (syntactically) whether a specification
contains only linear constraints and objective function, and in this case invokes
an integer linear programming solver (typically very efficient); otherwise, it uses
a constraint programming solver.

The rest of the paper is organized as follows: in Section 2 we give some pre-
liminaries on modelling combinatorial problems as formulae in ESO. Sections 3
and 4 are devoted to the description of experiments in checking symmetries
and dependencies, respectively. In Section 5 we conclude the paper, and present
current research.

2 Preliminaries

In this paper, we use existential second-order logic (ESO) for the specification
of problems, which allows to represent all search problems in the complexity
class NP [8]. The use of ESO as a modelling language for problem specifications
is common in the database literature, but unusual in constraint programming,
therefore few comments are in order. Constraint modelling systems like those
mentioned in Section 1 have a richer syntax and more complex constructs, and
we plan to eventually move from ESO to such languages. For the moment, we
claim that studying the simplified scenario is a mandatory starting point for
more complex investigations, and that our results can serve as a basis for re-
formulating specifications written in higher-level languages. Anyway, examples
using the syntax of the implemented language opl are exhibited in Sections 4
and 5.

Coherently with all state-of-the-art systems, we represent an instance of a
problem by means of a relational database. All constants appearing in a database
are uninterpreted, i.e., they don’t have a specific meaning.

An ESO specification describing a search problem π is a formula ψπ

∃S φ(S,R), (1)

where R = {R1, . . . , Rk} is the relational schema for every input instance (i.e., a
fixed set of relations of given arities denoting the schema for all input instances
for π), and φ is a quantified first-order formula on the relational vocabulary
S ∪ R ∪ {=} (“=” is always interpreted as identity).

An instance I of the problem is given as a relational database over the schema
R, i.e., as an extension for all relations in R. Predicates (of given arities) in the
set S = {S1, . . . , Sn} are called guessed, and their possible extensions (with
tuples on the domain given by constants occurring in I plus those occurring in
φ, i.e., the so called Herbrand universe) encode points in the search space for
problem π.

Formula ψπ correctly encodes problem π if, for every input instance I, a
bijective mapping exists between solutions to π and extensions of predicates in



S which verify φ(S, I):

For each instance I: Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ.

It is worthwhile to note that, when a specification is instantiated against an
input database, a CSP is obtained.

Example 1 (Graph 3-coloring). In this NP-complete decision problem (cf. [10,
Prob. GT4, p. 191]) the input is a graph, and the question is whether it is
possible to give each of its nodes one out of three colors (red, green, and blue),
in such a way that adjacent nodes (not including self-loops) are never colored
the same way. The question can be easily specified as an ESO formula ψ on the
input schema R = {edge(·, ·)}:

∃RGB ∀X R(X) ∨ G(X) ∨ B(X) ∧ (2)

∀X R(X) → ¬G(X) ∧ (3)

∀X R(X) → ¬B(X) ∧ (4)

∀X B(X) → ¬G(X) ∧ (5)

∀XY X 6= Y ∧ R(X) ∧ R(Y ) → ¬edge(X,Y ) ∧ (6)

∀XY X 6= Y ∧ G(X) ∧ G(Y ) → ¬edge(X,Y ) ∧ (7)

∀XY X 6= Y ∧ B(X) ∧ B(Y ) → ¬edge(X,Y ). (8)

3 Value symmetries

In this section we face the problem of automatically detecting and breaking
some symmetries in problem specifications. In Subsection 3.1 we give prelimi-
nary definitions of problem transformation and symmetry taken from [3], and
show how the symmetry-detection problem can be reduced to checking seman-
tic properties of first-order formulae. We limit our attention to specifications
with monadic guessed predicates only, and to transformations and symmetries
on values. Motivations for these limitations are given in [3]; here, we just recall
that non-monadic guessed predicates can be transformed in monadic ones by
unfolding and by exploiting the finiteness of the input database. We refer to [3]
also for considerations on benefits of the technique on the efficiency of problem
solving. In Subsection 3.2 we then show how a theorem prover can be used to
automatically detect and break symmetries.

3.1 Definitions

Definition 1 (Uniform value transformation (UVT) of a specification
[3]). Given a problem specification ψ

.
= ∃S φ(S,R), with S = {S1, . . . Sn}, Si

monadic for every i ∈ [1, n], and input schema R, a uniform value transforma-
tion (UVT) for ψ is a mapping σ : S → S, which is total and onto, i.e., defines
a permutation of guessed predicates in S.



The term “uniform value” transformation in Definition 1 is used because swap-
ping monadic guessed predicates is conceptually the same as uniformly exchang-
ing domain values in a CSP.

From here on, given φ and σ as in the above definition, φσ is defined as
φ[S1/σ(S1), . . . , Sn/σ(Sn)], i.e., φσ is obtained from φ by uniformly substituting
every occurrence of each guessed predicate with the one given by the transfor-
mation σ. Analogously, ψσ is defined as ∃S φσ(S,R).

We now define when a UVT is a symmetry for a given specification.

Definition 2 (Uniform value symmetry (UVS) of a specification [3]).
Let ψ

.
= ∃S φ(S,R), be a specification, with S = {S1, . . . Sn}, Si monadic for

every i ∈ [1, n], and input schema R, and let σ be a UVT for ψ. Transformation
σ is a uniform value symmetry (UVS) for ψ if every extension for S which
satisfies φ, satisfies also φσ and vice versa, regardless of the input instance, i.e.,
for every extension of the input schema R.

Note that every CSP obtained by instantiating a specification with σ has at least
the corresponding uniform value symmetry.

In [3], it is shown that checking whether a UVT is a UVS reduces to checking
equivalence of two first-order formulae:

Proposition 1 ([3]). Let ψ be a problem specification of the kind (1), with only
monadic guessed predicates, and σ a UVT for ψ. Transformation σ is a UVS
for ψ if and only if φ ≡ φσ.

Once symmetries of a specification have been detected, additional constraints
can be added in order to break them, i.e., to wipe out from the solution space
(some of) the symmetrical points. These kind of constraints are called symmetry-
breaking formulae, and are defined as follows.

Definition 3 (Symmetry-breaking formula [3]). Let ψ
.
= ∃S φ(S,R), be

a specification, with S = {S1, . . . Sn}, Si monadic for every i ∈ [1, n], and input
schema R, and let σ be a UVS for ψ. A symmetry-breaking formula for ψ with
respect to symmetry σ is a closed (except for S) formula β(S) such that the
following two conditions hold:

1. Transformation σ is no longer a symmetry for ∃S φ(S,R) ∧ β(S):

(φ ∧ β(S)) 6≡ (φ ∧ β(S))
σ

;

2. Every model of φ(S,R) can be obtained by those of φ(S,R) ∧ β(S) by ap-
plying symmetry σ:

φ(S,R) |=
∨

σ∈σ∗

(φ(S,R) ∧ β(S))σ . (9)

where σ is a sequence (of finite length ≥ 0) over σ (i.e., a string in the
regular language σ∗), and, given a first-order formula γ(S), γ(S)σ denotes
(· · · (γ(S)σ) · · · )σ, i.e., σ is applied |σ| times (if σ = 〈〉, then γ(S)σ is
γ(S) itself).



If β(S) matches the above definition, then we are entitled to solve the problem
∃S φ(S,R) ∧ β(S) instead of the original one ∃S φ(S,R). In fact, point 1 in
the above definition states that formula β(S) actually breaks σ, since, by Propo-
sition 1, σ is not a symmetry of the rewritten problem. Furthermore, point 2
states that every solution of φ(S,R) can be obtained by repeatedly applying σ
to some solutions of φ(S,R) ∧ β(S). Hence, all solutions are preserved in the
rewritten problem, up to symmetric ones.

It is worthwhile noting that, even if in formula (9) σ ranges over the (infinite)
set of finite-length sequences of 0 or more applications of σ, this actually reduces
to sequences of length at most n!, since this is the maximum number of succes-
sive applications of σ that can lead to all different permutations. Moreover, we
observe that the inverse logical implication always holds, because σ is a UVS,
and so φ(S,R)σ ≡ φ(S,R).

3.2 Experiments with the theorem prover

Proposition 1 suggests that the problem of detecting UVSs of a specification ψ
of the kind (1) can in principle be performed in the following way:

1. Selecting a UVT σ, i.e. a permutation of guessed predicates in ψ (if ψ has n
guessed predicates, there are n! such UVTs);

2. Checking whether σ is a UVS, i.e., deciding whether φ ≡ φσ.

The above procedure suggests that a first-order theorem prover can be used to
perform automatically point 2. Even if we proved in [3] that this problem is
undecidable, we show how a theorem prover usually performs well on this kind
of formulae.

As for the symmetry-breaking problem, from conditions of Definition 3 it
follows that also the problem of checking whether a formula breaks a given UVS
for a specification clearly reduces to semantic properties of logic formulae.

In this section we give some details about the experimentation done using
automated tools. First of all we note that, obviously, all the above conditions can
be checked by using a refutational theorem prover. It is interesting to note that,
for some of them, we can use a finite model finder. In particular, we can use such
a tool for checking statements (such as condition 1 of Definition 3 or the negation
of the condition of Proposition 1) which are syntactically a non-equivalence. As
a matter of facts, it is enough to look for a finite model of the negation of the
statement, i.e., the equivalence. If we find such a model, then we are sure that
the non-equivalence holds, and we are done. The tools we used are otter [15],
and mace [14], respectively, in full “automatic” mode. Complete source files are
available at http://www.dis.uniroma1.it/~tmancini/research/cilc04.

Detecting symmetries The examples on which we worked are the following.

Example 2 (Graph 3-coloring: Example 1 continued). The mapping σR,G : S →
S such that σR,G(R) = G, σR,G(G) = R, σR,G(B) = B is a UVT for it. It is



easy to observe that formula φσR,G

is equivalent to φ, because clauses of the
former are syntactically equivalent to clauses of the latter and vice versa. This
implies, by Proposition 1, that σR,G is also a UVS for the specification of the
3-coloring problem. The same happens also for transformations σR,B and σG,B

that swap B with, respectively, R and G.

Example 3 (Not-all-equal Sat). In this NP-complete problem [10], the input is
a propositional formula in CNF, and the question is whether it is possible to
assign a truth value to all the variables in such a way that the input formula is
satisfied, and that every clause contains at least one literal whose truth value is
false. We assume that the input formula is encoded by the following relations:

– inclause(·, ·); tuple 〈l, c〉 is in inclause iff literal l is in clause c;
– l+(·, ·); a tuple 〈l, v〉 is in l+ iff l is the positive literal relative to the propo-

sitional variable v, i.e., v itself;
– l−(·, ·); a tuple 〈l, v〉 is in l− iff l is the negative literal relative to the propo-

sitional variable v, i.e., ¬v;
– var(·), containing the set of propositional variables occurring in the formula;
– clause(·), containing the set of clauses of the formula.

A specification for this problem is as follows (T and F represent the set of
variables whose truth value is true and false, respectively):

∃TF ∀X var(X) ↔ T (X) ∨ F (X) ∧ (10)

∀X ¬ (T (X) ∧ F (X)) ∧ (11)

∀C clause(C) →
[

∃L inclause(L,C) ∧ ∀V
(

l
+(L,V )→T (V )

)

∧
(

l
−(L,V )→F (V )

) ]

∧ (12)

∀C clause(C) →
[

∃L inclause(L,C) ∧ ∀V
(

l
+(L,V )→F (V )

)

∧
(

l
−(L,V )→T (V )

) ]

. (13)

Constraints (10–11) force every variable to be assigned exactly one truth value;
moreover, (12) forces the assignment to be a model of the formula, while (13)
leaves in every clause at least one literal whose truth value is false.

Let us consider the UVT σT,F , defined as σT,F (T ) = F and σT,F (F ) = T . It

is easy to prove that σT,F is a UVS for this problem, since φσT,F

is equivalent
to φ.

The results we obtained with otter are shown in Table 1. The third row refers
to the version of the Not-all-equal Sat problem in which all clauses have three
literals, the input is encoded using a ternary relation clause(·, ·, ·), and the spec-
ification varies accordingly. It is interesting to see that the performance is always
quite good.

A note on the encoding is in order. Initially, we gave the input to otter

exactly in the format specified by Proposition 1, but the performance was quite
poor: for 3-coloring the tool did not even succeed in transforming the formula in



Spec Symmetry CPU time (sec) Proof length Proof level

3-coloring σR,G 0.27 43 12

Not-all-equal Sat σT,F 0.22 54 19

Not-all-equal 3-Sat σT,F 4.71 676 182

Table 1. Performance of otter for proving that a UVT is a UVS.

clausal form, and symmetry was proven only for very simplified versions of the
problem, e.g., 2-coloring, omitting constraint (2). Results of Table 1 have been
obtained by introducing new propositional variables defining single constraints.
As an example, constraint (2) is represented as

covRGB <-> (all x (R(x) | G(x) | B(x))).,

where covRGB is a fresh propositional variable. Obviously, we wrote a first-order
logic formula encoding condition of Proposition 1, and gave its negation to ot-

ter in order to find a refutation.
As for proving non-existence of symmetries, we used the following example.

Example 4 (Graph 3-coloring with red self-loops). We consider a modification of
the problem of Example 1, and show that only one of the UVTs in Example 2 is
indeed a UVS for the new problem. Here, the question is whether it is possible to
3-color the input graph in such a way that every self loop insists on a red node.
In ESO, one more clause (which forces the nodes with self loops to be colored
in red) must be added to the specification in Example 1:

∀X edge(X,X) → R(X). (14)

UVT σG,B is a UVS also of the new problem, because of the same argument of

Example 2. However, for what concerns σR,G, in this case φσR,G

is not equivalent
to φ: as an example, for the input instance edge = {(v, v)}, the color assignment
R,G,B such that R = {v}, G = B = ∅ is a model for the original problem,
i.e., R,G,B |= φ(R,G,B, edge). It is however easy to observe that R,G,B 6|=

φσR,G

(R,G,B, edge), because φσR,G

is verified only by color assignments for
which G(v) holds. This implies, by Proposition 1, that σR,G is not a UVS. For
the same reason, also σR,B is not a UVS for the new problem.

We wrote a first-order logic formula encoding condition of Proposition 1 for σR,G

on the above example and gave its negation to mace in order to find a model of
the non-equivalence. mace was able to find the model described in Example 4
in less than one second of CPU time.

Breaking symmetries We worked on the 3-coloring problem specification
given in Example 1 and the UVS σR,G defined in Example 2. This UVS can
be broken in several ways, as an example by the following formula:



βR,G
sel (R,G,B)

.
= R(v) ∨B(v), (15)

that forces a selected node, say v, not to be colored in green. The simpler formula
R(v) breaks two symmetries, namely σR,G and σR,B , and can be obtained as
the logical and of (15) and R(v) ∨G(v).

We used mace and otter in order to prove that (15) is indeed a symmetry-
breaking formula for the 3-coloring problem specification with respect to σR,G,
i.e., for testing conditions 1 and 2 (respectively) of Definition 3. Both systems
succeeded in less than one second of CPU time.

As described in [3], a UVS can be broken in several ways, and with different
effectiveness. As an example, σR,G in the 3-coloring problem specification can
be broken also by the following formula:

βR,G
card(R,G,B)

.
= |R| ≤ |G|, (16)

that forces green nodes to be at least as many as red ones. It is easy to prove that
formula (16) respects both conditions of Definition 3, and of course it breaks the
symmetry more effectively than formula (15), since formulae at the two sides
of condition 1 of Definition 3 have few common models (cf. [3] for a discussion
of the effectiveness of a symmetry-breaking formula. It is worth noting that
this concept alludes to how completely a formula breaks the symmetry, and it
is not related to efficiency issues, e.g., the amenability of the constraint to be
propagated.)

However, this example highlights some difficulties that can arise when us-
ing first-order ATPs. In fact, although constraint (16) can be written in ESO
using standard techniques, it is not first-order definable. Therefore, conditions
in Definition 3 are (non-)equivalence of second-order formulae. So, the use of a
first-order theorem prover may in general not suffice.

However, in some circumstances, it is possible to synthesize first-order con-
ditions that can be used to infer the truth value of those of Definition 3. This
is the case of formulae defined in ESO. As an example, by using mace and ot-

ter collaboratively, we proved point 1 of Definition 3 for formula (16) on the
3-coloring problem specification in few hundredths of second.

4 Dependent predicates

In this section we tackle the problem of recognizing guessed predicates that
functionally depend on the others in a given specification. This means that, for
every solution of any instance, the extension of a dependent guessed predicate
is determined by the extensions of the others.

Recognizing functionally dependent predicates in a specification is very im-
portant for the efficiency of any backtracking solver, since branches regarding
dependent predicates (that represent values assigned to variables of the CSP
obtained after instantiation) can be safely avoided. As an example, it is shown
in [11] how to modify the Davis-Putnam procedure for SAT so that is avoids



branches on variables added during the clausification of non-CNF formulae,
since values assigned to these variables depend on assignments to the other
ones. Moreover, specific SAT solvers, e.g., eqsatz [13], have been developed
in order to appropriately handle (by means of the so-called “equivalence rea-
soning”) equivalence clauses, which have been recognized to be a very common
structure in the SAT encoding of many hard real-world problems, and a major
obstacle to the Davis-Putnam procedure.

The automatic recognition of functionally dependent predicates is important
also to improve the quality aspects of specifications as software artefacts. A
dependent predicate may be an evidence either of a bug in the problem model,
or of a bad design choice, since the adopted model for the problem is, in some
sense, redundant. Of course, the use of dependent predicates can also be the
consequence of a precise design choice, e.g., with the goal of a more modular
and readable problem specification. In any case, a feature of the system that
automatically checks whether a dependence holds is likely to be useful to the
designer.

In Subsection 4.1, we give the formal definition of dependent predicates in a
specification, and in Subsection 4.2 show how the problem of checking whether a
set of guessed predicates is dependent from the others reduces to check semantic
properties of a first-order formula. We observe that definitions and results in
this section are original, and do not appear elsewhere. Proof of theorems are not
given for space reasons, and will appear in the full paper.

4.1 Definitions

Definition 4 (Functional dependence of a set of predicates in a specifi-
cation). Given a problem specification ψ

.
= ∃SP φ(S,P ,R), with input schema

R, P functionally depends on S if, for each instance I of R and for each pair
of interpretations M , N of (S,P ) it holds that, if

1. M 6= N , and
2. M, I |= φ, and
3. N, I |= φ,

then M|S 6= N|S, where ·|S denotes the restriction of an interpretation to predi-
cates in S.

The above definition states that P functionally depends on S, or that S func-
tionally determines P , if it is the case that, regardless of the instance, each pair
of distinct solutions of ψ must differ on predicates in S, which is equivalent to
say that no two different solutions of ψ exist that coincide on the extension for
predicates in S but differ on that for predicates in P .

Example 5 (Graph 3-coloring: Example 1 continued). In the 3-coloring problem,
one of the three guessed predicates is functionally dependent on the others.
As an example, B functionally depends on R and G, since, regardless of the
instance, it can be defined as ∀X B(X) ↔ ¬(R(X) ∨ G(X)): constraint (2) is



equivalent to ∀X ¬(R(X)∨G(X)) → B(X) and (4) and (5) imply ∀X B(X) →
¬(R(X) ∨ G(X)). In other words, for every input instance, no two different
solutions exist that coincide on the set of red and green nodes, but differ on the
set of blue ones.

Example 6 (Not-all-equal Sat: Example 3 continued). One of the two guessed
predicates T and F is functionally dependent on the other, since by con-
straints (10–11) it follows, e.g., ∀X F (X) ↔ var(X) ∧ ¬T (X).

Next, we show that the problem of checking whether a subset of the guessed
predicates in a specification is functionally dependent on the remaining ones,
reduces to verifying semantic properties of a first-order formula. To simplify
notations, given a list of predicates T , we write T

′ for representing a list of the
same number of predicates with, respectively, the same arities, that are fresh,
i.e., do not occur elsewhere in the context at hand. Also, T ≡ T

′ will be a
shorthand for the formula

∧

T∈T

∀X T (X) ≡ T ′(X),

where T and T ′ are corresponding predicates in T and T
′, respectively, and X

is a list of variables of the appropriate arity.

Theorem 1. Let ψ
.
= ∃SP φ(S,P ,R) be a problem specification with input

schema R. P functionally depends on S if and only if the following formula is
valid:

[φ(S,P ,R) ∧ φ(S′,P ′,R) ∧ ¬(SP ≡ S
′
P

′)] → ¬(S ≡ S
′). (17)

Unfortunately, the problem of checking whether the set of predicates in P is
functionally dependent on the set S is undecidable, as the following result shows:

Theorem 2. Given a specification on input schema R, and a partition (S,P )
of its guessed predicates, the problem of checking whether P functionally depends
on S is not decidable.

Nonetheless, as shown in the next section, an ATP usually performs very well
in deciding whether formulae of the kind of (17) are valid or not.

4.2 Experiments with the theorem prover

Using Theorem 1 it is easy to write a first-order formula that is valid if and
only if a given dependency holds. We used otter for proving the existence of
dependencies among guessed predicates of different problem specifications:

– Graph 3-coloring (cf. Example 5), where one among the guessed predicates
R, G, B is dependent on the others.

– Not-all-equal Sat (cf. Example 6), where one between the guessed predicates
T and F is dependent on the other.



For each of the above specifications, we wrote a first-order logic encoding of
formula (17), and gave its negation to otter in order to find a refutation.

For the purpose of testing effectiveness of the proposed technique in the con-
text of specifications written in implemented languages, we considered also the
Sailco inventory problem, taken from the opl book [20, Section 9.4, Statement
9.17] and part of the oplstudio distribution package (as file sailco.mod).

Example 7 (The Sailco inventory problem). This problem specification models
a simple inventory application, in which the question is to decide how many
sailboats the Sailco company has to produce over a given number of time periods,
in order to satisfy the demand and to minimize production costs. The demand for
the periods is known and, in addition, an inventory of boats is available initially.
In each period, Sailco can produce a maximum number of boats (capacity) at
a given unitary cost (regularCost). Additional boats can be produced, but at
higher cost (extraCost). Storing boats in the inventory also has a cost per period
(inventoryCost per boat).

Figure 2 shows an opl model for this problem. An equivalent –apart, of
course, for the objective function– ESO specification would be more complex,
because of the presence of arithmetic operations in the constraints, and thus
will not be presented. However, the analogous of the instance relational schema,
guessed predicates, and constraints can be clearly distinguished in the opl code.
Guessed predicates of the ESO specification can be obtained in standard ways:
as an example, for the inventory we can define a guessed predicate inv(·, ·) with
the first argument being the period, and the second one the amount of boats
stored in that period, plus additional constraints to force exactly one tuple to
belong to inv(·, ·) for each period.

From the specification in Figure 2, it can be observed that the amount
of boats in the inventory for each time period t > 0 (i.e., inv[t]) is de-
fined in terms of the amount of regular and extra boats produced in period
t by the following relationship: inv[t] = regulBoat[t] + extraBoat[t] -

demand[t] + inv[t-1]. Of course, the same relationship holds in the equiv-
alent ESO specification, making predicate inv(·, ·) functionally dependent on
regulBoat(·, ·) and extraBoat(·, ·).

We opted for an otter encoding that uses function symbols: as an example, the
inv[] array is translated to a function symbol inv(·) rather than to a binary
predicate (the second argument being the time point). More precisely, according
to Theorem 1, a pair of function symbols inv(·) and inv′(·) is introduced. The
same happens for regulBoat[] and extraBoat[]. Moreover, we included in
the otter formula the following formulae which allow to infer ∀t inv(t) =
inv′(t) from equality of inv and inv′ at the initial time period and equivalence
of increments in all time intervals of length 1.

equalDiscrete <-> (inv(0) = inv1(0) &

(all t (t > 0 -> (inv(t) - inv(t-1)) =

(inv1(t) - inv1(t-1))))).

induction <-> (equalDiscrete -> (all t (inv(t) = inv1(t)))).



// Instance schema

int+ nbPeriods = ...; range Periods 1..nbPeriods;

float+ demand[Periods] = ...; float+ regularCost = ...;

float+ extraCost = ...; float+ capacity = ...;

float+ inventory = ...; float+ inventoryCost = ...;

// Guessed predicates

var float+ regulBoat[Periods]; var float+ extraBoat[Periods];

var float+ inv[0..nbPeriods];

// Objective function

minimize ...

// Constraints

subject to {

inv[0] = inventory;

forall(t in Periods) regulBoat[t] <= capacity;

forall(t in Periods)

regulBoat[t] + extraBoat[t] + inv[t-1] = inv[t] + demand[t];

};

Fig. 2. opl specification for the Sailco problem.

Spec S P CPU time (sec) Proof length Proof level

3-coloring R, G B 0.25 27 18

Not-all-equal 3-Sat T F 0.38 18 14

Sailco regulBoat, inv 0.21 29 11
extraBoat

Table 2. Performance of otter for proving that the set P of guessed predicates is
functionally dependent on the set S.

Results of the experiments are presented in Table 2. As it can be observed, the
time needed by otter is always very low.

5 Conclusions and current research

The use of automated tools for preprocessing CSPs has been limited, to the best
of our knowledge, to the instance level (cf. Section 1 for references). In this paper
we proved that current ATP technology is able to perform significant forms of
reasoning on specifications of constraint problems. We focused on two forms of
reasoning: symmetry detection and breaking, and functional dependence check-
ing. Reasoning has been done for various problems, including the ESO encodings
of graph 3-coloring and Not-all-equal Sat, and the opl encoding of an inventory
problem. In general, reasoning is done very efficiently by the ATP, although



int+ N = ...;

range Row 1..N; range Col 1..N;

var Col Queen[Row];

solve {

forall (r1, r2 in Row : r1 <> r2) {

Queen[r1] <> Queen[r2]; // no vertical attack

Queen[r1] + r1 <> Queen[r2] + r2; // no NW-SE diagonal attack

Queen[r1] - r1 <> Queen[r2] - r2; // no NE-SW diagonal attack

}};

Fig. 3. opl specification for the N-queens problem.

effectiveness depends on the format of the input, and auxiliary propositional
variables seem to be necessary.

There are indeed some tasks, namely, proving existence of symmetries in the
Social golfer problem (problem 10 at www.csplib.org) which otter –in the
automatic mode– was unable to do. So far, we used only two tools, namely otter

and mace, and plan to investigate effectiveness of other provers, e.g., vampire

[19]. We note that the wide availability of constraint problem specifications, both
in implemented languages, cf., e.g., [9, 20], and in natural language, cf., e.g., [10],
the CSP-Library (www.csplib.org), the OR-Library (www.ms.ic.ac.uk/info.
html), offers a brand new set of benchmarks for ATP systems, which is not
represented in large repositories, such as TPTP (cf. www.tptp.org).

We believe that ATPs can be used also for other useful forms of reasoning,
apart from those described in this paper. As an example, in Figure 3 we show the
opl specification of the N -queens problem, cf. [20, Section 2.2, Statement 2.16],
which states that three constraints must hold for all pairs of distinct rows (cf. the
condition r1 <> r2). For symmetry reasons, a solution-preserving (and possibly
more efficient) formulation requires the constraints to hold just for totally ordered
pairs of rows, i.e., r1 < r2. From the logical point of view, this can be recognized
simply by proving that swapping r1 and r2 leads to an equivalent specification.
otter was able to prove such an equivalence in less than one second of CPU
time. We are currently investigating the applicability of such a technique for a
general class of specifications, in which symmetries on variables [17] hold.
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