
Quaderni del Dipartimento di Matematica
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Preface

This report contains the Proceedings of the CILC’04 Italian Conference on Computa-
tional Logic held in Parma (Italy), June 16-17, 2004. This is the 19th annual meeting of
the Italian Association “Gruppo Ricercatori e Utenti di Logic Programming” (GULP).
Previous GULP Conferences were held in Italy (from 1986 to 1993), and, since 1994,
alternatively in Italy, Spain, Portugal (and Cuba, in 2000), in cooperation with the
Spanish PRODE Association and the Portuguese Association for Artificial Intelligence
APPIA. The 2004 edition changed its name to CILC in order to emphasize the Computa-
tional Logic issue, and it moved again to a more “local” organization structure (anyway,
still open to contributions from everywhere and with a wide scope of interests).

The technical program of the Conference includes 25 communications, organized
according to the following topics: Abductive Logic Programming, Automated Reason-
ing, Constraints, Data Management, Learning and Knowledge Discovery, Logic-Based
Agents, Program Refinement and Transformation, Semantics. All papers have been
evaluated by two reviewers. In addition, the program includes an invited talk by Lúıs
Moniz Pereira (U. Lisbon), three tutorials by Stefania Costantini (U. L’Aquila), Agostino
Dovier (U. Udine) and Paolo Torroni (U. Bologna), and four “demo” presentations.

We wish to thanks all authors, the invited speaker, the tutorialists, the members of
the Program Committee, all participants, and everyone who contributed to the success
of the Conference.

Elio Panegai
June 2004 Gianfranco Rossi

Editors
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Revised Stable Models - a new semantics for logic programs 
 

Luís Moniz Pereira and Alexandre Miguel Pinto 
 

Centro de Inteligência Artificial, Universidade Nova de Lisboa 
2829-516 Caparica, Portugal 

{lmp|amp}@di.fct.unl.pt 

 

Abstract 
This paper introduces an original 2-valued semantics for Normal Logic 
Programs (NLP), important on its own. Nevertheless, its name draws 
attention to that it is inspired by and generalizes Stable Model semantics 
(SM). The definitional distinction consists in the revision of one feature of 
SM, namely its treatment of odd loops over default negation. This single 
revised aspect, addressed by means of a Reductio ad Absurdum approach, 
affords us a fruitful cornucopia of consequences, namely regarding 
existence, relevance and top-down querying, cumulativity, and 
implementation. 
 
The paper motivates and then defines the Revised Stable Models semantics 
(rSM), justifying the definition and providing examples. It also presents two 
rSM semantics preserving program transformations into NLP without odd 
loops. Properties of rSM are given and contrasted with those of SM. 
Implementation is examined, and extensions of rSM are given with regard 
to explicit negation, ‘not’s in heads, and contradiction removal. 
Conclusions, further work, as well as potential use, terminate the paper. 
 
Keywords: Logic Program semantics, Stable Models, Reductio ad 
Absurdum. 
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Proposal of a Tutorial on Answer Set Programming

Stefania Costantini1

Dipartimento di Informatica,
Universit̀a degli Studi di L’Aquila,

L’Aquila, I-67100 Italy,
stefcost@di.univaq.it

URL http://costantini.di.univaq.it

Abstract

Answer Set Programming (ASP) is an emerging paradigm of logic programming based
on the Answer Set (or equivalently Stable Model) semantics: each solution to a prob-
lem is represented by an Answer Set (also called a Stable Model) of a deductive
database/function-free logic program encoding the problem itself. It is clearly related
to deductive databases and knowledge bases, where the occurrence of several answer
sets indicates the presence of uncertain or incomplete knowledge, and each answer set
represents a possible plausible instance of the database/knowledge base.

Recent work demonstrates that Answer Set Programming is a suitable paradigm for
defining and implementing data integration systems. In particular, the author of this pro-
posal has defined a formalization in answer set programming, and a working inference
engine, for the Global-as-View approach. The reason why answer set programming is
well suited for  representing mapping s between data  models is exactly that the  query 
answering problem can be coped with also in the p resence of  incomplete/ambiguous/
inconsistent data sources: this by means of the advanced reasoning capabilities of com-
putational logic, and by means of the possibility of making different plausible answers 
to queries explicit, as different answer set.
      The  tutorial  will  introduce  concepts  and  notions  of  computational  logic,  will 
describe  the DATALOG¬ language and  the answer  set semantics,  and will outline a 
comparison with traditional logic programming.  However, the level of the description 
will be accessible to the non-expert, by  providing  few formal  details intermixed with 
several intuitive examples.  Some hints and references  will be proposed for those who 
may wish to go into deeper detail.
 
 
 
 
 
 
 
 
 
 



Il Problema del Protein Folding e i Relativi Approcci 
               Basati su Programmazione con Vincoli

1

           Agostino Dovier 
    Università degli Studi di Udine

Sommario

Le  proteine sono  presenti massivamente  negli organismi viventi. Strutturalmente una  pro-
teina può essere considerata una catena costituita da elementi più semplici, detti aminoacidi.
Gli aminoacidi  possono essere di 20 tipi,  mentre la lunghezza  tipica di una  proteina va da 
poche decine a diverse centinaia.  Ogni proteina assume una determinata forma spaziale che 
ne caratterizza la funzione biologica.
         Oggigiorno è possibile  scoprire la  sequenza degli  amminoacidi di una proteina,  cosi 
come è possibile generare in laboratorio  determinate sequenze di aminoacidi.  Non esistono 
tuttavia  ancora dei tools per predire la forma  spaziale data la sequenza degli  aminoacidi ne 
tantomeno delle  tecniche di  laboratorio che  permettano di  "fotografare" la forma  spaziale 
di proteine esistenti in tempi ragionevoli.
          In questo tutorial si mostra come il constraint  programming sia adatto ad affrontare il 
problema della predizione della forma spaziale di una proteina, la cui risoluzione ha ricadu-
te immediate in medicina e nelle  biotecnologie in generale.
 
 
 
 
 
 
 
 



       Introduzione ai Sistemi Multi-Agente basati 
                       su Logica Computazionale

1

           Paolo Torroni
               DEIS Bologna

Sommario

Negli ultimi  anni c'è stata una notevole crescita di interesse verso un paradigma compu- 
tazionale noto sotto il nome di  "sistemi multi-agente".  Esso è l'oggetto di studio di una 
nuova  area  di ricerca che  riunisce ed  integra certi aspetti  dell'Intelligenza  Artificiale 
con altri tipici dei Sistemi Distribuiti,  con l'idea di sviluppare modelli e architetture per 
agenti intelligenti. 
          Questo breve tutorial vuole essere  un'introduzione ai sistemi multi-agente intelli-
genti, dal punto di  vista dei modelli  formali,  e del ruolo importante che ha avuto  e sta 
avendo la logica computazionale  nell'affrontare  problematiche di vario tipo, dalla  rap-
presentazione  della conoscenza ai  meccanismi di  ragionamento,  dalla semantica delle 
interazioni tra gli agenti ai modelli operazionali.
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Abduction with Hypotheses Confirmation

Marco Alberti1, Marco Gavanelli1, Evelina Lamma1,
Paola Mello2, and Paolo Torroni2

1 DI - University of Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy.
{malberti|m gavanelli|elamma}@ing.unife.it

2 DEIS - University of Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy.
{pmello|ptorroni}@deis.unibo.it

Abstract. Abduction can be seen as the formal inference corresponding
to human hypothesis making. It typically has the purpose of explain-
ing some given observation. In classical abduction, hypotheses could be
made on events that may have occurred in the past. In general, abductive
reasoning can be used to generate hypotheses about events possibly oc-
curring in the future (forecasting), or may suggest further investigations
that will confirm or disconfirm the hypotheses made in a previous step
(as in scientific reasoning). We propose an operational framework based
on Abductive Logic Programming, which extends existing frameworks
in many respects, including accommodating dynamic observations and
hypothesis confirmation.

1 Introduction

Often, reasoning paradigms in artificial intelligence mimic human reasoning, pro-
viding a formalization and a better understanding of the human basic inferences.
Abductive reasoning can be seen as a formalization, in computational logics, of
hypotheses making. In order to explain observations, we hypothesize that some
(unknown) events have happened, or that some (not directly measurable) prop-
erties hold true. The hypothesized facts are then assumed as true, unless they
are disconfirmed in the following.

Hypothesis making is particularly important in scientific reasoning: scientists
will hypothesize properties about nature, which explain some observations; in
subsequent work, they will try to prove (if possible), or at least to confirm
the hypotheses. This process leads often to generating new alternative sets of
hypotheses. Starting from hypotheses on the current situation, scientists try to
foresee their possible consequences; this provides new hypotheses on the future
behavior that will be confirmed or disconfirmed by the actual events.

A typical application of abductive reasoning is diagnosis. Starting from the
observation of symptoms, physicians hypothesize in general possible alternative
diseases that may have caused them. Following an iterative process, they will try
to support their hypotheses, by prescribing further exams, of which they foresee
the possible alternative results. They will then drop the hypotheses disconfirmed
by such results, and take as most faithful those supported by them. New findings,
such as results of exams or new symptoms, may help generating new hypotheses.

We can then describe this kind of hypothetical reasoning process as composed
by three main elements: classically, explaining observations, by assuming possible



causes of the observed effects; but also, adapting such assumptions to upcoming
events, such as new symptoms occurring, and foreseeing the occurrence of new
events, which may or may not occur indeed.

In Abductive Logic Programming, many formalisms have been proposed [1–
6], along with proof procedures able to provide, given a knowledge base and some
observation, possible sets of hypotheses that explain the observation. Integrity
Constraints are used to drive the process of hypothesis generation, to make such
sets consistent, and possibly to suggest new hypotheses. Most frameworks focus
on one aspect of abductive reasoning: assumption making, based on a static
knowledge and on some observation.

In this work, we extend the concepts of abduction and abductive proof pro-
cedures in two main directions.

First, we cater for the dynamic acquisition of new facts (events), which possi-
bly have an impact on the abductive reasoning process, and for confirmation (or
disconfirmation) of hypotheses based on such events. We propose a language,
able to state required properties of the events supporting the hypotheses: for
instance, we could say that, given some combination of hypotheses and facts,
we make the hypothesis that some new events will occur. We call this kind of
hypothesis expectation. For this purpose, we express expectations as abducible
literals. Expectations can be “positive (to be confirmed by certain events occur-
ring), or “negative” (to be confirmed by certain events not occurring).

Second, in our framework, we need to be able to state that some event is
expected to happen within some time interval: if the event does actually happen
within it, the hypothesis is confirmed, it is disconfirmed otherwise. In doing so,
we need to introduce variables (e.g. to model time), and to state constraints on
variables occurring in abducible atoms. Moreover, possible expectation could be
involving universal quantification: this typically happens with negative expec-
tations (“The patient is expected not to show symptom Q at all times”). For
this reason, we also need to cater for abducibles possibly containing universally
quantified variables.

To summarize, the main new features of the present work with respect to
classical ALP frameworks are:

– dynamic update of the knowledge base to cater for new events, whose oc-
currence interacts with the abductive reasoning process itself;

– confirmation and disconfirmation of hypotheses, by matching expectations
and actual events;

– hypotheses with universally quantified variables;
– constraints à la Constraint Logic Programming [7].

We achieve these features by defining syntax, declarative and operational seman-
tics of an abductive framework, based on an extension of the IFF proof procedure
[4], called SCIFF[8].3 Being the SCIFF an extension of an existing abductive

3 Historically, the name SCIFF is due to the fact that this framework has been firstly
applied to modelling protocol in agent Societies, and that is also deals with CLP
Constraints.
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framework, it also caters for classic abductive logic programming (static knowl-
edge, no notion of confirmation by events). However, due to space limitations,
in this work we only focus on the original new parts.

The SCIFF has been implemented using Constraint Handling Rules [9] and
integrated in a Java-based system for hypothetical reasoning [10].

In the following Sect. 2 we introduce our framework’s knowledge representa-
tion. In Sect. 3 and 4 we provide declarative and operational semantics, and we
show a soundness result. In Sect. 5 we show an example of the functioning of
the SCIFF in a multi-agent setting. Before concluding, we discuss about related
work in Sect. 6.

Additional details about the syntax of data structures used by the SCIFF
and allowedness criteria used to prove soundness are given in [11].

2 Knowledge Representation

In this section we show the knowledge representation of the abstract abductive
framework of the SCIFF.

As typical abductive frameworks [12], ours is representated by a 3-tuple
〈DKB, IC, A〉 where:

– DKB is the (dynamic) knowledge base, union of KB (a logic program,
possibly containing abducibles in the body of the clauses, which does not
change during the computation) and HAP (the dynamic part, as explained
below);

– A is the set of abducible predicates (in our case, E, EN and their explicit
negations ¬E and ¬EN); and

– IC is the set of Integrity Constraints.

The set HAP is composed of ground facts (defining the H predicate), of the
form

H(Description[,Time])

where Description is a ground term representing the event that happened and
Time is an integer number representing the time at which the event happened.

The history HAP dynamically grows during the computation, as new events
happen; we do not model here the source of such events, but it can be imagined
as a queue. We assume that events arrive in the same temporal order in which
they happen.

The evolution of the history HAP reflects in the evolution of the abductive
framework, of which HAP is part. We can formalize the evolution as a sequence
DALP of frameworks, and denote with DALPHAP the specific instance associ-
ated to a specific history HAP.

An instance DALPHAP of an abductive framework is queried with a goal G.
The goal may contain both predicates defined in KB and abducibles.

The computation of an instance of an abductive framework will produce, by
abduction, a set EXP of expectations, which represent events that are expected
to (but might not) happen (positive expectations, of the form E(Description[,Time]))

3



and events that are expected not to (but might) happen (negative expectations,
of the form EN(Description[,Time])). Typically, expectations will contain vari-
ables, over which CLP [7] constraints can be imposed.

The full syntax of our language is reported in [11].
We conclude this section with a simple example in the medical domain, where

abduction is used to diagnose diseases starting from symptom observation. The
aim of this example is to show the two main improvements of the SCIFF with
respect to previous work: the dynamic acquisition of new facts, and the confir-
mation of hypotheses by events.

Example 1. Let us consider a symptom s, which can be explained by abducing
one of three types of diseases, of which the first and the third are incompatible,
and the second is accompanied by a condition (the patient’s temperature is
expected to increase):

symptom(s) : − E(disease(d1)),EN(disease(d3)).
symptom(s) : − E(disease(d2)),E(temperature(high)).
symptom(s) : − E(disease(d3)),EN(disease(d1)).

The set IC of integrity constraints expresses what is expected or should happen
or not, given some happened events and/or some abduced hypotheses. They are
in the form of implications, and can involve both literals defined in the KB, and
expectations and events in EXP and HAP. For example, an IC in IC could
state that if the result of some exam r is positive, then we can hypothesize that
the patient is not affected by disease d1:

H(result(r, positive)) → EN(disease(d1))

If H(result(r, positive)) actually happens, the integrity constraint would make
us abduce EN(disease(d1)), which would rule out, in our framework, the pos-
sibility to abduce E(disease(d1)). We see how the dynamic occurrence of new
events can drive the generation and selection of abductive explanations of goals.
Let us now assume that the patient, at some point, shows the symptom
temperature(low). The following constraint can be used to express this fact to
be inconsistent with an expectation about his temperature increasing:

E(temperature(high)) → EN(temperature(low))

If the diagnosis E(disease(d2)),E(temperature(high)) is chosen for s, this IC
would have as a consequence the generation of the expectation EN(temperature(low)),
which would be frustrated by the fact H(temperature(low)). The only possible
explanation for s thus remains E(disease(d3)),EN(disease(d1)). We see by this
example how the hypotheses can be disconfirmed by events.

The abductive system will usually have a goal, which typically is an obser-
vation for which we are searching for explanations; for example, a conjunction
of symptom atoms.

4



3 Declarative semantics

In the previous section, we have defined an instance DALPHAP of an abductive
framework as a tuple 〈DKB,A, IC, 〉, where DKB = KB ∪ HAP. In this
section, we propose an abductive interpretation for DALPHAP, depending on
the events in the history HAP. We adopt a three-valued logic, where literals of
kind H() or ¬H() can be interpreted as true, false or unknown: when reasoning
about future events, it is not possible to state their happening or non-happening.

Throughout this section, as usual when defining declarative semantics, we al-
ways consider the ground version of the knowledge base and integrity constraints,
and consider CLP-like constraints as defined predicates.

Since an instance DALPHAP is an abductive logic program, an abductive
explanation should entail the goal and satisfy the integrity constraints:

KB ∪HAP ∪EXP |= G (1)

KB ∪HAP ∪EXP |= IC (2)

where, as in the IFF proof procedure [4], the symbol |= stands for three valued
completion semantics. Notice, however, that we do not complete the set HAP,
as it would imply that events no events will happen in the future. In other words,
the closed world assumption cannot hold for future events.

Among the sets of expectations computed as abductive explanations for an
instance DALPHAP, we select the ones that are consistent with respect to the
expected events (i.e., we do not want the same event to be both expected to
happen and expected not to happen) and to negation:

Definition 1. A set of expectations EXP is E-consistent if and only if for each
(ground) term p: {E(p),EN(p)} 6⊆ EXP.

A set of expectations EXP is ¬-consistent if and only if for each (ground)
term p: {E(p),¬E(p)} 6⊆ EXP and {EN(p),¬EN(p)} 6⊆ EXP.4

Finally, we require that the set of expectations computed as an abductive ex-
planation for an instance DALPHAP be confirmed :

Definition 2. Confirmation. Given a history HAP, a set of expectations
EXP is confirmed if and only if for each (ground) term p:

HAP∪Comp(EXP)∪{E(p) → H(p)}∪{EN(p) → ¬H(p)}∪CET 6|= false (3)

If Eq. 3 does not hold, the set of expectations is called disconfirmed.

Definition 2 requires that each negative expectation in EXP have no correspond-
ing happened event; if there is one, EXP is disconfirmed. Disconfirmation of a
positive expectation, instead, can only occur if some deadline on the expecta-
tion (expressed by CLP constraints on the time variable) is missed; otherwise,
an event confirming the expectation may always occur in the future.
4 For abducibles, we adopt the same viewpoint as in ACLP [5]: for each abducible

predicate A, we have also the abducible predicate ¬A for the negation of A together
with the integrity constraint (∀X)¬A(X), A(X) → ⊥.
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4 Operational Semantics

Our framework’s IC are very much related to the integrity constraints of the
IFF proof procedure [4]. This leads to the idea of using an extension of the IFF
proof procedure for generating expectations, and check for their confirmation.

In particular, the additional features that we need are the following: (i) accept
new events as they happen, (ii) produce a (disjunction of) set of expectations,
(iii) detect confirmation of expectations, (iv) detect disconfirmation as soon as
possible.

The proof procedure that we are about to present is called SCIFF. Following
Fung and Kowalski’s approach [4], we describe the SCIFF as a transition system.
Due to space limitations, we will only focus here on the new transitions, while
the reader can refer to [4] for the basic IFF transitions.

4.1 Data Structures
The SCIFF proof procedure is based on a transition system. Each state is defined
by the tuple T ≡ 〈R, CS, PSIC,EXP,HAP,CONF,DISC〉, where R is the
resolvent, CS is the constraint store, PSIC is the set of partially solved integrity
constraints, EXP is the set of (pending) expectations, HAP is the history of
happened events, CONF is a set of confirmed hypotheses, DISC is a set of
disconfirmed expectations.

Variable quantification In the IFF proof procedure, all the variables that
occur in the resolvent or in abduced literals are existentially quantified, while
the others (appearing only in implications) are universally quantified. Our proof
procedure has to deal with universally quantified variables in the abducibles and
in the resolvent. In the IFF proof procedure, variables in an implication are
existentially quantified if they also appear in an abducible or in the resolvent.
In our language, we can have existentially quantified variables in the integrity
constraints even if they do not occur elsewhere (see [11]).

For all these reasons, in the operational semantic specification we leave the
variable quantification explicit. Moreover, we need to distinguish between vari-
ables that appear in abduced literals (or in the resolvent) and variables occurring
only in integrity constraints. The scope of the variables that occur only in an
implication is the implication itself; the scope of the other variables is the whole
tuple.

Initial Node and Success A derivation D is a sequence of nodes

T0 → T1 → . . . → Tn−1 → Tn.

Given a goal G and a set of integrity constraints IC, the first node is:

T0 ≡ 〈{G}, ∅, IC, ∅, ∅, ∅, ∅〉

i.e., the resolvent is initially the query (R0 = {G}) and the partially solved
integrity constraints PSIC is the set of integrity constraints (PSIC0 = IC).
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The other nodes Tj , j > 0, are obtained by applying the transitions defined in
the next section, until no transition can be applied anymore (quiescence). Every
arc in a derivation is labelled with the name of a transition.

Definition 3. Starting with an instance DALPHAPi there exists a successful
derivation for a goal G iff the proof tree with root node 〈{G}, ∅, IC, ∅,HAPi, ∅, ∅〉
has at least one leaf node 〈∅, CS, PSIC,EXP,HAPf ,CONF, ∅〉 where HAPf ⊇
HAPi and CS is consistent (i.e., there exists a ground variable assignment such
that all the constraints are satisfied). In that case, we write:

DALPHAPi |∼HAPf

EXP∪CONF G

Notice that, coherently with the declarative semantics given earlier, a success
node cannot contain disconfirmed hypotheses. However, in some applications, all
the alternative sets may contain disconfirmed expectations and the goal could
be finding a set of expectations with a minimal set of disconfirmed ones. For
this reason, we preferred to map explicitly the set of disconfirmed expectations,
instead of generating a simple fail node (paving the way for future extensions of
the framework). Moreover, classical Logic Programming provides explanations
(e.g., variable binding) about why a computation succeeds, but no explanation
for failure nodes. In our framework, a failure can be explained by means of
alternative sets of disconfirmed expectations.

From a non-failure leaf node N , answers can be extracted in a very similar
way to the IFF proof procedure. First, a substitution σ′ is computed such that σ′

replaces all variables in N that are not universally quantified by ground terms,
and σ′ satisfies all the constraints in the store CSN .

Definition 4. Let σ = σ′|vars(G) be the restriction of σ′ to the variables occur-
ring in the initial goal G. Let ∆ = [CONFN ∪ EXPN )]σ′. The pair (∆,σ) is
the abductive answer obtained from the node N .

The SCIFF proof procedure performs some inferences based on the semantics
of time, under the temporal order assumption (see Sect. 2).

Consistency In order to ensure E-consistency of the set of expectations, we
require that the set IC of integrity constraints always contain the following:

E(T ) ∧EN(T ) → ⊥
while for ¬-consistency, we impose the following integrity constraints:

E(T ) ∧ ¬E(T ) → ⊥ EN(T ) ∧ ¬EN(T ) → ⊥

4.2 Transitions
The transitions are those of the IFF proof procedure, enlarged with those of CLP
[7], and with specific transitions accommodating the concepts of confirmation of
hypotheses, and dynamically growing history.
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In this section, the letter k will indicate the level of a node; each transition
will generate one or more nodes from level k to k + 1. We will not explicitly
report the new state for items that do not change; e.g., if a transition generates
a new node from the node

Tk ≡ 〈Rk, CSk, PSICk,EXPk,HAPk,CONFk,DISCk〉

and we do not explicitly state the value of Rk+1, it means that Rk+1 = Rk.

IFF-like transitions The SCIFF proof procedure contains transitions bor-
rowed from the IFF proof procedure, namely Unfolding, Propagation, Splitting,
Case Analysis, Factoring, Equivalence Rewriting and Logical Equivalence. They
have been extended to cope with abducibles containing universally quantified
variables and with CLP constraints. We omit them here for lack of space; the
basic transitions were proposed by Fung and Kowalski [4], while the extended
ones can be found in a technical report [13].

Dynamically growing history The happening of events is dealt with by a
transition Happening. This transition takes an event H(Event) from the external
queue and puts it in the history HAP; the transition Happening is applicable
only if an Event such that H(Event) 6∈ HAP is in the external queue.

Formally, from a node Nk transition Happening produces a single successor

HAPk+1 = HAPk ∪ {H(Event)}.

Note that transition Happening should be applied to all the non-failure nodes
(in the frontier).

Confirmation and Disconfirmation

Disconfirmation EN Given a node N with the following situation:

EXPk = EXP′ ∪ {EN(E1)} HAPk = HAP′ ∪ {H(E2)}

Disconfirmation EN produces two nodes N1 and N2, as follows:

N1 N2

EXP1
k+1 = EXP′ EXP2

k+1 = EXPk

DISC1
k+1 = DISCk ∪ {EN(E1)} DISC2

k+1 = DISCk

CS1
k+1 = CSk ∪ {E1 = E2} CS2

k+1 = CSk ∪ {E1 6= E2}

Remember that node N1 is a failure node, as in success nodes DISC = ∅ (see
Sect. 3).

Example 2. Suppose that HAPk = {H(p(1, 2))} and ∃X∀Y EXPk = {EN(p(X,Y ))}.
Disconfirmation EN will produce the two following nodes:
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∃X∀Y EXPk = {EN(p(X,Y ))} HAPk = {H(p(1, 2))}

CS1
k+1 = {X = 1 ∧ Y = 2} CS2

k+1 = {X 6= 1 ∨ Y 6= 2}
DISC1

k+1 = {EN(p(1, 2))}
CSk+2 = {X 6= 1}

where the last simplification in the right branch is due to the rules of the con-
straint solver (see Section CLP).

Confirmation E Starting from a node N as follows:

EXPk = EXP′ ∪ {E(E1)}, HAPk = HAP′ ∪ {H(E2)}

Confirmation E builds two nodes, N1 and N2; in node N1 we assume that the
expectation and the happened event unify, and in node N2 we hypothesize that
the two do not unify:

N1 N2

EXP1
k+1 = EXP′ EXP2

k+1 = EXPk

CONF1
k+1 = CONFk ∪ {E(E1)} CONF2

k+1 = CONFk

CS1
k+1 = CSk ∪ {E1 = E2} CS2

k+1 = CSk ∪ {E1 6= E2}

In this case, N2 is not a failure node, as E(E1) might be confirmed by other
events.

Disconfirmation E In order to check the disconfirmation of a positive expectation
E, we need to assume that there will never be a matching event in the external
queue. We can, e.g., exploit the semantics of time. If we make the hypothesis of
temporal ordering (Sect. 2), we can infer that an expected event for which the
deadline is passed, is disconfirmed.

Given a node:

– EXPk = {E(X,T )} ∪EXP′

– HAPk = {H(Y, Tc)} ∪HAP′

– ∀E2, T2 : H(E2, T2) ∈ HAPk, CSk ∪ {(E2, T2) = (X, T )} |= ⊥
– CSk |= T < Tc

transition Disconfirmation E is applicable and creates the following node:

– EXPk+1 = EXP′

– DISCk+1 = DISCk ∪ {E(X, T )}.
Operationally, one can often avoid checking that (X, T ) does not unify with every
event in the history by choosing a preferred order of application of the transitions.
By applying Disconfirmation E only if no other transition is applicable, the
check can be safely avoided, as the test of confirmation is already performed by
Confirmation E.

Notice that this transition infers the current time from happened event; i.e.,
it infers that the current time cannot be less than the time of a happened event.
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Symmetrically to Disconfirmation E, we also have a transition Confirmation
EN, which we do not report here for lack of space; the interested reader is
referred to [13].

Note that the entailment of constraints from a constraint store is, in general,
not easy to verify. In the particular case of CSk |= T < Tc, however, we have
that the constraint T < Tc is unary (Tc is always ground), thus a CLP for finite
domains solver CLP(FD) is able to verify the entailment very easily if the store
contains only unary constraints (it is enough to check the maximum value in
the domain of T ). Moreover, even if the store contains non-unary constraints
(thus the solver performs, in general, incomplete propagation), the transition
will not compromise the soundness and completeness of the proof procedure. If
the solver performs a powerful propagation (including pruning, in CLP(FD)),
the disconfirmation will be early detected, otherwise, it will be detected later
on.

CLP Here we adopt the same transitions as in CLP [7]. Therefore, the symbols
= and 6= are in the constraint language. Note that a constraint solver works
on a constraint domain which has an associated interpretation. In addition, the
constraint solver should handle the constraints among terms derived from the
unification. Therefore, beside the specific constraint propagation on the con-
straint domain, we need further inference rules for coping with the unification.
For space limitations, we cannot show them here: but they can be found in [11].

4.3 Soundness
The following proposition relates the operational notion of successful derivation
with the corresponding declarative notion of goal provability.

Proposition 1. Given an instance ALPHAPi of an ALP program and a ground
goal G, if DALPHAPi |∼HAPf

EXP∪CONF G then DALPHAPf |≈EXP∪CONF G.

This property has been proven for some notable classes of ALP programs. In
particular, a proof of soundness can be found in [13] for allowed ALPs (for a
definition of allowedness see [11]). The proof is based on a correspondence drawn
between the SCIFF and IFF transitions, and exploits the soundness results of
the IFF proof procedure [4].

5 Using the SCIFF for agent compliance verification

Abduction has been used for various applications, and many of them (e.g. diag-
nosis) could benefit from an extension featuring hypotheses confirmation, such
as the one depicted in this paper. We have applied the language to a multi-agent
setting, in the context of the SOCS project [14].

In order to combine autonomous agents and have them operate in a coordi-
nated fashion, protocols are often defined. Protocols show, in a way, the ideal
behaviour of agents. But, since agents are often assumed to be autonomous, and
societies open and heterogeneous, agent compliance to protocols is rarely a rea-
sonable assumption to make. Agents may violate the protocols due to malicious
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intentions, to wrong design or, for instance, to failure to keep the pace with tight
deadlines.

With our language, protocols can be easily formalized, and the SCIFF proof
procedure can be used then to check whether the agents comply to protocols. For
instance, let us consider the (very simple) query-ref protocol: an agent requests a
piece of information to another agent, which, by a given deadline, should either
provide it or refuse it, but not both. The protocol can be expressed by the
following three integrity constraints (where D represents a dialogue identifier):

IC1: H(tell(A, B, query-ref(Info), D), T ) ∧deadline(Td) →
E(tell(B, A, inform(Info, Answer), D), T1) ∧ T1 ≤ T + Td ∨
E(tell(B, A, refuse(Info), D), T1) ∧ T1 ≤ T + Td

IC2: H(tell(A, B, inform(Info, Answer), D), T ) →
EN(tell(A, B, refuse(Info), D), T1) ∧ T1 ≥ T

IC3: H(tell(A, B, refuse(Info), D), T ) →
EN(tell(A, B, inform(Info, Answer), D), T1) ∧ T1 ≥ T

IC1 expresses that an agent that receives a query-ref must reply with either
an inform or a refuse by Td time units; IC2 and IC3 state that an agent that
performs an inform cannot perform a refuse later, and vice-versa. Predicate
deadline/1 is defined in the KB: in this example, let it be defined by the one
fact deadline(10 ).

Let us suppose that the following events happen:
H1: H(tell(alice, bob, query-ref(what-time), d0), 10)
H2: H(tell(bob, alice, refuse(what-time), d0), 15)

and consider how SCIFF verifies that such an history is compliant to the inter-
action protocol.

The H1 event, by propagation of IC1 (where, by unfolding, Td has been
bound to 10), will cause a disjunction of two expectations to be generated,
which will split the proof tree into two branches:

1. In the first branch, EXP = {E(tell(bob, alice, inform(what-time,Answer), d0), T1)}
and CS = {T1 ≤ 20}. When H2 happens, by propagation of IC2, EXP =
{E(tell(bob, alice, inform(what-time,Answer), d0), T1),
EN(tell(bob, alice, inform(what-time,Answer), d0), T2)} , with CS = {T1 ≤ 20, T2 ≥
15}. Then, by enforcing E-consistency, the domain of T1 is reduced: CS = {T1 ≤
14, T2 ≥ 15}. Now, Disconfirmation-E can be applied:
E(tell(bob, alice, inform(what-time,Answer), d0), T1) is moved from EXP to DISC;
this means that this branch cannot be successful.

2. In the second branch, EXP = {E(tell(bob, alice, refuse(what-time), d0), T1)} and
CS = {T1 ≤ 20}. By propagation of IC2, after H2,
EXP = {E(tell(bob, alice, refuse(what-time), d0), T1),
EN(tell(bob, alice, inform(what-time,Answer), d0), T2)}, with CS = {T1 ≤ 20, T2 ≥
15}. By Confirmation E, H2 also causes
E(tell(bob, alice, refuse(what-time), d0), T1) to be moved from EXP to CONF,
with T1 = 15. If no more events happen, this branch is successful.

Through this simple example, we showed how a protocol can be easily cast in
our model. More rules can be easily added, to accomplish more complex proto-
cols. In other work, we have shown the application of this formalism to a range
of protocols [15, 16]. The use of expectations generated by the SCIFF could be
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manifold: by associating Confirmation/Disconfirmation with a notion of Fulfill-
ment/Violation, we can verify at run-time the compliance of agents to protocols.
Moreover, expectations, if made public, could be used by agents planning their
activities, helping their choices if they aim at exhibiting a compliant behaviour.

6 Related Work

This work is mostly related to the IFF proof procedure [4], which it extends in
several directions, as stated in the introduction.

Other proof procedures deal with constraints; in particular we mention ACLP
[5] and the A-system [6], which are deeply focussed on efficiency issues. Both
of these proof procedures use integrity constraints in the form of denials (e.g.,
A,B, C → ⊥), instead of forward rules as the IFF (and SCIFF). Both of these
proof procedures only abduce existentially quantified atoms, and do not consider
quantifier restrictions, which make the SCIFF in this sense more expressive.

Some conspicuous work has been done with the integration of the IFF proof
procedure with constraints [17]; however the integration is more focussed on a
theoretical uniform view of abducibles and constraints than to an implementa-
tion of a proof procedure with constraints.

In [18], Endriss et al. present an implementation of an abductive proof pro-
cedure that extends IFF [4] in two ways: by dealing with constraint predicates
and with non-allowed abductive logic programs. The cited work, however, does
not deal with confirmation and disconfirmation of hypotheses and universally
quantified variables in abducibles (EN), as ours does. The two works also differ
in their implementation: Endriss et al.’s is a metainterpreter which exploits a
built-in constraint solver, whereas we implement the proof transitions and vari-
able unification by means of CHR and attributed variables. Both works have
been conducted in the context of the SOCS project [14]: the main application of
Endriss et al.’s is the implementation of the internal agent reasoning, while ours
is the compliance check of the observable (external) agent behaviour.

Abdual [19] is a systems for performing abduction from extended logic pro-
grams adopting the well-founded semantics. It handles only ground programs.
It relies on tabled evaluation and is inspired to SLG resolution [20].

Many other abductive proof procedures have been proposed in the past; the
interested reader can refer to the exhaustive survey by Kakas et al. [12].

In [21], Sergot proposed a general framework, called query-the-user, in which
some of the predicates are labelled as “askable”; the truth of askable atoms can
be asked to the user. The framework provides, thus, the possibility of gathering
new information during the computation. Our E predicates may in a sense be
seen as asking information, while H atoms may be considered as new information
provided during search. However, as we have shown in the paper, E atoms may
also mean expected behavior, and the SCIFF can cope with abducibles containing
universally quantified variables.

The concept of hypotheses confirmation has been studied also by Kakas and
Evans [22], where hypotheses can be corroborated or refuted by matching them
with observable atoms: an explanation fails to be corroborated if some of its
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logical consequences are not observed. The authors suggest that their framework
could be extended to take into account dynamic events, eventually, queried to
the user: “this form of reasoning might benefit for the use of a query-the-user
facility”.

In a sense, our work can be considered as an extension of these works: it
provides the concept of confirmation of hypotheses, as in corroboration, and it
provides an operational semantics for dynamically incoming events. Moreover,
we extend the work by imposing integrity constraints to better define the feasible
combinations of hypotheses, and we let the program abduce non-ground atoms.

The dinamicity of incoming events can be considered as an instance of an
Evolving Logic Program [23]. In EvoLP, the knowledge base can be dynamically
modified depending both on events that come from the external world and on the
result of a previous computation. The SCIFF proof procedure does not generate
new events, but only expectations about external events. The focus of the work
is more on the expressivity of the generated expectations (which can contain
variables universally quantified and constrained) than on the generality of the
evolution of the knowledge base. An interesting extension of our work would
contain evolution of the whole knowledge bases, not only of the set of happened
events.

In Speculative Computation [24, 25] hypotheses are abduced and can be con-
firmed later on. It is a framework for a multi-agent setting with unreliable com-
munication. When an agent asks a query to another agent, it also abduces its
(default) answer; if the real answer arrives within a deadline, the hypothesis is
confirmed or disconfirmed; otherwise the computation continues with the default.
In our work, expectations can be confirmed by events, but the scope is different.
In our work, if a deadline is missed the computation fails, as an hypothesis has
been disconfirmed.

Other implementations have been given of abductive proof procedures in
Constraint Handling Rules [26, 27]. Our implementation is more adherent to the
theoretical operational semantics (in fact, every transition is mapped onto CHR
rules) and exploits the uniform understanding of constraints and abducibles
noted by Kowalski et al. [17].

Finally, in Section 5 we considered multi-agent systems to show an applica-
tion of the SCIFF. Some discussion about other formal approaches to protocol
verification can be found in [13].

7 Conclusions

In this paper, we proposed an abductive logic programming framework which
extends most previous work in several directions. The two main features of this
framework are: the possibility to account for new dynamically upcoming facts,
and the possibility to have hypotheses confirmed/disconfirmed by following ob-
servations and evidence. We proposed a language, and described its declarative
and operational semantics. We implemented the proof-procedure for a system
verifying the compliance of agents to protocols; the implementation can be down-
loaded from http://lia.deis.unibo.it/Research/sciff/ [8].
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Abstract. We describe a system implementing a novel extension of
Fung and Kowalski’s IFF abductive proof procedure which we call CIFF,
and its application to realise intelligent agents that can construct (partial
or complete) plans and react to changes in the environment. CIFF ex-
tends the original IFF procedure in two ways: by dealing with constraint
predicates and by dealing with non-allowed abductive logic programs.

1 Introduction

Abduction has long been recognised as a powerful mechanism for hypothetical
reasoning in the presence of incomplete knowledge [9, 13]. In this paper, we dis-
cuss the implementation and applications of a novel abductive proof procedure,
which we call CIFF. This procedure extends the IFF proof procedure of Fung
and Kowalski [10] and is described in detail in [8].

A number of abductive proof procedures have been proposed in the litera-
ture [12]. Kakas and Mancarella [13] extended the (first ever) abductive proof
procedure of Eshghi and Kowalski [9] for normal logic programming to Abductive
Logic Programming (ALP). This has been augmented to deal with constraint
predicates in [15] and with integrity constraints that behave like condition-action
rules in [22], and has been reformulated to improve its complexity in [21]. All
these procedures are proved correct wrt. the (partial) stable model semantics.
Another “family” of abductive proof procedures extend that of Console et al. [5]
and are proved correct wrt. the completion semantics [4, 20]: these are the IFF
procedure [10], and its extensions to deal with constraint predicates, treated
as abducibles [19], and integrity constraints which behave like condition-action
rules [24]; and the SLDNFA procedure [6], and its extensions to deal with con-
straint predicates [7]. Some of these procedures have been implemented and
experimented with in a number of applications, e.g. [15]. Moreover, recently a
system combining features of ACLP [15] and SLDNFA [6], and using heuristic
search to improve efficiency, has been proposed in the form of the A-system [17].

Our interest in combinations of ALP and constraint reasoning stems from our
work on using computational logic-based techniques in the area of multiagent
systems and global computing (for instance, to implement an agent’s planning



capability) [14, 27]. We have found, however, that our requirements for these
applications go beyond available state-of-the-art ALP proof procedures. This
consideration has led us to devise the CIFF proof procedure [8]. The novelty
of CIFF is twofold: (1) it dynamically deals with non-allowed programs (i.e.
programs with problematic quantification patterns that cannot be handled by
the original IFF procedure), thus having wider applicability; and (2) it extends
IFF by integrating the procedure with a “black box” constraint solver (rather
than treating constraint predicates as abducibles as in [19]). Moreover, CIFF
inherits from the original IFF procedure its forward reasoning as well as its
syntax of integrity constraints (which is more general than that of most other
procedures) and its flexible handling of variables, all of which have been listed as
advantages of IFF over other proof procedures. In the present paper, we describe
the first implementation of CIFF and illustrate one of its potential applications,
namely planning, in some detail. Differently from conventional practice in logic
programming, we consider partial (rather than complete) planning as well as
plan repair (via reactivity) in a dynamic environment. We have used CIFF in the
PROSOCS system [27], a computational logic-based platform for programming
intelligent agents, to build the planning and reactivity components of an agent.

The remainder of this paper is structured as follows. Section 2 provides a
brief introduction to ALP and reviews the definition of the CIFF proof proce-
dure. This theoretical presentation is complemented by Section 3, where we show
how we have implemented the procedure in Prolog. The application of CIFF to
planning is discussed in Section 4. Section 5 concludes.

2 Abductive Logic Programming with CIFF

In this section, we briefly review the framework of Abductive Logic Programming
(ALP) for knowledge representation and reasoning [12], as well as the CIFF proof
procedure for ALP [8]. ALP can be usefully extended with the handling of con-
straint predicates in the same way as Constraint Logic Programming (CLP) [11]
extends logic programming (see e.g. [15, 19]). Throughout this paper, we assume
that our language includes a number of constraint predicates.

2.1 Abductive Logic Programming with Constraints

An abductive logic program is a triple 〈P, I, A〉, where P is a normal logic program
(with constraints), I is a finite set of sentences in the language of P (called
integrity constraints), and A is a set of abducible predicates in the language of
P , not occurring in the head of any clause of P [12]. A query Q is a conjunction
of literals. Any variables occurring in Q are implicitly existentially quantified.
These variables are also called the free variables.

Broadly speaking, given a program 〈P, I, A〉 with constraint predicates and a
query Q, the purpose of abduction is to find a (possibly minimal) set of abducible
atoms (namely atoms whose predicate is abducible) ∆ which, together with P
and the constraint structure over which the constraint predicates are defined [11],



“entail” (an appropriate ground instantiation of) Q, with respect to a suitable
notion of “entailment”, in such a way that the extension of P with this set
“satisfies” I (see [12] for possible notions of integrity constraint satisfaction).
The appropriate notion of “entailment” depends on the semantics associated
with the logic program P (again, there are several possible choices for such a
semantics [12]). In the remainder of this paper we will adopt the completion
semantics [4, 20] for logic programming, and extend it à la CLP to take the
constraint structure into account. We represent entailment under such semantics
as |=<. An abductive answer to a query Q for a program 〈P, I, A〉, containing
constraint predicates defined over a structure <, is a pair 〈∆, σ〉, where ∆ is a
set of ground abducible atoms and σ is a substitution for the free variables in Q
such that P ∪∆σ |=< I ∧Qσ.

2.2 The CIFF Proof Procedure

We now give a brief description of the CIFF procedure [8]. Like Fung and Kowal-
ski [10], we require the theory given as input to be represented in “iff-form” [4,
10], which we can obtain by selectively completing P with respect to all predi-
cates except special predicates (true, false, constraint and abducible predicates).
That is, an alternative representation of an abductive logic program would be a
pair 〈Th, I 〉, where Th is a set of (homogenised) iff-definitions:

p(X1, . . . , Xk)⇔ D1 ∨ · · · ∨Dn

Here, p must not be a special predicate and there can be at most one iff-definition
for every predicate symbol. Each of the disjuncts Di is a conjunction of literals.
The variables X1, . . . , Xk are implicitly universally quantified with the scope be-
ing the entire definition. Any other variable is implicitly existentially quantified,
with the scope being the disjunct in which it occurs.

In this paper, the set of integrity constraints I are implications of the form:

L1 ∧ · · · ∧ Lm ⇒ A1 ∨ · · · ∨An

Each of the Li must be a literal; each of the Ai must be an atom. Any variables
are implicitly universally quantified with the scope being the entire implication.

In CIFF, the search for abductive answers of queries over a proof tree is
initialised with the root of the tree consisting of the integrity constraints in the
program and the literals of the query. The procedure then repeatedly manipu-
lates the current node by applying equivalence-preserving proof rules to it. The
nodes are sets of formulas (the so-called goals) which may be atoms, implica-
tions, or disjunctions of literals. The implications are either integrity constraints,
their residues, or obtained by rewriting negative literals (e.g. not p is rewritten as
p⇒ false.) The proof rules modify nodes by rewriting goals in them, adding new
goals to them, or deleting superfluous goals from them. The set of iff-definitions
is kept in the background and is only used to unfold defined predicates.

Fung and Kowalski [10] require inputs to their proof procedure to meet
a number of allowedness conditions (essentially avoiding certain problematic



patterns of quantification) to be able to guarantee its correct operation. These
conditions are overly restrictive; IFF could produce correct answers also for
some non-allowed inputs. Unfortunately, it is difficult to formulate appropriate
allowedness conditions that guarantee a correct execution of the proof proce-
dure without imposing too many unnecessary restrictions. Our proposal, put
forward in [8], is to tackle the issue of allowedness dynamically, i.e. at runtime,
rather than adopting a static and overly strict set of conditions. To this end,
CIFF includes a dynamic allowedness rule amongst its proof rules, which gets
triggered once the procedure encounters, in the current node, formulas it cannot
manipulate correctly due to a problematic quantification pattern. When this
happens, the node is labelled as undefined and will not be selected again. In
addition to the dynamic allowedness rule, the main proof rules of CIFF are:

– Unfolding: Replace any atomic goal p(~t), for which there is a definition
p( ~X) ⇔ D1 ∨ · · · ∨ Dn in Th, by (D1 ∨ · · · ∨ Dn)[ ~X/~t]. There is a simi-
lar rule for defined predicates inside implications.

– Splitting: Rewrite any node with a disjunctive goal as a disjunction of nodes.
– Propagation: Given goals of the form p(~t) ∧ A ⇒ B and p(~s), add the goal

(~t = ~s) ∧A⇒ B.
– Case analysis for constraints: Replace any goal of the form Con ∧ A ⇒ B,

where Con is a constraint not containing any universally quantified variables,
by [Con∧(A⇒ B)]∨Con. There is a similar case analysis rule for equalities.

– Constraint solving: Replace any node containing an unsatisfiable set of con-
straints (as atoms) by false.

In addition, there are logical simplification rules, rules for rewriting equalities
and making substitutions, and rules that reflect the interplay between constraint
predicates and the usual equality predicate. For full details we refer to [8].

In a proof tree for a query, a node containing false is called a failure node.
If all leaf nodes are failure nodes, then the search is said to fail. A node to
which no more proof rules can be applied is called a final node. A final node that
is not a failure node and which has not been labelled as undefined is called a
success node. If a success node exists, then the search is said to succeed. CIFF
has been proved sound in [8]: it is possible to extract an abductive answer from
any success node (soundness of success); and if the search fails then there exists
no such answer (soundness of failure).

3 Implementation of the Proof Procedure

We have implemented the CIFF procedure in Sicstus Prolog [28].3 Most of the
code could very easily be ported to any other Prolog system conforming to
standard Edinburgh syntax. A minor exception is the module concerned with
constraint solving as it relies on Sicstus’ built-in constraint logic programming
solver over finite domains (CLPFD) [3]. However, the modularity of our imple-
mentation would make it relatively easy to integrate a different constraint solver
3 The system is available at http://www.doc.ic.ac.uk/∼ue/ciff/



lamp(X) iff [[X=a]].

battery(X,Y) iff [[X=b, Y=c]].

faulty(X) iff [[lamp(X), broken(X)], [power_failure(X), not(backup(X))]].

backup(X) iff [[battery(X,Y), not(empty(Y))]].

Table 1. The abductive logic program for the faulty-lamp example of [10]

into the system instead. The only changes required would be an appropriate
re-implementation of a handful of simple predicates providing a wrapper around
the constraint solver chosen for the current implementation.

This section discusses various aspects of our implementation of the CIFF
procedure and explains how to use the system in practice.

3.1 Representation of Abductive Logic Programs

The CIFF procedure is defined over (selectively) completed logic programs, i.e.
sets of definitions in iff-form rather than rules (in if-form) and facts. As these
definitions can become rather long and difficult to read, our implementation
includes a simple module that translates logic programs into completed logic
programs which are then used as input to the CIFF procedure. Being able to
complete logic programs on the fly also allows us to spread the definition of a
particular predicate over different knowledge bases.

The syntax chosen to represent facts and rules of a logic program is that of
Prolog, except that negative literals are represented as Prolog terms of the form
not(A). In addition, we also allow for (arithmetic) constraints as subgoals in the
condition of a rule. For the current implementation, admissible constraints are
terms such as T1 #< T2 + 5. The available constraint predicates are #=, #\=, #<,
#=<, #>, and #>=, each of which takes two arguments that may be any arithmetic
expressions over variables and integers (using operators such as addition, sub-
traction, and multiplication, or any other arithmetic operation that the CLPFD
module of Sicstus Prolog can handle [3]). Note that for equalities over terms
that are not arithmetic terms, the usual equality predicate = should be used
(e.g. X = bob). Iff-definitions are terms of the form A iff B, where A is an atom
and B is a list of lists of literals (representing a disjunction of conjunctions).
Integrity constraints are expressions of the form A implies B, where A is a list
of literals (representing a conjunction) and B is a list of atoms (representing a
disjunction). Table 1 shows an example using our syntax.

3.2 Running the Program

The main predicate of our implementation is called ciff/4:

ciff( +Defs, +ICs, +Query, -Answer).

The first argument is a list of iff-definitions, the second is a list of integrity
constraints, and the third is the list of literals in the query. The Answer consists
of three parts: a list of abducible atoms, a list of restrictions on the answer



substitution, and a list of constraints (the latter two can be used to construct
an answer substitution according to the semantics of ALP).

Alternatively, the first two arguments of ciff/4 may be replaced with the
name of a file containing an abductive logic program. An example for such a file
is given in Table 1. This is the faulty-lamp example discussed, amongst others,
by Fung and Kowalski [10]. The syntax is almost self-explanatory (recall that a
list of lists represents a disjunction of conjunctions). This program happens to
consist only of iff-definitions (there are no integrity constraints). Assuming that
the program is stored in a file called lamp.alp, we may run the following query:

?- ciff( ’lamp.alp’, [faulty(X)], Answer).

Answer = [broken(a)]:[X/a]:[] ? ;

Answer = [empty(c),power_failure(b)]:[X/b]:[] ? ;

Answer = [power_failure(X)]:[not(X/b)]:[] ? ; No

Here the user has enforced backtracking, so all three answer are being reported
by the system. Note that the third (empty) list in each of the answers would be
used to store the associated constraints (of which there are none in this example).
For details on how to interpret the above answers, we refer to [10].

3.3 Implementation of the Proof Rules

We are now going to turn our attention to the actual implementation of the proof
procedure and explain some of the design decisions taken during its development.
Our implementation of CIFF has been inspired by work in the Automated Rea-
soning community on so-called lean theorem provers [1]. Our proof procedure
manipulates a list of formulas rather than submitting these formulas themselves
to the Prolog interpreter. One advantage of this approach is, for instance, that
we can report variable substitutions at the meta-level rather than having Prolog
making the actual instantiations (which would be problematic as CIFF computes
only restrictions on the answer substitution, rather than an actual substitution).

The proof rules are repeatedly applied to the current node. Whenever a
disjunction is encountered, it is split into a set of successor nodes (one for each
disjunct). The procedure then picks one of these successor nodes to continue
the proof search and backtracking over this choicepoint results in all possible
successor nodes being explored. In theory, the choice of which successor node to
explore next is taken nondeterministically; in practice we simply move through
nodes from left to right. The procedure terminates when no more proof rules
apply (to the current node) and finishes by extracting an answer from this node.
Enforced backtracking will result in the next branch (if any) of the proof tree
being explored, i.e. in any remaining abductive answers being enumerated. The
Prolog predicate implementing the proof rules has the following form:

sat( +Node, +EV, +CL, +LM, +Defs, +FreeVars, -Answer).

Node is a list of goals, representing a conjunction. EV is used to keep track of
existentially quantified variables in the node. This set is relevant to assess the
applicability of some of the proof rules. CL (for constraint list) is used to store the



constraints that have been accumulated so far. The next argument, LM (for loop
management), is a list of expressions of the form A:B recording pairs of formulas
that have already been used with particular proof rules, thereby allowing us to
avoid loops that would result if these rules were applied over and over to the
same arguments (this is necessary, for instance, for the propagation rule). This
information can also be exploited to improve efficiency by identifying redundant
proof steps. Defs is the list of iff-definitions in the theory. FreeVars is used to
store the list of free variables. Finally, running sat/7 will result in the variable
Answer to be instantiated with a representation of the abductive answer found
by the procedure.

Each proof rule corresponds to a Prolog clause in the implementation of
sat/7. For example, the unfolding rule for atoms is implemented as follows:

sat( Node, EV, CL, LM, Defs, FreeVars, Answer) :-

member( A, Node), is_atom( A), get_def( A, Defs, Ds),

delete( Node, A, Node1), NewNode = [Ds|Node1], !,

sat( NewNode, EV, CL, LM, Defs, FreeVars, Answer).

The auxiliary predicate is atom/1 will succeed whenever the argument rep-
resents an atomic goal. Furthermore, get def(A,Defs,Ds), with the first two
arguments being instantiated at the time of calling the predicate, will instanti-
ate Ds with the list of lists representing the disjunction that defines the atom A
according to the iff-definitions in Defs whenever there is such a definition (i.e.
the predicate will fail for abducibles). Once get def(A,Defs,Ds) succeeds we
definitely know that the unfolding rule is applicable: there exists an atomic con-
junct A in the current Node and it is not abducible. The cut in the penultimate
line is required, because we do not want to allow any backtracking over the order
in which rules are being applied. After we are certain that this rule should be
applied we manipulate the current Node and generate its successor NewNode. We
first delete the atom A and then replace it with the disjunction Ds. The predicate
sat/7 then recursively calls itself with the new node.

3.4 Testing

The Prolog clauses in the implementation of sat/7 may be reordered almost
arbitrarily (the only requirement is that the clause used to implement answer
extraction is listed last). Each order of clauses corresponds to a different proof
strategy, as it implicitly assigns different priorities to the different proof rules.
This feature of our implementation allows for an experimental study of which
strategies yield the fastest derivations. We hope to be able to exploit this feature
of the implementation in our future work to study possible optimisation tech-
niques. The order in which proof rules are applied in the current implementation
follows some simple heuristics. For instance, logical simplification rules as well
as rules to rewrite equality atoms are always applied first. Splitting, on the other
hand, is one of the last rules to be applied.

The implementation of the CIFF proof procedure has been tested successfully
on a number of examples. Most of these examples are taken from applications



holds(F, T2) ← happens(A, T1), initiates(A, T1, F ), not clipped(T1, F, T2), T1 <T2

holds(F, T ) ← initially(F ), not clipped(0, F, T ), 0 < T
holds(¬F, T2)← happens(A, T1), terminates(A, T1, F ), not declipped(T1, F, T2), T1 <T2

holds(¬F, T ) ← initially(¬F ), not declipped(0, F, T ), 0 < T

clipped(T1, F, T2) ← happens(A, T ), terminates(A, T, F ), T1≤T <T2

declipped(T1, F, T2)← happens(A, T ), initiates(A, T, F ), T1≤T <T2

happens(A, T )← assume happens(A, T )

Table 2. Domain-independent rules in Pplan

holds(F, T ), holds(¬F, T ) ⇒ false
assume happens(A, T ), precondition(A, P ) ⇒ holds(P, T )
assume happens(A, T2), not executed(A, T2), time now(T1) ⇒ T1 <T2

Table 3. Domain-independent integrity constraints in Iplan (for complete planning)

of CIFF within the SOCS project, which investigates the application of compu-
tational logic-based techniques to multiagent systems (e.g. the implementation
of an agent’s planning and a reactivity capabilities). While these are encourag-
ing results, it should also be noted that this is only a first prototype and more
research into proof strategies for CIFF as well as a fine-tuning of the implemen-
tation are required to achieve satisfactory runtimes for larger examples.

4 An Application to Abductive Planning

In this section, as an example application of the CIFF system, we consider how
it can be used for planning. For this purpose we propose an abductive version
of the event calculus. The event calculus is a formalism for reasoning about
events (or actions) and change formulated by Kowalski and Sergot [18]. Since
its publication a number of abductive variants of it have been proposed in the
planning and abduction literature [23, 25, 26]. Our formulation is a novel variant,
in part inspired by the E-language [16], to allow situated, resource-bounded
agents to generate partial plans in a dynamic environment, possibly inhabited
by other agents. Partial planning is useful for two reasons. Firstly, it allows the
agents to interleave planning, sensing and acting. Secondly, it prevents agents
from spending time and effort constructing complete plans that may become
unnecessary or unfeasible when they get round to executing them.

4.1 An Abductive Formulation of the Event Calculus

We model a planning problem within the framework of the event calculus
(EC) in terms of a (non-allowed) abductive logic program with constraints
KBplan = 〈Pplan, Iplan, Aplan〉. In a nutshell, the EC allows us to write meta-
logic programs which “talk” about object-level concepts of fluents, actions, and
time points. The main meta-predicates of the formalism are: holds(F, T ) (fluent



F holds at time T ), clipped(T1, F, T2) (fluent F is clipped —from holding to not
holding— between times T1 and T2), declipped(T1, F, T2) (fluent F is declipped
—from not holding to holding— between times T1 and T2), initially(F ) (fluent
F holds from the initial time, say time 0), happens(A, T ) (action A occurs at
time T ), initiates(A, T, F ) (fluent F starts to hold after action A at time T ) and
terminates(A, T, F ) (fluent F ceases to hold after action A at time T ). Roughly
speaking, in a planning setting the last two predicates represent the cause-and-
effects links between actions and fluents in the modelled world. We will also use
a meta-predicate precondition(A,F ) (the fluent F is one of the preconditions for
the executability of action A). In our KBplan, we allow fluents to be positive
(F ) or negative (¬F ). Our formulation of the EC also contains the predicates
observed/2, executed/2, time now/2, assume holds/2, and assume happens/2,
which will be described shortly.

We now define KBplan. To this end we first show the KBplan that would
be used for complete planning (but by situated agents, interacting with their
environment) and then show how it can be modified to allow for partial plan-
ning. Pplan consists of three parts: domain-independent rules, domain-dependent
rules, and a narrative part. Iplan consists of domain-independent integrity con-
straints and possibly domain-dependent integrity constraints. The basic rules
and integrity constraints for the domain-independent part, adapted from the
original EC, are shown in Tables 2 and 3. The only abducible predicate here is
assume happens. The reason why we do not use the happens predicate as an ab-
ducible and instead define it in terms of assume happens will become clear when
we describe the (domain-independent) bridging rules given in Table 4. The first
of the integrity constraints given in Table 3 states that a fluent and its negation
cannot hold at the same time, while the second one expresses that when assum-
ing (planning) that some action will happen, we need to enforce that each of its
preconditions hold. The third constraint ensures that the actions in the resulting
plan that have not been executed yet are scheduled for the future.

The domain-dependent rules define the predicates initiates, terminates, and
precondition (as well as any other predicates required by the modelling of the
concrete domain). An example is given in Table 6 (see also Section 4.3). The
first two rules state that catching a train or driving to a destination X initiates
being at X. The two initially-facts state that initially A has petrol but does not
have any anti-freeze. The last integrity constraint has the flavour of a reactive
rule and it states that if you are planning to drive somewhere and you have
observed shortly before that it is snowing then you must make sure that you
have anti-freeze. The other rules and constraints are self-explanatory.

The narrative part of Pplan defines the predicates initially, observed and
executed. For instance, initially(at(bob, (1, 1))) expresses that agent bob is initially
at location (1, 1); executed(go(bob, (1, 1), (2, 2), 3), 5) says that bob went from
location (1, 1) to location (2, 2) at time 3, and this has been observed at time 5
by the agent who contains it in its Pplan; and observed(at(jane, (2, 2)), 5) states
that jane is observed to be at location (2, 2) at time 5. The narrative part is not
only domain-dependent, but it also refers to a particular “running scenario”, in



holds(F, T2) ← observed(F, T1), not clipped(T1, F, T2), T1≤T2

holds(¬F, T2) ← observed(¬F, T1), not declipped(T1, F, T2), T1≤T2

clipped(T1, F, T2) ← observed(¬F, T ), T1≤T <T2

declipped(T1, F, T2) ← observed(F, T ), T1≤T <T2

happens(A, T ) ← observed(A, T )
happens(A, T ) ← executed(A, T )

Table 4. Domain-independent bridging rules in Pplan

holds(F, T ), assume holds(¬F, T ) ⇒ false
assume holds(F, T ), holds(¬F, T ) ⇒ false
assume happens(A, T ), precondition(A, P ) ⇒ assume holds(P, T )

Table 5. Domain-independent integrity constraints in Iplan (for partial planning)

some concrete circumstances. Typically, executed facts within the narrative part
of KBplan of an agent refer to actions executed by the agent, whereas observed
facts refer to properties of the environment, via facts of the form observed(L, T )
(the fluent literal L has been observed to hold at time T ) as well as actions
executed by other agents, via facts of the form observed(A, T ) (the action A has
been observed to have happened at time T ). The parameters of A can contain
the identification of the agent who has executed the action. To accommodate
observations, we add the bridging rules shown in Table 4 to Pplan. Note that the
narrative part of Pplan changes over the life time of the agent (whereas the other
parts of the knowledge base remain fixed).

Planning is done by reasoning with Pplan and Iplan to generate appropriate
instances of the abducible predicate assume happens, the successful execution
of whose actions would establish the planning goal. Note that we need such a
predicate (and happens cannot be used directly), because abducible predicates
cannot be defined in the theory.

Now we show how KBplan can be modified to facilitate partial planning.
A partial plan contains subgoals as well as actions. Such subgoals are modelled
using an additional abducible predicate assume holds. Table 5 lists the additional
integrity constraints in KBplan pertaining, specifically, to partial planning. The
purpose of the first two of the additional integrity constraints is to make sure
that no fluent is assumed to hold at a time when the contrary of the fluent holds.
The final constraint replaces the second constraint in Table 3.

This formulation allows the agent to plan for its goals by generating actions
and subgoals that correspond to the preconditions of the actions, all of which are
consistent with one another and with the observations that have been made. (An
alternative formulation for partial planning can add the integrity constraints of
Table 5 without modifying those in Table 3, but instead adding the following rule
to Pplan: holds(F, T ) ← assume holds(F, T ). This would allow a more “liberal”
way of partial planning, but for computational reasons we have chosen the first
approach in the implementation.)



To summarise, our abductive formulation of the EC for partial planning
consists of KBplan = 〈Pplan, Iplan, Aplan〉, where

– Pplan consists of the rules in tables 2 and 4 and any domain-dependent rules,
– Iplan consists of the integrity constraints in Table 5 and the first and last

constraints in Table 3 and any domain-dependent integrity constraints, and
– Aplan consists of the predicates assume happens and assume holds.

Intuitively, our proposal adds to more conventional abductive EC theories for
planning the possibility to interact with the environment, by observing that
properties hold and that other agents have executed actions. These additions
pave the way to the situatedness of the agent in the environment, when plan-
ning is performed within a “sense-plan-act” cycle. Indeed, observed(L, T ) and
observed(A, T ) facts (where A is an action executed by some other agent) are
added to the narrative part of KBplan as the result of a sensing operation of the
agent, whereas executed(A, T ) facts (where A is an action executed by the agent)
are added as the result of the execution of a planned action in the environment.
Each step in the cycle takes place at some concrete time, used to time-stamp
the facts recorded in the narrative part of KBplan.

4.2 Goals and Partial Plans in CIFF

Here we describe in more detail how goals and partial plans of an agent are
specified within the framework of the EC. A goal is a conjunction of the form
holds(L, T ) ∧ TC, where TC is a set of constraints on T , referred to as the
temporal constraints of the goal. A (partial) plan for a given goal consists of

– a (possibly empty) set of atoms of the form assume happens(A, T ) ∧ TC,
where TC is a set of constraints on T , referred to as the Actions in the plan;

– a (possibly empty) set of atoms of the form assume holds(L, T )∧TC, where
TC is a set of constraints on T , referred to as the SubGoals in the plan.

A partial plan for a set of goals is a set of partial plans, one for each individual
goal. Goals, actions, subgoals and temporal constraints will be typically non-
ground, and the variables occurring in them are implicitly existentially quantified
over the set of (partial) plans and goals.

Given a set of goals, GS, where each goal is of the form holds(L, T ) ∧ TC,
a (possibly empty) set of subgoals SubGoals, a (possibly empty) set of actions
Actions (representing already existing partial plans that we are trying to ex-
pand), and a (possibly empty) set of temporal constraints, to compute a partial
plan for GS at a time τ , CIFF uses the program 〈Th, I 〉, where Th is a set of
iff-definitions formed by the selective completion of Pplan, given Aplan, and I is
the set of all integrity constraints in Iplan.

To choose a query for CIFF, we first have to select the goals to be planned for
in the next round of planning. Let gs(Goals, Time) be a goal selection function
that takes as input a set of goals Goals of the form holds(L, T )∧TC and a time
of evaluation Time, and returns as output a subset of Goals. We do not give a
definition for such a selection function here. A number of different definitions



initiates(catch train to(X), T, at(X))
initiates(drive to(X), T, at(X))
initiates(fill up(X), T, have(X)) ← X = petrol
initiates(fill up(X ), T, have(X)) ← X = anti freeze

initially(¬have(anti freeze))
initially(have(petrol))

precondition(drive to(X), have(petrol))

assume happens(catch train to(X), T ), holds(train strike, T ) ⇒ false
assume happens(drive to(X), T1), observed(snowing, T2), T1−5≤T2≤T1 ⇒

assume holds(have(anti freeze, T1))

Table 6. Domain-dependent rules in KBplan for the airport example

are possible, for example gs can select those goals that are deemed “urgent”
according to some measure of urgency (e.g. how close their times are to Time).
Let GS′ = GS ∪ {holds(L, T ) ∧ TC | assume holds(L, T ) ∧ TC ∈ SubGoals}.
Let gs(GS′, τ) = SelectedGoals. CIFF is then invoked with a query including:

(1) all selected goals: the conjunction of all atoms holds(L, T ) ∧ TC, for all the
goals in SelectedGoals;

(2) all non-selected (sub)goals: the conjunction of all assume holds(L′, T ′)∧TC
such that holds(L′, T ′) ∧ TC is in GS or assume holds(L′, T ′) ∧ TC is in
SubGoals, and holds(L′, T ′) ∧ TC is not in SelectedGoals;

(3) time now(τ);
(4) the conjunction of all atoms assume happens(A′, T ′) ∧ TC in Actions.

4.3 Example

To illustrate the application of CIFF to planning consider the following scenario.
Agent A has the goal of being at the airport before time 10. It knows of two
ways of getting there, by train and by car. It has already learned that there is a
train strike. So it plans to drive there. Then it makes two observations, one that
it is low on petrol, and, the other, that it is snowing. So it plans to get petrol to
accommodate the first observation, and knowing that it is short on anti-freeze
it reacts to the information about the snow by adding a goal of topping up its
anti-freeze (thus repairing its plan to fit in with its changed environment). So
through the cycle of observations and (partial) planning it finally constructs a
complete plan consisting of the three actions of filling up petrol, topping up anti-
freeze, and driving to the airport at appropriate times. The domain-dependent
and narrative parts of agent A’s KBplan are shown in Table 6.

Suppose we are now at time 4 and we have the goal of being at the airport
before time 10. The goal given to CIFF would be the following:

holds(at(airport), T ), T < 10, time now(4)

CIFF will return the following partial plan (with 4 < T ′ < 10):

assume holds(have(petrol), T ′), assume happens(drive to(airport), T ′)



At this stage, now at time 5, suppose we make the two observations
observed(¬have(petrol), 5) and observed(snowing , 5). These are recorded in
agent A’s Pplan. For the next round of planning, at time 6, say, CIFF can be
called with the following set of goals:

holds(have(petrol), T ′), assume happens(drive to(airport), T ′),
4 < T ′, T ′ < 10, time now(6)

CIFF will then augment the existing partial plan by adding to it the following
new subgoals and actions (with the additional constraints 6 < T ′′ and T ′′ < T ′):

assume holds(have(anti freeze), T ′), assume happens(fill up(petrol), T ′′)

At time 7, say, if there are no further observations, CIFF will complete the plan
by adding the action fill up(anti freeze) with appropriate time constraints.

4.4 Implementation of the Planner

Given the computational model for planning put forward above and our imple-
mentation of the CIFF proof procedure described in Section 3, the implemen-
tation of a simple abductive planner has been straightforward. In essence, it
consists of only a single Prolog clause:

plan( Narration, Assumptions, Goals, TCs, Answer) :-

kbplan( PlanDefs, ICs),

close_pred( executed/2, Narration, ExecActions),

close_pred( observed/2, Narration, Observations),

close_pred( time_now/1, Narration, TimeNow),

Defs = [ExecActions,Observations,TimeNow|PlanDefs],

append( Goals, TCs, Goals1), append( Goals1, Assumptions, Query),

ciff( Defs, ICs, Query, Plan:Substitution:NewTCs),

delete_list( Plan, Assumptions, NewPlan),

Answer = NewPlan:Substitution:NewTCs.

Narration is a list of (ground) terms of the form executed(Action,T),
observed(Fluent,T), and observed(Action,T), representing the narrative
part of KBplan, as well as a single term of the form time now(N) to commu-
nicate the current time (N is an integer). Assumptions is a list of terms of
the form assume holds(Goal,T) and assume happens(Action,T) encoding the
goals and actions in the current partial plan. Goals, the goals to plan for, is a
list of terms of the form holds(Goal,T) and TCs is a list of temporal constraints
over variables occurring in the goals and actions given in the input. The variable
Answer will be instantiated with a representation of the chosen plan if there
exists one; otherwise the call to plan/5 will fail.

In the first subgoal of the implementation of plan/5, the kbplan/2 predicate
is used to retrieve the iff-definitions (PlanDefs) and the integrity constraints
(ICs) in the non-narrative parts of KBplan (we assume these have been asserted
earlier). The predicate close pred/3 is used to generated iff-definitions for the



predicates occurring in the Narration and these are appended to the list of
definitions to obtain Defs. Then the CIFF proof procedure is called with Defs
as the background theory, ICs as the integrity constraints, and the list of all other
relevant terms as the query. The first component of the answer consists of a list
of abducible predicates encoding the plan (using assume holds/2 for subgoals
and assume happens/2 for actions). To simplify the output, the assumptions
(goals and actions) already present in the input are then deleted from this list.
Furthermore, the answer may also include a list of restrictions on the answer
substitution (Substitution) and an updated list of constraints (NewTCs).

5 Conclusion

We have presented a Prolog implementation of the CIFF procedure that extends
the general purpose abductive proof procedure IFF by dealing with non-allowed
programs and by handling constraints. The implementation allows the use of
any abductive logic program and presents answers in the form of abducibles with
instantiations and restrictions of variables. We have also discussed an application
to planning where, by varying the input theory, we can construct complete or
partial plans in the presence or absence of narrative information.

The CIFF system has been used extensively in the PROSOCS framework [27]
to implement a planning component as well as for reactivity and temporal rea-
soning. Reactivity allows condition-action rule behaviour used in PROSOCS,
for example, for plan repair, for strategies for negotiation and communication
with other agents, and generally for reacting to changes in the environment. The
temporal reasoning capability is based on an extensive abductive logic program
based on the event calculus that deals with the revision of the agent’s knowl-
edge as a result of assimilating new information from its environment, including
other agents [2]. We have been able to use and test the CIFF system on a num-
ber of examples for all three applications without any modifications. While so
far, we have concentrated on providing an implementation of CIFF that cor-
rectly implements the semantics, that is easy to understand, and that supports
future extensions, in our future work we hope to also study possible optimisation
techniques for CIFF.
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Abstract. The paper concerns with the theory of similarity relations in the framework of
Logic Programming. Similarity relation [34] is a formal notion that allows us to manage
alternative instances of entities that can be considered ‘equal’ with a given degree. In [8,
15, 30, 29, 18] this notion has been encapsulated in an inference engine, based on the Logic
Programming paradigm, modifying the inference model to provide a more flexible unifica-
tion (approximately equal) than the dichotomic match (equal or not). In many situations,
more than one similarity relation can be defined in a universe by taking into account differ-
ent contexts. In this paper we studied some aggregations of such fuzzy relations and their
application to our extented Logic Programming framework.

1 Introduction and previous works

The main interest in Logic Programming field traditionally concerns problems related to the anal-
ysis and the efficiency of exact inferences allowed by logic programs [1, 14]. However, very often
the need of methods to enhance this capability, in order to deal with approximate information or
flexible inference schemes, arises in many applications. In general, approximate reasoning capa-
bilities are introduced in the Logic Programming framework by considering the inference system
based on fuzzy logic rather than on conventional two-valued logic.

In [8] a methodology that allows to manage uncertain and imprecise information in the frame
of the declarative paradigm of Logic Programming has been proposed. With this aim, a Similarity
relation R between function and predicate symbols in the language of a logic program is considered.
Approximate inferences are then possible since Similarity relation allows us to manage alternative
instances of entities that can be considered ”equal” with a given degree.

With respect to the previous literature [4, 31, 12, 13], this approach is very different since the
approximation is represented and managed at a syntactic-level, instead of at a rule-level. Roughly
speaking, the basic idea is that the fuzziness feature is provided by an abstraction process which
exploits a formal representation of similarity relations between elements in the alphabet of the
language (constants, functions, predicates). On the contrary, in the underground logic theory, the
inference rule as well as the usual crisp representation of the considered universe are not modified.
It allows us to avoid both the introduction of weights on the clauses, and the use of fuzzy sets as
elements of the language.

In [29] the operational counterpart of this extension is faced by introducing a modified SLD
Resolution procedure. Such a procedure allows us to compute numeric values belonging to the
interval [0,1] providing an approximation measure of the obtained solutions. These numeric values
are computed through a generalized unification mechanism. In [18] a Prolog interpreter written in
Java which implements this Similarity-based extension has been presented.

In these works, the approximation was based on a single similarity relation. However, by taking
into account different contexts (i.e. points of view), it is possible to define different similarity
relations in a given universe. Let us consider the following Example
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Example 1.
Let U be a set of animals denoted with

U = {M, B, G, E, P, H, S, T, C, W, D}

where these letters stand for

M = man, B = bear, G = gorilla, E = eagle, P = pigeon, H = hawk,

S = shark, T = tiger, C = cat, W = wolf , D = dog.

We can define a similarity R1 between elements in U based on feature ‘morphology’ by setting for
any x, y ∈ U

R1(x, y) = R1(y, x)

R1(x, y) = 1 if x = y

R1(G,M) = R1(D,W ) = R1(E,H) = .8

R1(W,T ) = R1(D,T ) = .6

R1(C, T ) = R1(C,W ) = R1(C,D) = .4

R1(B, T ) = R1(B,C) = R1(B,W ) = R1(B,D) = R1(E,P ) = R1(P,H) = .2

R1(x, y) = 0 otherwise.

Also, we can define a similarity R2 between elements in U based on feature ‘aggressiveness’ by
setting for any x, y ∈ U

R2(x, y) = R2(y, x)

R2(x, y) = 1 if x = y

R2(G,W ) = R2(T, S) = R2(E,H) = .8

R2(M,D) = R2(B,S) = R2(B, T ) = R2(C,D) = .6

R2(M,E) = R2(M,H) = R2(M,C) = R2(B,G) = R2(B,W ) = R2(G,S) =
= R2(G,T ) = R2(E,C) = R2(E,D) = R2(H,C) = R2(H,D) = R2(S,W ) = R2(T,W ) = .4

R2(M,B) = R2(M,G) = R2(M,S) = R2(M,T ) = R2(W,M) = R2(B,E) =
= R2(B,H) = R2(B,C) = R2(B,D) = R2(G,E) = R2(G,H) = R2(G,C) = R2(G,D) =
= R2(E,S) = R2(E, T ) = R2(E,W ) = R2(H,S) = R2(H,T ) = R2(H,W ) = R2(S,C) =

= R2(S,D) = R2(T,C) = R2(T,D) = R2(C,W ) = R2(W,D) = .2

R2(x, y) = 0 otherwise.

In many cases, we may need to aggregate different relations. Aggregation of binary (fuzzy)
relations is an important and challenging mathematical problem in applied areas as social choice,
group choice, multiple-criteria decision-making, synthesis of implication functions, etc. Formally,
this problem can be formulated in terms of group choice theory as follows: suppose U is a finite set of
alternatives and R =< R1, ..., Rn > is an ordered n-tuple of binary (fuzzy) relations on U. Elements
of R are regarded as individual preferences and R is called a profile of individual preferences on
the set U of alternatives. For a given U, an aggregation rule assigns a group preference R to each
profile R of individual preferences on U (very often it is assumed that n > 2). We denote this rule
by the same letter R. Depending on the application area, various restrictions are imposed on R. In
[5, 11, 2, 26, 27, 21, 28], the fuzzy binary relations R1, ..., Rn and R satisfy T-transitivity property
in which T is an Archimedian t-norm. In our framework we consider transitivity based on the
minimum triangular norm. In particular, in this paper we study properties of Rmin =

⋂
i Ri and

Rmax =
⋃

i Ri assuming that individual and group preferences are similarity relations on a finite
set of alternative U.

The paper is organized as follows. After preliminaries on similarity relation in Logic Pro-
gramming framework, Section 3 will study the aggregation of similarity relations by intersection
(Subsection 3.1) and union (Subsection 3.2), and their exploitation in the similarity based Logic
Programming (Subsection 3.3). The last section contains some concluding remarks.
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2 Preliminaries

2.1 Similarity relation

An important and very intuitive theoretical basis for fuzzy subsets is given by the concept of
fuzzy equivalence relations, which, in some sense, measure the degree to which two points of the
universe are indistinguishable, and which generalize and relax the concept of classical equivalence
relations. A strong motivation for this notion follows from the so-called Poincaré Paradox [25]: if
for three (real world) objects A, B and C we know that A is indistinguishable from B and B is
indistinguishable from C, we cannot necessarily conclude that A is indistinguishable from C too.
Fuzzy equivalence relations have been introduced under the name of similarity relation in [34]
(with respect to the minimum TM , the generalization to t-norms was considered in [32]). In this
section, we will recall some well-known definitions and properties related to similarity relation and
to its application in the Logic Programming framework.

In Cantorian set theory, a relation on a universe U can be identified with a subset of U2. By
analogy, a fuzzy relation on U is then a fuzzy subset of U2. For early traces of properties of fuzzy
relations see [34] and [22–24], more recent treatments include [6, 3].

At first, let us recall that a T-norm is a binary operation ∧ : [0, 1] × [0, 1] → [0, 1] associative,
commutative, non-decreasing in both the variables, and such that x ∧ 1 = 1 ∧ x = x for any x in
[0,1]. In the sequel, we assume that x ∧ y is the minimum between the two elements x, y ∈ [0, 1].

Definition 1. Given a T-norm, a fuzzy relation R on a set U is T-transitive if and only if
T (R(x, y), R(y, z)) ≤ R(x, z) for any x, y, z ∈ U.

Among all T-transitive fuzzy relations, similarity relations and fuzzy T-preorders are the most
important ones.

Definition 2. A similarity on a domain U is a fuzzy relation R : U × U → [0, 1] in U such that
the following properties hold

i) R(x, x) = 1 for any x ∈ U (reflexivity)

ii) R(x, y) = R(y, x) for any x, y ∈ U (symmetry)

iii) R(x, z) ≥ R(x, y) ∧ R(y, z) for any x, y, z ∈ U (transitivity)

we say that R is strict if the following implication is also verified

iv) R(x, z) = 1 =⇒ x = z.

The value R(x, z) can be interpreted as the degree of equality or the degree of indistinguishabil-
ity of x and y or, equivalently, as the truth value of the statement ’x is equal to y’. The ∧-transitivity
is a many-valued model of the proposition ’IF x is equal to y AND y is equal to z THEN x is equal
to z’.

Similarities also are called indistinguishability operators, fuzzy equalities, fuzzy equivalences,
likeness, probabilistic relations, proximity relations, M-valued equality, depending on the authors
and on the t-norm used to model their transitivity.

There is a lot of work around this concept and it has been proved to be a useful tool both in
the theoretical aspects of fuzzy logic and in their applications such as fuzzy control or approximate
reasoning.
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2.2 Similarity relation and closure operators

We synthetically give some well known notions concerning closure operators and equivalence rela-
tions.

Definition 3. Let (P,¹) be a poset. An operator H : P → P is called a closure (resp. reductive)
operator if for any x, y in P the following properties hold:

i) x ¹ H(x) (resp. H(x) ¹ x)

ii) H(H(x)) = H(x)

iii) x ¹ y =⇒ H(x) ¹ H(y).

Proposition 1. Let ≡ be an equivalence relation on a set S and P(S) the powerset of S. Then,
the operator H≡ : P(S) → P(S) such that for any X ⊆ P(S)

H≡(X) = {x′ ∈ S | ∃x ∈ X : x′ ≡ x)}

is a closure operator.

The following notion of λ−cut is crucial in fuzzy set theory:

Definition 4. Let U be a domain and R : U × U → [0, 1] a fuzzy relation in U . Then, for any
λ ∈ [0, 1], the relation ≅R,λ in U defined as

x ≅R,λ y ⇐⇒ R(x, y) º λ

is named cut of level λ (in short λ-cut) of R.

Similarity relations are strictly related with equivalence relations and, then, to closure opera-
tors. Indeed, the notion of λ− cut allows us to define a similarity by means of a suitable family of
equivalence relations according to the following result that can be easily proven.

Proposition 2. Let U be a domain and R : U × U → [0, 1] a Similarity in U . Then, for any λ ∈
[0, 1], the relation ≅R,λ in U is an equivalence relation. Also, the operator H≅R,λ

: P(U) → P(U)
such that for any X ∈ P(U)

H≅R,λ
(X) = {z ∈ U | ∃x ∈ X : x ≅R,λ y} = {z ∈ U | ∃x ∈ X : R(z, x) ≥ λ} ,

is a closure operator.

Proposition 3. Let R be a similarity in a domain U and, for any λ ∈ [0, 1] let ≅R,λ be the λ−cut
of R. Then, {≅R,λ}λ∈[0,1] is a family of equivalence relations such that,

i) for any µ and λ in [0, 1], λ ¹ µ ⇒ ≅R,λ ⊇ ≅R,µ

ii) for any µ in [0, 1],
⋂

λ¹µ

≅R,λ = ≅R,µ .

Conversely, let {≅λ}λ∈[0,1] be a family of equivalence relations satisfying conditions i) and ii).
Then the relation R defined by setting

R(x, y) = Sup{λ ∈ [0, 1] | x ≅λ y}

is a similarity whose family of λ−cuts is equal to the family {≅λ}λ∈[0,1].

Any λ−cut can be considered as a generalization of the equality. This notion plays an important
rule in our approach. Indeed, the relation ≅R,λ formalizes the idea that two constant symbols can
be considered equal with a fixed approximation level λ ∈ [0, 1]. Such a level provides a measure
of the allowed approximation in order to avoid failure of matching between constant symbols in a
SLD-derivation process.
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2.3 Logic Programming with Similarity

We briefly recall that a logic program P is a set of universally quantified Horn clauses on a first
order language L, denoted with H ← B1, . . . , Bk, and a goal is a negative clause, denoted with
A1, . . . , An. We denote with BL the set of ground atomic formulae in L, i.e. the Herbrand base of
L, and with TP the immediate consequence operator TP : P(BL) 7→ P(BL) defined by:

TP (X) = {a|a ← a1, . . . , an ∈ Γ (P ) and ai ∈ X, 1 ≤ i ≤ n}

where Γ (P ) denotes the set of all ground instances of clauses in P . The application of Tarski’s
fixpoint theorem yields a characterization of the semantics of P , which is the least Herbrand model
MP of P given by:

MP = lfp(TP ) =
⋃

n≥0 Tn
P (∅)

where lfp stands for least fixpoint [1].
In the classical Logic Programming, function and predicate symbols of the language L are crisp

elements, i.e., distinct elements represent distinct information and no matching is possible. In [8]
the exact matching between different entities is relaxed by introducing a Similarity relation R in
the set of constant, function and predicate symbols in the language of a logic program P. In order
to deal with the approximation introduced by a similarity relation R, the program P is extended
by adding new clauses which are ”similar” at least with a fixed degree λ in (0,1] to the given ones.
This program transformation is obtained by considering the closure operator Hλ associated to R.
The new logic program

Hλ(Γ (P )) = {C ′ ∈ L|∃C ∈ Γ (P ) such that R(C,C ′) ≥ λ},

named extended-program of level λ, allows us to enhance the inference process.
An alternative way to manage the information carried on by the Similarity introduced between

function and predicate symbols in P , is given by considering as an unique element different symbols
which have Similarity degree greater or equal to λ. In other words, we consider the quotient set of
≅R,λ as a new alphabet Lλ, where F/ ≅R,λ and R/ ≅R,λ are the sets of function and predicate
symbols, respectively. More formally, let us denote with [s] ∈ Lλ the equivalence class of a symbol
s ∈ F ∪ R with respect to ≅R,λẆe call translation up to ≅R,λ the function:

τλ : F ∪ R 7→ F/ ≅R,λ ∪R/ ≅R,λ

defined by setting:

τλ(x) = x for any variable x ∈ V , and τλ(f) = [f ]

for any function/predicate symbol f ∈ F ∪ R. Recursively, we can easily define the extension of
τλ to the sets of formulae in L. Let us consider a logic program P on the language L.

The set

Pλ = τλ(Γ (P )) = {C ′ ∈ Lλ|C
′ = τλ(C), C clause in Γ (P )}

is a logic program that we name abstract-program of level λ.
By considering the abstract program Pλ, it is possible to express information provided by the

similarity relation in a syntectic way exploiting the quotient language Lλ. Then, Pλ could be used
to manage similarity-based reasoning as well as Hλ(Γ (P )). In [30] the equivalence of these two
approaches has been shown for first order languages by using an abstract interpretation technique.

It is worth to stress that the introduced similarity generally changes the semantic of the original
program. Indeed, it allows us to add new clauses to P providing the extended program Hλ(P ).
This is the more straight way to implement the approximated inference process based on similarity.
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On the other hand, by considering the abstract program Pλ, it is possible to express information
provided by the similarity relation in a syntectic way exploiting the quotient language Lλ.

Both these programs allow to perform approximate inferences by assuming a “tolerance” level
λ ∈ (0, 1] in the relaxed matching between different function/predicate symbols.

In [8], the formal notion of fuzzy least Herbrand model MP,R : BL 7→ [0, 1] of the program P
with respect to the Similarity R is defined by setting for any A ∈ BL:

MP,R(A) = Sup{λ ∈ [0, 1] |A ∈ MHλ(Γ (P ))}

= Sup{λ ∈ [0, 1] |Hλ(Γ (P )) ² A }

Roughly speaking, for any A ∈ BL the value MP,R(A) provides the best deduction degree of A, i.e,
the best level of approximation λ that allows us to prove A by considering an extended program
Hλ(Γ (P )). It can be proved that:

MP,R(A) = Sup{λ ∈ [0, 1] |tλ(A) ∈ MPλ
}

= Sup{λ ∈ [0, 1] |Pλ ² τλ(A)}

Thus, in order to compute the fuzzy least Herbrand model of a program P extended with a
Similarity R, we can equivalently perform our computations in the extended or in the abstract
domain.

3 On aggregations in multi context-based Logic Programming

framework

In many situations, there can be more than one similarity relation defined in a universe. For exam-
ple that we have a set of elements defined by some features. We can generate a similarity relation
from each feature. In these cases, we must manage and use such information in an appropriated
way, for instance we may need to aggregate the obtained relations. In this Section we give a first
formal environment in order to make that.

3.1 Aggregation of similarity relations by intersection

The most common way to put together a family of T-transitive fuzzy relations is by calculating
their minimum (or infimum), which also is a T-transitive relation. Indeed the following well-known
proposition [33] states that x, y are related with respect to R if and only if they are related with
respect to all the relations of the family (because the infimum is used to model the universal
quantifier ∀ in fuzzy logic [9]).

Proposition 4. Let (Ri)i∈I be a family of T-transitive fuzzy relations on a set U. The relation
defined for all x, y ∈ U by

R(x, y) = mini∈IRi(x, y)

is a T-transitive fuzzy relation on U.

In particular,

Corollary 1. Let R1, . . . , Rn be n similarity relations on a set U. The relation Rmin =
⋂

i Ri

defined for all x, y ∈ U by

Rmin(x, y) = min{R1(x, y), . . . , Rn(x, y)}

is a similarity relation on U.
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Example 2. We consider the similarity relations R1 and R2 defined in Example 1. Then,
Rmin(x, y) = Rmin(y, x)

Rmin(x, y) = 1 if x = y

Rmin(E,H) = .8

Rmin(W,T ) = Rmin(C,D) = .4

Rmin(G,M) = Rmin(D,W ) = Rmin(D,T ) = Rmin(C, T ) = Rmin(C,W ) = Rmin(B, T ) =
= Rmin(B,C) = Rmin(B,W ) = Rmin(B,D) = .2

Rmin(x, y) = 0 otherwise.

3.2 Aggregation of similarity relations by union

The binary fuzzy relation Rmin =
⋂

i Ri is an extreme case of aggregation rule because it is very
restrictive. Indeed, Rmin(a, b) ≤ Ri(a, b) for any i. Many times this way to aggregate fuzzy relations
by intersection leads to undesirable results in applications. The reason is that the minimum has a
drastic effect. For instance, if two objects of our universe are very similar or indistinguishable for
all but one similarity relation, and for this particular one the similarity value is very low, then the
result applying the minimum will give this last measure and will lose the information of all the
other ones. This can be reasonable and useful if we need a perfect matching with respect to all
our relations, but this is not the case in many situations. When we need to take all the relations
into account in a less drastic way, we need to use other ways to aggregate them. A possibility of
softening the previous proposition is by replacing the intersection by the union.

We define Rmax =
⋃

i Ri by setting Rmax(x, y) = max{R1(x, y), . . . , Rn(x, y)}.

Note that Rmax not is a similarity relation.

Example 3. We consider the similarity relations R1 and R2 defined in Example 1. Then,
Rmax(x, y) = Rmax(y, x)

Rmax(x, y) = 1 if x = y

Rmax(M,G) = Rmax(G,W ) = Rmax(T, S) = Rmax(W,D) = Rmax(E,H) = .8

Rmax(M,D) = Rmax(B,S) = Rmax(B, T ) = Rmax(C,D) = Rmax(T,D) = .6

Rmax(C,W ) = Rmax(T,C) = Rmax(M,E) = Rmax(M,H) = Rmax(M,C) = Rmax(B,G) =
= Rmax(B,W ) = Rmax(G,S) = Rmax(G,T ) = Rmax(E,C) = Rmax(E,D) =

= Rmax(H,C) = Rmax(H,D) = Rmax(S,W ) = Rmax(T,W ) = .4

Rmax(M,B) = Rmax(M,S) = Rmax(M,T ) = Rmax(W,M) = Rmax(B,E) = Rmax(B,H) =
= Rmax(P,E) = Rmax(B,C) = Rmax(B,D) = Rmax(G,E) = Rmax(G,H) = Rmax(G,C) =
= Rmax(P,H) = Rmax(G,D) = Rmax(E,S) = Rmax(E, T ) = Rmax(E,W ) = Rmax(H,S) =

= Rmax(H,T ) = Rmax(H,W ) = Rmax(S,C) = Rmax(S,D) = .2

Rmax(x, y) = 0 otherwise.

Note that
Rmax(W, D) = 0.8, Rmax(B, W) = 0.4, Rmax(B, D) = 0.2
which violates the min-transitivity property because
Rmax(B, D) ¤ Rmax(W, D) ∧ Rmax(B, W)

Let us recall that the max-T product [34, 33] allows us to construct the transitive closure of a
given reflexive and symmetric fuzzy relation.

Definition 5. Let T be a T-norm and R, S two fuzzy relations in a set U . The max-T (or sup-T )
product R ◦ S of R and S is the fuzzy relation on U defined by

(R ◦ S)(x, y) = sup
z∈ U

T (R(x, z), S(z, y)) for any x, y ∈ U .
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Assuming T continuous, due to the associativity of max-T product, we can define for each n ∈ N
the power Rn of a fuzzy relation R recursively:

R1 = R,

Rn+1 = R ◦ Rn for any n ∈ N .

Definition 6. The T -transitive closure (or T -closure R∗ of a fuzzy relation R on a set U is defined
by R∗ = sup

n∈ N

Rn.

Proposition 5. If R is a reflexive and symmetric fuzzy relation on a finite set U of cardinality
n, then R∗ = Rn−1.

Proposition 6. Let R be a reflexive and symmetric fuzzy relation on a set U .

R = R∗ if and only if T (R(x, y), R(y, z)) ≤ R(x, z) for any x, y, z ∈ U .

Therefore, the transitive closure R∗ of a reflexive and symmetric fuzzy relation is a similarity
operator. Moreover, it is straightforward to prove that R∗ is a relation greater or equal than R
(R∗ ≥ R). Moreover,it can be shown [33] that if E is a similarity operator greater or equal than
R, then E ≥ R∗. In other words, the transitive closure R∗ of R is the smallest similarity operator
that contains R and is therefore the best upper approximation of R.

In fact, the following proposition can be proved.

Proposition 7. Given a reflexive and symmetric fuzzy relation R on a set U and R∗ its transitive
closure. Let A be the set of similarity operators on U greater than or equal to R. Then

R∗(x, y) = inf
E∈ A

{E(x, y)}.

Example 4. The Min-transitive closure of Rmax defined in Example 3 is

R∗
max(x, y) = R∗

max(y, x)

R∗
max(x, y) = 1 if x = y

R∗
max(M,G) = R∗

max(M,D) = R∗
max(M,W ) = R∗

max(G,W ) = R∗
max(G,D) = R∗

max(E,H) =

= R∗
max(T, S) = R∗

max(W,D) = .8

R∗
max(M,C) = R∗

max(M,B) = R∗
max(M,S) = R∗

max(M,T ) = R∗
max(B,S) = R∗

max(B, T ) =

= R∗
max(B,G) = R∗

max(B,W ) = R∗
max(B,C) = R∗

max(B,D) = R∗
max(G,S) =

= R∗
max(G,T ) = R∗

max(G,C) = R∗
max(C,D) = R∗

max(T,D) = R∗
max(C,W ) =

= R∗
max(T,C) = R∗

max(S,W ) = R∗
max(T,W ) = R∗

max(S,C) = R∗
max(S,D) = .6

R∗
max(M,E) = R∗

max(M,H) = R∗
max(B,E) = R∗

max(B,H) = R∗
max(G,E) = R∗

max(G,H) =

= R∗
max(E,C) = R∗

max(E,D) = R∗
max(E,S) = R∗

max(E, T ) = R∗
max(E,W ) =

= R∗
max(H,C) = R∗

max(H,D) = R∗
max(H,S) = R∗

max(H,T ) = R∗
max(H,W ) = .4

R∗
max(M,P ) = R∗

max(B,P ) = R∗
max(G,P ) = R∗

max(E,P ) = R∗
max(H,P ) = R∗

max(S, P ) =

= R∗
max(T, P ) = R∗

max(C,P ) = R∗
max(W,P ) = R∗

max(D,P ) = .2.

which is a similarity relation.

3.3 Exploiting Rmin and Rmax in the similarity based Logic Programming

The fuzzy relations Rmin =
⋂

i Ri, and Rmax =
⋃

i Ri are two extreme cases of aggregation rules.
The first one implies that Rmin(a, b) ≤ Ri(a, b) for any i, the second one that Rmax(a, b) ≥ Ri(a, b)
for any i. In the sequel we study properties of these relations in the framework of the Similarity-
based Logic Programming. Let us start with Rmin.
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Proposition 8. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be a
logic program. Then,

Hλ,Rmin
(Γ (P)) ⊆

n
∩

i=1
Hλ,Ri

(Γ (P))

Proof. A ∈ Hλ,Rmin
(Γ (P)) =⇒ ∃A’ ∈ Γ (P) t.c. Rmin(A, A’) > λ

=⇒min{R1(A, A’),...,Rn(A, A’)}> λ =⇒Ri(A, A’) > λ ∀i = 1, ..., n
=⇒ A ∈ Hλ,Ri

(A’) ∀i = 1, ..., n, A’ ∈ Γ (P) =⇒ A ∈ Hλ,Ri
(Γ (P)) ∀i = 1, ..., n

=⇒ A ∈
n
∩

i=1
Hλ,Ri

(Γ (P))

Let us prove that the inverse inclusion does not hold.
Let the following logic program be given
P = {q(c)←; r(c)←; p(a)←}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(r, q) < λ, R1(p, q) > λ, R1(r, p) < λ;
R2(r, q) < λ, R2(p, q) < λ, R2(r, p) > λ.
Then it follows:
Hλ,R1

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←; q(a)←}
Hλ,R2

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←; r(a)←}
2
∩

i=1
Hλ,Ri

(Γ (P)) = {q(c)←; r(c)←; p(a)←;p(c)←}

Rmin(r, q) < λ, Rmin(p, q) < λ, Rmin(r, p) < λ
Hλ,Rmin

(Γ (P))= {q(c)←; r(c)←; p(a)←}
Results
2
∩

i=1
Hλ,Ri

(Γ (P))* Hλ,Rmin
(Γ (P)). ⋄

By the previous result, because the Logic Programming is a monotonic inference system, it follows
that:

MHλ,Rmin
(Γ (P )) ⊆ M n

∩
i=1

Hλ,Ri
(Γ (P ))

Therefore, fixed λ ∈ (0, 1], the extended program w.r.t. Rmin allows to deduce less ground atomic
formulae than to the intersection of the extended programs of the similarity relations R1, . . . , Rn.
Moreover, we can prove the following result:

Proposition 9. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be a
logic program. Then,

M n
∩

i=1
Hλ,Ri

(Γ (P ))
⊆

n
∩

i=1
MHλ,Ri

(Γ (P ))

Proof. A ∈ M n
∩

i=1
Hλ,Ri

(Γ (P))
= ∪

j>0
Tj

n
∩

i=1
Hλ,Ri

(Γ (P ))

(∅)=⇒ ∃k >1 t.c. A∈Tk
n
∩

i=1
Hλ,Ri

(Γ (P ))

(∅)

=⇒ ∃k>1 t.c. A∈Tk
Hλ,Ri

(Γ (P ))
(∅) ∀i = 1, ..., n

=⇒A∈ ∪
j>0

Tj
Hλ,Ri

(Γ (P ))
(∅) = MHλ,Ri

(Γ (P )) ∀i = 1, ..., n

=⇒A∈
n
∩

i=1
MHλ,Ri

(Γ (P ))

Now let us prove that the inverse inclusion does not hold.
Let the following logic program be given
P = {q(a)←q(b); q(c)←}
MP = {q(c)}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(a,b) < λ, R1(a,c) > λ, R1(b,c) < λ;
R2(a,b) < λ, R2(a,c) < λ, R2(b,c) > λ.
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Then, it results
Hλ,R1

(Γ (P)) = {q(a)←q(b); q(c)←; q(c)←q(b); q(a)←}
MHλ,R1

(Γ (P )) = {q(a), q(c)};
Hλ,R2

(Γ (P)) = {q(a)←q(b); q(c)←; q(a)←q(c); q(b)←}
MHλ,R2

(Γ (P )) = {q(b), q(c), q(a)};
2
∩

i=1
MHλ,Ri

(Γ (P )) = {q(a), q(c)};

2
∩

i=1
Hλ,Ri

(Γ (P)) = {q(a)←q(b); q(c)←}

M 2
∩

i=1
Hλ,Ri

(Γ (P ))
= {q(c)}

Then it results
2
∩

i=1
MHλ,Ri

(Γ (P )) * M 2
∩

i=1
Hλ,Ri

(Γ (P ))
. ⋄

Summarizing,

MHλ,Rmin
(Γ (P )) ⊆ M n

∩
i=1

Hλ,Ri
(Γ (P ))

⊆
n
∩

i=1
MHλ,Ri

(Γ (P ))

Thus, let us define the fuzzy least Herbrand model of P w.r.t. the intersection relation Rmin as:

MP,Rmin
(A) = sup{λ ∈ [0, 1] / A ∈ MHλ,Rmin

(Γ (P ))}

It can be easily proved that:

Proposition 10. Let R1, . . . , Rn be n strict similarity relations on a set U. Then,
A ∈ MP ⇐⇒ MP,Rmin

(A) = 1

Analogous properties hold for R∗
max.

Proposition 11. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be
a logic program. Then,

n
∪

i=1
MHλ,Ri

(Γ (P )) ⊆ M n
∪

i=1
Hλ,Ri

(Γ (P ))

Proof. Let us consider A ∈
n
∪

i=1
MHλ,Ri

(Γ (P )) =⇒ ∃m ∈ {1, . . . , n} such as A ∈ MHλ,Rm (Γ (P )) =⇒

=⇒ A ∈ ∪
j>0

T j
Hλ,Rm

(Γ (P ))
(∅) =⇒ ∃k>1 such as A ∈ Tk

Hλ,Rm
(Γ (P ))

(∅) =⇒ ∃k>1 such as A∈Tk
n
∪

i=1
Hλ,Ri

(Γ (P ))

(∅)

=⇒A∈ ∪
j>0

T j
n
∪

i=1
Hλ,Ri

(Γ (P ))

(∅) = M n
∪

i=1
Hλ,Ri

(Γ (P ))

Let us prove that the inverse inclusion does not hold.
Let us consider the following logic program
P = {p(a)←q(c); r(a)←}
Let us suppose that R1 and R2 are two similarity relations defined in L(P ) such that
R1(r, q) > λ, R1(p, q) < λ, R1(r, p) < λ, R1(a, c) < λ;
R2(r, q) < λ, R2(p, q) < λ, R2(r, p) < λ, R2(a, c) > λ.
Then it follows:
Hλ,R1

(Γ (P)) = {p(a)←q(c); r(a)←; q(a)←; p(a)←r(c)}
MHλ,R1

(Γ (P )) = {q(a), r(a)};
Hλ,R2

(Γ (P)) = {p(a)←q(c); r(a)←; p(c)←q(c); p(a)←q(a); r(c)←}
MHλ,R2

(Γ (P )) = {r(c), r(a)};
n
∪

i=1
MHλ,Ri

(Γ (P ))= {r(c), r(a), q(a)};
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2
∪

i=1
Hλ,Ri

(Γ (P)) = {p(a)←q(c); r(a)←; q(a)←; p(a)←r(c); p(c)←q(c)←; p(a)←q(a); r(c)←}

Hλ,Ri
(Γ (P)) = {q(a)←q(b); q(c)←}

M 2
∪

i=1
Hλ,Ri

(Γ (P ))
= {r(c), r(a), q(a), p(a)}

Then, it follows:

M 2
∪

i=1
Hλ,Ri

(Γ (P ))
*

2
∪

i=1
MHλ,Ri

(Γ (P )). ⋄

Furthermore, it results that

Proposition 12. Let R1, . . . , Rn be n similarity relations on a set U, let λ ∈ (0, 1] and let P be
a logic program. Then,

n
∪

i=1
Hλ,Ri

(Γ (P)) ⊆ Hλ,R∗

max
(Γ (P))

Proof. C ∈
n
∪

i=1
Hλ,Ri

(Γ (P)) =⇒ ∃j ∈ {1, . . . , n} t.c. C ∈ Hλ,Rj
(Γ (P)) =⇒

=⇒ ∃C’ ∈ Γ (P) t.c. Rj(C, C’) > λ =⇒ Rmax(C, C’) > λ =⇒ R∗
max(C, C’) > λ =⇒

=⇒ C ∈ Hλ,R∗

max
(Γ (P))

Let us prove that the inverse inclusion does not hold.
Let us consider two similarity relations R1 ed R2 defined in a first order languages L such that
R1(a, b) = 0.3, R1(a, c) = 0.3, R1(b, c) = 0.5
R2(a, b) = 0.6, R2(a, c) = 0.4, R2(b, c) = 0.4
then
Rmax(a, b) = 0.6, Rmax(a, c) = 0.4, Rmax(b, c) = 0.5
and
R∗

max(a, b) = 0.6, R∗
max(a, c) = 0.5, R∗

max(b, c) = 0.5
Let P = {a←}
Then, results that
H0.5,R1

(Γ (P)) = {a←}
H0.5,R2

(Γ (P)) = {a←; b←}
2
∪

i=1
H0.5,Ri

(Γ (P)) = {a←; b←}

H0.5,R∗

max
(Γ (P)) = {a←; b←; c←}

Then,

H0.5,R∗

max
(Γ (P)) *

2
∪

i=1
H0.5,Ri

(Γ (P)) ⋄

Then, because the Logic Programming is a monotonic inference system
M n

∪
i=1

Hλ,Ri
(Γ (P ))

⊆ MHλ,R∗
max

(Γ (P ))

Therefore, fixed λ ∈ (0, 1], the extended program w.r.t. R∗
max allows to deduce more ground atomic

formulae than to the union of the extended programs of the similarity relations R1, . . . , Rn.

Summarizing,
n
∪

i=1
MHλ,Ri

(Γ (P )) ⊆ M n
∪

i=1
Hλ,Ri

(Γ (P ))
⊆ MHλ,R∗

max
(Γ (P ))

Let us define the fuzzy least Herbrand model of P w.r.t. the union relation R∗
max as:

MP,R∗

max
(A) = sup{λ ∈ [0, 1] / A ∈ MHλ,R∗

max
(Γ (P ))}
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It can be proved that:

Proposition 13. Let R1, . . . , Rn be n strict similarity relations on a set U and let P be a logic
program. Then,

A ∈ MP ⇐⇒ MP,R∗

max
(A) = 1

4 Conclusion

In this paper we studied two estreme cases (Rmin and Rmax) of group preferences relationsimposing
the min-transitivity property. The operators Min and Max (intersection and union in terms of fuzzy
relations) are two extreme cases of aggregation rules. Properties of these relations in the framework
of Similarity-based Logic Programming have been proved. As future work different aggregation
rules will be studied in order to manage the similarity values in a less extreme way.
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Abstract. Traditionally, most of the proposed probabilistic models of
decision under uncertainty rely on numerical measures and representa-
tions. Alternative proposals call for qualitative (non-numerical) treat-
ment of uncertainty, based on preference relations and belief orders.
The automation of both numerical and non-numerical frameworks surely
represents a preliminary step in the development of inference engines of
intelligent agents, expert systems, and decision-support tools.
In this paper we exploit Answer Set Programming to formalize and rea-
son about uncertainty expressed by belief orders. The availability of ASP-
solvers supports the design of automated tools to handle such formaliza-
tions. Our proposal reveals particularly suitable whenever the domain of
discernment is partial, i.e. it does not represent a closed world but just
the relevant part of a problem.
We first illustrate how to automatically “classify”, according to the most
well-known uncertainty frameworks, any given partial qualitative uncer-
tainty assessment. Then, we show how to compute the enlargement of
an assessment to any other new inference target, with respect to a fixed
(admissible) qualitative framework.

Key words: Uncertainty orders, answer set programming, partial as-
sessments, general inference.

Probability does not exist!
—Bruno de Finetti [13]

Introduction and background

Nowadays, several numerical tools are usually adopted in AI to represent and
manage uncertainty. All of them originate from amendments of the well-known
Probability measure, aimed at generalizing it to better fit different peculiarities
of specific application fields (for a survey the reader can refer to [21, 30] or
to [25, Chapters 8–10], among others. The Appendix briefly summarizes some
basic notions about uncertainty measures, from the quantitative point of view).
The measures that achieved wider diffusion can be classified as:
?
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- Capacities;
- Possibility and Necessity measures;
- Probabilities;
- Belief and Plausibility functions;
- Lower and Upper probabilities.

Among all these measures (which are real-valued functions), Capacities [7] char-
acterize the weakest notion. Indeed, Capacities are measures whose unique prop-
erty is monotonicity with respect to the implication of events. Namely, if a situ-
ation A implies a situation B, then the uncertainty on A should be not greater
than the uncertainty on B. Uncertainty models based on such measures are
very general but, on the other hand, very weak because they describe nothing
more than “common sense” behaviors. The class of Capacities includes all other
classes.

Possibility measures (Necessity measures are their dual, cf. Def. 2 of the Ap-
pendix) come from Fuzzy theory [17, 33] and originate from the need to express
“vagueness” about the descriptions of situations instead of uncertainty about
their truth.

Probabilities are characterized by the “additivity” property: Having judged
the uncertainties P (A) and P (B) on any pair of disjoint situations A and B,
the uncertainty on their combination A ∨ B is defined as P (A) + P (B). Such
measures have a wide range of applications. Almost any medical, engineering,
economic, and environmental decision-aid tool is usually built on (or at least
compared to) probabilistic models.

Belief functions (whose dual are Plausibilities) are the base of Evidence the-
ory [26]. The Belief on a proposition represents the “strength” by which a not
fully detailed information supports its truth. Plausibility functions, on the other
hand, represent how much the evidence makes reasonable that a proposition is
true. Such uncertainty measures have found valuable application in economic and
medical frameworks where the initial available information is quite not-specific.

Lower probabilities (whose dual are Upper probabilities) are instead adopted
whenever one needs to consider as valid an entire family of probabilistic models
in place of a single one. Such measures have been developed within the field of
Imprecise probabilities [11, 29]. Obviously, such uncertainty measures are usually
adopted in each context where precise probabilities are typically used, but where
there are not enough constraints to be obliged to use a unique model.

As a matter of fact, each one of the framework described so far, can manage
uncertainty and retains all of the expressive power of mathematical quantitative
models. Though, inevitably, they suffer from the drawbacks often faced whenever
numerical models are applied to practical problems: a) the difficulty of express-
ing a complete evaluation, and b) the hardness to elicit precise numerical values.
The former problem can be circumvented by following the pioneering approach
proposed by de Finetti in the context of Probabilities [12, 13]. Namely, by in-
troducing the so called partial models, i.e. numerical evaluations defined only on
some of the situations at hand, and intended to be a restriction of some of the
complete models mentioned above. (Then, we will deal with partial Capacities,
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partial Probabilities, and so on.) This approach allows the analyst of the problem
to focus his/her evaluation on the situations really judged relevant, w.r.t. the
problem at hand. This leaves open the possibility to enlarge the model to other
scenarios that could enter on the scene later. To obviate the latter drawback of
numerical models, qualitative approaches have been proposed in the last decades.
The central idea of such methodologies is to grade uncertainty about the truth
of propositions, through comparisons expressing the judgement of “less or more
believed to be true”. This operationally translates into the use of (partial) order
relations in place of numerical grades.

Qualitative approaches are receiving wider and wider attention, either as
theoretical tools to deal directly with belief management [3, 10, 14], or inside
the more articulated framework of decision-making theory (see, for example, [15,
16, 18, 20, 22]). This is because, they better fit the nature of human judgments.

Numerical models remain anyway a reference point. Both because their prop-
erties are well-known and deeply investigated, and because, when profitably in-
volved, they could bring to conclusions hardly achievable by purely qualitative
tools. The connection between the qualitative and the numerical frameworks is
usually expressed by the requirement that the qualitative order must be repre-
sentable3 by a (partial) numerical model. Representability of an order guarantees
that the comparisons among the propositions follow the same rationale of the
kind of numerical model agreeing with. Hence, the basic properties of the way
in which different pieces of information are combined is maintained.

In the next section we show that representability of orders, defined on arbi-
trary finite sets of propositions, can be characterized by the specific properties
(axioms). Before to enter into such details, it is worth stressing that in this pa-
per we adopt an alternative approach, by inverting the usual attitude towards
qualitative management of uncertainty. In fact, specific axioms are usually set
in advance, so that only order relations satisfying them are admitted. Here, on
the contrary, given a fixed preference relation (for instance, directly issuing from
analyst’s interpretation of real world), our goal consists in ascertain what are
the reasonable rules to work with. This will be made easy thanks to the expres-
sive power of Answer Set Programming [23, 24]. In fact, most of such axioms
are of direct declarative reading, as they involve only logical and preference re-
lations. As we will see, such a declarative character supports a straightforward
translation of the axioms within the logical framework of Answer Set Program-
ming. As a consequence, we immediately obtain an executable specification able
to discriminate between the different uncertainty orders. More specifically, we
exploit a solver (in our case smodels, cf. [1]) to determine the set of axioms
that are violated by a given preference relation, which expresses user’s beliefs
comparisons.

Then, we move the first step toward the implementation of an inference en-
gine that borrows user’s conceptualization of uncertainty and (implicitly) adopts

3 Recall that, in general, a numerical assessment f on a set of propositions A1, . . . , An

represents (or, equivalently, induces) a qualitative order �∗ among them if, for each
pair Ai, Aj it holds that Ai �∗ Aj ⇐⇒ f(Ai) 6 f(Aj).
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his/her own way of modeling the intrinsic properties of the problem at hand.
Thus, the system tries to mimic user’s way of expressing lack of information
and variability of phenomena. By acting in this manner, once the (most spe-
cific) framework closest to user’s modelization is detected, it can be used to infer
reasonable conclusions about proposition not comprised in the initial domain.
This process is usually referred to as order extension. The availability of order-
extension techniques is one of the main advantages offered by the use of partial
models in the treatment of uncertainty.

The paper is organized as follows. Next section briefly describes the axioms
characterizing partial uncertainty relations (notice that we focus on the treat-
ment of partial orders, even if total relations can easily be dealt with by exploit-
ing the very same machinery). Sec. 2 recalls the main features of Answer Set
Programming, with particular emphasis on the application to the above men-
tioned issues. In Sections 3 and 4 we illustrate, also by simple examples, the
potentialities of our approach. Finally, we draw conclusions and outline future
developments.

1 Characterization of uncertainty orders

When one admits that nothing is certain one must, I think, also add that
some things are more nearly certain than others.

—Bertrand Russell

By following the way paved by [8, 14, 31, 32], various (qualitative) preference
orders have been fully classified in [4, 5, 6] according to their agreement with the
most well-known numerical models; both for complete and partial assessments.

In particular, apart from Possibility and Necessity measures—that seem to
have an intrinsically numerical character— [6] proposes a fully axiomatic classi-
fication of partial orders according to the numerical models outlined above.

Let us start by briefly recalling the basic notions on uncertainty orders and
their axiomatic characterization. We will not enter into the details of the moti-
vations for such classification, the reader is referred to [4, 5, 6]. The domain of
discernment is represented by a finite set of events E = {E1, . . . , En} (among
them, ∅ and Ω denote the impossible and the sure event, respectively). The
events in E are seen as the relevant propositions on which the subject of the
analysis can (or wants) to express his/her opinion. Hence, usually E does not
represent a full model, i.e. it does not comprehend all elementary situations
and all of their combinations. For this reason, a crucial component of partial
assessments is the knowledge of the logical relationships (incompatibilities, im-
plications, combinations, equivalences, etc.) holding among the events Eis. Such
constraints are usually represented as a set C of clauses predicating on the Eis.

Taking into account the constraints C, the family E spans a minimal Boolean
algebra AE containing E itself. Note that AE is only implicitly defined via E
and C and it is not a part of the assessment. Anyway, AE can be referenced as
a supporting structure.
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Let � be a partial (i.e. not necessarily defined for all pairs (A,B) in E × E)
order among events, expressing the intuitive idea of being “less or equal than”
or “not preferred to”. The symbols ∼ and ≺ denote the symmetrical part and
asymmetrical part of �, respectively.

As mentioned before, Capacities constitute the most general numerical tool to
manage uncertainty and they express “common sense” behaviors. Hence, in our
context, any reasonable relation � must be representable by a partial Capacity
(i.e., a restriction to the events under consideration, of a Capacity measure). This
translates into the following axioms: the (partial) order � must be a reflexive
binary relation on E such that
(A1) ≺ has no intransitive cycles;4

(A2) ¬(Ω � φ);

(A3) for all A,B ∈ E , A ⊆ B =⇒ ¬(B ≺ A);
where ¬(B ≺ A) means that the pair (B,A) does not belong to ≺.
Mathematical properties of orders satisfying basic axioms (A1), (A2) and (A3)
are deeply investigated in [10]. In what follows, we consider these axioms as
prerequisites for any investigation on �. Differentiation among order relations
can be done on the basis of more specific way of combining distinct pieces of
information. Below, we list the axioms characterizing each class.5 The name
of the classes comes from the representability of � by corresponding partial
numerical measures.6

Comparative Probabilities. An order � is representable by a partial Prob-
ability assessment iff the following holds:

(CP) for any A1, . . . , An, B1, . . . , Bn ∈ E , with Bi � Ai, ∀i = 1, . . . , n,
such that for some r1, . . . , rn > 0, if sup

∑n
i=1 ri(ai − bi) 6 0 holds

than, for all i = 1, . . . , n, Ai ∼ Bi (ai, bi denote the indicator functions
of Ai, Bi, resp.).

Comparative Beliefs. An order � is representable by a partial Belief func-
tion assessment iff for all A,B, C ∈ E s.t. A ⊂ B, B ∧ C = φ it holds that

(B) A ≺ B =⇒ ¬(B ∨ C � A ∨ C).

Comparative Lower probabilities. An order � is representable by a partial
Lower probability assessment iff for all A,B ∈ E s.t. A∧B = φ it holds that

(L) φ ≺ A =⇒ ¬(A ∨B � B).

4 A preference relation≺ on a set X has an intransitive cycle if there exist A1, . . . , An ∈
X for n > 2 such that Ai ≺ Ai+1 holds for each i = 1, . . . , n − 1, while A1 ≺ An

does not hold.
5 Note that we characterize each class by a single axiom, whereas in [6] some classes

are described by introducing further axioms. It is easy to see that these additional
axioms are redundant whenever we consider to enlarge ≺ by monotonicity (i.e. by
imposing that A ⊆ B ⇐⇒ A ≺ B always holds).

6 Axiom (CP) was originally introduced in [8]. Axiom (B) derives by the analogous
axiom introduced for complete orders in [32].
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Comparative Plausibilities. An order � is representable by a partial Plau-
sibility function assessment iff for all A,B,C ∈ E s.t. A ⊂ B it holds that

(PL) A ∼ B =⇒ ¬(A ∨ C ≺ B ∨ C).

Comparative Upper probabilities. An order� is representable by a partial
Upper-probability assessment iff for all A,B,C ∈ E s.t. A∧B = φ it holds that

(U) φ ∼ A =⇒ ¬(C ≺ A ∨ C).

Comparative Lower/Upper probabilities. An order � can be simultane-
ously represented by both a partial Lower-probability assessment and by a
partial Upper-probability assessment iff it simultaneously satisfies both ax-
ioms (L) and (U).

Note that only the axiom (CP) does not have a pure qualitative nature since it
involves indicator functions and summations. Such axiom is the only one whose
verification should require some form of numerical elaboration (e.g. involving
some linear programming tool such as the simplex or the interior point methods).
Meanwhile, to remain within the same kind of axioms, the following necessary
axiom (WC) can also be considered. Note that (WC), if taken by itself, does
not guarantee the representability of � by a partial Probability assessment;
nevertheless, its failure witnesses non-representability.

Weak comparative probabilities. If � is representable by a partial Proba-
bility assessment then, for all A,B,C ∈ E s.t. A∧C = B∧C = φ it holds that

(WC) A � B =⇒ ¬(B ∨ C ≺ A ∨ C)

Clearly, all such qualitative axioms are of direct reading, i.e. they explicit
which are the rules to follow in combining elements of the domain E to remain
inside a specific framework.

The introduction of different classes of orders shares the very same motiva-
tions supporting the definition of different numerical measures of uncertainty.
The main point is that there exist practical situations where a strictly prob-
abilistic approach is not viable. The following example describes an extremely
simplified situation of this kind.

Example 1. Let A, B, and C be three distinct companies, and let each of them
be a potential buyer of a firm that some other company wants to sell. Even
being distinct, both A and C belong to the same holding. Hence, the following
uncertainty order about which company will be the buyer, could reflect specific
information about the companies’ strategies (by abuse of notation, let A denote
the event “the company A buys the firm”, and similarly for B and C):

∅ ≺ A ≺ B ≺ B ∨ C ≺ A ∨ C ≺ Ω.

Since A, B and C are incompatible events, it is immediate to see that the order
relation is not representable by a probability because it violates axiom (WC),
while it can be managed in line with Belief functions behaviors because it agrees
with axiom (B).
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2 Answer set programming

In the following sections we show how to obtain executable specifications from
the axiomatic classification of preference orders described so far. To this end, we
employ Answer Set Programming (ASP, for short).

Let us first briefly recall the basics of such alternative style of logic pro-
gramming [23, 24]. A problem can be encoded—by using a function-free logic
language—as a set of properties and constraints which describe the (candidate)
solutions. More specifically, an ASP-program is a collection of rules of the form

L1; . . . ;Lk;not Lk+1; . . . ;not L` ← L`+1, . . . , Lm,not Lm+1, . . . ,not Ln

where n > m > ` > k > 0 and each Li is a literal, i.e., an atom A or a negation
of an atom ¬A. The symbol ¬ denotes classical negation, while not stands for
negation-as-failure (Notice that ′,′ and ′;′ stand for logical conjunction and dis-
junction, respectively.) The left-hand side and the right-hand side of the clause
are said head and body, respectively. A rule with empty head is a constraint.
Intuitively, the literals in the body of a constraint cannot be all true, otherwise
they would imply falsity.

Semantics of ASP is expressed in terms of answer sets (or equivalently stable
models, cf. [19]). Consider first the case of an ASP-program P which does not
involve negation-as-failure (i.e., ` = k and n = m). In this case, a set X of literals
is said to be closed under P if for each rule in P , whenever {L`+1, . . . , Lm} ⊆ X,
it holds that {L1, . . . , Lk} ∩ X 6= ∅. If X is inclusion-minimal among the sets
closed under P , then it is said to be an answer set for P . Such a definition is
extended to any program P containing negation-as-failure by considering the
reduct PX (of P ). PX is defined as the set of rules

L1; . . . ;Lk ← L`+1, . . . , Lm

for all rules of P such that X contains all the literals Lk+1, . . . , L`, but does not
contain any of the literals Lm+1, . . . , Ln. Clearly, PX does not involve negation-
as-failure. The set X is an answer set for P if it is an answer set for PX .

Once a problem is described as an ASP-program P , its solutions (if any) are
represented by the answer sets of P . Notice that an ASP-program may have
none, one, or several answer sets.

Let us consider the program P consisting of the two rules
p; q ← ¬r ← p.

Such a program has two answer sets: {p,¬r} and {q}. If we add the rule (actu-
ally, a constraint) ← q to P , then we rule-out the second of those answer sets,
because it violates the constraint. This simple example reveals the core of the
usual approach followed in formalizing/solving a problem with ASP. Intuitively
speaking, the programmer adopts a “generate-and-test” strategy: first (s)he pro-
vides a set of rules describing the collection of (all) potential solutions. Then,
the addition of a group of constraints rules-out all those answer sets that are not
desired real solutions.

To find the solutions of an ASP-program, an ASP-solver is used. Several
solvers have became available (cf. [1], for instance), each of them being charac-
terized by its own prominent valuable features.
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Expressive power of ASP, as well as, its computational complexity have been
deeply investigated. The interested reader can refer to the survey [9], among
others, for a comparison of expressive power and computational complexity of
various forms of logic programming.

As we will see, in this work we choose smodels as solver, together with its
natural front-end lparse [28].

Let us give a simple example of ASP-program (see [2], among others, for a
presentation of ASP as a tool for declarative problem-solving). In doing this, we
will recall the syntax of smodels as well as the main features of lparse/smodels
which will be exploited in the rest of the paper (see [28], for a much detailed
description). The problem we want to formalize in ASP is the well-known n-
queens problem: “Given a n× n chess board, place n queens in such a way that
no two of them attack each other”. The clauses below state that a candidate
solution is any disposition of the queens, provided that each column of the board
contains one and only one queen. (The fact that a queen is placed on the nth

column and on the mth row is encoded by the atom queen(n,m).)7

position(1..n).

1{queen(Col,Row) : position(Col)}1 :- position(Row).

The second rule is a particular form of constraint available in smodels’ language.
The general form of such a kind of clauses is

k{〈property def〉:〈range def〉}m :-〈search space〉
where: the conditions 〈search space〉 in the body define the set of objects of the
domain to be checked; the atom 〈property def〉 in the head defines the property
to be checked; the conjunction 〈range def〉 defines the possible values that the
property may take on the objects defined in the body, namely by providing a
conjunction of unary predicates each of them defining a range for one of the
variables that occur in 〈property def〉 but not in 〈search space〉; k and m are
the minimum and maximum number of values that the specified property may
take on the specified objects. (Notice that this form of constraint, available in
smodels, actually is syntactic sugar, since it can be translated into “proper”
ASP-clauses thanks to negation, cf. [28, 27].)

We now introduce two constraints, in order to rule out those placements
where two queens control either the same row or the same diagonal of the board:

:- queen(Col,Row1), queen(Col,Row2),
position(Col), position(Row1), position(Row2),
Row1 < Row2.

:- queen(Col1,Row1), queen(Col2,Row2),
position(Col1), position(Col2), position(Row1), position(Row2),
Row1 < Row2, abs(Col1-Col2) == abs(Row1-Row2).

Here is some of the answer sets produced by smodels, when fed with our
program (together with a value for the constant n, in this case we put n= 8).

7 In the syntax of smodels ‘:-’ denotes implication ←, while ‘,’ stands for conjunction.
Moreover, the constant n occurring in the first clause, can be seen as a parameter of
the program, supplied to the solver at run-time.
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Answer: 1.
Stable Model: queen(4,1) queen(6,2) queen(1,3) queen(5,4) queen(2,5)

queen(8,6) queen(3,7) queen(7,8) ...
Answer: 2.
Stable Model: queen(4,1) queen(2,2) queen(8,3) queen(5,4) queen(7,5)

queen(1,6) queen(3,7) queen(6,8) ...
...

Notice that lparse offers some elementary built-in arithmetic functions (such
as abs(), in the above clause) that can be used to perform simple arithmetics.
More in general, lparse allows the user to employ user-defined C or C++ functions
within an ASP-program. The object code of these functions needs only to be
linked with lparse at run time. (The interested reader is referred to [28] for
a detailed description of this feature.) We exploited this feature (not directly
available in some other solvers) to implement a basic library of functions aimed
at handling sets and operation on sets.

The pair lparse/smodels constitutes an essential and neat tool for fast pro-
totypical development. Moreover notable facilities come from the simple albeit
useful capability of integration with the C programming language, the prompt
availability of the source-code (under the GNU General Public License) and
documentation, and the ease of use.

3 Preference classification

Our first task consists in writing an ASP-program able to classify any given
partial order �, w.r.t. the axioms seen in Sec. 1 (except for (CP), that, up to
our knowledge, does not admit a purely declarative formulation). A preliminary
step is the introduction of suitable predicates, namely, prec(·,·), precneq(·,·), and
equiv(·,·), to render in ASP the relators �, ≺, and ∼, respectively. Moreover,
the fact of “being an event” (i.e. a member of E) is stated through the monadic
predicate event(·).8 Auxiliary predicates/functions are defined to render usual
set-theoretical constructors, such as ∩, ∪, and ⊆, which, as mentioned, have
been made available by linking user-defined C-libraries.

The characterization of potential legal answer sets is done by asserting prop-
erties of prec(·,·), precneq(·,·), and equiv(·,·), by means of the following rules:

prec(E1,E2) :- event(E1), event(E2), equiv(E1,E2).
prec(E2,E1) :- event(E1), event(E2), equiv(E1,E2).
equiv(E1,E2) :- event(E1), event(E2), prec(E2,E1), prec(E1,E2).
prec(E1,E2) :- event(E1), event(E2), precneq(E1,E2).
:- precneq(E1,E2), event(E1), event(E2), equiv(E1,E2).

Also axioms (A1), (A2), and (A3) must be imposed. For instance (A3) is
rendered by:

:- event(E1), event(E2), subset(E1,E2), precneq(E2,E1).

8 Actually, in our program, events are denoted by integer numbers. Here, for the sake
of readability, we systematically denote events by capital letters.
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This rules-out all answer sets in which there exist two events E1 and E2 such
that both E1 ⊆ E2 and E2 ≺ E1 hold.

Consider now one of the axioms of Sec. 1, say (B), for simplicity. Since, in this
phase, we do not want to impose such axiom, but we just want to test whether
or not it is satisfied by the preference relation at hand, we introduce a rule of
the form:
failsB :- event(A), event(B), event(C), subset(A,B), A!=B, empty(interset(B,C)),

precneq(A,B), prec(unionset(B,C),unionset(A,C)).

whose meaning is that the fact failsB is true (i.e. belongs to the answer set)
whenever there exist events falsifying axiom (B). Having in mind the axiom (B)
of Sec. 1, this clause is of immediate reading. Analogous treatment has been
done for all other axioms (L), (U), (PL), and (WC).

When smodels is fed with such program, together with a description of an in-
put preference relation (i.e., a collection of facts of the forms prec(·,·), precneq(·,·),
and equiv(·,·)), different outcomes may be obtained:
a) If no answer set is produced, then the input preference relation violates

some basic requirement, such as axioms (A1), (A2), or (A3).
b) Otherwise, if an answer set is generated, there exists a numerical (partial)

model representing the input preference order. Moreover, the presence in
the answer set of a fact of the form failsC (say failsL, for example), witnesses
that the corresponding axiom ((L) in the case) is violated by the given
preference order. Consequently, the given order (as well as its extensions) is
not compatible with the uncertainty framework ruled by C (in the case of
failsL, the given order cannot be represented by a partial Lower probability).

Example 2. Suppose a physician wants to perform a preliminary evaluation
about the reliability of a test for SARS (Severe Acute Respiratory Syndrome).
Up to his/her knowledge, the SARS diagnosis is based on moderate or severe res-
piratory symptoms and on the positivity or indeterminacy of an adopted clinical
test about the presence of the SARS-associated antibody coronavirus (SARS-
CoV). The elements appearing in his/her analysis can be schematized as:

A ≡ Normal respiratory symptoms
B ≡ Moderate respiratory symptoms
C ≡ Severe respiratory symptoms
D ≡ Moderate or sever respiratory symptoms
E ≡ Death from pulmonary diseases
F ≡ Positive or indeterminate clinical test

subject to these (logical) restrictions:
A∩B=∅, B∩C=∅, A∩C=∅, A∪B∪C=Ω, D=A∪B, E⊂C, F∩A= ∅.

Consider the following partial order:
precneq(∅,C). precneq(C,B). prec(B,A). precneq(C,D).
precneq(E,C). precneq(E,D). precneq(F,A). equiv(A∪E,A∪C).

Due to events’ meaning, such order seems reasonable. If it is given as input to
smodels, the answer set found includes the facts failsB and failsWC. This means
that the given preference relation agrees with the basic axioms, however it cannot
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be managed by using neither a Probability nor a Belief function. Nevertheless,
one can use comparative Lower probabilities or comparative Plausibilities.

4 Partial-order extension

An interesting problem is that of finding an extension of a preference relation so
as to take into account any further event extraneous “in some sense” to the initial
assessment. Obviously, this should be achieved in a way that the extension retains
the same character of the initial order (e.g., both satisfy the same axioms).

More precisely, let be given an initial (partial) assessment expressed as a set of
known events E together with a (partial) order � over E . Moreover, assume that
� satisfies the axioms characterizing a specific class, say C, of orders (cf. Sec. 3).
Consider now a new event S (not in E), implicitly described by means of a
collection C′ of set-theoretical constraints involving the known events. In the
spirit of [8, Theorem 3], the problem we are going to tackle is: Determine which
is the “minimal” extension �+ (over E ∪{S}) of the given preference relation �,
induced by the new event, which still belongs to the class C. In other words, we
are interested in ascertaining how the new event S must relate to the members
of E in order that �+ still is in C.

To this aim we want to determine the sub-collections LS,WLS, US, andWUS,
of E so defined:

E ∈ LS iff no extension �∗ of � can infer that S �∗ E

E ∈ WLS iff no extension �∗ of � can infer that S ≺∗ E

E ∈ US iff no extension �∗ of � can infer that E �∗ S

E ∈ WUS iff no extension �∗ of � can infer that E ≺∗ S

Consequently, any order �+ extending � must, at least, impose that:
E ≺+ S for each E ∈ LS, E �+ S for each E ∈ WLS,

S ≺+ E for each E ∈ US, and S �+ E for each E ∈ WUS,

in order to satisfy the axioms characterizing C.
In what follows, we describe an ASP-program that solves this problem by

taking advantage from the computation executed during the classification phase
(cf. Sec. 3): It gets as input the knowledge regarding the satisfied axiom(s), the
preference and logical relations on the original set of events. Such program is
fed to the solver, together with the description of the new event (see Example 3,
below).

The handling of the axioms is done by ASP-rules of the form (here we list
the rule for axiom (L), the other axioms are treated similarly):

:- holdsL, event(A), event(B), empty(N), empty(interset(A,B)),
precneq(N,A), prec(unionset(A,B),B).

Rules of this kind (actually, constraints, in the sense described in Sec. 2),
declare “undesirable” any extension for which the axiom is violated. For instance,
consider a ground instance of the above rule; whenever the fact holdsL is present
(i.e. is true in an answer set), then to make the (ground) clause satisfied, at
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least one of the other literals must not belong to the answer set. (Notice that,
these literals are all true exactly when (L) is violated.) Consequently, in order to
activate this constraint (i.e. to impose axiom (L), for the case at hand) it suffices
to add the fact holdsL to the input of the solver.

A further rule describes the potential answer set we are interested in:

1{ precneq(E1,E2), equiv(E1,E2), precneq(E2,E1) }1 :- event(E1), event(E2).

This rule simply asserts that any computed answer-set must predicate on
each pair E1,E2 of events by stating exactly one, and only one, of the three facts
precneq(E1,E2), equiv(E1,E2), and precneq(E2,E1). Then, smodels produces as
output the answer sets fulfilling the desired requirements and encoding “legal”
total orders.

The collections LS, WLS, US, and WUS can be obtained by computing the
intersection Cn of all these answer sets. (Or, equivalently, by computing the set
of logical consequences of the ASP-program. Notice that, in general, Cn needs
not to be an answer set by itself.)

Unfortunately, not all the available ASP-solvers offer the direct computation
of Cn as a built-in feature (DLV, for instance does, while smodels does not,
cf. [1]). In general, a simple inspection of the answer sets generated by smodels
allows one to detect which is the minimal extension of the preference relation
which is mandatory for each total order.

In order to facilitate this detection, we designed a simple post-processor which
filters smodels’ output and produces the imposed extension of �.

Example 3. Consider the partial order of Example 2 and the new event:

S ≡ The real state of having SARS
subject to these restrictions: S⊂F and F∩E⊂S. Since in Example 2 we discov-
ered that the initial preference relation satisfies axiom (PL), we want to impose
such axiom and compute the extension of the initial order.

Once filtered smodels’ output, we obtained the following result:9

precneq(S,A∪C) precneq(S,A∪E) precneq(S,D)
precneq(S,A) precneq(S,Ω) prec(∅,S) prec(S,F)

showing that, apart from obvious relations induced by monotonicity, no significa-
tive constraint involving S can be inferred. Since S and E can be freely compared,
this result suggests that either further investigation about relevance of the clini-
cal test or a revision of the initial preference relation, should be performed.

The availability of automated tools able to extend preference orders, when-
ever new knowledge (new events) is acquired, directly suggests applications in
expert systems and decision-support tools. In automated diagnosis, planning, or
problem solving, to mention some examples, one could easily imagine scenarios
where knowledge is not entirely available from the beginning. We could outline
how a rudimental inference process could develop, by identifying the basic steps
an automated agent should perform:

9 We list here only the portion of the extension involving the new event S.
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0) Acquisition of an initial collection of observations (events) about the object
of the analysis, together with a (qualitative) partial preference assessment;

1) Detection of which is the most adequate (i.e., the most discriminant) un-
certainty framework, through a “preference classification phase” (cf. Sec. 3);

2) Whenever new knowledge becomes available, refine agent’s description of
the real world by performing order extension (which substantially corre-
sponds to knowledge inference. Cf. Sec. 4).

The results of step 2) could be then exploited to guide further investigations on
the real world, in order to obtain new information. Then, step 2) will be repeated
and the process will continue until further pieces of knowledge are obtainable or
an enough accurate degree of believe is achieved.

Conclusions

In this paper we started an exploration of the potentialities offered by Answer Set
Programming for building decision support systems based on qualitative judg-
ments. Thanks to the remarkable features of ASP, the implementation of what
could be thought as a kernel of an inference engine, sprouted almost naturally.
Certainly, our research is at an initial stage and the implementation we reported
on in this paper cannot be considered to be prototype. Next step in this re-
search would consist in validating the proposed approach by means of a number
of benchmarks aimed at testing our prototype on the ground of real applications.
A comparison of its behaviour w.r.t. other possible declarative approaches, for
instance exploiting Constraint Logic Programming, is due. Results of this ac-
tivity will help in consolidating the prototype. In this context, a further goal
consists in completing our approach so as to handle comparative Probabilities
too. Since no axiomatic characterization of comparative Probabilities is known
(up to our knowledge), this aim should be achieved through integration with
efficient linear optimization tools (such as the column generation techniques).
More in general, we envisage the design of a full-blown automated system which
integrates different (in someway complementary) techniques and methods for un-
certainty management; comprehending mixed numerical/qualitative assessments
and conditional frameworks.
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probabilità, Einaudi, Torino, 1970).

[14] D. Dubois. Belief structure, possibility theory and decomposable confidence mea-
sures on finite sets. Comput. Artif. Intell., 5:403–416, 1986.

[15] D. Dubois, H. Fargier, and P. Perny. Qualitative decision theory with prefer-
ence relations and comparative uncertainty: An axiomatic approach. Artif. Intel.,
148:219–260, 2003.

[16] D. Dubois, H. Fargier, and H. Prade. Decision-making under ordinal preferences
and uncertainty. In AAAI Spring Symposium on Qualitative Preferences in De-
liberation and Practical Reasoning, pages 41–46, 1997.

[17] D. Dubois and H. Prade. Fuzzy sets and systems: theory and applications. Aca-
demic Press, New York, 1980.

[18] D. Dubois, H. Prade, and R. Sabbadin. A possibilistic logic machinery for quali-
tative decision. In AAAI Spring Symposium on Qualitative Preferences in Delib-
eration and Practical Reasoning, pages 47–54, 1997.

[19] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of 5th ILPS Conference, pages 1070–1080, 1988.

[20] P. H. Giang and P. P. Shenoy. A comparison of axiomatic approaches to qualitative
decision making under possibility theory. In Proc. of the 17th Conf. on Uncertainty
in Artificial Intelligence UAI01, pages 162–170, 2001.

[21] G. J. Klir and T. A. Folger. Fuzzy sets, uncertainty, and information. Prentice-
Hall, 1988.

[22] D. Lehmann. Generalized qualitative probability: Savage revisited. In Proc. of the
12th Conf. on Uncertainty in Artificial Intelligence UAI96, pages 381–388, 1996.

14



[23] V. Lifschitz. Answer set planning. In D. De Schreye, editor, Proc. of ICLP’99,
pages 23–37. The MIT Press, 1999.
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A gentle introduction to uncertainty measures

In this appendix we briefly describe the various generalizations of Probability measures
used in this paper, as introduced in standard literature. The following material is
far from being an exhaustive and complete treatment. We will give just a informal
introduction to the subject. The interested reader can refer to the widely available
literature. Introductory treatment of the relationships between Probability measures,
belief functions and possibility measures, can be found in [21, 25, 30], to mention some
among many.

We will consider, as domain of interest, a set Ω of possibilities (Ω is often refered
to as sample space). For our purposes it is sufficient to consider the case of a finite
domain. An event is then defined as a subset of Ω. In order to introduce uncertainty
measures, we can consider any algebra A (on Ω), consisting of a set of subsets of Ω,
such that Ω ∈ A, and closed under union and complementation.

All of the measures we are going to introduce will be (normalized) monotone real-
valued functions over an algebra. Such functions are usually called (Choquet) Capaci-
ties [7], even if they are refered also as fuzzy measures or Sugeno measures.

Definition 1. A real-valued function F on 2Ω is a Capacity if it holds that
F (∅) = 0, F (Ω) = 1, and for all A, B ⊆ Ω A ⊆ B =⇒ F (A) 6 F (B).

Let us denote the class of Capacities over Ω by CAP(Ω).
The notion of Capacity is often too general to be of interest by itself. In fact

adopting it, apart from monotonicity, there is no other relationship imposed between

15



the uncertainty assigned to a composed event, e.g. F (A ∪ B), and the uncertainty of
its components F (A) and F (B). In order to reflect different rationales in managing the
information, several constraints can be imposed on the manner in which uncertainties
of composed events are determined. In what follows we describe some of the more
interesting measures obtained by imposing further conditions on measures, apart to be
a Capacity. We start with the most adopted measure of uncertainty. It is characterized
by the additivity property of combination: A Probability P over Ω is a capacity which
satisfies the following additivity requirement: For all A, B ⊆ Ω with A∩B = ∅ P (A∪
B) = P (A) + P (B). The class of all Probabilities over Ω is denoted by PROB(Ω).
Clearly, we have that PROB(Ω) ⊆ CAP(Ω). Let us introduce a further concept:

Definition 2. Let F1 and F2 be two functions on 2Ω. Then, F1 is the dual of F2 if
for each A ⊆ Ω it holds that F1(A) = 1− F2(Ω \A).

Note that the dual of a Capacity is a Capacity too. Moreover, the dual of a Probability
is the Probability itself.

Additivity, even being widely adopted in “measurement” processes, is usually thought
to be a too strong requirement. Hence, several generalizations have been proposed. In
particular, the following definition characterizes those Capacities satisfying only one of
the weak inequalities which, taken together, give additivity.

Definition 3. Let Π and N be Capacities over Ω.

- Π is a Possibility measure (over Ω) if it satisfies the following property: For all
A, B ⊆ Ω Π(A ∪B) = max {Π(A), Π(B)}.

- N is a Necessity measure (over Ω) if it is the dual of a Possibility measure.

It is immediate to see that

- a Possibility measure Π satisfies the sub-additivity property:
For all A, B ⊆ Ω Π(A ∪B) 6 Π(A) + Π(B);

- A Necessity measure N satisfies the super-additivity property:
For all A, B ⊆ Ω N(A ∪B) > N(A) + N(B).

A Possibility measure Π is usually induced by a possibility distribution (i.e. a fuzzy
set) π : Ω → [0, 1]. The value π(x) expresses the possibility of a singleton x ∈ Ω to be
representative of the concept being considered. Possibility is then defined by putting
Π(A) = max{π(x) | x ∈ A} for any A ⊆ Ω. The classes of Possibilities and Necessities
over Ω are denoted by POS(Ω) and NEC (Ω), respectively.

Let us consider now a slightly different situation. Suppose that the available (pos-
sibly incomplete) knowledge permits the formulation of some form of constraint on the
Probability of the events. Ideally, such constraints may determine a unique Probability
measure. In general, this is not the case. In fact, there may be a non-void set of Prob-
ability measures which satisfy the given constraints. Here we describe the measures
induced by such set. In particular, a set of Probabilities measures (over Ω) induces two
natural measures. Namely, its lower and upper envelope.

Definition 4. Let ∅ 6= P ⊆ PROB(Ω). The lower envelop P and the upper envelopes
P of P are defined as:

- For each A ⊆ Ω, P(A) = inf {P (A) | P ∈ P};
- For each A ⊆ Ω, P(A) = sup{P (A) | P ∈ P}.

Lower envelopes are usually called Lower probability measures, while upper envelopes,
which are their duals, are called Upper probability measures.
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Let us denote the classes of Lower and Upper probabilities over Ω by LOWP(Ω) and
UPP(Ω), respectively.

It remains to introduce Belief and Plausibility measures. With the most general
formulation, following [26], we have:

Definition 5. A function Bel : 2Ω → [0, 1] is a Belief measure if it is a Capacity and
it satisfies the following condition (known as ∞-monotonicity).

For each n > 1, Bel
` Sn

i=1 Ai

´
>

P
∅6=I⊆{1,...,n}(−1)|I|+1Bel

` T
i∈I Ai

´
(where Ai ⊆ Ω for each i).

Intuitively speaking, a Belief function Bel is usually constructed through a basic as-
signment of uncertainty, not necessarily being a Capacity, µ : 2Ω → [0, 1] so that, for
any proposition A ⊆ Ω, Bel(A) =

P
B⊆A µ(B).

Notice that Belief functions are often called Capacities monotone of infinite order.
Capacities which satisfy the above condition with the restriction that n 6 N are then
said monotone of order N (or N -monotone). Dually, if the opposite inequality (6)
is considered, the measure is said to be an N-alternating capacity. For N = 2 these
properties reduce to usual super- and sub-additivity, respectively.

The dual of a Belief measure is called Plausibility measure. The classes of Belief
measures and Plausibility measures are denoted by BEL(Ω) and PL(Ω), respectively.

The following relationships can be shown to hold between the classes of Capacities

seen so far:

CAP(Ω) ⊃ LOWP(Ω) ⊃ BEL(Ω) ⊃ NEC (Ω)

CAP(Ω) ⊃ UPP(Ω) ⊃ PL(Ω) ⊃ POS(Ω)

BEL(Ω) ∩ PL(Ω) ⊃ PROB(Ω).
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Abstract. Cellular Automata are a powerful formal model for describ-
ing physical and computational processes. Qualitative analysis of Cellular
Automata is in general a hard problem. In this paper we will investigate
the applicability of modern SAT solvers to this problem. For this purpose
we will define an encoding of reachability problems for Cellular Automata
into SAT. The encoding is built in a modular way and can be used to
test inverse reachability problems in a natural way. In the paper we will
present experimental results obtained using the SAT-solver zChaff.

1 Introduction

Cellular Automata (CAs) [18] are decentralized spatial extended systems con-
sisting of large numbers of simple identical components with local connectivity.
Such systems have the potential to perform complex computations with a high
degree of efficiency and robustness, as well as to model the behavior of com-
plex systems in nature. For these reasons CAs have been studied extensively in
natural sciences, mathematics, and in computer science. For instance, they have
been used as parallel computing devices for image processing, and as abstract
models for studying cooperative or collective behavior in complex systems (see
e.g. [2,3,21,11]).

Quantitative vs Qualitative Analysis Several tools have been used to animate
specifications of CAs and to perform statistical analysis of their behavior, e.g.,
for car traffic or artificial life processes simulation (for a survey see e.g. [22]).
Simulation amounts to compute all possible reachable configurations. For deter-
ministic CAs this operation is fairly simple but some care must be taken in the
way the transition rule is stored.

Differently from plain simulation, a qualitative analysis of the behavior of a CA
can be a difficult problem to solve. In fact, problems like reachability of sub-
configurations or existence of a predecessor configuration for generic CAs have
been shown to be exponentially hard [6,19,20]. The hardness of some computa-
tional problems for CAs has been exploited for interesting applications. As an
example, reversibility (undecidable in general [10]) has been used for designing
cryptographic systems based on CAs [9].



Towards a Practical Solution of Hard Problems In recent years practical so-
lutions to large instances of known hard problems like SAT (satisfiability of
propositional formulas, a well known NP-complete problem) have been made
possible by the application of specialized search algorithms and pruning heuris-
tics. The connection between the complexity of some interesting problems for
CAs and SAT (see e.g. [6]) suggests us a possible new application of all these
technologies.

Technical Contribution In this paper we will investigate in fact the applicabil-
ity of SAT solvers to the qualitative analysis of CAs. Specifically, following the
Bounded Model Checking (BMC) philosophy introduced in [1], we will define a
polynomial time encoding of a bounded number of evolution steps of a CA into a
formula in propositional logic. Our encoding allows us to specify in a declarative
and modular way several decision problems for CAs like (inverse) reachability
as a SAT problem. As a result, we obtain an effective verification procedure for
the analysis of CAs by resorting to efficient-in-practice existing SAT solvers like
[7,8,16,14].

As preliminary experiments, we have selected a non-trivial example of CA,
namely Mazoyer’s solution to the Firing Squad Synchronization Problem [12].
In this example the length of the evolution (the diameter of the model in the
terminology of BMC) leading to a successful final configuration depends on the
dimension of the cellular space. For this reason, this problem is adequate to check
qualitative problems that can be encoded as bounded reachability, e.g., checking
if the final solution is the correct one, computing predecessor configurations,
computing alternative initial configurations leading to the same solution, etc.
We will use this case-study to test the performance of one of the fastest exist-
ing SAT-solvers called zChaff [14]. zChaff [14] can handle problems with up to
106 propositional variables. In our setting zChaff returns interesting results for
problems of reasonable size (e.g. cellular spaces with 70 cells and evolution of
140 steps). Some built-in heuristics of zChaff however turned out to be inade-
quate for CA-problems like inverse reachability. We believe that specialization of
SAT-solving algorithms to problems formulated on CAs could be an interesting
future direction of research.

Plan of the Paper In Section 2 we introduce the notion of Cellular Automata.
In Section 3 we define the encoding of the evolution of a CA and of its quali-
tative problems into a SAT formula. In Section 4 we encode several interesting
properties of CAs. In Section 5 we discuss experimental results obtained with
existing solvers. In Section 6 we discuss related works and future directions of
this research.

2 Cellular Automata (CAs)

A CA consists of two components. The first component is a cellular space, i.e. a
collection of identical finite-state machines (cells), each with an identical pattern



of local connection to other cells. Let S be the set of states of each automata.
Each cell is denoted by an index i. The neighborhood of a cell i is the set of cells
of the network which will locally determine the evolution of i.
The second component is a transition rule δ that gives the update state for each
cell i in function of the state of the cells in its neighborhood. In a CA a discrete
global clock provides an update signal for all cells: at each time step all cells
update their states synchronously according to δ.
Formally, we have the following definition.

Definition 1. A d-CA A is a tuple 〈d, S, N, δ〉 where

- d ∈ N is the dimension of the cellular space (Zd);
- S is the finite set of states of A;
- N ⊆ Zd is the neighborhood of A and | N |= n;
- δ : Sn+1 → S is the transition rule of A.

The meaning of the neighborhood ofA is as follows. Suppose that N = {v1, . . . ,vn}.
Given a cell i, its neighborhood is obtained then by considering the cells i, i +
v1, . . . , i+vn}. A classical examples is von Neumann’s neighborhood defined as
NN = {(1, 0), (0, 1), (−1, 0), (0,−1)} for 2-CA.

2.1 Evolution of a CA

The computational meaning of a d-CA A = 〈d, S, N, δ〉 with N = {v1, . . . ,vn}
is defined as follows.
A configuration of a A is defined as a function c : Zd → S that assigns a state to
each cell of the cellular space. We will use C to denote the set of configurations.
The global evolution function GA associated to A is a transformation from con-
figurations to configurations such that

GA(c)(i) = δ(〈c(i), c(i + v1), ..., c(i + vn)〉) for any c ∈ C, i ∈ Zd.

Given an initial configuration c0, the evolution of A, written EvA(c0), is a se-
quence {ct}t≥0 of configurations such that ct+1 = GA(ct) for any t ≥ 0. A
configuration c′ is reachable in k steps from configuration c0 if there exists an
evolution {ct}t≥0 such that c′ = ck. A configuration c′ is reachable from c0 if it
is reachable in k ≥ 0 steps.

Previous definitions are for infinite cellular spaces but computer simulations
are obviously constrained on finite spaces, hence periodic boundary conditions
(for example, the cellular space is defined as a ring) or the definition of constant
boundary cells are necessary.

Example 1. Fig. 1 illustrates an example of local rule defined over S = {0, 1}
and N = {−1, 1}, given in a tabular form, and of an evolution on a circular
cellular space. In the table representing the local rule the two columns Ct and
Ct+1 denote the state of a cell at time t and t + 1 respectively, whereas columns
N t

1 and N t
2 denote the state of cells in the neighborhood. In the evolution we

highlight the neighborhood to which a rule is applied.



Local Rule Evolution

N t
1 Ct N t

2 Ct+1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

 0  1 0  0

 0

 0  0  0

 1  1  1

 1

Cells

Time

Fig. 1. A simple CA.

2.2 Expressiveness and Computational Complexity

CAs are a powerful computational model. In fact, it is sufficient to consider one-
dimensional CAs to simulate Turing Machines. Given the richness of the model,
several decision problems related to the computational interpretation of the evo-
lution of CAs are hard or impossible to solve. The hardest problems are often
related to the inverse exploration of the configuration space of a CA. Note, in
fact, that the past history of a configuration contains non-deterministic choices
for its predecessors. For instance, let us consider the Predecessor Existence Prob-
lem, defined as follows:

(PEP) Given a d-CA A and x ∈ C, ∃y ∈ C such that x = GA(y)?

PEP is in NP for “finite” d-CAs, NP-complete for d > 1, and NLOG for 1-
CAs. Proofs of NP-completeness of this kind of problems are often given via
reductions of 3SAT into the decision problem taken into consideration. In this
paper we will try to exploit reductions going in the opposite direction, namely
from CA to SAT, in order to obtain an effective and flexible method for the
analysis of difficult decision problems for CAs.

3 From Cellular Automata to Propositional Logic

In this section we will define a representation of a finite prefix of the evolution
of a CA in propositional logic. The resulting formula will be used later to define
several interesting decision problems for CAs in a formal and modular way.
Furthermore, it represents the first step towards the use of SAT solvers for the
analysis of CAs.

Symbolic Representation of Configurations Given a CA A, we first repre-
sent its set of states S = {s1, . . . , sn} using a binary encoding over m = dlog2ne
bits of a given choice of ordering numbers. Let us call S′ = {w1, . . . , wn} be
the resulting set of binary representations, where each wi ∈ {0, 1}m (sequence



of m bits). As an example, for S = {red, blue, yellow} we can use 2 bits and
the following encoding wred = 00, wblue = 01, and wyellow = 10. Every state
represented in binary can be naturally encoded as a propositional formula as
follows. Let ` be a label (i.e. a string used later for stamping predicate symbols
with time and position) and w a sequence of m bits b1 . . . bm. Furthermore, let
. be an operator for concatenating labels. Then, we define the formula encoding
b as follows:

Codw(w, `) .=
m∧

i=1

Codb(bi, i.`) where Codb(b, `)
.=

{
x` if b = 1
¬x` if b = 0

Going back to our example, assume that 0.0 represents a cell in position 0 at time
0, then Codw(wblue, 0.0) = ¬x1.0.0∧x2.0.0. Generalizing this idea, in the following
we will use strings of the form p.t, where p is denotes a position and t a time-
stamp, as labels for encoding the evolution of configurations using propositional
formulas.

Specifically, let us assume that the cellular space is linearized into the range
1, . . . , N . Then, a configuration is simply a tuple c = 〈〈1, w1〉, . . . , 〈N,wN 〉〉,
where wi is the binary representation of a state of A.

The encoding of c at instant t is defined then as follows:

Codc(c, t)
.= Codw(w1, 1.t) ∧ . . . ∧ Codw(wN , N.t)

Thus, Codc(c, t) gives rise to a conjunction of literals over the set of predicate
symbols xb.p.t where b ∈ {1, . . . ,m}, p ∈ {1, . . . , N}. For instance, the encoding
of the configuration of c0 = 〈〈1, wred〉, 〈2, wred〉, 〈3, wblue〉〉 is the formula

¬x1.1.0 ∧ ¬x2.1.0︸ ︷︷ ︸
red

∧¬x1.2.0 ∧ ¬x2.2.0︸ ︷︷ ︸
red

∧¬x1.3.0 ∧ x2.3.0︸ ︷︷ ︸
blue

We are ready now to encode a transition rule.

Symbolic Representation of the Transition Rules A CA is usually given
in form of a table: each row is transition rule for one possible global state of
the neighborhood of a generic cell. Let us call Rp the set of rows of the table
relative to a cell in position p. Let us assume that the neighborhood is v1, . . . , vn.
Let R ∈ Rp be a rule that, at time t, operates on the neighborhood of a cell p,
namely 〈〈p, w〉, 〈(p + v1, w1〉, . . . , 〈p + vn, wn〉〉, and that updates its state into
w′. Then, the encoding of R is the formula

Codr(R, p, t) .= Codw(w, p.t) ∧
n∧

i=1

Codw(wi, (p + vi).t) ∧ Codw(w′, p.(t + 1))

We can extend this encoding to Rp in the natural way:

CodR(Rp, t)
.=

∨
R∈Rp

Codr(R, p, t)



Using this disjunctive formula we can express one evolution step without having
to specify the initial configuration (we let open all possible choices of rules in
Rp). Note that to obtain a total transition function with respect to the set of
variables used in the encoding we need to add identity rules

Symbolic Representation of the CA-Evolution Specifically, the formula
EvA(N, k) that describes all possible evolutions in k steps of a CA with N cells
is defined as follows

EvA(N, k) .=
k−1∧
t=0

N∧
i=1

CodR(Ri, t)

Note that the formula EvA(N, k) is not in conjunctive normal form (CNF). The
following properties formalize the connection between the evolution of a CA and
the formula EvA(N, k).

Proposition 1. Given a CA A, every assignment ρ satisfying of the formula
EvA(N, k) represents a possible evolution {ct}t≥0 of A such that ρ satisfies
Cod(ct, t) for any t ≥ 0.

As a consequence, we have the following link between k-reachability and satisfi-
ability of EvA(N, k).

Theorem 1. Given a CA A and two configurations c and c′, c′ is reachable in
k-steps from c if and only if the formula

REACHk
.= Codc(c, 0) ∧ EvA(N, k) ∧ Codc(c′, k)

is satisfiable.

As a final remark, it is easy to check that the size of the encoding is polynomial
in the size of the cellular space, size of the neighborhood and in the number of
steps taken into consideration.

Example 2. Let A be a 1-CA, with S = {0, 1}, circular boundary conditions and
neighborhood I = {−1} (i.e. we only look at the left neighbor’s cell) and rule
described in Fig. 2. In the left table of Fig. 2 we use the variable xit to denote
the value of cell i a time t. The column xit+1 denotes the new state of cell i at
time t + 1. The right table of Fig. 2 shows the corresponding encoding of the
local rule when interpreting 0 and 1 as truth values. A configuration c = 〈0, 1〉
with 2 cells at time 0 can be encoded as the conjunction of literals ¬x1.0 ∧ x2.0.
Thus, the evolution from t = 0 to t = 1 of cell c can be represented as follows

¬x1.0 ∧ x2.0 ∧



¬x1.0 ∧ ¬x2.0 ∧ x2.1

∨
¬x1.0 ∧ x2.0 ∧ ¬x2.1

∨
x1.0 ∧ ¬x2.0 ∧ ¬x2.1

∨
x1.0 ∧ x2.0 ∧ x2.1


∧



¬x2.0 ∧ ¬x1.0 ∧ x1.1

∨
¬x2.0 ∧ x1.0 ∧ ¬x1.1

∨
x2.0 ∧ ¬x1.0 ∧ ¬x1.1

∨
x2.0 ∧ x1.0 ∧ x1.1


∧ ¬x1.1 ∧ ¬x2.1



xi−1t xit xit+1

0 0 1
0 1 0
1 0 0
1 1 1

⇒

(¬xi−1.t ∧ ¬xi.t ∧ xi.t+1)
∨

(¬xi−1.t ∧ xi.t ∧ ¬xi.t+1)
∨

(xi−1.t ∧ ¬xi.t ∧ ¬xi.t+1)
∨

(xi−1.t ∧ xi.t ∧ xi.t+1)

Fig. 2. Encoding of the local rule.

As expected, the valuation

v : {x1.0 7→ F, x2.0 7→ T, x1.1 7→ F, x2.1 7→ F}

satisfies the resulting propositional formula. If we do not specify the final con-
figuration, a solution to the SAT-problem

¬x1.0 ∧ x2.0 ∧



¬x1.0 ∧ ¬x2.0 ∧ x2.1

∨
¬x1.0 ∧ x2.0 ∧ ¬x2.1

∨
x1.0 ∧ ¬x2.0 ∧ ¬x2.1

∨
x1.0 ∧ x2.0 ∧ x2.1


∧



¬x2.0 ∧ ¬x10 ∧ x1.1

∨
¬x2.0 ∧ x1.0 ∧ ¬x1.1

∨
x2.0 ∧ ¬x1.0 ∧ ¬x1.1

∨
x2.0 ∧ x1.0 ∧ x1.1


allows us to compute the successor configuration by simply projecting the result-
ing valuation on variables stamped with time index 1. In the following section
we will formalize more precisely how to specify reachability properties using
SAT-encoding of CA-evolutions.

4 SAT-based Qualitative Reasoning

The formula EvA(N, k) represents an encoding of all possible CA-evolutions of
length k independently from any initial or target configuration. This property
allows us to encode in a modular way several interesting properties of CAs in
terms of satisfiability of a propositional formula. In the rest of the section we
will discuss some examples.

Reachability Given an initial configuration c and a configuration c′, we can
decide whether c′ is reachable in k-steps from c by solving the satisfiability
problem for the formula

REACHk
.= Codc(c, 0) ∧ EvA(N, k) ∧ Codc(c′, k)

Actually, we can also compute all configurations reachable in at most k-steps.
We first solve the satisfiability problem for the formula

CREACHk
.= Codc(c, 0) ∧ EvA(N, k)



and then extract the configurations ct for 0 ≤ t ≤ k from the resulting satisfying
assignment ρ.

Note that the formula CREACHk is always satisfiable if the rule table con-
tains a totally defined rule, otherwise we have to choose accurately the initial
state.
(C)REACHk can be refined in order to be satisfiable only if the evolution is
acyclic. The acyclicity test ACY CLICk amounts to require that the assignment
to predicates at time t is distinct from all assignments at time t′ < t for any pair
of values of t and t′ between 0 and k. Thus, for finite CA we can explore all the
reachable configurations by iterative deepening on k until the ACY CLICk fails.
This way we can solve reachability problems and compute the reachability set
of a CA.

Inverse Reachability Compared to approaches based on simulation, a dis-
tinguishing feature of our encoding is that the formula EvA(N, k) is indepen-
dent from the search strategy (e.g. forward exploration/backward exploration).
we adopt for the analysis of a CA. This feature makes easy the encoding of
inverse reachability problems in terms of reachability. For instance, given a
(sub)configuration c and a configuration c′, we can decide whether c′ is a prede-
cessor of c by solving the satisfiability problem for the formula

PEP
.= Codc(c′, 0) ∧ EvA(N, 1) ∧ Codc(c, 1)

Note that, if c is a subconfiguration, in its encoding all unspecified cells will be
represented with predicates without constraints on its truth values. Similarly,
given a (sub)configuration c and a configuration c′, we can decide whether c′ is
a predecessor in k-steps of c by solving the satisfiability problem for the formula

PREPk
.= Codc(c′, 0) ∧ EvA(N, k) ∧ Codc(c, k)

Finally, as for forward reachability, we can also compute a possible trace in the
CA-evolution (and the corresponding initial state) of k steps that leads to an
encoded configuration c at time k. We first solve the satisfiability problem for
the formula

IREACHk
.= EvA(N, k) ∧ Codc(c, k)

and then extract the configurations ct for 0 ≤ t ≤ k from the resulting satisfying
assignment ρ. In order to find the set of all predecessors of a configuration
c we can use the following procedure: (1) set F to IREACH1; (2) solve the
satisfiability problem for the formula F (that gives us as a result one possible
predecessor); (3) if the problem is unsatisfiable exit the procedure, otherwise
(4) extract the formula G corresponding to the computed predecessor, set F to
F ∧ ¬G and go back to (2).

4.1 Goal-driven SAT-encoding

Inverse reachability is the more difficult problem among the one listed in the
previous section. This is due to the non-determinism in the computation of the
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Fig. 3. Example of cone of influence associated to a given final subconfiguration.

cone(i, 0) = {〈i, 0〉}
cone(i, t) = {〈i, t〉} ∪ cone(i, t− 1) ∪

⋃n
j=1 cone(i + vj , t− 1), for t > 0

Fig. 4. Definition of the cone of influence of a given cell.

preimage of a given configuration. To reduce the complexity of the SAT-solving
procedure we can try to reduce the size of the SAT-formula encoding the CA-
evolution and specialize it to the goal we are looking for. For example, suppose
that for a 1-CA with N cells we want to compute the initial (sub)configurations
that lead to a certain state for cell i in k steps. To optimize the encoding of this
problem, we can apply a version of the cone of influence introduced in [1] to stat-
ically compute the set of variables that influence the evolution of cell i. In Fig.
3 an example of cone of influence is presented for 2 cells after 5 evolution-step of
a 1-CA with neighborhood of unitary radius. The gray zone shows the union of
the useful cones for the considered cells. The Fig. 4 we define a procedure cone
for computing the cone of influence associated to a given cell i at time t. The
procedure only depends on the definition of the neighborhood. Our goal is to
reduce the number of variables in the encoding of the CA-evolution by choosing
only necessary cells for the encoded properties. Suppose that c is the subconfig-
uration for which we want to compute the predecessors in k-steps. Then, the set
of variables computed by the algorithm in Fig. 4 can be used during the con-
struction of the SAT-formula as follows. We first construct the cone of influence
for all cells i contained in c. Then, we generate the formula Codr(R, i′, t′) if and
only if 〈i′, t′ + 1〉 ∈ cone(i, t). The quality of this heuristic clearly depends on
the locality of the neighborhood and on the final subconfiguration.

To limit the number of variables in the SAT-formula, we can exploit the fact
that boundary cells (i.e. cells that encode the boundary of the cellular space)
never change state. Thus, we only need to encode boundary cells at time zero
and refer to this encoding in every step of the construction of the SAT-formula.
This optimization preserves the correctness of the encoding.

In the following section we will discuss a practical evaluation of the proposed
SAT-based methodology and related heuristics/optimizations.



5 Experimental Results

In order to test the effectiveness of the SAT-based analysis we have performed
several experiments using the SAT-solver zChaff [14]. zChaff implements the
Davis-Putnam algorithm [5] and it is considered as one of the fastest existing
solvers. In general zChaff manages formulas with about 106 propositional vari-
ables and about 107 clauses. In some preliminary experiments presented in [4] we
have compared zChaff with other solvers like ICS [8], SIMO [16] and HeerHugo
[7] on problems related to CAs. zChaff always gave us the best results in terms
of execution time. The input for zChaff is a CNF-formula written in DIMACS
format. By using the structure-preserving algorithm of [15], we have built a front
end to put the formula resulting from the encoding of a CA-evolution in CNF.
The algorithm makes use of a polynomial number of auxiliary variables (one per
each row of a CA-table). All experiments are performed on a Pentium4 2 GHz,
with 1Gb of RAM.

5.1 Tested Example

As main example we have considered a solution to the Firing Squad Synchro-
nization Problem (FSSP). FSSP was introduced by Moore in [13]. One considers
here a finite ordered line of n finite-state machines. At time 0, the leftmost cell
is distinguished (general) from the others (soldiers). These machines work syn-
chronously; the state of a machine i at time t + 1 depends only on the states
at time t of the machines i − 1, i and i + 1. The problem is to define finite
sets of states and transition rules so that all machines enter for the first time a
distinguished state (fire) at the very same moment. This problem can be solved
by defining a 1-CA with n cells representing the firing squad and the general.
Mazoyer [12] has given a six-state (plus a cell for the boundary of the cellular
space) minimal time solution in which the general creates two waves that prop-
agates through the squad at different speed so as to reach a solution in exactly
2 ∗ #cells − 2. This problem is thus adequate for testing bounded reachability
problems. Mazoyer’s CA is defined via 120 interesting rows (the total transition
relation has 73 rows, the remaining 223 rows do not change the cell state).

5.2 Tested Properties

In Table 1 we illustrate the type of reachability properties we have tested on
FSSP. Specifically, we have considered reachability problems in which either
the initial and final configuration are completely specified or part of them are
left unconstrained. For instance, I−nF denotes a reachability problem in which
n cells of the initial configuration are left unconstrained (i.e. we considered a
subconfiguration of the initial configuration); F denotes a problem in which
only the final state is specified. The properties nF + B and F + B + nL listed
in Table 1 are related to special tricks we used to exploit an heuristic called
VSIDS of zChaff. The heuristic VSIDS is used to choose a starting variable
for the resolution algorithm between those that appear most frequently in the



Added to EvA Description

I Initial configuration (i.e. CREACH).

I−n Initial subconfiguration in which n cells are unconstrained.

F Final configuration (i.e. IREACH)

F 1 One cell of the final configuration.

B Boundary cells.

I + F Initial configuration (i.e. REACH).

F + B Final configuration and boundary cells.

I−n + F Initial configuration without n cells and a final configuration.

F 1 + B Only one cell of the final configuration and boundary cells

nF + B Final configuration with n-copies of formula F .

F + B + nL F + B and n-copies of the last step of the evolution formula.

Table 1. List of reachability properties considered in the experiments.

formula. In order to exploit this heuristic we can either put n-copies of the
formula encoding F (property nF + B) or put n-copies of the last step of the
formula representing the evolution (i.e. the clauses leading to variables occurring
in F ) (property F + B + nL). This way when computing predecessors of a
configuration we force the SAT-solver to choose the variables that encode the
final configuration, i.e., those with the smaller number of occurrences in EvA

but with trivial truth assignment.

5.3 Outcomes of the Experiments

All the experiments require a preliminary compilation phase in which the SAT-
formula is built up starting from a CA rule table. The time required for the
biggest example is around 20 minutes due to the huge size of the resulting output.
In the following we will focus however on the performance of the solver on SAT-
formula of different size and on properties taken from Table 1.

I +F and I−n +F Properties In a first series of experiments we have tested
I+F -like properties on the CA-solution to FSSP. The results are shown in Table
2. The final configuration considered here is the one in which all soldiers in the
firing squad have received the fire command. For this kind of problems, the size
of the formulas that zChaff manages to solve scales up smoothly to formulas
with one million variables. For instance, on a cellular space of dimension 70 and
with 138 evolution steps it requires 1 minute to check that the CA solves FSSP.
We considered then problems of the form I−nF . Since there might be several
initial states (legal or illegal) containing the subconfiguration I−n and leading
to the same final state F , the resulting SAT problem becomes more difficult.
As expected, on this new kind of problems the performance of zChaff decreases
with the number of cells n removed from I. As an example, for a CA with 15
cells (hence 28 steps) it takes more 11m to solve the I−4 + F problem.



Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

I + F 15 28 12.18 51708 655713 3s

I + F 29 56 51.76 199842 2535241 13s

I + F 40 78 101.8 383883 4870563 25s

I + F 50 98 165.57 602853 7649203 39s

I + F 70 138 340.21 1118393 15079683 1m 22s

I−1 + F 15 28 12.18 51708 655710 3s

I−2 + F 15 28 12.18 51708 655707 69s

I−3 + F 15 28 12.18 51708 655704 65s

I−4 + F 15 28 12.18 51708 655701 30m53s

Table 2. Experiments on I + F -like problems.

Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

I 15 28 12.18 51708 655668 3s

I 29 56 51.76 199842 2535154 13s

I 50 98 165.57 602853 7649053 40s

I 70 138 340.21 1118393 15079473 1m 06s

I−1 15 28 12.18 51708 655665 3s

I−2 15 28 12.18 51708 655662 7m 21s

I−3 15 28 12.18 51708 655659 4s

I−4 15 28 12.18 51708 655656 10s

I−5 15 28 12.18 51708 655653 3m 22s

I−7 15 28 12.18 51708 655647 35m 36s

Table 3. Experiments on I and I−n problems.

I and I−n Properties In a second series of experiments we have tested I-like
properties that can be used to compute reachable states. The results are shown
in Table 3. Unexpectedly, the behavior of zChaff is quite irregular with respect
to the growth of the size of the SAT formulas. The average of the execution times
tends to grow exponentially with the number of cells removed from the initial
configuration until the problem becomes trivial (i.e. when we do not have neither
I nor F ). Other examples we tested in [4] did not suffer from this anomaly.

F Properties In the third series of experiments we have considered different
types of F -like properties that can be used to compute predecessor configurations
of a given final configuration. This is a hard problem in general. As expected, we
had to reduce the size of the SAT-formulas in order to get reasonable execution
times. In Table 4 we have considered inverse reachability starting from F . For
a cellular space of dimension 10 it takes about 9m to solve the problem F .
Adding a constraint on the boundary cells, i.e. property F +B, we dramatically
decrease the execution time (2m). In this example zChaff infers the correct initial



Problem #Cells #Steps Input(MB) #Vars #Clauses ExTime

F 10 18 5 22173 281010 9m 40s

F + B 10 18 5 22173 281013 2m 27s

F + B + 2L 10 18 5 22173 296623 35s

10F + B 10 18 5 22173 281043 39s

400F + B 10 18 5 22173 292983 1m 50s

Table 4. Experiments on F -like problems.

Problem C.o.I. #Cells #Steps Input(MB) #Vars #Clauses ExTime

F 1 + B 10 18 5 22173 280987 1m 48s

F 1 + B
√

10 18 4 16773 241961 1m 59s

F 1 + B + 10L 10 18 5 22173 296605 2m 05s

F 1 + B + 10L
√

10 18 4 16773 257561 1m 40s

F 1 + B + 30L 10 18 5 22173 330962 54s

F 1 + B + 30L
√

10 18 4 16773 288791 59s

100F 1 + B 10 18 4 22173 281283 2m20s

100F 1 + B
√

10 18 4 16773 241961 2m

C.o.I.=Reduction of the SAT-formula via the Cone of Influence

Table 5. Experiments on F 1-like problems.

configuration. The execution time further improves when forcing zChaff to select
the variables occurring in F with the trick discussed at the beginning of this
section. Specifically, when duplicating the last step of the formula EvA zChaff
takes 35s to solve the same problem (see prop. F + B + 2L in Table 4). Similar
results are obtained by simply copying F 10 times in the input formula given to
zChaff (see prop. 10F + B in Table 4). Tuning the heuristics might be difficult
(without modifying the code of zChaff) as shown by further experiments (like
100F + B) where the performance gets worse again.

F 1 Properties In order to study the effectiveness of the cone of influence
reduction we have also considered F−1 + B properties as shown in Table 5. The
use of this reduction alone does not improve the execution time much (see F 1+B
with and without C.o.I. in Table 5). However, when coupled with the n-copy of
the last step of EvA (to force the selection of variables in F ) then it seems to
work (see F 1+B+10L with and without C.o.I. in Table 5). Copying the formula
F does not seem to work well in this examples. Again tuning the parameters
used in heuristic like the number of copies n in . . . + nL might be difficult by
simply using zChaff as a black box.



Problem #Cells #Steps #Vars #Clauses Input(MB) ExTime

I 10 18 738044 12534004 237.00 5s

I 15 1 61564 1044495 17.26 5s

I 15 2 123064 2088990 36.02 9s

I 15 3 123064 3133485 56.23 14s

I 15 10 651064 10445014 197.70 48s

I 15 15 922564 15667489 299.00 1m54s

I 15 17 1045564 17756479 341.00 2m00s

I 15 20 1230064 20889964 410.41 ABORT

Table 6. Experiments on a CA with 4096 table rows.

5.4 Other Examples

In the last series of experiments we have randomly generated a CA with more
than 4000 table rows and tested on it I-properties of increasing size. The aim here
was to reach the limit of zChaff w.r.t. number of variables and clauses generated
by the encoding on an easy problem. As shown in Table 6, zChaff gets in trouble
when the formula has more than one million variables and about 20 millions of
clauses (15 cells, 20 steps), while it can handle problems with 17 millions clauses
(15 cells, 17 steps). This kind of analysis can be useful to evaluate the size of
CAs we can handle with non-specialized SAT solvers.

6 Conclusions and Related Work

Although several CAs programming and simulation tools have been developed
(see e.g. the survey of [22]), we are not aware of general frameworks for perform-
ing qualitative analysis of CAs automatically. In this paper we have proposed
a SAT-based methodology for attacking this problem. One of the advantages of
the proposed method is that, once the encoding of the CA-evolution has been
computed, several different reachability problems can be formulated as simple
propositional queries to a SAT-solver. The formula encoding the evolution can
then be reused in a modular way (we can shrink or extend it easily and attach to
it different initial/final configurations). Hard problems like inverse reachability
can be attacked then by using modern SAT-solvers like zChaff that seems to
perform well on problems with millions of variables and clauses.
Although this seems a new approach for checking properties of CAs, SAT tech-
nology is widely used for computer aided verification of hardware and software
design. As an example, tools for Bounded Model Checking like nuSMV [1] au-
tomatically generate an unfolding of the transition relation of a high level de-
scription of a reactive system and then use a SAT-solver to test LTL properties.
The reason why we did not resort to existing SAT-based verification tools like
nuSMV is that we wanted to have complete control over the SAT-formula gener-
ated by the encoding of a CA-evolution. This way we were able to test different



kind of properties and heuristics on zChaff directly.
In our preliminary experiments we have obtained interesting results for CAs of
reasonable size (e.g. 70 cells, 140 steps, 120 rules). We believe that it might
be possible to manage larger problems by a specialization of the SAT-solving
algorithm (and, especially, of its heuristics) that could benefit from structural
properties of CAs. This might be an interesting future direction for our research.
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Abstract. The design and the implementation of variable-free deduc-
tive frameworks (ultimately based on Tarski’s arithmetic of dyadic rela-
tions) for aggregate theories, strongly rely on the availability of suitable
pairing notions.
Thanks to a set-theoretical treatment of modalities, we show that even in
the case of modal propositional logics, an appropriate pairing notion can
be introduced and exploited in order to devise an alternative approach
to modal deduction.

Key words: Modal logic, relational systems, translation methods.

Introduction

In this paper we focus on a technical issue which plays a crucial role in algebraic
formalization of set theory. The kind of formalization we have in mind sprouts
from the historical line of work presented in the monograph [17]; but our con-
tribution is much more specific, as it links with previous work on set-theoretic
renderings of non-classical logics, and such renderings only presuppose very weak
axioms concerning sets. It has been shown, in fact (cf. the box-as-powerset, in
brief �-as-P, translation of [4, 1]), that even a very weak theory can offer ade-
quate means for expressing the semantics of modal systems of propositional logic,
for investigating the issue of their first-order representability, and for automating
inferences in non-classical contexts (cf. [10, pp. 478–481]). Unlike previous stud-
ies, where suitable weak set theories were formalized within ordinary quantified
calculus (in one case, namely [14], an inferential system à la Rasiowa-Sikorski
was developed), here we provide a variable-free, equational version of the target
set-theoretic language. To compensate for the lack of variables and quantifiers,
the equality construct will be used for comparing expressions designating global
relations between sets rather than for comparing set-expressions.

Providing a suitable notion of pairing is the central issue of the proposal
we put forward; in fact, pairing will be a key tool for obtaining, with minimal
axiomatic commitment, the desired equational support for the said set-rendering
? This research benefited from collaborations fostered by the European action COST

n.274 (TARSKI, see http://www.tarski.org).



of modal logics specified à la Hilbert. Such a tool enables use of the Maddux-
Monk-Tarski algorithm (cf. [17]) for restating any first-order sentence in three
variables; so it paves the way to the equational treatment of non-classical logics.
As the present paper will illustrate through various examples stemming from the
general approach discussed in [2], the proposed pairing device can be built into
a specialized variant of the �-as-P translation so as to drive it into a completely
equational setting.

An opportunity for improvements would have been missed if we had simply
proposed a montage of the �-as-P translation with Maddux’ translation. To
mention one thing, the first-order sentences resulting from �-as-P constitute a
rather narrow sublanguage of first-order logic, whose 3-variable translation can
easily be obtained by more direct means than by the general method. Moreover,
in view of the special purpose of our translation, the first-order (set-theoretic)
equivalent of a modal proposition can be left understood, and the two logical
phases of the overall translation can be fused into a single process. The role
of Maddux’ translation, in this process, can be superseded by the graph-based
approach developed in [2], whose techniques, however, are conservative and do
not guarantee success in all circumstances; therefore, suitable extensions of that
approach had to be devised to take full advantage of the special context of
our discourse, where most of the relations entering into play are functions, and
where conjugated projections (left and right inverses of the pairing function) are
available.

As for the pairing function, none seems to be available under the very weak
assumptions of the target set theory as originally proposed in [4, 1]. We must
either add an explicit pair axiom, or design a suitable variant of the P operation
(cf. Sec.1): in either case, a well-known device due to Kuratowski (whereby
ordered pairs can be encoded in terms of nested unordered pairs) can be adopted.

This paper is ‘twin’, in a sense, of [14]. Both develop a theory-based ap-
proach, whose difference relative to a more typical calculus-based approach will
be sketched in Sec.3. Suffice it to say, for the time being, that, typically, one
assumes the universe of discourse to consist exclusively of the possible worlds of
a frame; here, instead, the universe of discourse results from the amalgamation
of all Kripkean frames and hence encompasses worlds and frames together (as
well as other less relevant entities), all uniformly viewed as ‘sets’. Under one im-
portant aspect this paper and [14] diverge, though: the Rasiowa-Sikorski system
adopted there is particularly handy and human-oriented, whereas the equational
kind of reasoning to which modal logics are reduced in this paper is intended to
be mainly oriented to machine formula-crunching.

1 Background axiomatic aggregate theory

Consider the axiomatic theory Ω whose postulates are

∀ y ∀x ∃n ∀ v
(
v ∈ n ↔ (v ∈ x & v ∈ y)

)
,

∀ y ∀x ∃ d ∀ v
(
v ∈ d ↔ ¬ (v ∈ x↔ v ∈ y)

)
,

∀x ∃ p ∀ v
(
v ∈ p ↔ (∀u ∈ v)(u ∈ x)

)
.
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By resorting to Skolem operators ∩, 4, and P, and to the syntactic abbreviation

v ⊆ x ↔Def (∀u ∈ v)(u ∈ x) ,

and leaving the quantifiers ∀ v, ∀x, ∀ y tacit, we can recast the above axioms
more perspicuously as follows:

v ∈ x ∩ y ↔ (v ∈ x & v ∈ y) ,
v ∈ x4y ↔ (v ∈ x ↔ ¬ v ∈ y) ,
v ∈ P(x) ↔ v ⊆ x .

One can view Ω as being an extremely weak theory of ‘aggregates’ which
becomes a genuine set theory only after appropriate postulates, such as the
extensionality axiom

(x ⊆ y & y ⊆ x) → x = y

and the (unordered) pair axiom

v ∈ {x, y} ↔ (v = x ∨ v = y) ,

are added to it. On the other hand Ω is known to be, already as it stands, an
ideal target first-order theory into which to translate mono-modal systems of
propositional logic uniformly (cf. [3, Chapter 12]): in the translation, the con-
verse 3 of membership acts as a relation which includes immediate accessibility
between possible worlds; accordingly, ∩ and 4 play the role of the classical con-
nectives &, ⊕—conjunction and exclusive disjunction—, and P corresponds to
the necessity operator �.

From the standpoint of this ‘�-as-P’ translation, the weakness of Ω is a
virtue rather than a defect. As a matter of fact, if the extensionality axiom
were included in Ω, this would set an undesirable limitation to its usability in
the study of non-classical logics; and a similar objection can be raised against
postulates entailing the well-foundedness of membership. Certain enrichments
of Ω with new postulates, e.g. the addition of the pair axiom, do not jeopardize
applicability of the �-as-P translation method; nevertheless such enrichments
appear to be unjustified unless they are shown to yield some technical—perhaps
computational—advantages.

The important result summarized in this paragraph, established by Alfred
Tarski over half century ago and later improved by J. Donald Monk and Roger
Maddux (cf. [17, Chapter 4]), seems to favor the addition of the pair axiom
to Ω. An effective procedure exists for reducing each sentence of the language
underlying any first-order theory of membership which includes the pair axiom to
an equivalent sentence involving three variables only; furthermore, this procedure
enables global translation of such a theory into a purely equational extension
of the arithmetic of dyadic relations, which is an algebraic theory owning an
“almost embarrassingly rich structure” [12]. Thanks to such a translation, we
might gain better service from today’s theorem provers run in autonomous mode:
in our own experience, these generally demonstrate higher performances when
confronted with purely equational theories than with theories which more fully
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exploit the symbolic first-order apparatus [8, 9]. By translating modal axioms
and theses into an equational variant of Ω, we could hence best benefit of current
proof technology.

We will propose below an even less committing way of reducing (a variant
Ω′ of) Ω to the arithmetic of relations, taking advantage of the fact that the
above cited Tarski-Maddux’ result holds also for theories where an analogue of
the pair axiom, of the form

∀ y ∀x ∃ q ∀ v
(
v in q ↔ (v = x ∨ v = y)

)
,

can be derived from the axioms. The only requirement, in regard to this, is that
“v in q” be a formula which involves three variables altogether and has v and
q as its sole free variables. To achieve our translation purpose, we just have to
retouch the one axiom which characterizes the ‘powerset’ operator P so that it
behaves more naturally when the extensionality axiom is missing. Our proposed
replacement for the third axiom of Ω is the sentence

∀x ∃ p ∀ v
(
v ∈ p ↔ (v = x ∨ v ⊂ x)

)
,

where

v ⊂ x ↔Def ¬ (v ⊆ x→ x ⊆ v)

(that is, v ⊂ x holds if and only if every element of v belongs to x whereas x
has some element not belonging to v). Under this revised axiom, even without
extensionality axiom, it is clear that exactly one p, let us call it P̃(x), corresponds
to each x so that the elements of p are precisely x and all of its strict subsets
v ⊂ x. Likewise, to any q there corresponds at most one a such that q max a
holds, where

q max a ↔Def

(
a ∈ q & q ⊆ P̃(a)

)
;

but, unlike P̃ which is total, max is a partial function of its first operand.
In our revised version Ω′ of Ω, one can conceive an analogue of the unordered

pair {a, b} to be P̃(a) when a = b and to have the same elements as P̃(a)4P̃(b)
when a 6= b. (Out of such ‘unordered pairs’, one can proceed to construct ‘ordered
pairs’ analogous to Kazimierz Kuratowski’s pairs 〈a, b〉 =Def

{
{a, b}, {a, a}

}
, and

these will behave as desired, but let us avoid a discussion on this point taking
it for granted [6].) With this rationale in mind, we can characterize as follows
a ‘pseudo-membership’ which meets the formal analogue seen above of the pair
axiom:

b in q ↔Def

(
b ∈ q &

(
¬∃ d ∈ q

)(
b ⊂ d

))
∨ ∃ a

(
q max a & b ⊂ a

& ∀ d
(
d ∈ q↔

(
d ∈ P̃(a) & ¬ d ∈ P̃(b)

)))
.

To see that in can be specified in three variables, it suffices to observe that since
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3 =Def ∈^ ⊇ =Def 63∈
⊃ =Def ⊇ · 3/∈ ⊂ =Def ⊃^

P̃ =Def ∈ − ⊃/∈ − ( ι · 6⊃ ) ∈ µ =Def P̃⊇ · ∈
in =Def

“
∈ − ⊂∈

”
t

“
⊂ µ − P̃3∈ − 1l

`
∈ − ∈ P̃^µ

´
− P̃ 63

`
∈ P̃^ µ − ∈

´”
γ =Def ( in−ι in ) in syq(P, Q) =Def P ^ Q · P

^
Q

λ =Def γ − ι γ % =Def in in − ι ( in in − λ )

P̃ 1l = 1l λ %^ = 1l

1l = 1l syq(∈, ∈ λ · ∈ % ) 1l syq(∈, ∈ λ + ∈ % ) = 1l

Fig. 1. Specification of Ω′ in the arithmetic of dyadic relations

max is single-valued, the definiens of the predicate in can be rewritten as follows:(
b ∈ q &

(
¬∃ d ∈ q

)(
b ⊂ d

))
∨

(
∃ d (q max d & b ⊂ d)

& ∀ d

(
d ∈ q↔

((
¬ d ∈ P̃(b)

)
& ∃ b

(
q max b & d ∈ P̃(b)

))))
.

Given the above definition of in, let us consider the following pair of relations:

aλ q ↔Def a γ q & ∀ z (z γ q→ z = a),
b % q ↔Def ∃w (b in w & w in q) & ∀ z

(
∃ v (z in v & v in q)→ z = b ∨ z λ q

)
,

where x γ y ↔Def ∃ z
(
x in z & z in y & ∀w (w in z→ w = x)

)
.

Since in is expressed in three variables, it is easy to verify that both λ and % are
defined in terms of 3-variable sentences. Notice that, thanks to their definitions,
both λ and % are functions of their second operands. According to [17] (see
also [6] and Sec.5 below), the availability of such a pair of relations allows one
to recast the pairing axiom in three variables, as follows:

∀x∀ y ∃ q (xλ q & y % q).

The equational rendering of this axiom will be part of the equational specification
of Ω′, as shown in Figure 1 (where an equational rendering of λ and % is also
shown).

At present we do not know whether Ω′, without further axioms, can super-
sede Ω as target first-order theory into which modal propositional logics can be
translated naturally. In fact, the proof of the theorem which states the adequacy
of the �-as-P translation into Ω (cf. [4, Sec.3]) cannot be carried over in an
obvious manner to our slightly altered context.

2 Arithmetic of homogeneous dyadic relations

We got in medias res.4 The algebraic specification of Ω′ just reached calls for a
quick flash back into our own variant of the algebraic form of logic historically
4 Directly to the heart of the tale.
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developed by Charles Sanders Peirce, Ernst Schröder, and Alfred Tarski [17], to
recall a few.

Our intended universe of discourse is a collection < of dyadic relations over
a non-null domain U . We assume that the top relation

⋃
<, and the diago-

nal relation, consisting of all pairs 〈u, u〉 with u in U , belong to this universe,
which is also closed under the intersection, symmetric difference, composition,
and conversion operations. Within our symbolic algebraic system, the constants
1l and ι designate the top and the diagonal relation; moreover · and + desig-
nate intersection and symmetric difference; composition is represented by simple
juxtaposition; and conversion by the monadic operator ^. These operations are
interpreted as follows, where for any relational expression R we are indicating
by R= the relation (over U) designated by R:

– P^ designates the relation consisting of all pairs 〈v, u〉 with 〈u, v〉 in P=;
– P Q designates the relation consisting of all pairs 〈u,w〉 such that there is at

least one v for which 〈u, v〉 and 〈v, w〉 belong to P= and to Q=, respectively;
– P ·Q designates the relation consisting of all pairs 〈u, v〉 which simultaneously

belong to P= and to Q=;
– P+Q designates the relation consisting of all pairs 〈u, v〉 which belong either

to P= or to Q= but do not belong to both of them.

Designations for customary operations over relations can be introduced through
shorthand definitions, e.g. as follows:

Q =Def Q+1l, Ø =Def 1l,

P−Q =Def P ·Q, PtQ =Def Q−P .
We will sometimes exploit alternative notation for the complement operation
and for equations of a special kind:

6Q =Def Q, PvQ ↔Def P−Q=Ø.

Further abbreviations can be introduced at will, as shown for example in Figure 1
by the introduction of the symmetric quotient operation syq (cf. [16, pp. 19–
20, 71ff]). As concerns priorities, we assign to ^, composition, ·,+,−, and t
decreasing cohesive powers; moreover, all dyadic constructs, namely ·,+,−,t,
and composition, are assumed to associate to the left.

Figure 2 displays an axiomatic presentation of the arithmetic of relations,
which also encompasses the standard equational inference rules. We regard these
axioms as logical ones, because they form, in a sense (together with the infer-
ence rules), a calculus on top of which one can build purely equational theories,
such as the Ω′ theory introduced above. Specific theories will talk about special
relations—the one designated by ∈, in the case of Ω′—, which they constrain to
comply with proper axioms—e.g. the ones shown in Figure 1. A theory character-
izes peculiar domains endowed with special relations. For example, the axioms
of Ω′ imply that the domain U is infinite and has a considerable amount of
structure. This actually reflects our willingness to impose enough structure on
U that it can be regarded as an amalgamation of all Kripke frames upon which
the ‘possible-world ’ semantics of modal propositional logics is based.
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P · Q = Q · P P · ( Q+R ) +P · Q = P · R
( P · Q ) · R = P · ( Q · R ) ( P +Q ) +R = P + ( Q+R )

1l · P = P ι P = P
( P Q ) R = P ( Q R ) ( P t Q ) R = ( Q R t P R )
( P · Q )^ = Q^· P ^ ( P Q )^ = Q^ P ^

P ^^ = P Q ·
`
( Q P + 1l ) P ^

´
= Ø

Fig. 2. Logical axioms of the arithmetic of dyadic relations

3 Direct relational translations of modal logics

A vast literature exists on how to translate non-classical propositional logics into
first-order predicate calculus and how to exploit such translations for automated
non-classical reasoning, cf. e.g. [18].

Consider, for example, the following translation mapping (essentially the one
proposed in [15]), which associates a relational expression t(ϕ) with each modal
propositional sentence ϕ :

– t(pi) =Def p′i 1l , where p′i is a relational variable uniquely corresponding
to pi , for every propositional variable pi;

– t(¬ψ) =Def t(ψ) , for every propositional sentence ψ ;
– t(ψ & χ) =Def t(ψ) · t(χ) , for all propositional sentences ψ, χ ;
– t(♦ ψ) =Def r t(ψ) , where r is a constant designating the accessibility

relation between possible worlds, for every propositional sentence ψ .

Of course the connectives →,∨,↔,⊕, � can be handled similarly, via reductions
to ¬ , & ,♦ . It is also plain that t(ϕ) designates a right-ideal relation Φ; namely,
one which satisfies the equation Φ 1l = Φ.

Assume that we have been able to capture the semantics of a specific logic L
by means of a system of relational equations E(L) involving r alone: then we can,
in place of the problem of establishing whether or not |=L ϑ (where ϑ is any modal
formula), address the equivalent problem of establishing whether or not E(L) `
t(ϑ)=1l. One can see the condition E(L) ` t(ϑ)=1l as a statement referring to
first-order predicate calculus, because we can re-express the (relatively unusual)
relational constructs it involves in terms of individual variables and quantifiers.
Indeed, we can rewrite P=1l as ∀x∀ y(xP y ), xP ·Qy as xP y & xQy , xP Qy
as ∃ z(xP z & z Qy), etc.

This approach is viable for a wide spectrum of non-classical logics, including
some which are directly characterized in terms of semantic constraints which the
accessibility relation is subject to, for example extensionality

syq(r, r) v ι

(a property of contact relations used in spatial reasoning, cf. [5]). On the other
hand, there exist modal logics very simply characterizable via Hilbert-like axioms
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which do not admit a first-order correspondent, one such being the single-axiom
Löb logic

�(� p → p) → � p .

For such defective logics a correspondent can always be found in second-
order predicate calculus, which unfortunately is not complete (no matter what
recursive set of logical axioms is chosen, cf. [13]).

An alternative possibility, which we will discuss in the ongoing, is to take a
first-order theory (as opposed to the mere calculus) as the target formalism for
the translation. A most natural choice, when L is given by a finite conjunction α
of Hilbert-like axioms, is to refer to the arithmetic RA of relations (see Figure 2):
we can then take E(L) to be t(α)=1l, and try to see whether |=L ϑ by checking
whether RA &

(
t(α)=1l

)
` t(ϑ)=1l. This approach would lack completeness

too (since RA does not axiomatize the whole variety of representable relation
algebras), despite being sound, efficient (as automatic theorem-proving in purely
equational contexts is faster than for full first-order logic), and able to provide
answers in common cases.

From its very origin, the theory Ω was devised with the aim that it should
retain enough of the power of second-order predicate calculus to make recourse to
second order useless, while ensuring completeness. In its original form, however,
Ω was not immediately amenable to an equational extension of RA; hence it
did not enable emulation of non-classical reasoning in the purely equational
part of the arithmetic of relations; now, thanks to the availability of conjugated
projections, it will.

4 Modal logics and the arithmetic of relations

Let us recall from [4], [1] (see also [3, Chapter 12]) that there is a translation
ϕ 7→ ϕ? of modal propositional sentences into set-terms of Ω which enjoys the
following properties:

– A sentence schema ϕ ≡ ϕ[p1, . . . , pn] built from n distinct propositional
meta-variables pi becomes a term ϕ? ≡ ϕ?[f, x1, . . . , xn] involving n + 1
distinct set-variables, one of which, f , is meant to represent a generic frame.

– If ϕ? ≡ ϕ?[f,x] and ψ? ≡ ψ?[f,y] result from propositional schemata ϕ,ψ,
then the biimplication

ψ |=K ϕ⇔ Ω ` ∀ f
(
is frame(f) ∧ ∀y(f ⊆ ψ?) → ∀x(f ⊆ ϕ?)

)
holds, where K is the minimal modal logic and is frame( · ) characterizes
those elements of the intended domain U which represent Kripke frames.

Hence, by combining this translation with a proof system for Ω, one achieves
a proof system which can be exploited to semi-decide any finitely axiomatized
mono-modal propositional logic (and even, in favorable cases, to decide it). We
would like to now tune the same translation for our relational theory Ω′, with
the additional advantage that the target formalism would be a purely equational
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one in the case at hand; however, due to the difficulty mentioned at the end of
Sec.1, in the rest of this paper we replace Ω′ by the (equational) theory Ω′′

consisting of the axioms of Ω′ plus the axiom

P 1l = 1l, where P =Def syq(⊆, ∈) and ⊆ =Def 3/∈ .

We begin by specifying the monadic relation is frame, bearing in mind that
since 3 must act, when restricted to a frame, as the accessibility relation between
worlds in that frame, a frame f must be a transitive set, i.e., it must satisfy
f ⊆ P(f). This characterization turns out to be adequate to our purposes:

is frame =Def ι · P ⊇ .

Then we must specify operations on U that correspond to the propositional
constructs ∨ , & , and �. Here the rationale is that the term ϕ[f,x] into which
one translates a propositional schema ϕ?[p] represents the collection of all worlds
(in the frame f) where ϕ holds. We have announced already in Sec.1 that the
natural counterparts of � and & will be P and ∩: analogously, ∪ and \ will
act as counterparts of ∨ and 6→ , but since we have not introduced any of ∩, ∪,
and \ explicitly in Figure 1, we can fill this gap now by putting5

∩ =Def syq(∈, ∈ λ · ∈ % ) , ∪ =Def syq(∈, ∈ λt ∈ % ) ,
\ =Def syq(∈, ∈ λ− ∈ % ) .

In the language underlying the Skolemized first-order version of Ω′′, it is quite
straightforward to define the mapping ϕ[p] 7→ ϕ?[f,x] of sentence schemata into
terms:

p?
i =Def xi , (¬ψ)? =Def f \ ψ? ,

(ψ→ χ)? =Def (¬ψ)? ∪ χ? , (� ψ)? =Def P(ψ?) .

(of course we can also handle the connectives & , ∨ , ↔ , ⊕ ,♦ via reductions to
¬ , → ,�). This is called the �-as-P translation. Assuming that we manage to
specify the relation f 6⊆ ϕ?[f,x] between a frame f and a tuple x by means of
a relational expression ϕ̂, then the translation of Ψ `K ϕ (where Ψ stands for a
finite collection of sentence schemata) into a derivability problem regarding the
(quantifier-free, purely equational) relational version of Ω′′ will be

Ω′′ ` is frame · ϕ̂ 1l v &̂Ψ 1l .

5 Compliance of a frame with a modal schema

How can we specify algebraically the relation (complement of the ϕ̂ just intro-
duced) which holds between a frame f and a tuple x when f ⊆ ϕ?[f,x]? A

5 Needless to say, we must distinguish between ·,+, −, t, v, which operate on rela-
tions, and corresponding constructs ∩,4, \,∪,⊆, which operate on U .
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crucial observation is that within the relational version of Ω′′ one can derive
equations

L^ L v ι , R^ R v ι , L^ R = 1l , ι v L 1lR^ ,

for suitably chosen relational expressions L,R. For example, we can take

L =Def λ
^ t (ι−λ^ 1l) , R =Def %

^ t (ι− %^ 1l) .

This remark immediately discloses the possibility of translating the full-fledged
language of first-order Ω′′ into the language of the arithmetic of relations: we can
rely, for that, on a fundamental algorithm due to R. Maddux and explained in
[17, Sec. 4.4]. Notice that the very fact that we can speak of tuples belonging to
U relies on the availability of L,R. As a matter of fact, we can view each element
a of U as a pair 〈b, c〉 whose components fulfill aL=b and aR=c; accordingly, since
we can decompose c in the same fashion, any element of U encodes a tuple of
any desired length. On the other hand, L^R = 1l implies that we can assemble
a pair 〈b, c〉 from any two elements b, c of U , and hence we can form an n-tuple
with given components b1, . . . , bn for any finite number n.

We are not so much interested in translating the full first-order language into
the equational one as we are in translating formulas f ⊆ ϕ?[f,x]: these are, in
fact, the ones we really need in order to carry out the translation of any sentence
of modal propositional logic into relational Ω′′. To this end, we can resort to a
more direct graph-based translation approach explained in [2], which has been
implemented by means of a tool for algebraic graph transformation named Agg
(acronym for ‘Attribute Graph Grammars’), developed at the TU, Berlin [11, 7].

Figure 3 displays the graph representation of f ⊆ ϕ?[f,x], when ϕ is one of
the following modal sentences (x, y correspond to p and q, respectively):

S4: � p → �� p;
Löb: �(� p → p) → � p;
K: �(p → q) → (� p → � q).

When fed with one of these three graphs, the thinning algorithm of [2, p. 455]
terminates in a dead end. Figure 4 displays two of the resulting irreducible
graphs, obscuring orientation and labels of the edges. Figures 5, 6, and 7 show, on
a couple of examples, how to take advantage of the available ‘projections’ λ^, %^

to bring an irreducible graph to a form whence the thinning algorithm can resume
its job and terminate successfully, with the desired relational translation. (Notice
that, the last graph of Figure 7 can be further reduced as done for the example
in Figure 5.)

The key point is that, thanks to the availability of a pair of projections, λ^

and %^, the thinning algorithm can be enriched with a new graph-rewriting rule:

pair-encoding rule. Let L and R be a pair of conjugated projections. Let
ν′ and ν′′ be two nodes in a graph. Then introduce a new (bound) node ν
together with two labelled edges [ν, L, ν′] and [ν,R, ν′′].

10
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Fig. 3. Graph renderings of S4, Löb, and K

Such a rule is extremely general and, in principle, there is no restriction on its
applicability. Clearly, it is convenient to exploit this rule within a strategy that
relates its application to the firing of other rules of the thinning algorithm. In
particular, since L and R are single-valued, the following rewriting-rule (cf. [2])
becomes crucial in order to bring to end the graph-rewriting process:

functionality rule. Let [ν, P, ν′] be a labelled edge such that P is single-
valued and let [ν′, Q, ν′′] be another edge, with ν 6= ν′′. Then the edge
[ν′, Q, ν′′] is removed and the new edge [ν, P Q, ν′′] is added to the graph. (If
the graph contains another edge between ν and ν′′ labelled S, then a fusion
is made and the new edge will be labelled P Q·S.)

Conclusions

In this paper we moved the first step toward the realization of an alternative
deductive framework for non-classical logics based on pure equational reasoning.
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Fig. 4. Irreducible graphs resulting from S4 and from Löb (cf. Figure 3)

We demonstrated how to profitably combine the experiences issuing from two
apparently weakly-related streams of research: We (re-)forged a set-theoretical
approach to the deduction problem in modal theories, within a purely equational
deductive framework designed for set-reasoning and ultimately based on Tarski’s
relation algebra. To this aim we exploited the very same techniques developed
for equational re-engineering of various aggregate theories [8, 6]. At the same
time, this paper presents a new significant improvement of the translation tech-
nique proposed in [2] in order to compile first-order sentences into the algebra
of relations.

Experimental activities with a state-of-the-art theorem-prover such as Ot-
ter [8] seem to indicate that equational formulations of aggregate theories can
favorably compete with more conventional first-order formulations. Through the
proposed equational rendering of a Ω′′, thanks to the �-as-P translation, modal
propositional logics are amenable to the jurisdiction such equational automated
reasoning methods. Such a result emphasizes, once more, the expressive and
deductive power of Tarski’s algebraic theory of relations.
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reasoning with Otter. In R. Goré and A. Leitsch and T. Nipkow Eds., Automated
Reasoning. Proc. of First International Joint Conference on Automated Reason-
ing (IJCAR’01–(CADE+FTP+TABLEAUX), Siena), Lecture Notes in Computer
Science 2083, pp. 152-167, Springer, 2001.

[10] A. Formisano and A. Policriti. T -resolution: refinements and model elimination.
J. of Automated Reasoning, 22(4):433–483, 1999.

[11] A. Formisano and M. Simeoni. An AGG application supporting visual reasoning.
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Abstract. The protein structure prediction problem is one of the most
studied problems in Computational Biology. It can be reasonably ab-
stracted as a minimization problem. The function to be minimized de-
pends on the distances between the various amino-acids composing the
protein and on their types. Even with strong approximations, the prob-
lem is shown to be computationally intractable. However, the solution of
the problem for an arbitrary input size is not needed. Solutions for pro-
teins of length 100–200 would give a strong contribution to Biotechnol-
ogy. In this paper, we tackle the problem with constraint-based methods,
using additional constraints and heuristics coming from the secondary
structure of a protein that can be quickly predicted with acceptable ap-
proximation. Our prototypic implementation is written using constraints
over finite domains in the Mozart programming system. It improves over
any previous constraint-based approach and shows the power and flexi-
bility of the method. Especially, it is well suited for further extensions.

1 Introduction

A protein is identified by a finite list of amino-acids, which we can represent as
symbols of an alphabet of 20 elements. The protein structure prediction (PSP)
problem is the problem of predicting the 3D structure of the protein (its na-
tive conformation) when the list of amino-acids is known. Native conformation
determines the Biological function of the protein. It is accepted that the na-
tive conformation is the state of minimum free energy. Up to now, though, a
definitive energy model has not been yet devised. The energy of a conforma-
tion depends partially on the distances between all pairs of amino-acids and on
their type. Thus, the PSP problem can be simplified to that of minimizing a
suitable energy function generated by the protein 3D conformations. Although
the problem, even with some simplifications, is NP-complete [9], it deserves to be
attacked, because a solution for ‘small’ proteins (100–200 amino-acids) would be
anyhow extremely important in Biology and Biotechnology. The problem is ap-
proached in several ways (see [7, 14] for a review). Prediction methods make use
of statistical information available from more than 24, 000 structures deposited
in the Protein Data Bank (PDB) [5]. The correct fold for a new sequence can be
obtained when homology (sequence similarity) is detected with a sequence for



which the structure is available. Another approach tries to superimpose (thread)
a chain on known structures and evaluates the plausibility of the fold.

Ab-initio methods, instead, try to find the native conformation without direct
reference to a structural model. In this context, a constraint-based encoding of
the problem is extremely natural. A first abstraction is the choice of a spatial
model for the admissible positions of the various amino-acids. Lattice models are
used to formalize the PSP problem as a minimization problem on finite domains.
It has been shown [4, 3, 12] that the Face-Centered-Cubic lattice (FCC) provides
the best lattice approximation of proteins. Moreover, it has been shown that the
residue neighbors in real proteins are clustered in a rather dense way, occupying
positions closely approximating those of a distorted FCC packing. It is believed
that this packing is a direct manifestation of the hydrophobic effect. Recall that
FCC is the closest packing of spheres, which was proven only recently [8].

The FCC lattice is exploited in [1, 16] for solving proteins of length up to 160
with the further abstraction of splitting the amino-acids in two families (H and
P). However, the HP abstraction does not ensure that the result is the native
conformation; in particular, the local sub-conformations of the form of α-helices
or β-strands (cf. Sect. 2) are often lost. These structures are often generated early
in the real folding process and, moreover, the structures can be predicted with
good approximation [13]. These two observations suggest to include secondary
structures in the constraint-based definition of the (complete, non-HP) problem.
This is done in [10] using CLP (FD) constraints in SICStus Prolog; proteins of
length 50–60 can be predicted.

In this paper we extend the results of [10] in three ways. First, a precise math-
ematical formalization of secondary structure is given and results are obtained,
which allow for easy breaking of symmetries, cheap computation of energy, and
an effective, but computationally inexpensive, search strategy during the con-
straint search. Then we split the energy function into 4 families and we observe
that the energy contribution of one of them is sensibly greater than the others:
we use this information for developing heuristics for the solution’s search pro-
cess. Finally, we take advantages from using the constraint propagation of Oz
3.0 language and in particular we implement specially tailored propagators that
allow to solve the problem efficiently. The preliminary results obtained show a
huge speed-up w.r.t. the results of [10].

The paper is organized as follows: in Section 2 we provide some biological
background needed through the paper. In Section 3 we describe the spatial and
protein models. In Section 4 we define the problem and introduce our solving
strategy. In Sections 5 and 6 we provide technical details to handle secondary
structure elements. In Section 7 we describe the constraint framework. In Sec-
tion 8 we present some preliminary results and we conclude with Section 9.

2 Biological Background

The Primary structure of a protein is a finite sequence of linked units (or
residues), that define uniquely the molecule. Each residue is an amino-acid,



denoted by one of the 20 elements in the alphabet set Σ. A protein (primary)
sequence is thus a string s ∈ Σ∗.

Native conformations are largely built from Secondary Structure elements
(SSEs), which are local motifs consisting of short, consecutive parts of the amino
acid sequence having a very regular conformation. Some of them are α-helices,
β-sheets, and βαβ turns. In this paper we model the first two motifs: α-helices
are constituted by 5 to 40 residues arranged in a regular right-handed helix with
3.6 residues per turn. This local structure is stabilized by local interactions and
can be thought as a rigid cylinder. β-sheets are constituted by extended strands
of 5 to 10 residues. Each strand is made of contiguous residues, but strands
participating in the same sheet are not necessarily contiguous in sequence. There
are algorithms based on neural networks that can predict with high accuracy
(75% [7]) the secondary structure of a protein. Formally, a secondary structure
for a protein sequence s = s1 . . . sn is a list sse of k triples SSEi = (ti, bi, ei),
where for 0 ≤ i < k, ti ∈ {ααα,βββ}, 0 ≤ bi < ei < n, and for 0 ≤ i < k − 1,
ei < bi+1. Later, we will use the notation |s| = n, and | sse | = k. Given a
secondary structure sse for a protein sequence s, then the sub-sequence of the
i-th SSE is the string sbi . . . sei .

In nature, each protein always reaches a specific 3D conformation, called na-
tive conformation or tertiary structure. This conformation determines the func-
tion of the protein. The protein structure prediction problem is the problem of
determining the tertiary structure of a protein given its primary structure. It is
accepted that the primary structure uniquely determines the tertiary structure.
Due to entropic considerations, it is also accepted that the tertiary structure min-
imizes the global energy of the protein. Though, is not yet uniquely accepted
which energy function describes this phenomenon.

3 Formalizing the Models

3.1 The Lattice Model

In this section, we introduce the spatial model and its properties. The protein is
represented as a succession of three dimensional points. Each point corresponds
to an amino-acid3. In our approach we restrict the point’s domain to be in the
face-centered-cubic lattice (FCC). Fig 1a) shows its unit cell. The FCC is the set
of points FCC = {(x, y, z)|x, y, z ∈ Z, x + y + z is even}.

We discuss now some important properties of this lattice. First, note that
the FCC has 48 automorphisms, which are represented by orthogonal matrices
M , where the column vectors are a permutation of (±1, 0, 0), (0,±1, 0), and
(0, 0,±1). As we now will explain, we use only 24 of these automorphisms, due
to the chirality of proteins.

Chirality is an important property of protein structures and sub-structures.
Two objects are chiral if they are identical except for a mirror reflection (differ-
ent handedness). In nature, a sequence of amino-acids, when folded (e.g. right
3 In particular, we associate each point to the position of the α-carbon lying in the

backbone of the amino-acid, which can be assumed to be its steric center.



handed α-helices), has a specific handedness and usually it can not generate the
symmetric folding as well. In our model, when we apply transformations, we
are interested in preserving the natural handedness. Since reflections invert the
handedness, we restrict to automorphisms with an orthogonal matrix with pos-
itive determinant. Note that half of the possible automorphisms are reflections,
since the determinant associated to the matrix is negative. This leads us to the
following definition of the basic transformation that we apply to points:

Definition 1. A matrix M is called rotational, if it is orthogonal, det(M) = 1
and each of its elements is in Z. An isometric mapping 〈M, t〉, where t ∈ FCC
and M is a rotational matrix, is a function from points to points of the form
〈M, t〉 : p → Mp + t. We identify this function with its extension to sets of
points. M is called the transformation matrix of the isometric mapping 〈M, t〉
and t its translation vector.

The composition A2 ◦ A1 of two isometric mappings A2 = 〈M2, t2〉 and
A1 = 〈M1, t1〉, i.e. the application of A2 after A1 equals

〈M2, t2〉 ◦ 〈M1, t1〉 = 〈M2M1,M2t1 + t2〉.

Note that A2 ◦ A1 is again an isometric mapping, since M2M1 is rotational.
Due to this definition, there is also an inverse for an isometric mapping 〈M, t〉,
namely 〈M, t〉−1 , 〈M−1,−M−1t〉. We define the FCC-norm of a point (x, y, z):

‖p‖fcc = max
{
|x|, |y|, |z|, |x|+ |y|+ |z|

2

}
.

A vector v ∈ FCC is called a unit vector if ‖v‖fcc = 1. The FCC-distance of two
points p, q ∈ FCC is ‖p−q‖fcc. Let us observe that in the FCC lattice, each walk
from (0, 0, 0) to (x, y, z) ∈ FCC, needs at least ‖(x, y, z)‖fcc lattice unit vectors.
We also use the standard Euclidean norm ‖〈x, y, z〉‖2 =

√
x2 + y2 + z2.

3.2 The Protein Model

We provide here the formal definition of our 3D model and energy function. The
tertiary structure of a protein can be modeled as a function ω : [0 .. n−1] → FCC.
The position of the i-th monomer in the protein corresponds to the point ω(i).

Definition 2. The function ω is a folding for the primary sequence s, iff

bond-constraint: ∀i . 0 ≤ i < |s| − 1 : ‖ω(i)− ω(i + 1)‖fcc = 1, and
angle-constraint: ∀i . 0 ≤ i < |s|−2 : ∠(ω(i), ω(i+1), ω(i+2)) ∈ {90◦, 120◦, 180◦}.

Note that we allow only angles of 90◦, 120◦, and 180◦, whereas in the FCC
lattice, three consecutive monomers can also form angles of 0◦ and 60◦. We
exclude the angles less than 90◦ for sterical reasons, since the first and third
amino-acid would be too close. Note that in [10] the 180◦ angle was excluded
as well, since it is unfavorable in real proteins. In our approach we allow this
angle, since simpler constraints can be used (especially when linking SSEs to



neighbors). Moreover, when discretizing the protein on FCC lattice, 180◦ angles
can be required to fit more accurately the native state. For example, the modeling
of α-helices in the FCC lattice, is not able to represent the typical periodicity of
the pattern.

A folding ω satisfies a secondary structure sse = (ti, bi, ei)0≤i<| sse | if and
only if for every i ∈ [0..| sse | − 1], the positions ω(bi), . . . , ω(ei) approximate a
right-handed α-helix on the FCC if ti = ααα and approximate a β-strand on the FCC
if ti = βββ. We give a formal definition of these approximations in Subsection 5.1.

The modeling of the folding energy is a delicate issue: a large set of phe-
nomena can be included to produce a refined energy function. In this paper we
restrict to one kind of interaction between elements, namely the contact energy
between pairs of amino-acids and we use the matrix developed in [6]. ppot(a, b)
denotes the potential of the amino-acids a and b. The potential is only con-
tributed to the total energy if the two amino-acids are in close contact. If two
monomers are too close, they are clashing, in this case the total energy is ∞,
since for steric reasons two residues repel each other.

Definition 3 (Energy). For two amino-acids a, b ∈ Σ and two positions p, q ∈
FCC, we define

E(a, b, p, q) =





ppot(a, b) ‖q − p‖2 = 2
∞ ‖q − p‖2 < 2
0 otherwise.

The energy of a protein conformation with protein sequence s and folding
ω : [0 .. |s| − 1] → FCC is EC(s, ω) =

∑
0≤i,j<|s|,i+2<j E(si, sj , ω(i), ω(j)).

Note that due to our definition, every sub-sequence up to 3 consecutive
amino-acids in the primary structure, does not contribute to the energy. This
is an empirical choice. Basically, if three consecutive amino-acids formed an an-
gle of 90◦ the first and third amino-acid would form a pair contributing to the
energy, whereas if they formed an angle of 120◦ there would be no contribu-
tion. The energy contribution of an amino-acid pair is negative on average and
thus, angles of 90◦ would be always favoured. This is true in the lattice, but
not in nature, and thus we avoid this a-priori preference by removing the energy
contribution of the pair of amino-acids si and si+2.

We report here a part of the potential table of [6], also available at http:
//www.dimi.uniud.it/dovier/PF/.

CYS MET PHE ILE LEU VAL TRP TYR ALA GLY

CYS -3.477 -2.240 -2.424 -2.410 -2.343 -2.258 -2.080 -1.892 -1.700 -1.101
MET -2.240 -1.901 -2.304 -2.286 -2.208 -2.079 -2.090 -1.834 -1.517 -0.897
PHE -2.424 -2.304 -2.467 -2.530 -2.491 -2.391 -2.286 -1.963 -1.750 -1.034
· · · · · ·

4 Problem Definition and Solving Strategy

We define the protein structure prediction problem when the secondary structure
information is taken into account. Given a sequence s and a secondary structure



sse, the problem is to find the folding ω that satisfies sse and has minimal energy
EC(s, ω). The energy function can be partitioned as a sum of four energy terms,
namely the energy contribution by pairs of amino-acids, where

1. both are in the same SSE,
2. both are in SSEs, but not in the same,
3. one is in a SSE and the other is not,
4. both are not in SSEs.

Formally, these contributions, whose sum is EC(s, ω) are defined as

1. Es(s, sse, ω) =
∑

0≤r<| sse |
∑

br≤i+2<j≤er
E(si, sj , ω(i), ω(j))

2. Ess(s, sse, ω) =
∑

0≤r<r′<| sse |
∑

br≤i≤er

∑
b′r≤j≤e′r,i+2<j E(si, sj , ω(i), ω(j))

3. Esn(s, sse, ω) =
∑

i∈D

∑
0≤j<|s|,j 6∈D,i+2<j E(si, sj , ω(i), ω(j))

4. Enn(s, sse, ω) =
∑

0≤i<j<|s|,i,j 6∈D,i+2<j E(si, sj , ω(i), ω(j)),

where D is the set of positions in SSE, i.e.
⋃

0≤r<| sse |[br .. er]. The first term
Es(s, sse, ω) is constant for each folding ω that satisfies a given secondary struc-
ture sse. Thus, optimizing EC(s, ω) it is equivalent to optimize Ess(s, sse, ω) +
Esn(s, sse, ω) + Enn(s, sse, ω).

From a set of 500 selected PDB-proteins, we estimated the average contribu-
tions of the last three terms to their sum in the native state, which is given by the
following distributions: Ess 49% , Esn 36%, and Enn 15%. Note that half of the
energy is contributed by interaction between SSEs. This suggests a heuristic to
solve the structure prediction problem. Thus, first we place the SSEs optimally
according to Ess. Then, for fixed SSEs, we place the remaining amino-acids while
optimizing EC(s, ω).

During the optimization of Ess, the SSEs are placed in the FCC lattice. The
elements are treated as rigid blocks that can be shifted and oriented in the
lattice. It is fundamental to be independent from global rigid transformations,
which give the same isomorphic results. In the next section, we introduce the
notion of relative position between two SSEs. This concept is the base to ab-
stract from the symmetries of the problem. Note that all energy terms are based
on the notion of distance between amino-acids, thus they are invariant under
rigid transformations. The relative position description, thus, is suitable to be
associated to a specific energy contribution provided by the represented class.

5 Absolute and Relative Positions

In this section, we discuss a formalism to describe the SSEs and their placement
in the lattice. We specify an object (later denoted by template) by a list of FCC
points. The object is placed in the space by transforming these points by means
of rotating and translating. This transformation defines the absolute position
of the placed object (later denoted by instance). We also introduce the relative
position of two SSEs, which is the transformation required to map the absolute
position of the first element into the one of the second. Fig. 1b) provides an
illustration of the concepts that are introduced in this section.
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Fig. 1. a) Unit Cell of the face-centered cubic lattice (FCC). There is one point in each
corner of a cube and one point in the center of each face. We show the connections by
unit vectors. b) Idea of absolute and relative positions. The figure shows instances a
helix template of length 8 and type 0 and a sheet template of length 6. If the instances 1
and 2 are in absolute position id, then A (resp. B) is the absolute position of the instance
3 (resp. 4). C = ρ(A, B) is the relative position between the instances (from A to B).
We show local coordinate systems for each instance to illustrate the transformation.

5.1 Templates

A template is a function T : [0 .. ` − 1] → FCC, where ` ∈ N is its length. We
introduce two classes of templates, namely α-helices and β-sheets. In these cases,
a template is the geometric description of a helix (sheet) starting from (0, 0, 0).

Definition 4 (Templates for SSEs). Let a function h : N→ FCC be given by
h(4i+0) = (0, 0, 0)+ i dh, h(4i+1) = (1, 0, 1)+ i dh, h(4i+2) = (2, 0, 0)+ i dh,
and h(4i + 3) = (2, 1,−1) + i dh for i ∈ N, where dh = (2, 2, 0). Then, the helix
template of length n and type τ , where n ∈ N and τ ∈ {0, 1}, is the function
helixτ

n : [0 .. n− 1] → FCC, helixτ
n(i) = h(i− τ) (i ∈ [0 .. n− 1]).

Furthermore, let a function sheetn : [0 .. n−1] → FCC, be given by s(2i+0) =
(0, 0, 0) + i ds and s(2i + 1) = (1, 1, 0) + i ds for i ∈ N, where ds = (2, 0, 0).

Note that the helix templates of type 0 (resp. 1) describe helices, where the
first three points form an angle of 90◦ (resp. 120◦).

5.2 Position of an Instance

Definition 5 (Absolute Position, Instance). An absolute position is an
isometric mapping. An instance I with absolute position 〈M, t〉 of a template T
is a pair I = 〈M, t〉♦T. The instance function of I, denoted by I fun, is 〈M, t〉◦T .

For i ∈ Z, we use the short notations I(i) for I fun(i) and dom(I) for dom(I fun).
The image of an instance I is img(I) = {I(i)|i ∈ dom(I)}.

The instance function of the instance 〈id, (0, 0, 0)〉♦T is 〈id, (0, 0, 0)〉◦T = T .

Definition 6 (Relative Position). For instances Ii with absolute positions Ai

(i = 1, 2), the relative position ρ(A1, A2) from A1 to A2 is the isometric mapping,
where ρ(A1, A2) = A−1

1 ◦A2. Then, ρ(A1, A2) is also called the relative position
of the instances I1 and I2.



The relative position between two instances Ii = Ai♦Ti (i = 1, 2) can be used
to obtain the second instance from the first instance as I2 = A1 ◦ ρ(A1, A2)♦T2,
since by definition A2 = A1 ◦ ρ(A1, A2).

The following proposition claims that the relative position of two instances
is invariant under global transformations.

Proposition 1. Given the instances Ii = Ai♦Ti, I
′
i = A′i♦T ′i (i=1,2), the rel-

ative positions R = ρ(A1, A2), R′ = ρ(A′1, A
′
2) and the isometric mappings Ci,

such that A′i = Ci ◦Ai, then R = R′ if and only if C1 = C2.

Note that by Proposition 1, ρ(M ◦ A1,M ◦ A2) = ρ(A1, A2) for isometric
mappings M , A1, and A2. Especially, for every relative position ρ(A1, A2), there
is an identical relative position of the form ρ(id, B) = B for some isometric
mapping B, namely B = A−1

1 ◦A2.

6 Energy contribution of instance pairs

In the first phase of the algorithm, we pre-compute the energy contribution
of a pair of instances in every relevant placement. Therefore, we enumerate
the set of relative positions between the instances of two templates, where the
two instances interact sterically. Only for those relative positions, the energy
contribution is not equal to zero.

Definition 7 (Interaction). Two instances I1 and I2 interact, if and only if
there exist i1 ∈ dom(I1), i2 ∈ dom(I2), such that ‖I2(i2) − I1(i1)‖2 ≤ 2. We
define the interaction set of templates T1 and T2 as InteractionSet(T1, T2) =

{R = ρ(id, R) | I1 = id ♦T1, I2 = R♦T2, I1 and I2 interact}.
Note that in the definition, we have in mind to fix the first instance (here

to id) and move the second instance to every interacting position. Nevertheless,
due to Proposition 1, the interaction set contains all relative positions between
arbitrary instances that are interacting. Note that the interaction set is finite,
since the instances are finite.

If we define neighVecs as a tuple of the 19 vectors p ∈ FCC with ‖p‖2 ≤ 2
in arbitrarily fixed order, then for a template T , we define an extended template
T ext by T ext(19 · i + j) = T (i) + neighVecsj , for i ∈ dom(T ) and 0 ≤ j < 19.

We say that two instances intersect if and only if their images have a non-
empty intersection.

Proposition 2. Two instances I1 = A1♦T1 and I2 = A2♦T2 interact if and
only if Iext

1 = A1♦T ext
1 and I2 intersect.

Definition 8 (Energy Contribution). Two instances of templates Ti with
sequence si (i = 1, 2) with relative position R give an energy contribution of

ET(s1, s2, T1, T2, R) =
∑

0≤j<|s1|,0≤k<|s2|
E(s1j , s2k, id ♦T1(j + b1), R♦T2(k + b2)), (1)

where b1 = min(dom(T1)) and b2 = min(dom(T2)).



Recall that for the templates T1 and T2, there are only finitely many relative
positions R, such that id ♦T1 and R♦T2 interact, i.e. InteractionSet(T1, T2) is
finite. By merging the two definitions of interaction and the energy contribution
of a pair of amino-acids, if ET(s1, s2, T1, T2, R) is different from 0, then id ♦T1 and
R♦T2 interact. Note that from the interaction of id ♦T1 and R♦T2, we can not
conclude that ET(s1, s2, T1, T2, R) 6= 0, since depending on the table of pairwise
potentials certain interaction patterns of the two instances could sum up to 0.

Due to this, in order to completely give the energy for every relative posi-
tion R it suffices to consider all R ∈ InteractionSet(T1, T2). Now, the problem
discussed in this subsection reduces to generate InteractionSet(T1, T2). Instead
of enumerating the relative positions, where instances of T1 and T2 interact, we
equivalently enumerate the relative positions, where instances of T ext

1 and T2

intersect. Due to the following proposition, we can completely enumerate the set
InteractionSet(T1, T2).

Proposition 3. For templates T1 and T2,

InteractionSet(T1, T2) =
⊎

M rot. matrix

{〈M, t〉|∃j1, j2 : id ♦T ext
1 (j1) = 〈M, t〉♦T2(j2)}.

Proof. Obviously, one can partition any interaction set by the rotation matrices
of the relative positions. Then, the proposition is a consequence of Proposition 2.

For the inclusion ⊆, let R = 〈M, t〉 in InteractionSet(T1, T2). Then, the in-
stances id ♦T1 and R♦T2 interact, i.e. the instances id ♦T ext

1 and R♦T2 intersect.
For the inclusion ⊇, for any R = 〈M, t〉 in one of the subsets {〈M, t〉|∃j1, j2 :

id ♦T ext
1 (j1) = 〈M, t〉♦T2(j2)}, the instances id♦T ext

1 and R♦T2 intersect. Thus,
id ♦T1 and R♦T2 interact. ¤

The proposition suggests the following algorithm. For every rotation matrix
M , for every pair of indices j1 ∈ dom(T1) and j2 ∈ dom(T2), collect the unique
translation vectors t, where id ♦T ext

1 (j1) = 〈M, t〉♦T2(j2).
Note that there is indeed a unique t for every M , j1 and j2, which is calculated

in constant time. Also note that whereas this algorithm can enumerate a vector
t more than once, the algorithm still calculates only a limited number of 24 ×
| img(T ext

1 )| × | img(T2)| many vectors t.

7 Constraint Model

Recall, that we discuss the problem of finding the folding ω for a given protein
sequence s and a given secondary structure sse = (ti, bi, ei)0≤i<| sse |, that satisfies
sse and has minimal energy EC(s, ω). We already suggested a heuristic for the
minimization, which consists of two separate phases and uses the outcome of the
already described computation of energy contributions of instances.

In a first branch-and-bound search, we place the secondary-structure ele-
ments (SSEs) while optimizing the energy contribution Ess, i.e. we search for
a folding ω that satisfies sse and has minimal energy Ess(s, sse, ω) and a finite



total energy EC(s, ω). For finite energy EC(s, ω), there must not be clashes in
the tertiary-structure. When we place only the SSEs, we can not check the non-
clashing of the remaining amino-acids efficiently by consistency methods. Hence,
we search for one consistent placing of the remaining amino-acids each time we
find a new placement of the SSEs. Then, a second branch-and-bound search
computes a placement of SSEs and remaining amino-acids that optimizes the
total energy EC(s, ω) and places the SSEs nearly optimally w.r.t. Ess.

All the constraints and the enumeration strategy are common for the two
phases. Due to this, we are able to give only a common description as well as to
implement only a single solver in our implementation language Oz 3.0 [15].

The constraint model as well as our enumeration strategy divides into two
parts. The first part deals with the placement of the SSEs, whereas the second
part handles the placement of the remaining amino-acids. The focus of our work
is on the first part and only this part shall be described in more detail.

In the first part, we use the pre-computed energy contributions of instance
pairs. Therefore, we start with relating our placement problem to the notion of
templates and instances.

We define templates for every SSE in sse. For each SSE k, we introduce
an absolute position Ak and a type τk ∈ {0, 1, 2}, where 0 ≤ k < | sse |. Such
a type τk combines the distinction between α-helix and β-sheet with the types
of helix-templates (cf. Def 4). For a helix, this type gives just the type 0 or 1
of the corresponding helix-template and for sheets this type is always 2. For
0 ≤ k < | sse |, where tk = ααα, we define T τ

k = helixτ
ek−bk+1 (τ = 0, 1) and where

tk = βββ, we define T 2
k = sheetek−bk+1. Let sk denote the sub-sequence of the

k-th SSE. We define Iτ
k as Ak♦T τ

k for absolute positions Ak. Now, the tertiary-
structure ω is related to the instances, by ω(i) = Ak♦T τk

k (i−bk) for i ∈ [bk .. ek].
Then, for given template definitions, the positions of amino-acids in SSEs

are completely specified by (Ak)0≤k<| sse | and (τk)0≤k<| sse |. Due to this, we can
equivalently investigate the problem in terms of instances. The relation between
the instances determines the energy term Ess. In the same time the relations are
constrained by the properties of a folding.

We choose to enumerate the relative positions of the elements instead their
absolute positions.4 Besides breaking of symmetries5, there are several advan-
tages in enumerating relative positions instead absolute positions. Most notably,
there is a direct correspondence between the relative position and the energy
contribution of a pair of SSEs. This immediate relation is used to dynamically
guide the search, i.e. we enumerate highly contributing relations between SSEs
first. Furthermore, enumerating relative positions is more general than enumer-
ating absolute positions. Imagine, that we enumerate absolute positions. Then,
after w.l.o.g. fixing the absolute position of the first instance to 〈id,0〉, enumerat-
ing the absolute positions of the remaining elements is equivalent to enumerating

4 Notably, the energy contribution Ess is determined only from the relative positions.
5 Note that by using relative positions instead absolute positions, we break all geo-

metrical symmetries in the problem for free. In general, breaking of symmetries in
constraint modeling is a non-trivial task and a broadly discussed topic (e.g. see [2]).



their relative positions to the first element. In contrast, our more flexible enu-
meration strategy can dynamically decide to enumerate relations earlier that
contribute stronger to the total energy than any relation to the first element.

As described in the previous section, we are able to calculate the energy con-
tribution of two instances in every relative position and in particular enumerate
the finite list of relative positions, where this energy contribution differs from
zero. For every pair of SSEs in sse, we generate such a list of relative positions
and corresponding energy contributions. Since for α-helices there are two types
of helix-templates, we also include the information on the type in the list for
each pair of SSEs. Here, it is convenient to partition the list into two tables:
NTabij and CTabij . In the former table, we include every relative position that
produces a finite, non-zero energy (i.e. there is an interaction but no clash for this
relative position), and in the latter we collect all relative positions, where the ele-
ments i and j clash (infinite energy). In preparation of our enumeration strategy,
the tables NTabij are ordered by increasing energy-values. For being uniform,
we generate for every pair of secondary-structure elements i and j, the tables
NTabij and CTabij , which consist of all records (σi, σj , R, E), where σi (resp.
σj) is a possible value for the type τi (resp. τj) and R ∈ InteractionSet(T σi

i , T
σj

j ).
Then, E is the corresponding energy contribution ET(si, sj , T

σi
i , T

σj

j , R). 6

7.1 Variables and Constraints

First, for 0 ≤ i < j < | sse | we introduce finite-domain variables Xij , where the
domain of the variable Xij is [0 .. |NTabij | − 1] ] {∆}. The value of Xij is either
an index in the table NTabij or ∆. In the first case, the relation (i.e. relative
position Rij and helix-types) between the SSEs i and j is specified by the Xij-th
entry in the table NTabij . The case Xij = ∆ represents those relative positions
that provide no energy contribution, but cause a distance of elements i and j
that still allows to connect the elements in a folding.

Since the variables Xij completely specify the relative positions only for
Xij 6= ∆, we introduce an explicit representation of relative positions for en-
suring consistency. The relative position between the elements i and j is given
by variables RM

ij , which encodes for the transformation matrix of Rij , and Rx
ij ,

Ry
ij , and Rz

ij , which represent the coordinates of the translation vector of Rij .
The domain of RM

ij is finite, since there are only 24 rotational matrices. Also
the variables Rx

ij , R
y
ij , and Rz

ij have finite-domains, since the number of transla-
tions is limited due to the bond-constraint connecting the amino-acids between
elements i and j. Since the tuple (RM

ij , Rx
ij , R

y
ij , R

z
ij) represents one relative po-

sition, we address this tuple as the variable Rij . For 0 ≤ i < | sse |, we add
variables Typei ∈ {0, 1, 2}, which correspond to the types τi of the SSEs. If
ti = ααα, the value of Typei gives the type of the helix 0 or 1. For ti = βββ, we set
Typei = 2. The variables Rij , Typei and Typej are related to the variable Xij via

6 Note that in these tables we represent the rotational matrices of the relative positions
by unique indices in the interval [0 .. 23]. This representation is also used to model
domains of matrices with integer finite domain variables.



the table NTabij . This relation is handled by a native propagator7, which does
only cheap propagation, if sufficiently many variables are ground. Furthermore,
it checks the validity of the encoded isometric mapping (w.r.t. clashes and the
bond-constraint). Also the relation between the relative position variables Rij

that corresponds to the transitivity Rij ◦ Rjk = Rik is only propagated in such
simple cases.

Finally, the energy contribution Ess is computed in a variable Energyss as the
sum of variables Energyij . These variables denote the energy that is contributed
by the elements i and j in the relation that is specified by Xij .

The essential propagation in our approach is done by a propagator for the
transitivity constraint Rij ◦Rjk = Rik on the variables Xij . This propagator has
to relate the indices in the domains of the variables Xij to the corresponding
relations. Moreover, it has to handle ∆-values in the domains correctly. For this
reason, this propagator distinguishes several cases. Case 1) At least two of the
variables are determined to ∆. In this case no further propagation can be applied.
Case 2) The domains of all three variables contain ∆. Then, at this stage we
can not derive any information. Case 3) The domains of exactly two variables
contain ∆. Here, the domain without ∆ is used to prune the other two domains.
W.l.o.g. let us assume that Xjk and Xik contain ∆. We now describe how to
prune the domain of Xjk. For every isometric mapping B indexed by Xjk we
check if there exists at least one isometric mapping A indexed by Xij such that
A ◦ B is indexed by a value of Xik. If there is no support, the index is removed
from the domain of Xjk. The analogous procedure is applied to prune Xik. Case
4) The domain of at most one variable contains ∆. W.l.o.g. assume that Xik

contains ∆. Then, we collect the composition of every pair from the domains of
Xij and Xjk and intersect the result with the domain of Xik. Moreover, we prune
the domains of Xij and Xjk using the technique of the previous item. Note that
during this propagation, we compose only isometric mappings from the tables
with consistent types in the same table rows.

To give some implementation details, note that in Oz, every index variable
has a range that begins from 1. Moreover, since Oz does not support nega-
tive values in finite domains, we shift the domains of variables Rx

ij , R
y
ij , R

z
ij and

in all energy variables accordingly. For convenience, we represent the ∆ value
differently for each i, j with the integer value |NTabij |. Due to the complex
propagation of the transitivity constraint for the variables Xij , we preferred to
implement the propagator in C++, recalling it inside the Mozart code.

7.2 Search Strategy

For placing the SSEs, we enumerate the variables Xij in a dynamic enumeration
order, which combines a first-fail strategy with a preference for variables Xij that
allow a strong contribution to the energy Ess. Here, we find the best contribution
that is allowed by the variable Xij , if we look up in the table NTabij using the
lowest possible value of Xij as index. Recall that the tables NTabij are ordered
7 In Oz, a native propagator is a propagator implemented in C++. For the purpose

of writing special propagators, Oz is extensible via its C++-interface [11].



by increasing energy, in particular for this purpose. As value we will always select
the minimal value in the domain, which again corresponds to the optimal energy
contribution of the elements i and j.

We will only enumerate the variables Xij in order to find a good placement of
SSEs. Note that since we can assign ∆ to variables Xij , not every assignment of
these variables completely determines a placement. However, we will only con-
sider placements that are completely determined after the enumeration of the
variables Xij . This is justified as a heuristic, since we only search for energeti-
cally good placements and such placements will have many strong interactions
between the elements. In this situation, there are usually many variables Xij 6= ∆,
which then determine the remaining relative positions.

In practice, we apply also a filtering of the domains of the variables Xij by
their energy. Since the special element ∆ also represents the filtered elements,
the constraint problem is not changed, except that the energy is calculated less
accurately. Filtering these domains has two conflicting impacts. Whereas strong
filtering on the domain sizes results in faster enumeration, larger domains achieve
a stronger propagation (due to the transitivity constraints). For that reason, we
apply two filters. First, we filter the tables NTab to contain only entries with
energies in a range of x% of the optimal energy. The filtered tables constitute the
domains of the variables Xij. The second filtering affects only the enumeration,
where we enumerate only values within a range of y% (y < x) of the optimum.
With careful filtering we are able to reduce search times, while preserving a
good quality of the results. The strategy is justified, since good placements have
usually sufficiently many high scoring pairwise energy contributions.

After the SSEs are placed, we compute absolute positions of their amino-
acids by fixing the absolute position of the first element (thereby breaking the
symmetries). Then, the positions of the remaining amino-acids are enumerated
using a first-fail strategy combined with a preference for good energy contribu-
tion. Constraints ensure non-clashing and calculate the remaining energy term
Enn +Esn in a variable Energynss.

8 Results

We implemented the described constraint-model in the programming language
Oz 3.0 [15] using its most recent implementation Mozart 1.3.0. We extended the
language by special constraint propagators written in C++. Also the computa-
tion of the energy contributions of instance-pairs is implemented in C++. The
implementations are available via http://www.bio.inf.uni-jena.de.

For evaluating our result, we ran the prediction for proteins with known
structure from the PDB [5]. All predictions are performed on a Pentium 4 at
2.4GHz. Figure 2 shows our prediction for the protein domain “Maternal effect
protein Staufen” with PDB-code 1STU in comparison to the known tertiary
structure. The protein consists of 68 residues, forming two α-helices and three
β-sheets. The computation of the energy contribution of instances was performed
in 14 seconds. In the first search, we found a good placement of the SSEs in 3.5



a) b)

Fig. 2. “Maternal effect protein Staufen”. a) backbone of the structure in the PDB
(1STU, model 1) b) prediction of our algorithm

minutes, which we could not improve in 7 minutes of search. For the optimal
placement of the secondary structure from the first search, we performed a second
search for an energetically good tertiary structure placing the remaining amino-
acids. The shown solution was found after 9m and could not be improved in
20m. Note that we find structures with only slightly lower energy after 62s of
search. We applied the filtering described in Sub-section 7.2 using 30% and 20%.

Furthermore, we compared our approach to the one of [10]. We predicted
structures for three proteins from the PDB, which were folded there also. We
list PDB-code, number of residues, numbers of SSEs, and run-times for each
protein. For our approach, we list the run-times of the three phases separately.

length number of SSEs run-times of phases run-times of [10]
α-helices β-sheets 1 2 3

1VII 36 3 0 1.6s 3.1s 32s 6m56s
1E0M 37 0 3 0.3s 17s 1m42s 9m45s
2GP8 40 2 0 3.1s 60ms 1.8s 9m0s

Currently, we do not always find good solutions by applying our strategy.
Possible reasons and improvements are discussed in the next section.

9 Conclusion and Future Work

We present a novel application of constraint programming to the protein struc-
ture prediction problem. The proposed approach combines the use of secondary
structure annotation with a strategy that bases tertiary-structure predictions on
energetically good placements of SSEs. As we demonstrate using examples from
nature, this approach improves in effectivity and application range over recent
constraint-based structure prediction algorithms.

However, our main goal in this work is to investigate a basic pattern of a
constraint-based protein structure prediction algorithm that is based on secondary-
structure information. We plan build on this work in order to improve both,
efficiency of the structure prediction and accuracy in modeling proteins.

Regarding the efficiency of structure prediction, please note again, that this
work focuses on the placement of SSEs. In consequence, the placement of the
remaining amino-acids leaves room for further optimization. Nevertheless, the
current strategy turned out to be effective in the discussed application range. A
more sophisticated strategy becomes in particular important when investigating
improvements in terms of accuracy.



For the aspect of accuracy, we consider it promising to investigate in par-
ticular four improvements: refinement of solutions by stochastic optimization,
using more complex energy functions (e.g., Lennard-Jones potential), modeling
the tertiary-structure off-lattice, and modeling sidechains of amino-acids.
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Abstract. Specifications of constraint problems can be considered logi-
cal formulae. As a consequence, it is possible to infer their properties by
means of automated reasoning tools. The purpose of this paper is exactly
to link two important technologies: automated theorem proving and con-
straint programming. We report the results on using a theorem prover
and a finite model finder for checking existence of symmetries, checking
whether a given formula breaks a symmetry, and checking existence of
functional dependencies among groups of predicates. As a side-effect, we
propose a new domain of application and a brand new set of benchmarks
for ATP systems.

1 Introduction

The style used for the specification of a combinatorial problem varies a lot among
different languages for constraint programming. In this paper, rather than con-
sidering procedural encodings such as those obtained using libraries (in, e.g.,
C++ or prolog), we focus on highly declarative languages. In fact, many
systems and languages for the solution of constraint problems (e.g., ampl [9],
opl [20], gams [5], dlv [7], smodels [18], and np-spec [4]) clearly separate
the specification of a problem, e.g., graph 3-coloring, and its instance, e.g., a
graph, using a two-level architecture for finding solutions: the specification is in-
stantiated (or grounded) against the instance, and then an appropriate solver is
invoked. There are several benefits in this separation: obviously declarativeness
increases, and the solver is completely decoupled from the specification. Ideally,
the programmer can focus only on the specification of the problem, without com-
mitting a priori to a specific solver. In fact, some systems, e.g., ampl [9], are
able to translate –at the request of the user– a specification in various formats,
suitable for different solvers.

Again, the syntax varies a lot among such languages: ampl, opl, and gams

allow the representation of constraints by using algebraic expressions, while dlv,
smodels, and np-spec are rule-based languages. Anyway, from an abstract
point of view, all such languages are extensions of existential second-order logic
(ESO) on finite databases, where the existential second-order quantifiers and
the first-order formula represent, respectively, the guess and check phases of the
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constraint modelling paradigm. In particular, in all such languages it is possible
to embed ESO queries, and the other way around is also possible, as long as only
finite domains are considered.

Since specifications are logical formulae, it is possible to infer their properties
by means of automated reasoning tools. The purpose of this paper is exactly to
link two important technologies: automated theorem proving (ATP) and con-
straint programming. The architecture of the system we envision is represented
in Figure 1.

In particular, we report the results on using a theorem prover and a finite
model finder for reasoning on specifications of constraint problems, represented
as ESO formulae. We focus on two forms of reasoning:

– checking existence of value symmetries, i.e., properties of the specification
that allow to exchange values of the finite domains without losing all solu-
tions; on top of that, we check whether a given formula breaks such symme-
tries;

– checking existence of functional dependencies, i.e., properties that force val-
ues of some guessed predicates to depend on the value of some others.

There are at least two reasons why a system should make automatically such
checks: first of all, it has been proven that solving can be made much more effi-
cient by, e.g., recognizing and breaking symmetries (a wide literature is nowadays
available, cf., e.g., [2, 6]). Secondly, the person performing constraint modelling
may be interested in the above properties: as an example, existence (or lack) of
a dependency may reveal a bug in the specification.

The main result of this paper is that it is actually possible to use ATP tech-
nology to reason on combinatorial problems, and we exhibit several examples
proving it. As a side-effect, we propose a new domain of application and a brand
new set of benchmarks for ATP systems, which is not represented in large repos-
itories, such as TPTP (cf. www.tptp.org).

Relations between constraint satisfaction and deduction have been observed
since several years (cf., e.g., the early work [1], and [12] for an up-to-date report).
The use of automated tools for preprocessing constraint satisfaction problems
(CSPs) has been limited, to the best of our knowledge, to the instance level.
As an example, the use of packages such as nauty [16] for finding symmetries



on CSPs has been proposed in [6]. On the other hand, not much work has
been done on reasoning at the specification level. A limited form of reasoning is
offered by the opl system, which checks (syntactically) whether a specification
contains only linear constraints and objective function, and in this case invokes
an integer linear programming solver (typically very efficient); otherwise, it uses
a constraint programming solver.

The rest of the paper is organized as follows: in Section 2 we give some pre-
liminaries on modelling combinatorial problems as formulae in ESO. Sections 3
and 4 are devoted to the description of experiments in checking symmetries
and dependencies, respectively. In Section 5 we conclude the paper, and present
current research.

2 Preliminaries

In this paper, we use existential second-order logic (ESO) for the specification
of problems, which allows to represent all search problems in the complexity
class NP [8]. The use of ESO as a modelling language for problem specifications
is common in the database literature, but unusual in constraint programming,
therefore few comments are in order. Constraint modelling systems like those
mentioned in Section 1 have a richer syntax and more complex constructs, and
we plan to eventually move from ESO to such languages. For the moment, we
claim that studying the simplified scenario is a mandatory starting point for
more complex investigations, and that our results can serve as a basis for re-
formulating specifications written in higher-level languages. Anyway, examples
using the syntax of the implemented language opl are exhibited in Sections 4
and 5.

Coherently with all state-of-the-art systems, we represent an instance of a
problem by means of a relational database. All constants appearing in a database
are uninterpreted, i.e., they don’t have a specific meaning.

An ESO specification describing a search problem π is a formula ψπ

∃S φ(S,R), (1)

where R = {R1, . . . , Rk} is the relational schema for every input instance (i.e., a
fixed set of relations of given arities denoting the schema for all input instances
for π), and φ is a quantified first-order formula on the relational vocabulary
S ∪ R ∪ {=} (“=” is always interpreted as identity).

An instance I of the problem is given as a relational database over the schema
R, i.e., as an extension for all relations in R. Predicates (of given arities) in the
set S = {S1, . . . , Sn} are called guessed, and their possible extensions (with
tuples on the domain given by constants occurring in I plus those occurring in
φ, i.e., the so called Herbrand universe) encode points in the search space for
problem π.

Formula ψπ correctly encodes problem π if, for every input instance I, a
bijective mapping exists between solutions to π and extensions of predicates in



S which verify φ(S, I):

For each instance I: Σ is a solution to π(I) ⇐⇒ {Σ, I} |= φ.

It is worthwhile to note that, when a specification is instantiated against an
input database, a CSP is obtained.

Example 1 (Graph 3-coloring). In this NP-complete decision problem (cf. [10,
Prob. GT4, p. 191]) the input is a graph, and the question is whether it is
possible to give each of its nodes one out of three colors (red, green, and blue),
in such a way that adjacent nodes (not including self-loops) are never colored
the same way. The question can be easily specified as an ESO formula ψ on the
input schema R = {edge(·, ·)}:

∃RGB ∀X R(X) ∨ G(X) ∨ B(X) ∧ (2)

∀X R(X) → ¬G(X) ∧ (3)

∀X R(X) → ¬B(X) ∧ (4)

∀X B(X) → ¬G(X) ∧ (5)

∀XY X 6= Y ∧ R(X) ∧ R(Y ) → ¬edge(X,Y ) ∧ (6)

∀XY X 6= Y ∧ G(X) ∧ G(Y ) → ¬edge(X,Y ) ∧ (7)

∀XY X 6= Y ∧ B(X) ∧ B(Y ) → ¬edge(X,Y ). (8)

3 Value symmetries

In this section we face the problem of automatically detecting and breaking
some symmetries in problem specifications. In Subsection 3.1 we give prelimi-
nary definitions of problem transformation and symmetry taken from [3], and
show how the symmetry-detection problem can be reduced to checking seman-
tic properties of first-order formulae. We limit our attention to specifications
with monadic guessed predicates only, and to transformations and symmetries
on values. Motivations for these limitations are given in [3]; here, we just recall
that non-monadic guessed predicates can be transformed in monadic ones by
unfolding and by exploiting the finiteness of the input database. We refer to [3]
also for considerations on benefits of the technique on the efficiency of problem
solving. In Subsection 3.2 we then show how a theorem prover can be used to
automatically detect and break symmetries.

3.1 Definitions

Definition 1 (Uniform value transformation (UVT) of a specification

[3]). Given a problem specification ψ
.
= ∃S φ(S,R), with S = {S1, . . . Sn}, Si

monadic for every i ∈ [1, n], and input schema R, a uniform value transforma-
tion (UVT) for ψ is a mapping σ : S → S, which is total and onto, i.e., defines
a permutation of guessed predicates in S.



The term “uniform value” transformation in Definition 1 is used because swap-
ping monadic guessed predicates is conceptually the same as uniformly exchang-
ing domain values in a CSP.

From here on, given φ and σ as in the above definition, φσ is defined as
φ[S1/σ(S1), . . . , Sn/σ(Sn)], i.e., φσ is obtained from φ by uniformly substituting
every occurrence of each guessed predicate with the one given by the transfor-
mation σ. Analogously, ψσ is defined as ∃S φσ(S,R).

We now define when a UVT is a symmetry for a given specification.

Definition 2 (Uniform value symmetry (UVS) of a specification [3]).

Let ψ
.
= ∃S φ(S,R), be a specification, with S = {S1, . . . Sn}, Si monadic for

every i ∈ [1, n], and input schema R, and let σ be a UVT for ψ. Transformation
σ is a uniform value symmetry (UVS) for ψ if every extension for S which
satisfies φ, satisfies also φσ and vice versa, regardless of the input instance, i.e.,
for every extension of the input schema R.

Note that every CSP obtained by instantiating a specification with σ has at least
the corresponding uniform value symmetry.

In [3], it is shown that checking whether a UVT is a UVS reduces to checking
equivalence of two first-order formulae:

Proposition 1 ([3]). Let ψ be a problem specification of the kind (1), with only
monadic guessed predicates, and σ a UVT for ψ. Transformation σ is a UVS
for ψ if and only if φ ≡ φσ.

Once symmetries of a specification have been detected, additional constraints
can be added in order to break them, i.e., to wipe out from the solution space
(some of) the symmetrical points. These kind of constraints are called symmetry-
breaking formulae, and are defined as follows.

Definition 3 (Symmetry-breaking formula [3]). Let ψ
.
= ∃S φ(S,R), be

a specification, with S = {S1, . . . Sn}, Si monadic for every i ∈ [1, n], and input
schema R, and let σ be a UVS for ψ. A symmetry-breaking formula for ψ with
respect to symmetry σ is a closed (except for S) formula β(S) such that the
following two conditions hold:

1. Transformation σ is no longer a symmetry for ∃S φ(S,R) ∧ β(S):

(φ ∧ β(S)) 6≡ (φ ∧ β(S))
σ

;

2. Every model of φ(S,R) can be obtained by those of φ(S,R) ∧ β(S) by ap-
plying symmetry σ:

φ(S,R) |=
∨

σ∈σ∗

(φ(S,R) ∧ β(S))σ . (9)

where σ is a sequence (of finite length ≥ 0) over σ (i.e., a string in the
regular language σ∗), and, given a first-order formula γ(S), γ(S)σ denotes
(· · · (γ(S)σ) · · · )σ, i.e., σ is applied |σ| times (if σ = 〈〉, then γ(S)σ is
γ(S) itself).



If β(S) matches the above definition, then we are entitled to solve the problem
∃S φ(S,R) ∧ β(S) instead of the original one ∃S φ(S,R). In fact, point 1 in
the above definition states that formula β(S) actually breaks σ, since, by Propo-
sition 1, σ is not a symmetry of the rewritten problem. Furthermore, point 2
states that every solution of φ(S,R) can be obtained by repeatedly applying σ
to some solutions of φ(S,R) ∧ β(S). Hence, all solutions are preserved in the
rewritten problem, up to symmetric ones.

It is worthwhile noting that, even if in formula (9) σ ranges over the (infinite)
set of finite-length sequences of 0 or more applications of σ, this actually reduces
to sequences of length at most n!, since this is the maximum number of succes-
sive applications of σ that can lead to all different permutations. Moreover, we
observe that the inverse logical implication always holds, because σ is a UVS,
and so φ(S,R)σ ≡ φ(S,R).

3.2 Experiments with the theorem prover

Proposition 1 suggests that the problem of detecting UVSs of a specification ψ
of the kind (1) can in principle be performed in the following way:

1. Selecting a UVT σ, i.e. a permutation of guessed predicates in ψ (if ψ has n
guessed predicates, there are n! such UVTs);

2. Checking whether σ is a UVS, i.e., deciding whether φ ≡ φσ.

The above procedure suggests that a first-order theorem prover can be used to
perform automatically point 2. Even if we proved in [3] that this problem is
undecidable, we show how a theorem prover usually performs well on this kind
of formulae.

As for the symmetry-breaking problem, from conditions of Definition 3 it
follows that also the problem of checking whether a formula breaks a given UVS
for a specification clearly reduces to semantic properties of logic formulae.

In this section we give some details about the experimentation done using
automated tools. First of all we note that, obviously, all the above conditions can
be checked by using a refutational theorem prover. It is interesting to note that,
for some of them, we can use a finite model finder. In particular, we can use such
a tool for checking statements (such as condition 1 of Definition 3 or the negation
of the condition of Proposition 1) which are syntactically a non-equivalence. As
a matter of facts, it is enough to look for a finite model of the negation of the
statement, i.e., the equivalence. If we find such a model, then we are sure that
the non-equivalence holds, and we are done. The tools we used are otter [15],
and mace [14], respectively, in full “automatic” mode. Complete source files are
available at http://www.dis.uniroma1.it/~tmancini/research/cilc04.

Detecting symmetries The examples on which we worked are the following.

Example 2 (Graph 3-coloring: Example 1 continued). The mapping σR,G : S →
S such that σR,G(R) = G, σR,G(G) = R, σR,G(B) = B is a UVT for it. It is



easy to observe that formula φσR,G

is equivalent to φ, because clauses of the
former are syntactically equivalent to clauses of the latter and vice versa. This
implies, by Proposition 1, that σR,G is also a UVS for the specification of the
3-coloring problem. The same happens also for transformations σR,B and σG,B

that swap B with, respectively, R and G.

Example 3 (Not-all-equal Sat). In this NP-complete problem [10], the input is
a propositional formula in CNF, and the question is whether it is possible to
assign a truth value to all the variables in such a way that the input formula is
satisfied, and that every clause contains at least one literal whose truth value is
false. We assume that the input formula is encoded by the following relations:

– inclause(·, ·); tuple 〈l, c〉 is in inclause iff literal l is in clause c;
– l+(·, ·); a tuple 〈l, v〉 is in l+ iff l is the positive literal relative to the propo-

sitional variable v, i.e., v itself;
– l−(·, ·); a tuple 〈l, v〉 is in l− iff l is the negative literal relative to the propo-

sitional variable v, i.e., ¬v;
– var(·), containing the set of propositional variables occurring in the formula;
– clause(·), containing the set of clauses of the formula.

A specification for this problem is as follows (T and F represent the set of
variables whose truth value is true and false, respectively):

∃TF ∀X var(X) ↔ T (X) ∨ F (X) ∧ (10)

∀X ¬ (T (X) ∧ F (X)) ∧ (11)

∀C clause(C) →
[
∃L inclause(L,C) ∧ ∀V

(
l
+(L,V )→T (V )

)
∧

(
l
−(L,V )→F (V )

) ]
∧ (12)

∀C clause(C) →
[
∃L inclause(L,C) ∧ ∀V

(
l
+(L,V )→F (V )

)
∧

(
l
−(L,V )→T (V )

) ]
. (13)

Constraints (10–11) force every variable to be assigned exactly one truth value;
moreover, (12) forces the assignment to be a model of the formula, while (13)
leaves in every clause at least one literal whose truth value is false.

Let us consider the UVT σT,F , defined as σT,F (T ) = F and σT,F (F ) = T . It

is easy to prove that σT,F is a UVS for this problem, since φσT,F

is equivalent
to φ.

The results we obtained with otter are shown in Table 1. The third row refers
to the version of the Not-all-equal Sat problem in which all clauses have three
literals, the input is encoded using a ternary relation clause(·, ·, ·), and the spec-
ification varies accordingly. It is interesting to see that the performance is always
quite good.

A note on the encoding is in order. Initially, we gave the input to otter

exactly in the format specified by Proposition 1, but the performance was quite
poor: for 3-coloring the tool did not even succeed in transforming the formula in



Spec Symmetry CPU time (sec) Proof length Proof level

3-coloring σR,G 0.27 43 12

Not-all-equal Sat σT,F 0.22 54 19

Not-all-equal 3-Sat σT,F 4.71 676 182

Table 1. Performance of otter for proving that a UVT is a UVS.

clausal form, and symmetry was proven only for very simplified versions of the
problem, e.g., 2-coloring, omitting constraint (2). Results of Table 1 have been
obtained by introducing new propositional variables defining single constraints.
As an example, constraint (2) is represented as

covRGB <-> (all x (R(x) | G(x) | B(x))).,

where covRGB is a fresh propositional variable. Obviously, we wrote a first-order
logic formula encoding condition of Proposition 1, and gave its negation to ot-

ter in order to find a refutation.
As for proving non-existence of symmetries, we used the following example.

Example 4 (Graph 3-coloring with red self-loops). We consider a modification of
the problem of Example 1, and show that only one of the UVTs in Example 2 is
indeed a UVS for the new problem. Here, the question is whether it is possible to
3-color the input graph in such a way that every self loop insists on a red node.
In ESO, one more clause (which forces the nodes with self loops to be colored
in red) must be added to the specification in Example 1:

∀X edge(X,X) → R(X). (14)

UVT σG,B is a UVS also of the new problem, because of the same argument of

Example 2. However, for what concerns σR,G, in this case φσR,G

is not equivalent
to φ: as an example, for the input instance edge = {(v, v)}, the color assignment
R,G,B such that R = {v}, G = B = ∅ is a model for the original problem,
i.e., R,G,B |= φ(R,G,B, edge). It is however easy to observe that R,G,B 6|=

φσR,G

(R,G,B, edge), because φσR,G

is verified only by color assignments for
which G(v) holds. This implies, by Proposition 1, that σR,G is not a UVS. For
the same reason, also σR,B is not a UVS for the new problem.

We wrote a first-order logic formula encoding condition of Proposition 1 for σR,G

on the above example and gave its negation to mace in order to find a model of
the non-equivalence. mace was able to find the model described in Example 4
in less than one second of CPU time.

Breaking symmetries We worked on the 3-coloring problem specification
given in Example 1 and the UVS σR,G defined in Example 2. This UVS can
be broken in several ways, as an example by the following formula:



βR,G
sel (R,G,B)

.
= R(v) ∨B(v), (15)

that forces a selected node, say v, not to be colored in green. The simpler formula
R(v) breaks two symmetries, namely σR,G and σR,B , and can be obtained as
the logical and of (15) and R(v) ∨G(v).

We used mace and otter in order to prove that (15) is indeed a symmetry-
breaking formula for the 3-coloring problem specification with respect to σR,G,
i.e., for testing conditions 1 and 2 (respectively) of Definition 3. Both systems
succeeded in less than one second of CPU time.

As described in [3], a UVS can be broken in several ways, and with different
effectiveness. As an example, σR,G in the 3-coloring problem specification can
be broken also by the following formula:

βR,G
card(R,G,B)

.
= |R| ≤ |G|, (16)

that forces green nodes to be at least as many as red ones. It is easy to prove that
formula (16) respects both conditions of Definition 3, and of course it breaks the
symmetry more effectively than formula (15), since formulae at the two sides
of condition 1 of Definition 3 have few common models (cf. [3] for a discussion
of the effectiveness of a symmetry-breaking formula. It is worth noting that
this concept alludes to how completely a formula breaks the symmetry, and it
is not related to efficiency issues, e.g., the amenability of the constraint to be
propagated.)

However, this example highlights some difficulties that can arise when us-
ing first-order ATPs. In fact, although constraint (16) can be written in ESO
using standard techniques, it is not first-order definable. Therefore, conditions
in Definition 3 are (non-)equivalence of second-order formulae. So, the use of a
first-order theorem prover may in general not suffice.

However, in some circumstances, it is possible to synthesize first-order con-
ditions that can be used to infer the truth value of those of Definition 3. This
is the case of formulae defined in ESO. As an example, by using mace and ot-

ter collaboratively, we proved point 1 of Definition 3 for formula (16) on the
3-coloring problem specification in few hundredths of second.

4 Dependent predicates

In this section we tackle the problem of recognizing guessed predicates that
functionally depend on the others in a given specification. This means that, for
every solution of any instance, the extension of a dependent guessed predicate
is determined by the extensions of the others.

Recognizing functionally dependent predicates in a specification is very im-
portant for the efficiency of any backtracking solver, since branches regarding
dependent predicates (that represent values assigned to variables of the CSP
obtained after instantiation) can be safely avoided. As an example, it is shown
in [11] how to modify the Davis-Putnam procedure for SAT so that is avoids



branches on variables added during the clausification of non-CNF formulae,
since values assigned to these variables depend on assignments to the other
ones. Moreover, specific SAT solvers, e.g., eqsatz [13], have been developed
in order to appropriately handle (by means of the so-called “equivalence rea-
soning”) equivalence clauses, which have been recognized to be a very common
structure in the SAT encoding of many hard real-world problems, and a major
obstacle to the Davis-Putnam procedure.

The automatic recognition of functionally dependent predicates is important
also to improve the quality aspects of specifications as software artefacts. A
dependent predicate may be an evidence either of a bug in the problem model,
or of a bad design choice, since the adopted model for the problem is, in some
sense, redundant. Of course, the use of dependent predicates can also be the
consequence of a precise design choice, e.g., with the goal of a more modular
and readable problem specification. In any case, a feature of the system that
automatically checks whether a dependence holds is likely to be useful to the
designer.

In Subsection 4.1, we give the formal definition of dependent predicates in a
specification, and in Subsection 4.2 show how the problem of checking whether a
set of guessed predicates is dependent from the others reduces to check semantic
properties of a first-order formula. We observe that definitions and results in
this section are original, and do not appear elsewhere. Proof of theorems are not
given for space reasons, and will appear in the full paper.

4.1 Definitions

Definition 4 (Functional dependence of a set of predicates in a specifi-

cation). Given a problem specification ψ
.
= ∃SP φ(S,P ,R), with input schema

R, P functionally depends on S if, for each instance I of R and for each pair
of interpretations M , N of (S,P ) it holds that, if

1. M 6= N , and
2. M, I |= φ, and
3. N, I |= φ,

then M|S 6= N|S, where ·|S denotes the restriction of an interpretation to predi-
cates in S.

The above definition states that P functionally depends on S, or that S func-
tionally determines P , if it is the case that, regardless of the instance, each pair
of distinct solutions of ψ must differ on predicates in S, which is equivalent to
say that no two different solutions of ψ exist that coincide on the extension for
predicates in S but differ on that for predicates in P .

Example 5 (Graph 3-coloring: Example 1 continued). In the 3-coloring problem,
one of the three guessed predicates is functionally dependent on the others.
As an example, B functionally depends on R and G, since, regardless of the
instance, it can be defined as ∀X B(X) ↔ ¬(R(X) ∨ G(X)): constraint (2) is



equivalent to ∀X ¬(R(X)∨G(X)) → B(X) and (4) and (5) imply ∀X B(X) →
¬(R(X) ∨ G(X)). In other words, for every input instance, no two different
solutions exist that coincide on the set of red and green nodes, but differ on the
set of blue ones.

Example 6 (Not-all-equal Sat: Example 3 continued). One of the two guessed
predicates T and F is functionally dependent on the other, since by con-
straints (10–11) it follows, e.g., ∀X F (X) ↔ var(X) ∧ ¬T (X).

Next, we show that the problem of checking whether a subset of the guessed
predicates in a specification is functionally dependent on the remaining ones,
reduces to verifying semantic properties of a first-order formula. To simplify
notations, given a list of predicates T , we write T

′ for representing a list of the
same number of predicates with, respectively, the same arities, that are fresh,
i.e., do not occur elsewhere in the context at hand. Also, T ≡ T

′ will be a
shorthand for the formula

∧

T∈T

∀X T (X) ≡ T ′(X),

where T and T ′ are corresponding predicates in T and T
′, respectively, and X

is a list of variables of the appropriate arity.

Theorem 1. Let ψ
.
= ∃SP φ(S,P ,R) be a problem specification with input

schema R. P functionally depends on S if and only if the following formula is
valid:

[φ(S,P ,R) ∧ φ(S′,P ′,R) ∧ ¬(SP ≡ S
′
P

′)] → ¬(S ≡ S
′). (17)

Unfortunately, the problem of checking whether the set of predicates in P is
functionally dependent on the set S is undecidable, as the following result shows:

Theorem 2. Given a specification on input schema R, and a partition (S,P )
of its guessed predicates, the problem of checking whether P functionally depends
on S is not decidable.

Nonetheless, as shown in the next section, an ATP usually performs very well
in deciding whether formulae of the kind of (17) are valid or not.

4.2 Experiments with the theorem prover

Using Theorem 1 it is easy to write a first-order formula that is valid if and
only if a given dependency holds. We used otter for proving the existence of
dependencies among guessed predicates of different problem specifications:

– Graph 3-coloring (cf. Example 5), where one among the guessed predicates
R, G, B is dependent on the others.

– Not-all-equal Sat (cf. Example 6), where one between the guessed predicates
T and F is dependent on the other.



For each of the above specifications, we wrote a first-order logic encoding of
formula (17), and gave its negation to otter in order to find a refutation.

For the purpose of testing effectiveness of the proposed technique in the con-
text of specifications written in implemented languages, we considered also the
Sailco inventory problem, taken from the opl book [20, Section 9.4, Statement
9.17] and part of the oplstudio distribution package (as file sailco.mod).

Example 7 (The Sailco inventory problem). This problem specification models
a simple inventory application, in which the question is to decide how many
sailboats the Sailco company has to produce over a given number of time periods,
in order to satisfy the demand and to minimize production costs. The demand for
the periods is known and, in addition, an inventory of boats is available initially.
In each period, Sailco can produce a maximum number of boats (capacity) at
a given unitary cost (regularCost). Additional boats can be produced, but at
higher cost (extraCost). Storing boats in the inventory also has a cost per period
(inventoryCost per boat).

Figure 2 shows an opl model for this problem. An equivalent –apart, of
course, for the objective function– ESO specification would be more complex,
because of the presence of arithmetic operations in the constraints, and thus
will not be presented. However, the analogous of the instance relational schema,
guessed predicates, and constraints can be clearly distinguished in the opl code.
Guessed predicates of the ESO specification can be obtained in standard ways:
as an example, for the inventory we can define a guessed predicate inv(·, ·) with
the first argument being the period, and the second one the amount of boats
stored in that period, plus additional constraints to force exactly one tuple to
belong to inv(·, ·) for each period.

From the specification in Figure 2, it can be observed that the amount
of boats in the inventory for each time period t > 0 (i.e., inv[t]) is de-
fined in terms of the amount of regular and extra boats produced in period
t by the following relationship: inv[t] = regulBoat[t] + extraBoat[t] -

demand[t] + inv[t-1]. Of course, the same relationship holds in the equiv-
alent ESO specification, making predicate inv(·, ·) functionally dependent on
regulBoat(·, ·) and extraBoat(·, ·).

We opted for an otter encoding that uses function symbols: as an example, the
inv[] array is translated to a function symbol inv(·) rather than to a binary
predicate (the second argument being the time point). More precisely, according
to Theorem 1, a pair of function symbols inv(·) and inv′(·) is introduced. The
same happens for regulBoat[] and extraBoat[]. Moreover, we included in
the otter formula the following formulae which allow to infer ∀t inv(t) =
inv′(t) from equality of inv and inv′ at the initial time period and equivalence
of increments in all time intervals of length 1.

equalDiscrete <-> (inv(0) = inv1(0) &

(all t (t > 0 -> (inv(t) - inv(t-1)) =

(inv1(t) - inv1(t-1))))).

induction <-> (equalDiscrete -> (all t (inv(t) = inv1(t)))).



// Instance schema

int+ nbPeriods = ...; range Periods 1..nbPeriods;

float+ demand[Periods] = ...; float+ regularCost = ...;

float+ extraCost = ...; float+ capacity = ...;

float+ inventory = ...; float+ inventoryCost = ...;

// Guessed predicates

var float+ regulBoat[Periods]; var float+ extraBoat[Periods];

var float+ inv[0..nbPeriods];

// Objective function

minimize ...

// Constraints

subject to {

inv[0] = inventory;

forall(t in Periods) regulBoat[t] <= capacity;

forall(t in Periods)

regulBoat[t] + extraBoat[t] + inv[t-1] = inv[t] + demand[t];

};

Fig. 2. opl specification for the Sailco problem.

Spec S P CPU time (sec) Proof length Proof level

3-coloring R, G B 0.25 27 18

Not-all-equal 3-Sat T F 0.38 18 14

Sailco regulBoat, inv 0.21 29 11
extraBoat

Table 2. Performance of otter for proving that the set P of guessed predicates is
functionally dependent on the set S.

Results of the experiments are presented in Table 2. As it can be observed, the
time needed by otter is always very low.

5 Conclusions and current research

The use of automated tools for preprocessing CSPs has been limited, to the best
of our knowledge, to the instance level (cf. Section 1 for references). In this paper
we proved that current ATP technology is able to perform significant forms of
reasoning on specifications of constraint problems. We focused on two forms of
reasoning: symmetry detection and breaking, and functional dependence check-
ing. Reasoning has been done for various problems, including the ESO encodings
of graph 3-coloring and Not-all-equal Sat, and the opl encoding of an inventory
problem. In general, reasoning is done very efficiently by the ATP, although



int+ N = ...;

range Row 1..N; range Col 1..N;

var Col Queen[Row];

solve {

forall (r1, r2 in Row : r1 <> r2) {

Queen[r1] <> Queen[r2]; // no vertical attack

Queen[r1] + r1 <> Queen[r2] + r2; // no NW-SE diagonal attack

Queen[r1] - r1 <> Queen[r2] - r2; // no NE-SW diagonal attack

}};

Fig. 3. opl specification for the N-queens problem.

effectiveness depends on the format of the input, and auxiliary propositional
variables seem to be necessary.

There are indeed some tasks, namely, proving existence of symmetries in the
Social golfer problem (problem 10 at www.csplib.org) which otter –in the
automatic mode– was unable to do. So far, we used only two tools, namely otter

and mace, and plan to investigate effectiveness of other provers, e.g., vampire

[19]. We note that the wide availability of constraint problem specifications, both
in implemented languages, cf., e.g., [9, 20], and in natural language, cf., e.g., [10],
the CSP-Library (www.csplib.org), the OR-Library (www.ms.ic.ac.uk/info.
html), offers a brand new set of benchmarks for ATP systems, which is not
represented in large repositories, such as TPTP (cf. www.tptp.org).

We believe that ATPs can be used also for other useful forms of reasoning,
apart from those described in this paper. As an example, in Figure 3 we show the
opl specification of the N -queens problem, cf. [20, Section 2.2, Statement 2.16],
which states that three constraints must hold for all pairs of distinct rows (cf. the
condition r1 <> r2). For symmetry reasons, a solution-preserving (and possibly
more efficient) formulation requires the constraints to hold just for totally ordered
pairs of rows, i.e., r1 < r2. From the logical point of view, this can be recognized
simply by proving that swapping r1 and r2 leads to an equivalent specification.
otter was able to prove such an equivalence in less than one second of CPU
time. We are currently investigating the applicability of such a technique for a
general class of specifications, in which symmetries on variables [17] hold.
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Abstract. We present a novel approach to deal with preferences expressed as a
mixture of hard constraints, soft constraints, and CP-nets. We construct a set of
hard constraints whose solutions are the optimal solutions of the set of prefer-
ences, where optimal is defined differently w.r.t. other approaches [2, 7]. The new
definition of optimality introduced in this paper, allows us to avoid dominance
testing (is one outcome better than another?) which is a very expensive opera-
tion often used when finding optimal solutions or testing optimality, while being
reasonable and intuitive. We also show how hard constraints can sometimes elim-
inate cycles in the preference ordering. Finally, we extend this approach to deal
with the preferences of multiple agents. This simple and elegant technique per-
mits conventional constraint and SAT solvers to solve problems involving both
preferences and constraints.

1 Introduction

Preferences and constraints are ubiquitous in real-life scenarios. We often have hard
constraints (as “I must be at the office before 9am”) as well as some preferences (as
“I would prefer to be at the office around 8:30am” or “I would prefer to go to work
by bicycle rather than by car”). Whilst formalisms to represent and reason about hard
constraints are relatively stable, having been studied for over 20 years [5], preferences
have not received as much attention until more recent times. Among the many existing
approaches to represent preferences, we will consider CP-nets [6, 3], which is a quali-
tative approach where preferences are given by ordering outcomes (as in “I like meat
over fish”) and soft constraints [1], which is a quantitative approach where preferences
are given to each statement in absolute terms (as in “My preference for fish is 0.5 and
for meat is 0.9”).

It is easy to reason with hard and soft constraints at the same time, since hard con-
straints are just a special case of soft constraints. Much less is understood about rea-
soning with CP-nets and (hard or soft) constraints. One of our aims is to tackle this
problem. We will define a structure called a constrained CP-net. This is just a CP-net
plus a set of hard constraints. We will give a semantics for this structure (based on the
original flipping semantics of CP-nets) which gives priority to the hard constraints. We
will show how to obtain the optimal solutions of such a constrained CP-net by com-
piling the preferences into a set of hard constraints whose solutions are exactly the
optimal solutions of the constrained CP-net. This allows us to test optimality in linear



time, even if the CP-net is not acyclic. Finding an optimal solution of a constrained CP
net is NP-hard1 (as it is in CP-nets and in hard constraints).

Prior to this work, to test optimality of a CP-net plus a set of constraints, we had
to find all solutions of the constraints (which is NP-hard) and then test if any of them
dominate the solution in question [2]. Unfortunately dominance testing is not known
to be in NP even for acyclic CP-nets, as we may have to explore chains of worsening
flips that are exponentially long. By comparison, we do not need to perform dominance
testing in our approach. Our semantics is also useful when the CP-net defines a prefer-
ence ordering that contains cycles, since the hard constraints can eliminate these cycles.
Lastly, since we compile preferences down into hard constraints, we can use standard
constraint solving algorithms (or SAT algorithms if the variables have just two values)
to reason about preferences and constraints, rather than develop special purpose algo-
rithms for constrained CP-nets (as in [2]). We also consider when a CP-net is paired
with a set of soft constraints, and when there are several CP-nets, and sets of hard or
soft constraints. In all these cases, optimal solutions can be found by solving a set of
hard or soft constraints, avoiding dominance testing.

2 Background

2.1 CP-nets

In many applications, it is natural to express preferences via generic qualitative (usually
partial) preference relations over variable assignments. For example, it is often more
intuitive to say “I prefer red wine to white wine”, rather than “Red wine has preference
0.7 and white wine has preference 0.4”. The former statement provides less information,
but does not require careful selection of preference values. Moreover, we often wish to
represent conditional preferences, as in “If it is meat, then I prefer red wine to white”.
Qualitative and conditional preference statements are thus useful components of many
applications.

CP-nets [6, 3] are a graphical model for compactly representing conditional and
qualitative preference relations. They exploit conditional preferential independence by
structuring an agent’s preferences under theceteris paribusassumption. Informally, CP-
nets are sets ofconditional ceteris paribus (CP)preference statements. For instance,
the statement“I prefer red wine to white wine if meat is served.”asserts that, given two
meals that differonly in the kind of wine servedand both containing meat, the meal
with a red wine is preferable to the meal with a white wine. Many users’ preferences
appear to be of this type.

CP-nets bear some similarity to Bayesian networks. Both utilize directed graphs
where each node stands for a domain variable, and assume a set of featuresF =
{X1, . . . , Xn} with finite domainsD(X1), . . . ,D(Xn). For each featureXi, each user
specifies a set ofparent featuresPa(Xi) that can affect her preferences over the val-
ues ofXi. This defines a dependency graph in which each nodeXi hasPa(Xi) as

1 More precisely it is in FNP-hard, since it is not a decision problem. In the rest of the paper we
will write NP meaning FNP when not related to decision problems.



its immediate predecessors. Given this structural information, the user explicitly speci-
fies her preference over the values ofXi for each complete outcomeonPa(Xi). This
preference is assumed to take the form of total or partial order overD(X) [6, 3].

For example, consider a CP-net whose features areA, B, C, andD, with binary
domains containingf andf if F is the name of the feature, and with the preference
statements as follows:a � a, b � b, (a∧ b)∨ (a∧ b) : c � c, (a∧ b)∨ (a∧ b) : c � c,
c : d � d, c : d � d. Here, statementa � a represents the unconditional preference for
A = a overA = a, while statementc : d � d states thatD = d is preferred toD = d,
given thatC = c.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening
flip is a change in the value of a variable to a value which is less preferred by the CP
statement for that variable. For example, in the CP-net above, passing fromabcd toabcd
is a worsening flip sincec is better thanc givena andb. We say that one outcomeα is
better than another outcomeβ (written α � β) iff there is a chain of worsening flips
fromα to β. This definition induces a strict partial order over the outcomes. In general,
there may be many optimal outcomes. However, in acyclic CP-nets (that is, CP-nets
with an acyclic dependency graph), there is only one.

Several types of queries can be asked about CP-nets. First, given a CP-net, what are
the optimal outcomes? For acyclic CP-nets, such a query is answerable in linear time [6,
3]: we forward sweep through the CP-net, starting with the unconditional variables, fol-
lowing the arrows in the dependency graph and assigning at each step the most preferred
value in the preference table. For instance, in the CP-net above, we would chooseA = a
andB = b, thenC = c and thenD = d. The optimal outcome is thereforeabcd. The
same complexity also holds for testing whether an outcome is optimal since an acyclic
CP-net has only one optimal outcome. We can find this optimal outcome (in linear time)
and then compare it to the given one (again in linear time). On the other hand, for cyclic
CP-nets, both finding and testing optimal outcomes is NP-hard.

The second type of query is a dominance query. Given two outcomes, is one better
than the other? Unfortunately, this query is NP-hard even for acyclic CP-nets. Whilst
tractable special cases exist, there are also acyclic CP-nets in which there are expo-
nentially long chains of worsening flips between two outcomes. In the CP-net of the
example,abcd is worse thanabcd.

2.2 Soft and hard constraints

There are several formalisms for describingsoft constraints. We use the c-semi-ring
formalism [1] as this generalizes most of the others. In brief, a soft constraint associates
each instantiation of its variables with a value from a partially ordered set. We also
supply operations for combining (×) and comparing (+) values. A semi-ring is a tuple
〈A,+,×,0,1〉 such that:A is a set and0,1 ∈ A; + is commutative, associative and
0 is its unit element;× is associative, distributes over+, 1 is its unit element and0
is its absorbing element. Ac-semi-ringis a semi-ring〈A,+,×,0,1〉 in which + is
idempotent,1 is its absorbing element and× is commutative.

Let us consider the relation≤ overA such thata ≤ b iff a + b = b. Then≤ is
a partial order,+ and× are monotone on≤, 0 is its minimum and1 its maximum,
〈A,≤〉 is a complete lattice and, for alla, b ∈ A, a + b = lub(a, b). Moreover, if× is



idempotent:+ distributes over×; 〈A,≤〉 is a complete distributive lattice and× its glb.
Informally, the relation≤ compares semi-ring values and constraints. Whena ≤ b, we
say thatb is better than a. Given a semi-ringS = 〈A,+,×,0,1〉, a finite setD (variable
domains) and an ordered set of variablesV , asoft constraintis a pair〈def , con〉 where
con ⊆ V anddef : D|con| → A. A constraint specifies a set of variables, and assigns
to each tuple of values of these variables an element of the semi-ring.

A soft constraint satisfaction problem(SCSP) is given by a set of soft constraints.
A solution to an SCSP is a complete assignment to its variables, and the preference
value associated with a solution is obtained by multiplying the preference values of
the projections of the solution to each constraint. A solution is better than another if
its preference value is higher in the partial order of the semi-ring. Finding an optimal
solution for an SCSP is NP-hard. On the other hand, given two solutions, checking
whether one is preferable to another is straightforward: compute the semi-ring values
of the two solutions and compare the resulting two values.

Each semiring identifies a class of soft constraints. For example, fuzzy CSPs are SC-
SPs over the semiringSFCSP = 〈[0, 1],max,min, 0, 1〉. This means that preferences
are over [0,1], and that we want to maximize the minimum preference over all the con-
straints. Another example is given by weighted CSPs, which are just SCSPs over the
semiringSweight = 〈R,min,+, 0,+∞〉, which means that preferences (better called
costs here) are real numbers, and that we want to minimize their sum.

Note that hard constraints are just a special class of soft constraints: those over the
semiringSCSP = 〈{false, true},∨,∧, false, true〉, which means that there are just
two preferences (false andtrue), that the preference of a solution is the logicaland
of the preferences of their subtuples in the constraints, and that true is better than false
(ordering induced by the logicalor operation∨).

3 Constrained CP-nets

We now define a structure which is a CP-net plus a set of hard constraints. In later sec-
tions we will relax this concept by allowing soft constraints rather than hard constraints.

Definition 1 (constrained CP-net).A Constrained CP-net is a CP-net plus some con-
straints on subsets of its variables. We will thus write a constrained CP-net as a pair
〈N,C〉, whereN is a set of conditional preference statements defining a CP-net andC
is a set of constraints.

The hard constraints can be expressed by generic relations on partial assignments
or, in the case of binary features, by a set of Boolean clauses. As with CP-nets, the basis
of the semantics of constrained CP-nets is the preference ordering,�, which is defined
by means of the notion of a worsening flip. A worsening flip is defined very similarly
to how it is defined in a regular (unconstrained) CP-net.

Definition 2 (O1 � O2). Given a constrained CP-net〈N,C〉, outcomeO1 is better
than outcomeO2 (writtenO1 � O2) iff there is a chain of flips fromO1 to O2, where
each flip is worsening forN and each outcome in the chain satisfiesC.



The only difference with the semantics of (unconstrained) CP-nets is that we now
restrict ourselves to chains offeasibleoutcomes. As we show shortly, this simple change
has some very beneficial effects. First, we observe that the� relation remains a strict
partial ordering as it was for CP-nets [6, 3]. Second, it is easy to see that checking if
an outcome is optimal is linear (we merely need to check it is feasible and any flip is
worsening). Third, if a set of hard constraints are satisfiable and a CP-net is acyclic,
then the constrained CP-net formed from putting the hard constraints and the CP-net
together must have at least one feasible and undominated outcome. In other words,
adding constraints to an acyclic CP-net does not eliminate all the optimal outcomes
(unless it eliminates all outcomes). Compare this to [2] where adding constraints to a
CP-net may make all the undominated outcomes infeasible while not allowing any new
outcomes to be optimal. For example, if we haveO1 � O2 � O3 in a CP-net, and
the hard constraints makeO1 infeasible, then according to our semanticsO2 is optimal,
while according to the semantics in [2] no feasible outcome is optimal.

Theorem 1. A constrained and acyclic CP-net either has no feasible outcomes or has
at least one feasible and undominated outcome.

Proof. Take an acyclic constrained CP-net〈N,C〉. N induces a preference ordering
that contains no cycles and has exactly one most preferred outcome, sayO. If O is
feasible, it is optimal for〈N,C〉. If O is infeasible, we move down the preference
ordering until at some point we hit the first feasible outcome. This is optimal for〈N,C〉.

ut

4 An example

We will illustrate constrained CP-nets by means of a simple example. This example
illustrates that adding constraints can eliminate cycles in the preference ordering defined
by the CP-net. This is not true for the semantics of [6], where adding hard constraints
cannot break cycles.

Suppose I want to fly to Australia. I can fly with British Airways (BA) or Singapore
Airlines, and I can choose between business or economy. If I fly Singapore, then I prefer
to save money and fly economy rather than business as there is good leg room even in
economy. However, if I fly BA, I prefer business to economy as there is insufficient
leg room in their economy cabin. If I fly business, then I prefer Singapore to BA as
Singapore’s inflight service is much better. Finally, if I have to fly economy, then I
prefer BA to Singapore as I collect BA’s airmiles. If we usea for British Airways,a
for Singapore Airlines,b for business, andb for economy then we have:a : b � b,
a : b � b, b : a � a, andb : a � a.

This CP-net has chains of worsening flips which contain cycles. For instance,ab �
ab � ab � ab � ab. That is, I prefer to fly BA in business (ab) than BA in economy
(ab) for the leg room, which I prefer to Singapore in economy (ab) for the airmiles,
which I prefer to Singapore in business (ab) to save money, which I prefer to BA in
business (ab) for the inflight service. According to the semantics of CP-nets, none of
the outcomes in the cycle is optimal, since there is always another outcome which is
better.



Suppose now that my travel budget is limited, and that whilst Singapore offers no
discounts on their business fares, I have enough airmiles with BA to upgrade from
economy. I therefore add the constraint that, whilst BA in business is feasible, Singapore
in business is not. That is,ab is not feasible. In this constrained CP-net, according to
our new semantics, there is no cycle of worsening flips as the hard constraints break the
chain by makingab infeasible. There is one feasible outcome that is undominated, that
is, ab. I fly BA in business using my airmiles to get the upgrade. I am certainly happy
with this outcome.

Notice that the notion of optimality introduced in this paper gives priority to the
constraints with respect to the CP-net. In fact, an outcome is optimal if it is feasible
and it is undominated in the constrained CP-net ordering. Therefore, while it is not
possible for an infeasible outcome to be optimal, it is possible for an outcome which is
dominated in the CP-net ordering to be optimal in the constrained CP-net.

5 Finding optimal outcomes

We now show how to map any constrained CP-net onto an equivalent constraint satis-
faction problem containing just hard constraints, such that the solutions of these hard
constraints corresponds to the optimal outcomes of the constrained CP-net. The ba-
sic idea is that each conditional preference statement of the given CP-net maps onto
a conditional hard constraint. For simplicity, we will first describe the construction for
Boolean variables. In the next section, we will pass to the more general case of variables
with more than two elements in their domain.

Consider a constrained CP-net〈N,C〉. Since we are dealing with Boolean variables,
the constraints inC can be seen as a set of Boolean clauses, which we will assume are in
conjunctive normal form. We now define theoptimality constraints for 〈N,C〉, written
asN⊕bC where the subscriptb stands for Boolean variables, asC∪{optC(p) | p ∈ N}.
The functionopt maps the conditional preference statementϕ : a � a onto the hard
constraint:

(ϕ ∧
∧

ψ∈C,a∈ψ

ψ|a=true) → a

whereψ|a=true is the clauseψ where we have deleteda. The purpose ofψ|a=true is
to model what has to be true so that we can safely assigna to true, its more preferred
value.

To return to our flying example, the hard constraints forbidb anda to be simulta-
neously true. This can be written as the clausea ∨ b. Hence, we have the constrained
CP-net〈N,C〉whereN = {a : b � b, a : b � b, b : a � a. b : a � a} andC = {a∨b}.
The optimality constraints corresponding to the given constrained CP-net are therefore
a ∨ b plus the following clauses:

(a ∧ a) → b (b ∧ b) → a

a→ b b→ a

The only satisfying assignment for these constraints isab. This is also the only optimal
outcome in the constrained CP-net. In general, the satisfying assignments of the opti-



mality constraints are exactly the feasible and undominated outcomes of the constrained
CP-net.

Theorem 2. Given a constrained CP-net〈N,C〉 over Boolean variables, an outcome is
optimal for〈N,C〉 iff it is a satisfying assignment of the optimality constraintsN⊕bC.

Proof. (⇒) Consider any outcomeO that is optimal. Suppose thatO does not satisfy
N⊕C. ClearlyO satisfiesC, since to be optimal it must be feasible (and undominated).
ThereforeO must not satisfy someoptC(p) wherep ∈ N . The only way an implication
is not satisfied is when the hypothesis istrueand the conclusion isfalse. That is,O ` ϕ,
O ` ψ|a=true andO ` a wherep = ϕ : a � a. In this situation, flipping froma to a
would give us a new outcomeO′ such thatO′ ` a and this would be an improvement
according top. However, by doing so, we have to make sure that the clauses inC
containinga may now not be satisfied, since nowa is false. However, we also have that
O ` ψ|a=true, meaning that ifa is false these clauses are satisfied. Hence, there is an
improving flip to another feasible outcomeO′. ButO was supposed to be undominated.
Thus it is not possible thatO does not satisfyN⊕bC. ThereforeO satisfies alloptC(p)
wherep ∈ N . Since it is also feasible,O is a satisfying assignment ofN ⊕b C.

(⇐) Consider any assignmentO which satisfiesN ⊕b C. Clearly it is feasible as
N ⊕b C includesC. Suppose we perform an improving flip inO. Without loss of
generality, consider the improving flip froma to a. There are two cases. Suppose that
this new outcome is not feasible. Then this new outcome does not dominate the old one
in our semantics. ThusO is optimal. Suppose, on the other hand, that this new outcome
is feasible. If this is an improving flip, there must exist a statementϕ : a � a in N
such thatO ` ϕ. By assumption,O is a satisfying assignment ofN ⊕b C. Therefore
O ` opt(ϕ : a � a). SinceO ` ϕ andO ` a, and true is not allowed to imply
false, at least oneψ|a=true is not implied byO whereψ ∈ C anda ∈ ψ. However,
as the new outcome is feasible,ψ has to be satisfied independent of how we seta.
Hence,O ` ψ|a=true. As this is a contradiction, this cannot be an improving flip. The
satisfying assignment is therefore feasible and undominated. ut

It immediately follows that we can test for feasible and undominated outcomes in
linear time in the size of〈N,C〉: we just need to test the satisfiability of the optimality
constraints, which are as many as the constraints inC and the conditional statements
in N . Notice that this construction works also for regular CP-nets without any hard
constraints. In this case, the optimality constraints are of the formϕ → a for each
conditional preference statementϕ : a � a.

It was already known that optimality testing in acyclic CP-nets is linear [6]. How-
ever, our construction also works with cyclic CP-nets. Therefore optimality testing for
cyclic CP-nets has now become an easy problem, even if the CP-nets are not con-
strained. On the other hand, determining if a constrained CP-net has any feasible and
undominated outcomes is NP-complete (to show completeness, we map any SAT prob-
lem directly onto a constrained CP-net with no preferences). Notice that this holds also
for acyclic CP-nets, and finding an optimal outcome in an acyclic constrained CP-net is
NP-hard.



6 Non-Boolean variables

The construction in the previous section can be extended to handle variables whose
domain contains more than 2 values. Notice that in this case the constraints are no
longer clauses but regular hard constraints over a set of variables with a certain domain.
Given a constrained CP-net〈N,C〉, consider any conditional preference statementp
for featurex in N of the formϕ : a1 � a2 � a3. For simplicity, we consider just
3 values. However, all the constructions and arguments extend easily to more values.
The optimality constraints corresponding to this preference statement (let us call them
optC(p)) are:

ϕ ∧ (Cx ∧ x = a1) ↓var(Cx)−{x}→ x = a1

ϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ x = a1 ∨ x = a2

whereCx is the subset of constraints inC which involve variablex 2, and↓ X projects
onto the variables inX. The optimality constraints corresponding to〈N,C〉 are again
N ⊕ C = C ∪ {optC(p) | p ∈ N}. We can again show that this construction gives a
new problem whose solutions are all the optimal outcomes of the constrained CP-net.

Theorem 3. Given a constrained CP-net〈N,C〉, an outcome is optimal for〈N,C〉 iff
it is a satisfying assignment of the optimality constraintsN ⊕ C.

Proof. (⇒) Consider any outcomeO that is optimal. Suppose thatO does not satisfy
N ⊕ C. ClearlyO satisfiesC, since to be optimal it must be feasible (and undomi-
nated). ThereforeO must not satisfy someoptC(p) wherep preference statement inN .
Without loss of generality, let us consider the optimality constraintsϕ ∧ (Cx ∧ x =
a1) ↓var(Cx)−{x}→ x = a1 andϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ x = a1 ∨ x = a2

corresponding to the preference statementϕ : a1 � a2 � a3. The only way an im-
plication is not satisfied is when the hypothesis istrue and the conclusion isfalse.
Let us take the first implication:O ` ϕ, O ` (Cx ∧ x = a1) ↓var(Cx)−{x} and
O ` (x = a2 ∨ x = a3). In this situation, flipping from(x = a2 ∨ x = a3) to x = a1

would give us a new outcomeO′ such thatO′ ` x = a1 and this would be an improve-
ment according top. However, by doing so, we have to make sure that the constraints in
C containingx = a2 orx = a3 may now not be satisfied, since now(x = a2∨x = a3)
is false. However, we also have thatO ` (Cx ∧ x = a1) ↓var(Cx)−{x}, meaning that
if x = a1 these constraints are satisfied. Hence, there is an improving flip to another
feasible outcomeO′. ButO was supposed to be undominated. ThereforeO satisfies the
first of the two implications above.

Let us now consider the second implication:O ` ϕ,O ` (Cx∧x = a2) ↓var(Cx)−{x}
andO ` x = a3. In this situation, flipping fromx = a3 to x = a2 would give us a
new outcomeO′ such thatO′ ` x = a2 and this would be an improvement according
to p. However, by doing so, we have to make sure that the constraints inC containing
x = a3 may now not be satisfied, since nowx = a3 is false. However, we also have
thatO ` (Cx ∧ x = a2) ↓var(Cx)−{x}, meaning that ifx = a2 these constraints are
satisfied.

2 More precisely,Cx = {c ∈ C|x ∈ conc}.



Hence, there is an improving flip to another feasible outcomeO′. ButO was sup-
posed to be undominated. ThereforeO satisfies the second implication above. Thus
O must satisfy all constraintsoptC(p) wherep ∈ N . Since it is also feasible,O is a
satisfying assignment ofN ⊕ C.

(⇐) Consider any assignmentO which satisfiesN ⊕ C. Clearly it is feasible as
N ⊕ C includesC. Suppose we perform an improving flip inO. There are two cases.
Suppose that the outcomes obtained by performing any improving flip are not feasible.
Then such new outcomes do not dominate the old one in our semantics. ThusO is
optimal.

Suppose, on the other hand, that there is at least one new outcome, obtained via an
improving flip, which is feasible. Assume the flips passes fromx = a3 to x = a2. If
this is an improving flip, without loss of generality, there must exist a statementϕ :
. . . � x = a2 � x = a3 � . . . in N such thatO ` ϕ. By hypothesis,O is a satisfying
assignment ofN ⊕ C. ThereforeO ` opt(ϕ : . . . � x = a2 � . . . � x = a3 � . . .)
= ϕ ∧ (Cx ∧ x = a2) ↓var(Cx)−{x}→ . . . ∨ x = a2. SinceO ` ϕ andO ` x = a3,
andtrue is not allowed to implyfalse, O cannot satisfy(Cx ∧ x = a2) ↓var(Cx)−{x}.
But, as the new outcome, which containsx = a2, is feasible, such constraints have to
be satisfied independent of how we setx. Hence,O ` (Cx ∧ x = a2) ↓var(Cx)−{x}.
As this is a contradiction, this cannot be an improving flip to a feasible outcome. The
satisfying assignment is therefore feasible and undominated. ut

Notice that the constructionN ⊕C for variables with more than two values in their
domains is a generalization of the one for Boolean variables. That is,N ⊕ C = N ⊕b
C if N andC are over Boolean variables. Similar complexity results hold also now.
However, while for Boolean variables one constraint is generated for each preference
statement, now we generate as many constraints as the size of the domain minus 1.
Therefore the optimality constraints corresponding to a constrained CP-net〈N,C〉 are
|C|+ | N | × | D |, whereD is the domain of the variables. Testing optimality is still
linear in the size of〈N,C〉, if we assumeD bounded. Finding an optimal outcome as
usual requires us to find a solution of the constraints inN ⊕C, which is NP-hard in the
size of〈N,C〉.

7 CP-nets and soft constraints

It may be that we have soft and not hard constraints to add to our CP-net. For example,
we may have soft constraints representing other quantitative preferences. In the rest of
this section, a constrained CP-net will be a pair〈N,C〉, whereN is a CP-net andC is
a set of soft constraints. Notice that this definition generalizes the one given in Section
6 since hard constraints can be seen as a special case of soft constraints (see Section 2).

The construction of the optimality constraints for constrained CP-nets can be adapted
to work with soft constraints. To be as general as possible, variables can again have more
than two values in their domains. The constraints we obtain are very similar to those
of the previous sections, except that now we have to reason about optimization as soft
constraints define an optimization problem rather than a satisfaction problem.

Consider any CP statementp of the formϕ : x = a1 � x = a2 � x = a3.
For simplicity, we again consider just 3 values. However, all the constructions and ar-



guments extend easily to more values. The optimality constraints corresponding top,
calledoptsoft(p), are the following hard constraints:

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}) → x = a1

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a2) ↓var(Cx)−{x}) → x = a1orx = a2

whereCx is the subset of soft constraints inC which involve variablex, best(S) is
the highest preference value for a complete assignment of the variables in the set of
soft constraintsS, andcutαS is a hard constraint obtained from the soft constraintS
by forbidding all tuples which have preference value less thanα in S. The optimality
constraints corresponding to〈N,C〉 areCopt(〈N,C〉) = {optsoft(p) | p ∈ N}.

Consider a CP-net with two features,X andY , such that the domain ofY contains
y1 and y2, while the domain ofX containsx1, x2, andx3. Moreover, we have the
following CP-net preference statements:y1 � y2, y1 : x1 � x2 � x3, y2 : x2 � x1 �
x3. We also have a soft (fuzzy) unary constraint overX, which gives the following
preferences over the domain ofX: 0.1 tox1, 0.9 tox2, and 0.5 tox3. By looking at the
CP-net alone, the ordering over the outcomes is given byy1x1 � y1x2 � y1x3 � y2x3

andy1x2 � y2x2 � y2x1 � y2x3. Thusy1x1 is the only optimal outcome of the CP-
net. On the other hand, by taking the soft constraint alone, the optimal outcomes are all
those withX = x2 (thusy1x2 andy2x2).

Let us now consider the CP-net and the soft constraints together. To generate the
optimality constraints, we first compute best(C), which is 0.9. Then, we have:

– for statementy1 � y2: Y = y1;
– for statementy1 : x1 � x2 � x3: we generate the constraintsY = y1 ∧ false →
X = x1 andY = y1 ∧ Y = y1 → X = x1 ∨ X = x2. Notice that we have
false in the condition of the first implication becausecut0.9(Y = y1 ∧ Cx ∧X =
x1) ↓Y = false. On the other hand, in the condition of the second implication we
havecut0.9(Y = y1 ∧Cx ∧X = x2) ↓Y = (Y = y1). Thus, by removing false, we
have just one constraint:Y = y1 → X = x1 ∨X = x2;

– for statementy2 : x2 � x1 � x3: similarly to above, we have the constraint
Y = y2 → X = x2.

Let us now compute the optimal solutions of the soft constraint overX which are
also feasible for the following set of constraints:Y = y1,Y = y1 → X = x1∨X = x2,
Y = y2 → X = x2. The only solution which is optimal for the soft constraints and
feasible for the optimality constraints isy1x2. Thus this solution is optimal for the
constrained CP-net.

Notice that the optimal outcome for the constrained CP-net of the above example
is not optimal for the CP-net alone. In general, an optimal outcome for a constrained
CP-net has to be optimal for the soft constraints, and such that there is no other out-
come which can be reached from it in the ordering of the CP-net with an improving
chain of optimal outcomes. Thus, in the case of CP-nets constrained by soft constraints,
Definition 2 is replaced by the following one:

Definition 3 (O1 �soft O2). Given a constrained CP-net〈N,C〉, whereC is a set of
soft constraints, outcomeO1 is better than outcomeO2 (writtenO1 �soft O2) iff there



is a chain of flips fromO1 toO2, where each flip is worsening forN and each outcome
in the chain is optimal forC.

Notice that this definition is just a generalization of Def. 2, since optimality in hard
constraints is simply feasibility. Thus�=�soft whenC is a set of hard constraints.

Consider the same CP-net as in the previous example, and a binary fuzzy constraint
overX andY which gives preference 0.9 tox2y1 andx1y2, and preference 0.1 to
all other pairs. According to the above definition, bothx2y1 andx1y2 are optimal for
the constrained CP-net, since they are optimal for the soft constraints and there are no
improving path of optimal outcomes between them in the CP-net ordering. Let us check
that the construction of the optimality constraints obtains the same result:

– for y1 � y2 we getcut0.9(Cy ∧ Y = y1) ↓X→ Y = y1. Sincecut0.9(Cy ∧ Y =
y1) ↓X= (X = x2), we getX = x2 → Y = y1.

– for statementy1 : x1 � x2 � x3: Y = y1 ∧ cut0.9(Y = y1 ∧ Cx ∧ X =
x1) ↓Y→ X = x1. Sincecut0.9(Y = y1 ∧ Cx ∧X = x1) ↓Y = false, we get a
constraint which is always true. Also, we have the constraintY = y1 ∧ cut0.9(Y =
y1 ∧ Cx ∧X = x2) ↓Y→ X = x1 ∨X = x2. Sincecut0.9(Y = y1 ∧ Cx ∧X =
x2) ↓Y = (Y − y1), we getY = y1 ∧ Y = y1 → X = x1 ∨X = x2.

– for statementy2 : x2 � x1 � x3: similarly to above, we have the constraint
Y = y2 → X = x2 ∨X = x1.

Thus the set of optimality constraints is the following one:X = x2 → Y = y1,
Y = y1 → X = x1 ∨ X = x2, andY = y2 → X = x2 ∨ X = x1. The feasible
solutions of this set of constraints arex2y1, x1y1, andx1y2. Of these constraints, the
optimal outcomes for the soft constraint arex2y1 andx1y2. Notice that, in the ordering
induced by the CP-net over the outcomes, these two outcomes are not linked by a path
of improving flips through optimal outcomes for the soft constraints. Thus they are both
optimal for the constrained CP-net.

Theorem 4. Given a constrained CP-net〈N,C〉, whereC is a set of soft constraints,
an outcome is optimal for〈N,C〉 iff it is an optimal assignment forC and if it satisfies
Copt(〈N,C〉).

Proof. (⇒) Consider an outcomeO that is optimal for〈N,C〉. Then by definition it
must be optimal forC. Suppose the outcome does not satisfyCopt. ThereforeO must
not satisfy some constraintoptC(p) wherep preference statement inN . Without loss
of generality, let us consider the optimality constraints

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}) → x = a1

ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x = a2) ↓var(Cx)−{x}) → x = a1orx = a2

corresponding to the preference statementϕ : a1 � a2 � a3.
The only way an implication is not satisfied is when the hypothesis istrue and the

conclusion isfalse. Let us take the first implication:O ` ϕ, O ` cutbest(C)((ϕ ∧
Cx ∧ x = a1) ↓var(Cx)−{x}) andO ` (x = a2 ∨ x = a3). In this situation, flipping
from (x = a2 ∨ x = a3) to x = a1 would give us a new outcomeO′ such that



O′ ` x = a1 and this would be an improvement according top. However, by doing
so, we have to make sure that the soft constraints inC containingx = a2 or x = a3

may now still be satisfied optimally, since now(x = a2 ∨ x = a3) is false. We also
have thatO ` cutbest(C)((ϕ ∧ Cx ∧ x = a1) ↓var(Cx)−{x}), meaning that ifx = a1

these constraints are satisfied optimally. Hence, there is an improving flip to another
outcomeO′ which is optimal forC and which satisfiesCopt. ButO was supposed to be
undominated. ThereforeO satisfies the first of the two implications above.

Let us now consider the second implication:O ` ϕ, O ` cutbest(C)((ϕ ∧ Cx ∧
x = a2) ↓var(Cx)−{x}), andO ` x = a3. In this situation, flipping fromx = a3

to x = a2 would give us a new outcomeO′ such thatO′ ` x = a2 and this would
be an improvement according top. However, by doing so, we have to make sure that
the constraints inC containingx = a3 may now still be satisfied optimally, since
now x = a3 is false. However, we also have thatO ` cutbest(C)((ϕ ∧ Cx ∧ x =
a2) ↓var(Cx)−{x}), meaning that ifx = a2 these constraints are satisfied optimally.
Hence, there is an improving flip to another feasible outcomeO′. ButO was supposed
to be undominated. ThereforeO satisfies the second implication above. ThusO must
satisfy all the optimality constraintsoptC(p) wherep ∈ N .

(⇐) Consider any assignmentO which is optimal forC and satisfiesCopt. Suppose
we perform a flip onO. There are two cases. Suppose that the new outcome is not
optimal forC. Then the new outcome does not dominate the old one in our semantics.
ThusO is optimal. Suppose, on the other hand, that there is at least one new outcome,
obtained via an improving flip, which is optimal forC and satisfiesCopt. Assume the
flip passes fromx = a3 tox = a2. If this is an improving flip, without loss of generality,
there must exist a statementϕ : . . . � x = a2 � x = a3 � . . . in N such that
O ` ϕ. By hypothesis,O is an optimal assignment ofC and satisfiesCopt. Therefore
O ` opt(ϕ : . . . � x = a2 � . . . � x = a3 � . . .) = ϕ ∧ cutbest(C)((ϕ ∧ Cx ∧ x =
a2) ↓var(Cx)−{x}) → . . . ∨ x = a2.

SinceO ` ϕ andO ` x = a3, andtrue is not allowed to implyfalse, O cannot
satisfycutbest(C)((ϕ∧Cx∧x = a2) ↓var(Cx)−{x}). ButO′, which containsx = a2, is
assumed to be optimal forC, socutbest(C)((ϕ∧Cx ∧x = a2) ↓var(Cx)−{x}) has to be
satisfied independently of how we setx. Hence,O ` (Cx ∧ x = a2) ↓var(Cx)−{x}. As
this is a contradiction, this cannot be an improving flip to an outcome which is optimal
for C and satisfiesCopt. ThusO is optimal for the constrained CP-net. ut

It is easy to see how the construction of this section can be used when a CP-net is
constrained by a set of both hard and soft constraints, or by several sets of hard and soft
constraints, since they can all be seen as just one set of soft constraints.

Let us now consider the complexity of constructing the optimality constraints and
of testing or finding optimal outcomes, in the case of CP-nets constrained by soft con-
straints. First, as with hard constraints, the number of optimality constraints we generate
is |N || × (|D| − 1), where|N | is the number of preference statements inN andD is
the domain of the variables. Thus we have|Copt(〈N,C〉)| = |N | × (|D| − 1). To test
if an outcomeO is optimal, we need to check ifO satisfiesCopt and if it is optimal for
C. Checking feasibility forCopt takes linear time in|N | × (|D| − 1). Then, we need
to check ifO is optimal forC. This is NP-hard the first time we do it, otherwise (if the
optimal preference value forC is known) is linear in the size ofC. To find an optimal



outcome, we need to find the optimals forC which are also feasible forCopt. Finding
optimals forC needs exponential time in the size ofC, and checking feasibility inCopt
is linear in the size ofCopt. Thus, with respect to the corresponding results for hard
constraints, we only need to do more work the first time we want to test an outcome for
optimality.

8 Multiple constrained CP-nets

There are situations when we need to represent the preferences of multiple agents. For
example, when we are scheduling workers, each will have a set of preferences concern-
ing the shifts. These ideas generalize to such a situation. Consider several CP-netsN1,
. . . ,Nk, and a set of hard or soft constraintsC. We will assume for now that all the
CP nets have the same features. To begin, we will say an outcome is optimal iff it is
optimal for each constrained CP net〈Ni, C〉. This is a specific choice but we will see
later that other choices can be considered as well. We will call this notion of optimality,
All-optimal.

Definition 4 (All-optimal). Given a multiple constrained CP netM = 〈(N1,. . . , Nk), C〉,
an outcomeO is All-optimal forM if O if it is optimal for each constrained CP net
〈Ni, C〉.

This definition, together with Theorem 4, implies that to find the all-optimal out-
comes forM we just need to generate the optimality constraints for each constrained
CP net〈Ni, C〉, and then take the outcomes which are optimal forC and satisfy all
optimality constraints.

Theorem 5. Given a multiple constrained CP netM = 〈(N1, . . . , Nk), C〉, an out-
comeO is All-optimal forM iff O is optimal forC and it satisfies the optimality con-
straints in

⋃
i Copt(〈Ni, C〉).

This semantics is one of consensus: all constrained CP nets must agree that an out-
come is optimal to declare it optimal for the multiple constrained CP net. Choosing this
semantics obviously satisfies all CP nets. However, there could be no outcome which is
optimal. In [8] a similar consensus semantics (although for multiple CP nets, with no
additional constraints) is called Pareto optimality, and it is one among several alterna-
tive to aggregate preferences expressed via several CP nets. This semantics, adapted to
our context, would be defined as follows:

Definition 5 (Pareto).Given a multiple constrained CP netM = 〈(N1, . . . , Nk), C〉,
an outcomeO is Pareto-better than an outcomeO′ iff it is better for each constrained
CP net. It is Pareto-optimal forM iff there is no other outcome which is Pareto-better.

If an outcome is all-optimal, it is also Pareto-optimal. However, the converse is not
true in general. These two semantics may seem equally reasonable. However, while all-
optimality can be computed via the approach of this paper, which avoids dominance
testing, Pareto optimality needs such tests, and therefore it is in general much more



expensive to compute. In particular, whilst optimality testing for Pareto optimality re-
quires exponential time, for All-optimality it just needs linear time (in the sum of the
sizes of the CP nets).

Other possibilities proposed in [8] require optimals to be the best outcomes for a
majority of CP nets (this is called Majority), or for the highest number of CP nets (called
Max). Other semantics like Lex, associate each CP net with a priority, and then declare
optimal those outcomes which are optimal for the CP nets with highest priority, in a
lexicographical fashion. In principle, all these semantics can be adapted to work with
multiple constrained CP nets. However, as for Pareto optimality, whilst their definition
is possible, reasoning with them would require more than just satisfying a combination
of the optimality constraints, and would involve dominance testing.

Thus the main gain from our semantics (all-optimal and others that can be computed
via this approach) is that dominance testing is not required. This makes optimality test-
ing (after the first test) linear rather than exponential, although finding optimals remains
difficult (as it is when we find the optimals of the soft constraints and check the feasi-
bility of the optimality constraints).

9 Related work

The closest work is [2], where acyclic CP nets are constrained via hard constraints, and
an algorithm is proposed to find one or all the optimal outcomes of the constrained
CP net. However, there are several differences. First, the notion of optimality in this
previous approach is different from the one used here: in [2], an outcomeO is optimal
if satisfies the constraints and there is no other feasible outcome which is better than
it in the CP net ordering. Therefore, if two outcomes are both feasible and there is
an improving path from one to the other one in the CP net, but they are not linked
by a path of feasible outcomes, then in this previous approach only the highest one is
optimal, while in ours they are both optimal. For example, assume we have a CP net
with two Boolean features,A andB, and the following CP statements:a � a, a : b � b,
a : b � b, and the constrainta ∨ b which rules outab. Then, the CP net ordering on
outcomes isab � ab � ab � ab. In our approach, bothab andab are optimal, whilst in
in the previous approach onlyab is optimal. Thus we obtain a superset of the optimals
computed in the previous approach.

Reasoning about this superset is, however, computationally more attractive. To find
the first optimal outcome, the algorithm in [2] uses branch and bound and thus has
a complexity that is comparable to solving the set of constraints. Then, to find other
optimal outcomes, they need to perform dominance tests (as many as the number of
optimal outcomes already computed), which are very expensive. In our approach, to
find one optimal outcome we just need to solve a set of optimality constraints, which is
NP-hard.

Two issues that are not addressed in [2] are testing optimality efficiently and reason-
ing with cyclic CP nets. To test optimality, we must run the branch and bound algorithm
to find all optimals, and stop when the given outcome is generated or when all optimals
are found. In our approach, we check the feasibility of the given outcome with respect
to the optimality constraints. Thus it takes linear time. Our approach is based on the CP



statements and not on the topology of the dependency graph. Thus it works just as well
with cyclic CP nets.

Another related work is [7], where CP nets orderings are approximated via a set of
soft constraints. The approximation here is not needed, since we are not trying to model
the entire ordering over outcomes, but only the set of optimals.

Finally, our construction can be seen as a generalization of that given in Section 4
of [4], where they treat the case of mapping a CP net on Boolean features, without any
constraints, onto a SAT problem.

10 Conclusions

We have presented a novel approach to deal with preferences expressed as a mixture
of hard constraints, soft constraints, and CP nets. The main idea is to generate a set of
hard constraints whose solutions are optimal for the preferences. Our approach focuses
on finding and testing optimal solutions. It avoids the costly dominance tests previously
used to reason about CP nets. To represent the preferences of multiple agents, we have
also considered multiple CP nets. We have shown that it is possible to define semantics
for preference aggregation for multiple CP nets which also avoid dominance testing.
One of the main advantages of this simple and elegant technique is that it permits con-
ventional constraint and SAT solvers to solve problems involving both preferences and
constraints.
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Abstract. We present a technique for the optimization of (partially)
bound queries over disjunctive datalog programs enriched with aggre-
gate functions (Datalog∨A programs). This class of programs has been
recently proved to be well-suited for declaratively formalizing repair se-
mantics in data integration systems. Indeed, even though disjunctive
programs provide a natural way for encoding the possible repairs (i.e.,
insertions or deletions of tuples) of an inconsistent database, they do
not suffice for applications in real scenarios, where users usually want to
build summary views of data residing in different databases.
The technique exploits the propagation of query bindings, and ex-
tends the Magic-Set optimization technique (originally defined for non-
disjunctive programs without aggregate functions) to Datalog∨A pro-
grams. All the algorithms presented in the paper have been fully inte-
grated and implemented in the DLV system – the state-of-the-art imple-
mentation of disjunctive datalog.

1 Introduction

Disjunctive datalog (Datalog∨) programs are logic programs where disjunction
may occur in the heads of rules [12, 11]. Disjunctive datalog is very expressive in a
precise mathematical sense: it allows to express every property of finite ordered
structures that is decidable in the complexity class ΣP

2 (NPNP) [11]. There-
fore, under widely believed assumptions, Datalog∨ is strictly more expressive
than normal (disjunction-free) datalog which can express only problems of lower
complexity. Importantly, besides enlarging the class of applications which can
be encoded in the language, disjunction often allows for representing problems
of lower complexity in a simpler and more natural fashion [10].

Recently, disjunctive datalog is employed in several “hot” application areas
like information integration and knowledge management. In particular, several



approaches formalizing repair semantics in data integration system by using
logic programs have been proposed (see, e.g., [1, 13, 7]), and the exploitation of
disjunctive datalog for information integration is the main focus of the INFOMIX
project (IST-2001-33570), funded by the European Commission.

Data integration is an important problem, given that more and more data
are dispersed over many data sources. In a user-friendly information system, a
data integration system provides transparent access to the data, and relieves the
user from the burden of having to identify the relevant data sources for a query,
accessing each of them separately, and combining the individual results into the
global view of the data.

Informally, a data integration system I may be viewed as system 〈G,S,M〉
that consists of a global schema G, which specifies the global (user) elements,
a source schema S, which describes the structure of the data sources in the
system, and a mapping M, which specifies the relationship between the sources
and the global schema. Usually, the global schema also contains information
about constraints, Σ, such as key constraints or exclusion dependencies issued
on a relational global schema. When the user issues a query q on the global
schema, the global database is constructed by data retrieval from the sources
and q is answered from it. However, the global database might be inconsistent
with the constraints Σ.

To remedy this problem, the inconsistency might be eliminated by modifying
the database and reasoning on the “repaired” database. To this aim, the idea
exploited in the mentioned papers is to encode the constraints Σ of G into a logic
program, Π, using disjunction (or unstratified negation, as done in [7]), such
that the stable models of this program yield the repairs of the global database.
Answering a user query, q, then amounts to cautious reasoning over the logic
program Π augmented with the query, and the retrieved facts R.

An attractive feature of this approach is that disjunctive logic programs serve
as executable logical specifications of repair, and thus allow to state repair poli-
cies in a declarative manner rather than in a procedural way. Moreover, the
effectiveness of the approach is guaranteed by the availability of some efficient
inference engines, such as the DLV system [19] and the GnT system [17], and by
some optimization techniques for disjunctive programs which have been recently
proposed in [14, 8].

However, in spite of its high expressiveness, it has been clearly recognized
that classical Datalog∨ presents some limitations for its applicability to real
data integration settings. In data integration contexts, it is reasonable to assume
that users should be able to express most of the SQL2 queries. Indeed, SQL2
is widely accepted as the standard query language in the database context.
However, Datalog∨ is not comparable with SQL2 in that some queries that
can be expressed in Datalog∨ cannot be expressed in SQL2 and vice versa. For
instance, Datalog∨ provides the power of recursion and disjunction which cannot
be simulated in SQL2, and SQL2 allows aggregate operators (such as SUM,
MIN, MAX) and ordering features which cannot be expressed or easily simulated



in classical Datalog∨. In some cases, aggregate operators can be simulated in
Datalog∨, but this produces inefficient programs and unnatural encodings of the
problems.

In [9], the above deficiency of Datalog∨ has been overcome by extending the
language with a sort of aggregate functions (Datalog∨A), first studied in the con-
text of deductive databases, and implementing them in DLV [10] – the state-of-
the-art Disjunctive Logic Programming system. Under a computational point of
view, the resulting formalism turned out to be equivalent to standard Datalog∨,
since ‘brave reasoning’ for ground programs is ΣP

2 -complete whereas ‘cautious
reasoning’ for ground programs is ΠP

2 -complete. However, at the best of our
knowledge, no optimizations techniques for the efficient evaluation of disjunctive
programs enriched with aggregate functions have been appeared in the literature.
Hence, with current implementations of stable model engines, the evaluation of
queries over large data sets quickly becomes infeasible because of lacking scala-
bility. This calls for suitable optimization methods that help in speeding up the
evaluation of queries, and in making Datalog∨A well suited for real applications
in data integration settings.

In this paper, we face such efficiency problems and we present an optimiza-
tion technique, that is able to support Datalog∨ programs, enriched with aggre-
gate functions. Specifically, we investigate a promising line of research consisting
of the extension of deductive database techniques and, specifically, of binding
propagation techniques exploited in the Magic-Set method [24, 2, 4, 23, 18, 22],
to nonmonotonic logic languages like disjunctive datalog.

1.1 Related Work

The Magic-Set method is one of the most well-known technique for the opti-
mization of positive recursive Datalog programs due to its efficiency and its
generality, even though other focused methods such as the supplementary magic
set and other special techniques for linear and chain queries have been proposed
as well (see, e.g., [15, 24, 21]). Intuitively, the goal of the Magic-Set method (orig-
inally defined for non-disjunctive datalog queries only) is to use the constants
appearing in the query to reduce the size of the instantiation by eliminating “a
priori” a number of ground instances of the rules which cannot contribute to the
derivation of the query goal.

After seminal papers [2, 4], the viability of the approach was demonstrated e.g.
in [16, 20]. Lateron, extensions and refinements have been proposed, addressing
e.g. query constraints in [23], the well-founded semantics in [18], or integration
into cost-based query optimization in [22]. The research on variations of the
Magic-Set method is still going on. For instance, in [5] a technique for the class
of soft-stratifiable programs is given, and in [14] an elaborated technique for
disjunctive programs is described.

It has been noted (e.g. in [18]) that in the non-disjunctive case, memoing
techniques lead to similar computations as evaluations after Magic-Set transfor-
mations. Also in the disjunctive case such techniques have been proposed, e.g.



Hyper Tableaux [3], for which similar relations might hold. However, we leave
this issue for future research, and follow [18] in noting that an advantage of
Magic-Sets over such methods is that the latter may be more easily combined
with other database optimization techniques.

An extension of the Magic-Set method to disjunctive programs is due to
[14], where the author observes that binding propagation strategies have to be
changed for disjunctive rules so that each time a head predicate receives some
binding from the query, it eventually propagates this relevant information to
all the other head predicates as well as to the body predicates. An algorithm
implementing the above strategy has been also proposed in [14]. Moreover, in [8]
some fresh and refined ideas for extending the Magic-Set method to disjunctive
datalog queries have been provided, by avoiding some major drawbacks that are
intrinsic of the method in [14].

1.2 Contribution

In this paper, we continue on the way paved in [8], and we provide an exten-
sion of the Magic-Set method to deal with Datalog∨A programs as well (DMSA

algorithm). Specifically, in Section 2, we preliminarily show how to extend Dis-
junctive Logic Programming by aggregate functions and we formally define the
semantics of the resulting language, named Datalog∨A.

Then, in Section 3, we show that in order to make such technique work in
the presence of both disjunction and aggregate atoms, traditional Sideways In-
formation Passing Strategies (SIPS ), cf. [4], simulating the data flow occurring
in the top-down evaluation of the query, must be modified by imposing some
additional constraints. We provide all the details needed for understanding the
main ideas exploited in the design of the DMSA algorithm, which has been fully
implemented and integrated in the DLV system [19] – the state-of-the-art imple-
mentation of disjunctive datalog. Finally, in Section 4 we draw our conclusions.

2 The Datalog∨A Language

In this section, we provide a formal definition of the syntax and semantics of
the Datalog∨A language – an extension of Datalog∨ by set-oriented functions
(also called aggregate functions). We assume that the reader is familiar with
standard Datalog∨; we refer to atoms, literals, rules, and programs of Datalog∨,
as standard atoms, standard literals, standard rules, and standard programs, re-
spectively. For further background, see [12, 10].

2.1 Syntax

A (Datalog∨A) set is either a symbolic set or a ground set. A symbolic set is a
pair {Vars :Conj}, where Vars is a list of variables and Conj is a conjunction of



standard literals. Intuitively, a symbolic set {X:a(X, Y ), p(Y )} stands for the set
of X-values making a(X, Y ), p(Y ) true, i.e., {X :∃Y s.t . a(X, Y ), p(Y ) is true}.
Note that also negative literals may occur in the conjunction Conj of a symbolic
set.

A ground set is a set of pairs of the form 〈t : Conj〉, where t is a list of
constants and Conj is a ground (variable free) conjunction of standard literals.
An aggregate function is of the form f(S), where S is a set, and f is a function
name among #count, #min, #max, #sum, #times. An aggregate atom is Lg ≺1

f(S) ≺2 Rg, where f(S) is an aggregate function, ≺1,≺2∈ {=, <, ≤, >,≥}, and
Lg and Rg (called left guard, and right guard, respectively) are terms. One of
“Lg ≺1” and “≺2 Rg” can be omitted. An atom is either a standard (Datalog∨)
atom or an aggregate atom.

A (Datalog∨A) rule r is a construct

a1 v · · · v an :- b1, · · · , bm.

where a1, · · · , an, b1, · · · , bm are atoms, and n ≥ 0, m ≥ 0. The disjunction
a1 v · · · v an is the head of r, while the conjunction b1, ..., bm is the body of r.
A (Datalog∨A) program is a set of Datalog∨A rules.

For simplicity, and without loss of generality, we assume that the body of
each rule contains at most one aggregate atom. A global variable of a rule r is a
variable appearing in some standard atom of r; a local variable of r is a variable
appearing solely in an aggregate function in r.

Stratification. A Datalog∨A program P is aggregate-stratified if there exists
a function || ||, called level mapping, from the set of (standard) predicates of P
to ordinals, such that for each pair a and b of (standard) predicates of P, and for
each rule r ∈ P: (i) if a appears in the head of r, and b appears in an aggregate
atom in the body of r, then ||b|| < ||a||, and (ii) if a appears in the head of r,
and b occurs in a standard atom in the body of r, then ||b|| ≤ ||a||.

Example 1. Consider the program consisting of a set of facts for predicates a
and b, plus the following two rules:

q(X) :- p(X),#count{Y : a(Y, X), b(X)} ≤ 2.
p(X) :- q(X), b(X).

The program is aggregate-stratified, as the following level mapping || || satisfies
the required conditions: ||a|| = ||b|| = 1; ||p|| = ||q|| = 2.
If we add the rule b(X) :- p(X), then no legal level-mapping exists and the program
becomes aggregate-unstratified. 2

Intuitively, aggregate-stratification forbids recursion through aggregates,
which could cause an unclear semantic in some cases. Consider, for instance,
the (aggregate-unstratified) program consisting only of rule p(a) :-#count{X :
p(X)} = 0. Neither p(a) nor ∅ is an intuitive meaning for the program. We should



probably assert that the above program does not have any answer set (defining
a notion of “stability” for aggregates), but then positive programs would not
always have an answer set if there is no integrity constraint. In the following we
assume that Datalog∨A programs are safe and aggregate-stratified.

2.2 Semantics

Given a Datalog∨A program P, let UPdenote the set of constants appearing
in P, UN

P ⊆ UP the set of the natural numbers occurring in UP , and BPthe
set of standard atoms constructible from the (standard) predicates of P with
constants in UP . Furthermore, given a set S, 2S denotes the set of all multisets
over elements from S. Let us now describe the domains and the meanings of the
aggregate functions we consider.
#count: defined over 2UP , returns the number of the elements in the set.

#sum: defined over 2UNP , returns the sum of the elements in the set.

#times: defined over 2UNP , returns the product of the elements in the set.5

#min ; #max: defined over 2UP −∅, returns the minimum/maximum element in
the set (if the set contains also strings, the lexicographic ordering is considered).
If the argument of an aggregate function does not belong to its domain, then ⊥
is returned.

A substitution is a mapping from a set of variables to the set UP of the con-
stants appearing in the program P. A substitution from the set of global variables
of a rule r (to UP) is a global substitution for r; a substitution from the set of
local variables of a symbolic set S (to UP) is a local substitution for S. Given a
symbolic set without global variables S = {Vars : Conj}, the instantiation of
set S is the following ground set of pairs inst(S):
{〈γ(Vars) : γ(Conj)〉 | γ is a local substitution for S}. Given a substitution σ
and a Datalog∨A object Obj (rule, conjunction, set, etc.), with a little abuse of
notation, we denote by σ(Obj) the object obtained by replacing each variable X
in Obj by σ(X).

A ground instance of a rule r is obtained in two steps: (1) a global substitution
σ for r is first applied over r; (2) every symbolic set S in σ(r) is replaced by its
instantiation inst(S). The instantiation Ground(P) of a program P is the set of
all possible instances of the rules of P.

Example 2. Consider the following program P1:

q(1) v p(2, 2). q(2) v p(2, 1).
t(X) :- q(X),#sum{Y : p(X, Y)} > 1.

The instantiation Ground(P1) is the following:

q(1) v p(2, 2). q(2) v p(2, 1).
t(1) :- q(1),#sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.
t(2) :- q(2),#sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1. 2

5 #sum and #times applied over an empty set return 0 and 1, respectively.



An interpretation for a Datalog∨A program P is a set of standard ground atoms
I ⊆ BP . The truth valuation I(A), where A is a standard ground literal or a
standard ground conjunction, is defined in the usual way. Besides assigning truth
values to the standard ground literals, an interpretation provides the meaning
also to (ground) sets, aggregate functions and aggregate literals; the meaning of
a set, an aggregate function, and an aggregate atom under an interpretation, is
a multiset, a value, and a truth-value, respectively. Let f(S) be a an aggregate
function. The valuation I(S) of set S w.r.t. I is the multiset of the first constant
of the first components of the elements in S whose conjunction is true w.r.t. I.
More precisely,

I(S) = [ t1 | 〈t1, ..., tn :Conj〉∈S ∧ Conj is true w.r.t. I ]

The valuation I(f(S)) of an aggregate function f(S) w.r.t. I is the result of
the application of the function f on I(S). (If the multiset I(S) is not in the
domain of f , I(f(S)) = ⊥.)

An aggregate atom A = Lg ≺1 f(S) ≺2 Rg is true w.r.t. I if: (i) I(f(S)) 6= ⊥,
and, (ii) the relationships Lg ≺1 I(f(S)), and I(f(S)) ≺2 Ug hold whenever
they are present; otherwise, A is false.

Using the above notion of truth valuation for aggregate atoms, the truth val-
uations of aggregate literals and rules, as well as the notion of model, minimal
model, and answer set for Datalog∨A are an trivial extension of the correspond-
ing notions in Datalog∨ [12].

2.3 Querying Datalog∨A Programs

Let P be a Datalog∨A program and let F be a set of facts. Then, we denote
by PF the program PF = P ∪ F . Given a query Q and an interpretation M
of P, ϑ(Q,M) denotes the set containing each substitution φ for the variables
in Q such that φ(Q) is true in M . The answer to a query Q over PF , under
the brave semantics, denoted by Ansb(Q,PF ), is the set ∪Mϑ(Q,M), such that
M ∈ MM(P ∪ F). The answer to a query Q over the facts in F , under the
cautious semantics, denoted by Ansc(Q,PF ), is the set ∩Mϑ(Q,M), such that
M ∈ MM(P ∪ F) 6= ∅. If MM(P ∪ F) = ∅, then all substitutions over the
universe for variables in Q are in the cautious answer. Finally, we say that
programs P and P ′ are bravely (resp. cautiously) equivalent w.r.t. Q, denoted
by P ≡Q,b P ′ (resp. P ≡Q,c P ′), if for any set F of facts Ansb(Q,PF ) =
Ansb(Q,PF ) (resp. Ansc(Q,PF ) = Ansc(Q,PF )).

3 Magic-Set Method for Datalog∨A Programs

In this section we present the Magic-Set algorithm for Datalog∨A programs
(short. DMSA), which has been implemented and integrated into the DLV sys-
tem [19]. Basically, we adopt a strategy for simulating the top-down evaluation



of a query by modifying the original program by means of additional rules, which
narrow the computation to what is relevant for answering the query.

The input to the DMSA algorithm (see Figure 1) is a disjunctive datalog pro-
gram with aggregate functions P and a query Q. If the query contains some non-
free IDB predicates, it outputs a (optimized) program DMSA(Q,P) consisting of a
set of modified and magic rules, stored by means of the sets modifiedRules(Q,P)
and magicRules(Q,P), respectively. The main steps of the algorithm DMSA are
illustrated by means of the following running example, which is an adaptation
of the “Strategic Companies” example in [6].

Example 3. We are given a collection C of companies producing some goods in
a set G, such that each company ci ∈ C is controlled by a set of other companies
Oi ⊆ C. A subset of the companies C ′ ⊂ C is a strategic set set if it is a minimal
set of companies producing all the goods in G, such that if Oi ⊆ C ′ for some
i = 1, . . . ,m then ci ∈ C ′ must hold. This scenario can be modelled by means of
the following program Psc.

r1 : sc(C1) v sc(C2) :- produced by(P, C1, C2).
r2 : sc(C) :- controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

Moreover, a company is dominant if it is strategic and produces only products
which are not produced by any other strategic company:

r3 : dominant(C) :- sc(C), #sum{P : produced by(P, C, C2), sc(C2)} = 0.

Finally, given a company c ∈ C, we consider a query Qsc = dominant(c). 2

The key idea of the algorithm is to materialize binding information which
would be propagated during a top-down computation by suitable adornments.
These are strings of the letters b and f , denoting bound or free for each argument
of a predicate. First, adornments are created for query predicates. To efficiently
manage adornments, we exploit a stack S of predicates for storing all the adorned
predicates to be used for propagating the binding of the query: At each step, an
element is removed from S, and each defining rule is processed at a time.

The computation starts in step 2 by initializing the variable
modifiedRules(Q,P) to the empty set — the need of this structure will
be clear in a while. Then, the function BuildQuerySeeds pushes on the stack
S the adorned predicates of Q, and stores in magicRules(Q,P) some facts,
called magic seeds. Each fact in such a variable is the magic version of an
adorned atom pα pushed in S, denoted by magic(pα), obtained by eliminating
all arguments labelled f in α.

Example 4. Given the query Qsc = dominant(c) and the program Psc, Build-
QuerySeeds creates magic dominantb(c). and pushes dominantb onto the stack
S. 2



Input: A Datalog∨ program P, and a query Q = g1(t1), . . . , gn(tn).

Output: The optimized program DMSA(Q,P).
var S: stack of adorned predicates; modifiedRules(Q,P),magicRules(Q,P): set of

rules;
begin
1. if g1(t1), . . . , gn(tn) has some IDB predicate then
2. modifiedRules(Q,P):=∅; 〈S, magicRules(Q,P)〉:=BuildQuerySeeds(Q);
3. while S 6= ∅ do
4. pα:=S.pop();
5. for each rule r ∈ P: p(t) v p1(t1) v . . . v pn(tn) :- q1(s1), . . . , qm(sm) do
6. ra:=Adorn(rs,pα,S);
7. magicRules(Q,P) := magicRules(Q,P)

⋃
Generate(ra);

8. modifiedRules(Q,P) := modifiedRules(Q,P)
⋃
{Modify(ra)};

9. end for
10. end while
11. DMSA(Q,P):=magicRules(Q,P) ∪ modifiedRules(Q,P);

12. return DMSA(Q,P);
13. end if

end.

Fig. 1. Magic-Set Method for Datalog∨A Programs.

3.1 Adornment

The query adornments are then used to propagate their information into the
body of the rules defining it, simulating a top-down evaluation. And, in fact, the
core of the technique (steps 4-9 ) consists of removing an adorned predicate pα

from the stack S in step 4, and in propagating its binding in each (disjunctive)
rule r in P of the form

r : p(t) v p1(t1) v . . . v pn(tn) :- q1(s1), . . . , qm(sm).

with n ≥ 0, having an atom p(t) in the head (step 5 ).
Obviously various strategies can be pursued concerning the order of process-

ing the body atoms and the propagation of bindings. These are referred to as
Sideways Information Passing Strategies (SIPS ), cf. [4]. Any SIPS must guar-
antee an iterative processing of all body atoms in r, and simulates the data flow
occurring in the top-down evaluation of the query, by iteratively processing all
the predicates in r.

Roughly speaking, a SIPS act as follows. Let q be an atom that has not yet
been processed, then its adorned version is created by assuming constants and
variables occurring in already considered atoms to be bound, which is denoted by
v→X q, where X is the set of the variables assumed to be bound which propagate
their values into q, and v is the set of the predicates in which these variables
occur. The formal definition of SIPS is provided below.

Definition 1. Let r be a rule having p in the head, and let pα be an adornment.
A SIPS for r is a labelled bipartite graph 〈V1 ∪ V2, E〉, where V1 is the set of
subset of B(r) ∪ {pα}, V2 ∈ B(r), and E is a set of arcs satisfying the following
conditions:
1. each arc is of the form v →X s, where v ∈ V1 and s ∈ V2, where X is a

non-empty set of variables such that (i) each variable in X appears in s and
in either a bound argument position of pα or a positive body literal of v, and



(ii) for each literal in v there exists a sequence of literals v = l0, l1, ..., lm = s
with li and li+1 sharing at least a common argument.

2. there exists a total order of B(r) ∪ {pα} in which
(a) pα precedes all members of B(r),
(b) any literal which does not appear in the graph follows every literal that

appears in the graph, and
(c) for each arc v →X s, if u ∈ v the u precedes s. 2

It is well know that if we are able to construct a SIPS for a given rule r and
a predicate pα, then we can use its edges for simulating the data flow from the
head to the body of a rule, and, hence, for deriving the adornment of the rule,
which is, in fact, performed in the step 6.

Example 5. Consider the rule path(X, Y) :- path(X, Z), path(Z, Y). together
with query path(1, 5)?. Then, the adornment of the query predicate,
i.e., pathbb(1, 5), passes its binding information to path(X, Z) through
pathbb(X, Y) →{X} path(X, Z), which causes the generation of the adorned pred-
icate pathbf(X, Z). Then, we apply {pathbb(X, Y), pathbf(X, Z)} →{X,Y,Z}
path(Z, Y), generating pathbb(Z, Y). The resulting adorned rule is
pathbb(X, Y) :- pathbf(X, Z), pathbb(Z, Y). 2

We point out that, for each rule, it is possible to derive different SIPS, asso-
ciated to all the possible permutations of the atoms appearing in the body. The
choosing of a strategy does not matter in the case of positive programs, but it
represents a serious issue in the case of Datalog∨A programs, as shown in the
following section.

3.2 Binding Propagation in Datalog∨A Programs

Aggregate Atoms. Let us first consider the binding propagation in the pres-
ence of aggregate atoms. We recall that an aggregate atom has the form
Lg ≤ f{V ars : Conj} ≤ Ug, where V ars are variables local w.r.t. the func-
tion f , while Conj is a conjunction of literals. All the variables occurring in
predicates of Conjs that are not in V ars are said global variables.

Since Conjs might contain some variables that are used into other predicates
of the rule, we can exploit these variables for propagating the binding into the
aggregate atom, too. Then, in the adornment step, literals in Conj can be treated
as they were part of the rule; nonetheless some further attention is needed for
ensuring the correctness of the SIPS implemented. In fact, literals in Conj have
not to be used for propagating bindings to other literals, and, hence, they should
be considered at the end of the adornment process. To this aim we extend any
standard SIPS, by introducing the additional constraint of preferring for binding
propagation aggregate atoms only if there are no other atoms to be processed.
Moreover, when only aggregate atoms remain to be processed we prefer the ones
having the maximum number of bound variables.



Example 6. Consider again Example 3. When dominantb is removed from
the stack, we select rule r3 for its adornment. Then, C is the unique
bound variable and might propagate its binding to both sc(C) or to
sc(C2) trough the fact produced by(P, C, C2). However, non-aggregate atoms
are always processed first, and hence dominantb(c), passes its binding in-
formation to sc(C) through dominantb(C) →{C} sc(C). Then, we apply
{scb(C), produced by(P, C, C2)} →{C,C2} sc(C2), generating scb(C2). The result-
ing adorned rule is

r3a
: dominantb(C) :- scb(C), #sum{P : produced by(P, C, C2), scb(C2)} = 0.

and the adorned predicate scb is pushed on the stack S. 2

Disjunctive Programs. Let us now consider the case of disjunctive programs
without aggregate functions. Then, as first observed in [14], while in nondisjunc-
tive programs bindings are propagated only head-to-body, any sound rewriting
for disjunctive programs has to propagate bindings also head-to-head in order
to preserve soundness. Roughly, suppose that a predicate p is relevant for the
query, and a disjunctive rule r contains p(X) in the head. Then, besides propa-
gating the binding from p(X) to the body of r (as in the nondisjunctive case),
a sound rewriting has to propagate the binding also from p(X) to the other
head atoms of r. Consider, for instance, a Datalog∨ program P containing rule
p(X) v q(Y) :- a(X, Y), r(X). and the query p(1)?. Even though the query propa-
gates the binding for the predicate p, in order to correctly answer the query, we
also need to evaluate the truth value of q(Y), which indirectly receives the bind-
ing through the body predicate a(X, Y). For instance, suppose that the program
contains facts a(1, 2), and r(1); then atom q(2) is relevant for query p(1)? (i.e.,
it should belong to the magic set of the query), since the truth of q(2) would
invalidate the derivation of p(1) from the above rule, because of the minimality
of the semantics.

It follows that, while propagating the binding, the head atoms of disjunctive
rules must be all adorned as well. We achieve this by defining an extension of any
non-disjunctive SIPS to the disjunctive case. The constraint for such a disjunctive
SIPS is that head atoms (different from p(t)) cannot provide variable bindings,
they can only receive bindings (similarly to negative literals in standard SIPS).
So they should be processed only once all their variables are bound or do not
occur in yet unprocessed body atoms.6 Moreover they cannot make any of their
free-variables bound.

The function Adorn produces an adorned disjunctive rule from an adorned
predicate and a suitable unadorned rule by employing the refined SIPS, pushing
all newly adorned predicates onto S. Hence, in step 6 the rule ra is of the form

ra : pα(t) v pα1

1 (t1) . . . pαn
n (tn) :- q

β1

1 (s1), . . . , qβm
m (sm).

6 Recall that the safety constraint guarantees that each variable of a head atom also
appears in some positive body-atom.



Example 7. Consider again Example 3. When scb is removed from the stack, we
first select rule r1 and the head predicate sc(C1). Then, the adorned version is

r′1a
: scb(C1) v scb(C2) :- produced by(P, C1, C2).

Next r1 is processed again, this time with head predicate sc(C2), producing

r′′1a
: scb(C2) v scb(C1) :- produced by(P, C1, C2).

and finally, processing r2 we obtain

r2a : scb(C) :- controlled by(C, C1, C2, C3), scb(C1), scb(C2), scb(C3).2

3.3 Generation

The algorithm uses the adorned rule ra for generating and collecting the magic
rules in step 7, which simulate the top-down evaluation scheme. Since ra is in
general a disjunctive rule with aggregate atoms, Generate first produces a non-
disjunctive intermediate rule, say r′a by moving head atoms into the body and
by replacing each aggregate atom, say Lg ≤ f{V ars : Conj} ≤ Ug, by the
conjunction Conj.

Then, for each adorned atom p in the body of an adorned rule r′a, a magic
rule rm is generated such that (i) the head of rm consists of magic(p), and (ii)
the body of rm consists of the magic version of the head atom of r′a, followed by
all of the predicates of r′a which can propagate the binding on p.

Example 8. In the program of Example 6, from the rule r′3, we first derive the
following standard rule

dominantb(C) :- scb(C), produced by(P, C, C2), scb(C2).

and, then, the magic rules

magic scb(C) :- magic dominantb(C), produced by(P, C, C2), stb(C2).
magic scb(C2) :- magic dominantb(C), produced by(P, C, C2), stb(C2).

Similarly, by looking at Example 7, from the rule r′1a
first its non-disjunctive

intermediate rule

scb(C1) :- scb(C2), produced by(P, C1, C2).

is produced, from which the magic rule

magic scb(C2) :- magic scb(C1), produced by(P, C1, C2).

is generated. Similarly, from the rule r′′1a
we obtain

magic scb(C1) :- magic scb(C2), produced by(P, C1, C2).

and finally r2a
gives rise to the following rules

magic scb(C1) :- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C2) :- magic scb(C), controlled by(C, C1, C2, C3).
magic scb(C3) :- magic scb(C), controlled by(C, C1, C2, C3). 2



3.4 Modifications

In step 8 the modified rules are generated and collected. These rules represent the
rewriting of the original program in which the instantiation of body predicates
is limited by the magic predicates. Specifically, the function Modify constructs
a rule of the following form

p(t) v p1(t1) v . . . v pn(tn) :- magic(pα(t)), magic(pα1

1 (t1)), . . . , magic(pαn
n (tn)),

q1(s1), . . . , qm(sm).

Finally, after all the adorned predicates have been processed the algorithm out-
puts the program DMSA(Q,P).

Example 9. In our running example, we derive the following set of modified rules:

r′1m
: sc(C1) v sc(C2) :- magic scb(C1), magic scb(C2), produced by(P, C1, C2).

r′′1m
: sc(C2) v sc(C1) :- magic scb(C2), magic scb(C1), produced by(P, C1, C2).

r2m
: sc(C) :- magic scb(C), controlled by(C, C1, C2, C3), sc(C1), sc(C2), sc(C3).

r3m : dominant(C) :- magic dominantb(C), scb(C),
#sum{P : produced by(P, C, C2), scb(C2)} = 0.

where r′1m
(resp. r′′1m

, r2m , r3m) is derived by adding magic predicates and strip-
ping off adornments for the rule r′1a

(resp. r′′1a
, r2a , r3a). Thus, the optimized

program DMSA(Qsc,Pcs) comprises the above modified rules as well as the magic
rules in Example 8, and the magic seed magic dominantb(c). 2

We conclude the exposition of this algorithm by stressing that the rewriting
computed throughout its application is, in fact, an equivalent rewriting of the
input program, in the sense provided by the following proposition.

Theorem 1 (Soundness of the DMSA Algorithm). Let P be a Datalog∨

program, let Q be a query. Then, DMSA(〈Q,P〉) ≡Q,b P and DMSA(〈Q,P〉) ≡Q,c P
hold.

4 Conclusions

Motivated by the application in data integration settings, we have presented
a technique for the optimization of (partially) bound queries that extends the
Magic-Set method to the case of disjunctive programs with aggregate operators.
The technique has been fully implemented into the DLV system.

We point out that our investigation can be of a great interest in several other
applicative domains. In fact, aggregate functions in logic programming languages
appeared already in the 80s, when their need emerged in deductive databases like
LDL. Currently, they are supported in the Smodels system, besides DLV, and
their importance in knowledge representation tasks is widely recognized, since
they can be simulated only by means of inefficient and unnatural encodings of



the problems. As an example, suppose that a user wants to know if the sum
of the salaries of the employees working in a team exceeds a given budget. To
this end, the user should first order the employees defining a successor relation.
Then she should define a sum predicate, in a recursive way, which computes the
sum of all salaries, and compare its result with the given budget. This approach
has two drawbacks: (1) It is bad from the KR perspective, as the encoding is
not natural at all; (2) It is inefficient, as the (instantiation of the) program is
quadratic (in the cardinality of the input set of employees).

Concerning future work, our objective is to extend the Magic-Set method to
the case of disjunctive programs with constraints and unstratified negation, such
that it can be fruitfully applied on arbitrary DLV programs. We believe that
the framework developed in this paper is general enough to be extended to these
more involved cases.
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Abstract. The paper discusses a formal framework for proving correctness and
completeness of ontologies during its life-cycle. We have adopted our framework
for the development of a case study drawn from the Semantic Web. In particular
we have developed an ontology for content-based retrieval of XML documents in
Peer-to-peer networks.

1 Introduction

Peer-to-peer (P2P) systems [10] have emerged as a promising new paradigm for dis-
tributed computing, as witnessed by the experience with Napster and Gnutella and
by the growing number of research events related to them. Current P2P systems fo-
cus strictly on handling semantic-free, large-granularity requests for objects by iden-
tifier (typical name), which both limits their usability and restricts the techniques that
might be employed to access data. Intelligent agents that exploit ontologies to perform
content-based information retrieval in P2P networks may represent a viable solution to
overcome the limitations of current P2P networks [11,1].

A recent proposal for a semantic, policy-based system for the retrieval of XML
documents in P2P networks comes from [9], where peers are organised into thematic
groups coordinated by a “super-peer agent” that exploits a “group ontology” to set the
concepts managed by the group. The focus of [9] is on the architecture of the system; the
engineering stages that a developer must follow in order to design, build and evaluate
the group ontology are not addressed at all.

Developing an ontology is akin to defining a set of data and their structure for other
programs to use. Problem-solving methods, domain-independent applications, and soft-
ware agents use ontologies and knowledge bases built from ontologies as data. The
engineering stages that an ontology undergoes during its life-cycle include its evalua-
tion with respect to general and domain-dependent requirements. In particular, prov-
ing the ontology completeness and consistency is a very important step to face in or-
der to develop correct, re-usable and maintainable ontologies. From a logical point of
view, completeness is a property associated with combining a procedure for construct-
ing well-formed formulas, a definition of truth that relates to interpretations and models
of logical systems, and a proof procedure that allows new well-formed formulas to be

? Parts of this document appear in [3].



derived from old ones. A logical system is logically complete if every true well-formed
formula can be derived. The other side to logical completeness is consistency. If fal-
sity can be derived, then any well-formed formula can be derived, so trivially all true
well-formed formulas can be derived.

When talking about ontologies, completeness and consistency assume a different
meaning, although the conceptual relation with their logical counterparts is usually re-
spected. While the meaning of consistency w.r.t. ontologies is pretty simple – the on-
tology should not contain conflicting information – there are different definitions of
ontological completeness.

According to Colomb and Weber [2], an information system has thepotentialof
being “ontologically complete” if it matches the social reality of the organisation in
which the system is embedded. The potential for completeness, which is analogous
to logical and computational completeness, has been called “ontological adequacy” by
Guarino [6]. Colomb and Weber propose a set of guidelines for checking the ontological
completeness of information systems. Fox and Grüninger [4] define the “functional
completeness” of an ontology as its ability to represent the information necessary for a
function to perform its task. They also propose a set of theorems that state under which
conditions an ontology is complete [5].

All the authors that deal with the problem of checking the completeness of an ontol-
ogy w.r.t. its requirements, agree that this check should be designed in such a way to be
easily automatised and computationally tractable. In this paper, we provide a notion of
completeness based on [5] but simpler than that, and whose check can be partially au-
tomatised. Both the notion we propose and the framework for proving the completeness
of ontology we have developed are based on computational logic.

We have adopted our framework for the development of a case study drawn from
the Semantic Web, where proving the completeness of an ontology can be crucial for
safety and security reasons.

The structure of the paper is the following: Section 2 introduces the case study
based on [9]. Section 3 introduces some techniques from the literature and then explains
our formal framework for proving completeness of ontologies. Section 4 shows the
development of the case study emphasising the ontology evaluation by means of our
framework. Conclusions follow.

2 The case study: describing and retrieving XML documents

To show how our formal framework for proving the completeness of ontologies works,
we consider a scenario simpler than that for which we need to develop the “real” ontol-
ogy, namely the P2P network described in [9]. There, peers are organised into thematic
groups, each one coordinated by a “super-peer agent”. The super-peer agent provides
an ontology (“group ontology”) that sets the concepts dealt with by the group and es-
tablishes the relationships among them. Each peer can dynamically enter and leave any
group inside the P2P network. When the peer joins a group for the first time, it is re-
quested to provide to the super-peer agent as much information as possible about the
concepts that are dealt with by the documents it is willing to share. This allows the
super-peer agent to know which peers are more likely to deal with which concepts.



When a query is submitted to a peer, the peer forwards it to the super-peer which can
understand the meaning of the terms appearing in the query by exploiting the group on-
tology. Since the super-peer knows which peers deal with which concepts, it identifies
the peers in the group that can contain an answer for the query and forwards the query
only to them, in order to minimise the number of messages exchanged inside the group.

The simplified scenario that we consider involves the development of a system able
to support the automatic classification of XML documents retrieved from the network
(just a binary classification: “is the XML document talking about a given topic or not?”).
In particular the case study faces the development of an ontology for structuring the
knowledge about XML documents talking about movies. In this simplified scenario,
formally demonstrating the completeness of the ontology is not a very critical issue and
we perform this demonstration mainly for illustrative purposes. Nevertheless, there are
many real situations drawn from the Semantic Web domain where this formal proof
mustbe carried out for safety and security reasons.

The knowledge about XML documents talking about movies is based on:

1. the semantics of tags that appear in the XML document, and
2. the XML document structure.

For example, both documents in Table 1 describe a movie, even if they are charac-
terised by different structure and different tags.

<movie> <film>
<title>Title1<title> <title>Title2<title>
<actors><actor>Act1</actor> <actors>Act3, Act4</actors>

<actor>Act2</actor> <director>Dir</director>
</actors> </film>
<directed_by><name>Name</name>

<surname>Surn</surname>
</directed_by>

</movie>

Table 1.Two XML documents dealing with movies

As far as tags are concerned, the first document uses<movie> to refer to a movie,
while the second document uses<film> . In this context, the semantics of “movie”
and “film” is the same. The director is identified by the tag<directed by> in the
first document, and by the tag<director> in the second one. Again, despite to their
syntactic difference, these two tags have the same semantics.

As far as the structure is concerned, the tag<actors> is structured into a list of
<actor> and the tag<directed by> is composed by<name> and<surname>
in the first document, while the corresponding tags in the second document contain
strings.

The prototypical ontology must contain all the information needed to classify XML
documents talking about movies. In particular, it must contain the information that:



– the tags<film> and<movie> , and<director> and<directed by> rep-
resent the same concepts in the movie context;

– <actors> can contain a string or a list of<actor> tags;
– the director, be it identified by<directed by> or by <director> , may con-

tain a string or a structure including<name> and<surname> .

In order to build the ontology, we retrieved a set of existing XML documents deal-
ing with movies from the web and we manually analysed each of them in order to iden-
tify the structural and the semantic rules exemplified above. Some documents we used
for our purposes arehttp://catcode.com/cit041x/assignment4a.html ,
http://www-db.stanford.edu/pub/movies/mains218.xml , andhttp:
//www.flixml.org/flixml/detour.xml .

The purpose was to build an ontology which could tell that a document starting with
the tag<film> or <movie> (and others, that we do not discuss here), and containing
somewhere a tag<director> or <directed by> , possibly with different content,
is likely to talk about movies. Given a new XML document, the ontology should allow
to answer “yes, it talks about movies because it matches the semantic and structural
rules” or “no, it does not talk about movies”.

3 A formal framework for proving completeness of ontologies

Our formal framework is based on the work on TOVE by Grüninger and Fox [5]. TOVE
is a methodology based on experiences in the development of TOVE (Toronto Virtual
Enterprise).

The TOVE approach to ontology development starts with the definition of the mo-
tivating scenarios that arise in the applications. Such scenarios may be presented by in-
dustrial partners as problems which they encounter in their enterprises. The motivating
scenarios often have the form of story problems or examples which are not adequately
addressed by existing ontologies.

Given the motivating scenarios, a set of queries will arise which place demands on
an underlying ontology. These queries can be considered as the requirements that are
in the form of questions that an ontology must be able to answer. These are called the
informal competency questions, since they are not yet expressed in the formal language
of the ontology.

Once informal competency questions have been defined, they should be restated
using some formal language suitable for expressing the ontology terminology. This
activity is carried out manually. The ontology terminology must be able to correctly
and easily represent the objects in the domain of discourse as constants and variables in
the language. Attributes of objects may be defined by unary predicates; relations among
objects may be defined using n-ary predicates. The two languages that Grüninger and
Fox suggest for expressing both the ontology terminology and the formal competency
questions are first-order logic and KIF [13].

In [4], the concepts of competency and completeness of an ontology are informally
stated:



Given a properly instantiated model of an enterprise and an accompanying
theorem prover (perhaps Prolog or a deductive database), the competence of
an ontology is the set of queries that it can answer. [. . . ]
The Functional Completeness of an ontology is determined by its competency,
i.e., the set of queries it can answer with a properly instantiated model. Given
a particular function (application), its enterprise modelling needs can be spec-
ified as a set of queries. If these queries can be “reduced to”1 the set of compe-
tency questions specified for the chosen ontology, then the ontology is sufficient
to meet the modelling needs of the application.

This informal statement corresponds to the formal definition provided by the com-
pleteness theorems discussed in [5]. These theorems have one of the following forms,
whereTontology is the set of axioms in the ontology,Tground is a set of ground literals
(instances),Q is a first-order sentence specifying the query in the competency question,
andΦ is a set of first-order sentences defining the set of conditions under which the
solutions to the problem are complete:

– Tontology ∪ Tground � Φ if and only if Tontology ∪ Tground � Q.
– Tontology ∪ Tground � Φ if and only if Tontology ∪ Tground ∪Q is consistent.
– Tontology ∪ Tground ∪ Φ � Q or Tontology ∪ Tground ∪ Φ � ¬Q.
– All models ofTontology ∪ Tground agree on the extension of some predicateP .

Completeness theorems can also provide a means of determining the extendibility of
an ontology, by making explicit the role that each axiom plays in proving the theorem.
Any extension to the ontology must be able to preserve the completeness theorems.

Starting from Gr̈uninger and Fox’s definitions, and integrating suggestions com-
ing from other methodologies such as EXPLODE [7], “A Guide to Creating your First
Ontology” [12] (in the following identified byOD101 for readability), and Uschold’s
“Unified Method” [14] (in the following identified byUniMeth), we define our guide-
lines for developing a complete ontology. UniMeth embraces TOVE and the Enterprise
methodology [15] in a unique framework. For this reason, in the following we will refer
to UniMeth instead of specifically referring to TOVE.

The engineering stages that an ontology developer should follow according to our
integrated approach, fully discussed in [3], are:

– Domain analysis.This development stage can be faced by answering the questions
that EXPLODE, OD101 and UniMeth suggest, such as which are the expected users
of the methodology and which are the ontology domain and extended purpose.
UniMeth also suggests to identify fairly general scenarios and use them to help
clarify specific uses of the ontology.

– Requirement definition. EXPLODE, OD101 and UniMeth all suggest to iden-
tify the competency questions. Besides competency questions, UniMeth allows the
developer to use other techniques for the extraction of the ontology requirements
such as defining the detailed motivating scenarios, brainstorming and trimming.

1 By reducible, Fox and Grüninger mean that the questions can be re-written using the objects
provided by the chosen ontology.



EXPLODE also suggests to clearly identify the specific constraints from the hard-
ware/software system that come from other modules in the system that interact with
the ontology.

– Informal specification of the ontology.This step can be faced by identifying the
most important terms of the ontology and using an ontology-editing environment
to graphically represent the ontology concepts and the relations among them.

– Formal specification of the ontology.Following UniMeth, in this step we suggest
to use definite Horn Clauses as the formal language for defining the ontology. We
refer to the set of Horn Clauses specifying the ontology asProgrontology.

– Testing, validation, verification. The primary validation technique that all the
methodologies support consists of informally checking the ontology against the
competency questions. By performing this check, it may be realised for example
that some motivating scenarios were not correctly addressed. Previous choices can
then be adjusted and corrected.

– Completeness check.According to UniMeth and to our suggestion for formally
specifying the ontology, the developer should manually restate the informal com-
petency questions as goals (negative Horn clauses) and should demonstrate that for
each competency question restated as a goal,QGoal, there exists a refutation for
Progrontology ∪ QGoal [8]. Obviously, this can be automatised by using any Pro-
log interpreter or compiler to demonstrate that the goalQGoal succeeds if called
within the Prolog programProgrontology. In this sense, the approach to complete-
ness check that we propose is “partially automatised”: once the ontology and the
informal competency questions have been manually restated as Prolog programs
and goals, the completeness check can be performed in a completely automatic
way.

– Other engineering steps.Before the goal of developing an ontology can be con-
sidered achieved, other engineering steps must be faced besides the demonstration
of its completeness. EXPLODE, OD101 and UniMeth suggest to face:
• the development of intermediate prototypes;
• the iterative refinement of previous choices, according to the outcomes of the

completeness check and of the prototype execution;
• the implementation of a machine-readable ontology;
• the meetings with clients to perform an iterative check; and
• the production of documentation on the ontology and on its development pro-

cess.
These steps are not a central issue in this paper, so we will not face them. The reader
can refer to [3] for details.

4 Developing a complete ontology for the retrieval of XML
documents on movies

In this section we discuss the stages – from the domain analysis to the check of the
ontology completeness – that we followed to develop the ontology introduced in Section
2.



– Domain analysis.
Since the ontology under development is just a toy-example, the answers to the
questions suggested by OD101 and UniMeth for analysing the domain are not very
meaningful: there are no expected users of the methodology, the domain is the
one described in Section 2, and the intended purpose of the ontology is to provide
a test-bed for evaluating our approach to completeness check. UniMeth suggests
to identify fairly general scenarios and use them to help clarify specific uses of
the ontology. For example, being able to recognise both documents in Table 1 as
documents dealing with movies is a general motivating scenario for our ontology.

– Requirement definition.
We have identified the following competency questions for our ontology.
1. Competency Question:Should the ontology be able to separate the concepts

related to the document structure from those related to the document seman-
tics?
Expected answer:Yes, it should. This separation is very important because
it will allow re-using the ontology to classify documents in domains different
from movies, only requiring an extension to the ontology concepts related with
the document semantics.

2. Competency Question:What are the syntactic equivalent representations of
the tag “title” in the context of tag “heading”?
Expected answer: The representations of “title” in the context of “heading”
are ‘t’, ‘Title’, ‘title’, ‘TITLE’, ‘movieTitle’, ‘titleMovie’.

3. Competency Question:What is the meaning of the tag “title” in the context
of the tag “heading”?
Expected answer: The meaning is the “title” element (which is different from
the “title” tag).

4. Competency Question:Can the tag “actors” contain either a string or a list of
“actor” tags?
Expected answer: yes, it can.

5. Competency Question:Can the information about the title of the film be an
attribute of the tag “movie”?
Expected answer: yes, it can.

Besides using the competency questions, UniMeth suggests to define the detailed
motivating scenarios that include possible solutions to the problem addressed by the
ontology. A motivating scenario for our ontology is that it must be able to classify
the documents whose fragments are shown in Tables 2 and 3, as well as other doc-
uments that we downloaded fromhttp://www-db.stanford.edu/pub/
movies/ andhttp://catcode.com/cit041x/assignment4a.html ,
as movie documents.
EXPLODE suggests to clearly identify the specific constraints from the hardware/
software system that come from other modules in the system that interact with the
ontology. Our ontology will be used by intelligent agents that help the peers in a
P2P network in deciding which of the XML documents they are willing to share
deal with movies, and which do not. The modules that the ontology will interact
with are those described in [9]. Assuming that all the documents shared by peers
in a P2P network have a common structure is not realistic: peers share documents



<title role="main"> Detour </title>
<releaseyear role="initial"> 1945 </releaseyear>
<language> English </language>
<studio> PRC (Producers Releasing Corporation) </studio>
<cast> <leadcast>

<male id="TN"> T. Neal <role> Al </role> </male>
<female id="AS"> A. Savage <role> Vera </role> </female>

</leadcast>
<othercast> <male> .... </male> ....
</othercast> </cast>

<crew><director>Edgar G. Ulmer</director> ....

Table 2.A fragment ofhttp://www.flixml.org/flixml/detour.xml

<fid> SMg10 </fid>
<t> Bridget Jones’s Diary </t>
<year> 2001 </year>
<dirs> <dir> <dirk> R </dirk><dirn> NancyMeyer </dirn> </dir>

Table 3.A fragment ofhttp://www-db.stanford.edu/pub/movies/mains218.xml

characterised by very different structures and very different tags. An ontology that
tries to conciliate these differences can prove extremely useful in this context. In
order to be used in a real P2P application, our ontology should be extended to deal
with other subjects besides movies (hence, the requirement that the syntactic and
the semantic aspects are clearly separated in the ontology).

– Informal specification of the ontology.
Following OD101, we identified the most important terms of the ontology. For
example, the terms “tag”, “attribute”, “movie”, “title”, “year” must be represented.
Afterwards, we used an ontology-editing environment to graphically represent the
ontology concepts and the relations among them.
Figure 1 represents the hierarchy of concepts that belong to our ontology. The on-
tology was edited using Protéǵe 2.0, a drawing tool developed by the Stanford
University.
Note that semantic aspects are separated from syntactic ones. The former are col-
lected under the general concept “Element”, while the latter are collected under the
“Tag” concept. The relationship between tags and elements is that a tag has a con-
text, which may be the root of the document or another tag, and a meaning, which
is an element.
The hierarchy of concepts alone is not enough informative. In order to make the
ontology useful and complete with respect to its requirements, we had to describe
the internal structure of concepts. For example, Figure 2 shows the attributes of the
concept Movie.

– Formal specification of the ontology.
The ontology graphically represented in Figures 1 and 2 can be also represented
using definite Horn clauses.



Fig. 1.Concept hierarchy

Fig. 2.The attributes of the concept “Movie”



We can represent the hierarchy of concepts in a standard way by means of theisA
relation as shown in Table 4. We adopt a Prolog-like syntax for Horn clauses; text
preceded by one or more “%” is a comment.

%%% THING CONCEPT %%%
isA(tag, thing).
isA(element, thing).

%%% ELEMENT CONCEPT %%%%
isA(movie, element).
isA(title, element).
isA(actor, element).
isA(year, element).
.........

Table 4.Formal specification of the ontology: isA relation

The instances of a concept can be defined by means of aninstanceOf relation
which has an instance of a concept and the concept to which the instance belongs
as its arguments. Instances are represented by the functorinstance plus a set
of arguments which represents the attributes of the instance. For example, tags are
identified by an atom (the tag identifier), another atom (the identifier of the tag con-
text2), an element (the tag meaning) and a list of strings (all the possible syntactic
representations of the tag inside the XML document). As shown by the first clause
of Table 5, an instance of thetitle tag may have anheading context (2nd
argument, this argument must be an instance of a tag), thetitle meaning (3rd ar-
gument; this argument must be an element), and the list of[’t’, ’Title’,
’title’, ’TITLE’, ’movieTitle’, ’titleMovie’] syntactic rep-
resentations (4th argument).
Another instance of thetitle tag may have the same arguments as the previous
one except for the context, which may bemovie (second clause of Table 5). This
means that two XML documents where the tagtitle appears as a sub-element
or an attribute of either theheading tag or themovie tag can be both consid-
ered documents that represent movies. Other examples of instances are included in
Table 5.
Definite Horn clauses can be also used to express consistency constraints on the
structure of the ontology. For example, the clause shown in Table 6 is an axiom
stating that the context of a tag must be a tag and that the semantics of a tag must
be an element.

– Testing, validation, verification.
The primary validation technique that all the methodologies support consists of
checking the ontology against the informal competency questions. One of the com-

2 The tag A is in the context of the tag B if either A is an attribute of B or if it is a sub-element
of B.



%%% TAG TITLE %%%
instanceOf(instance(title, heading, title,
[’t’, ’Title’, ’title’, ’TITLE’,
’movieTitle’, ’titleMovie’]), tag).

instanceOf(instance(title, movie, title,
[’t’, ’Title’, ’title’, ’TITLE’,
’movieTitle’, ’titleMovie’]), tag).

%%% TAG ACTOR %%%
instanceOf(instance(actor, actors, actor,
[’actor’, ’ACTOR’, ’Actor’]), tag).

%%% TAG ACTORS %%%
instanceOf(instance(actors, credits, actor,
[’actors’, ’ACTOR’, ’Actor’, ’cast’, ’Cast’, ’CAST’]), tag).

.......

Table 5.Formal specification of the ontology:instanceOf relation

instanceOf(instance
(TagId, TagContext,

TagSemantics, TagSyntax),
tag) :-

instanceOf(instance(TagContext, _, _, _), tag),
isA(TagSemantics, element).

Table 6.Formal specification of the ontology: consistency axioms



petency questions we identified for the ontology is: “What are the syntactic repre-
sentations of the tagtitle in a document dealing with movies?” The expected an-
swer, based on the set of real XML documents we used as our training set, is: “The
syntactic representations of the tagtitle are: movieTitle , titleMovie ,
t , Title , TITLE .” Figure 3 shows that all these representations are considered
by the ontology. By checking the ontology, we realised that some motivating sce-

Fig. 3.One instance of the ontology

narios were not correctly addressed. In particular, the ontology did not include the
information thatdirn may be used as an alternative syntactic representation of
the concept ofdirector , which is indeed necessary to correctly classify the doc-
ument in Table 3. Thanks to this testing, verification and validation stage we got
feedback useful to refine the definition of the ontology.

– Completeness check.

The last ontology development stage that we take under consideration in this paper
is the completeness check. In order to face this stage, we restate all the informal
competency questions as negative Horn clauses. Since we are going to use a Prolog
interpreter to check whether or not these goals can be demonstrated starting from
the Prolog programProgrontology partly shown in Tables 4, 5, and 6, we take
advantage of standard Prolog predicates to express conditions such asX is not a
variable(nonvar(X) ) andX cannot be unified with Y(X \= Y). An underscore
( ) is used for unnamed variables for which no binding is required.



Below, we show how each competency question introduced in the “Requirement
definition” stage can be expressed as a negative Horn clauseQGoal, and which
answer is computed by the Sicstus Prolog interpreter forProgrontology ∪QGoal.
It is easy to see that the answers we got are consistent with the answers we ex-
pected, thus demonstrating the completeness of our ontology with respect to its
requirements. By issuing a “; ” command to the Sicstus Prolog interpreter after it
returns one unification for the goal variables we force the interpreter to look for
more answers. Ano means that no more answers were found.
1. Competency Question:Should the ontology be able to separate the concepts

related to the document structure from those related to the document seman-
tics?
Corresponding negative Horn clause:
:- isA(tag, thing), isA(element, thing).
Answer provided by the Sicstus Prolog interpreter:
yes

2. Competency Question:What are the syntactic representations of tag “title” in
the context of tag “heading”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, , , SyntRepr), tag).
Answer provided by the Sicstus Prolog interpreter:
SyntRepr = [t, ’Title’, title, ’TITLE’ , movieTitle,
titleMovie] ? ;
SyntRepr = [t, ’Title’, title, ’TITLE’, movieTitle,
titleMovie] ? ;
no
Here two answers are provided: one for the case the tag “title” is in the context
of the tag “heading”, and one for the case it is in the context of the tag “movie”.

3. Competency Question:What is the meaning of the tag “title” in the context
of the tag “heading”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, heading, Meaning, ),
tag).
Answer provided by the Sicstus Prolog interpreter:
Meaning = title ? ;
no

4. Competency Question:Can the tag “actors” contain either a string or a list of
“actor” tags?
Corresponding negative Horn clause:
:- instanceOf(instance(actor, actors, actor, ), tag),
instanceOf(instance(actors, , actor, ), tag).
Answer provided by the Sicstus Prolog interpreter:
yes

5. Competency Question:Can the information about the title of the film be an
attribute of the tag “movie”?
Corresponding negative Horn clause:
:- instanceOf(instance(title, movie, , ), tag).



Answer provided by the Sicstus Prolog interpreter:
yes

In this way we have demonstrated that our ontology is able to answer all the compe-
tency questions, moreover these answers are consistent with the XML documents
retrieved from the web and used as motivating scenario during the development of
the ontology.

5 Conclusions and future directions

In this paper we have outlined a methodology for developing ontologies which takes in-
spiration from three existing methodologies, namely OD101, UniMeth and EXPLODE.
In particular, we have concentrated our efforts in the stage of checking the ontology
completeness. Consistently with the existing literature on the topic [5,4], we suggest
that the ontology developer performs the completeness check by formally defining the
ontology as a set of definite Horn clauses (a Prolog program) and by stating the com-
petency questions as negative Horn clauses (Prolog goals). The developer should then
check that, for each competency question restated as a negative Horn clause, a refuta-
tion exists for the defined ontology and the competency question. From a practical point
of view, this check can be carried out by means of any Prolog interpreter. We have used
an example taken from the Semantic Web domain to illustrate our approach.

The main future direction of our work consists of the extension of the ontology
for representing and retrieving XML documents in order to cope with other domains
besides to “movie” one. The integration of such extended ontology into a prototypical
peer-to-peer network implementing the ideas of [9] will demonstrate the suitability of
our approach in a real scenario.
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Abstract This paper describes a prototypical system supporting the
entire classification process: document storage and organization, pre-
processing, ontology construction and classification. Document classi-
fication relies on two basic ideas: first, using ontologies for the formal
representation of the domain knowledge; second, using a logic language
(an extension of Datalog by aggregate functions that we call Datalogf )
as the categorization rule language. Classifying a document w.r.t. an on-
tology means associating it with one or more concepts of the ontology.
Using Datalogf provides the system with a natural and powerful tool for
capturing the semantics provided by the domain ontology and describing
complex patterns that are to be satisfied by (pre-processed) documents.
The combined use of ontologies and Datalogf allows us to perform a
high-precision document classification.

1 Introduction

Managing the huge amount of textual documents available on the web and the
intranets has become an important problem of knowledge management. For this
reason, modern Knowledge Management Systems need for effective mechanisms
to classify information and knowledge embedded in textual documents [1,2].
A number of classification approaches have been so far proposed, such as those
based on machine learning [3] and those based on clustering techniques using
the vector space model [4,5,6].
In this paper we describe a prototypical classification system which relies on two
basic ideas: first, using ontologies for the formal representation of the domain
knowledge and, second, using a logic language as the categorization rule lan-
guage.
An ontology is a formal representation of an application domain [7,8]. In the
context of a classification process, an ontology is intended to provide the spe-
cific knowledge concerning the universe of discourse (categorization based on the
domain context). Classifying a document w.r.t. a given ontology means associ-
ating it with one or more concepts of the ontology. To this end, each concept
is equipped with a set of logic rules that describe features of a document that
may relate to the given concept. The logic language we use in our system is an
extension of Datalog [9] with aggregate functions [10]. Throughout this paper



we refer to this language as Datalogf . The advantage of using Datalogf as the
categorization rule language is twofold: first, we can exploit its expressive power
to capture the domain semantics provided by the ontology and describe com-
plex patterns that are to be satisfied by documents; second, the encoding of such
patterns is very concise, simple, and elegant. We notice that others rule-based
techniques have been proposed by several authors, but they are mainly devoted
to the resolution of linguistic problems, such as the disambiguation of terms for
the reduction of the vector dimensions [11], or for the improvement of the results
of the classification task [3].
The execution of Datalogf programs is carried out by the DLV system [12], which
is part of our categorization engine. DLV is a well-known reasoning system which
supports a completely declarative style of programming based on a bottom-up
evaluation of the stable model semantics of disjunctive logic programs.

The paper is organized as follows. In Section 2 we provide an overview of
the system. In Section 3 we describe the ontology management. In Section 4 we
discuss the pre-processing phase and in Section 5 we present our classification
technique based on Datalogf . Finally, we give our conclusions.

2 A system overview

The prototype is intended as a corporate classification system supporting the
entire process life-cycle: document storage and organization, ontology construc-
tion, pre-processing and classification. It has been developed as a Web appli-
cation based jsp-pages on the client side. A sketch of its architecture is shown
in figure 1. In the following sections we shall focus our attention on ontology
management, pre-processing and classification.

3 Ontology Management

Ontologies in our system provide the knowledge needed for a high-precision
classification. The ontology specification language supports the following basic
constructs: Concepts, Attributes, Properties (attribute values), Taxonomic (is-
a and part-of) and Non-Taxonomic binary associations, Association cardinality
constraints, Concept Instances, Links (association instances), Synonyms. The
creation of an ontology is supported by the Ontology Editor which provides a
powerful visual interface based on a graph representation.

Example 1. KIMOS is an ontology developed within Exeura (www.exeura.it)
with the purpose of classifying all company’s software resources and the respec-
tive documentation. A fragment of KIMOS is given in figure 2. Here, the central
concept is ”Software” which is related to the other concepts by both taxonomic
and non-taxonomic relations. For an instance, the edge connecting ”Software”
with ”Language” represents the (many-to-many) relation ”developed-in”, while
the one between ”Software” to ”OS Compatible” represents the relation ”runs-
on”; the concept ”Software” is subdivided into a number of sub-concepts that
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Figure 1. The System Architecture

group the different instances of ”Software” into the appropriate categories. In
figure we have reported only the concept ”DB” that represents the class of soft-
wares for databases. This concept is related to ”Software” by an is-a relation
and it is classified into ”DBMS” and ”DB Tool”. In turn, ”DBMS” is classified
as either ”Relational DBMS” or ”Others” (i.e., DBMS of different types). An
instance of ”Relational DBMS” is ”MySQL” which is related to ”Unix-C” (an
instance of ”OS Compatible”) by the link ”runs-on”. 2

Once created, the user can navigate the ontology using the Ontology Browser
which offers the following basic facilities:

– for a given concept, the user can easily explore its sub-concepts or, viceversa,
collapse the underlying hierarchies

– the user can select the relationships whereby moving away from a given
concept

– the user can filters the (possibly large) list of instances of a given concept.

Internally, an ontology is stored as a set of facts. As we will see in section 5,
these facts represent an input to categorization programs.

Example 2. The internal representation of KIMOS consists of facts representing:

– concepts, e.g., concept(DB);
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Figure 2. The KIMOS Ontology

– attributes, each identified by an Id, a Data-Type and the Id of the concept
which belongs to; for instance, attribute(size-MB,real,Software) represents
the attribute ”size-MB”, of type real, of the concept ”Software”;

– Properties (i.e., attribute instances) each characterized by an attribute name
and a value; for instance, property(size-MB,1.35);

– Taxonomic relationships of the form is-a(DB,Software);
– Non-taxonomic relationships such as association(runs-on,Software,OS Com-

patible) which represents the relation ”runs-on” between ”Software” and ”OS
Compatible”; we represent also the inverse inverse-of(runs-on, supports);

– association cardinality constraints, e.g., cardinality(runs-on, ”> 1”) and car-
dinality(supports, ”> 1”);

– Link associations (i.e., binary association between instances), e.g., link(runs-
on, MySql ,Unix-C);

– Concept Instances such as instance-of(Relational DBMS,MySql);
– Synonyms such as synonym(Database,DB).

2

4 Pre-processing

The aim of the Pre-Processing step is to obtain a machine-readable represen-
tation of textual documents [13]. This is done by annotating documents with
meta-textual information obtained by a linguistic and structural analysis.
The Pre-Processor module supports the following tasks:

– Pre-Analysis, based on three main activities: Document Normalization, Struc-
tural Analysis and Tokenization.



– Linguistic Analysis, based on the following steps:
• Lexical Analysis: for each token, the morpho-syntactical features are

obtained (the stem and the Part of Speech - PoS). The PoS Tagging
step is based on a variant of the Brill Tagger (a rule-based Pos-Tagger
[14]).

• Quantitative Analysis which provides, for a given document, information
about the number of different tokens and stems as well as the absolute
frequency for each token and stem.

The output of the Pre-Processing phase is a set of facts representing the
relevant information about the processed document. As we shall see in section
5, these facts represent an input to our categorization programs.

Example 3. Consider, for example, a textual document about databases, with
247 different tokens, and suppose that the third paragraph of this document
contains the following fragment of text: ”... A database is a structured.... ”.
The representation of this paragraph is like this:
...
word(57,’a’,’a’,’at’).
word(58,’database’,’databas’,’nn’).
word(59,’is’,’is’,’bez’).
word(60,’a’,’a’,’at’).
word(61,’structured’,’structur’,’vbn’).
bold(58).
par(3,57,148).
tokenFrequency(’database’,13).
stemFrequency(’databas’,16).
numberOfTokens(247).
numberOfStems(218). 2

5 Document Classification

The basic idea is that of using logic programs to recognize concepts within texts.
Logic rules, indeed, provide a natural and powerful way to describe features of
document contents that may relate to concepts. To this end, we use the logic
language Datalogf [10], an extension of Datalog by aggregate functions. The
module of our system which supports the classification process is the Classifi-
cation Engine which relies on DLV system [12] for the bottom-up evaluation of
Datalogf programs.

5.1 The Datalogf language

We call Datalogf the logic language obtained by extending Datalog [9] by ag-
gregate functions. A function has the form f(V ars : Conj) where f is the
name (count, sum, min, max, sum) and V ars a set of variables occurring in
the conjunction Conj. Intuitively the expression V ars : Conj represents the



set of values assumed by the variables in V ars making Conj true. An aggre-
gate atom is an expression of the type Lg ≤ f(V ars : Conj) ≤ Ug where Lg
and Ug are positive integer constants or variables called guards. For instance,
count{V : a(V )} < value is an aggregate atom whose informal meaning is: the
number of ground instances of a(V ) must be less than value. A Datalogf pro-
gram is a logic program in which aggregate literals can occur in the body of
rules. Rules with aggregate atoms are required to be safe [10]. It is worth notic-
ing that the result of an aggregate function can be saved by an assignment. For
instance in the following rule h(X) : −X = #count{V : a(V )}, all the ground
instances of a(V ) are counted up and the value of count is assigned to X.

5.2 Categorization programs

By combining the expressive power of Datalog with that of aggregate functions,
Datalogfprovides a natural and powerful tool for describing categorization rules
within our system. A categorization program relies on a number of predefined
predicates, that are of two types:

1. Pre-processing predicates representing information generated by the pre-
processing phase; examples of such predicates are:

word(Id, Token, Stem,PoS)
title(Id, Token, Stem,PoS)

where Id represents the position of Token within the text, Stem is the stem
of the token and PoS its Part-of-Speech, and

tokenFrequency(Token, Number)
which represents the number of times Token occurs in the text.

2. Ontology predicates representing the domain ontology; examples of this kind
of predicates are the following: instance of(I, C) (I is instance of the concept
C), synonym(C1, C2), isa(C1, C2), part of(C1, C2), association(A,C1, C2),
etc..

In addition, we use the predicate relevant(D, C) to state that document D is
relevant for concept C.
Now, we equip each concept C of a given ontology with a set of Datalogf rules,
the categorization program PC of C, used to recognize C within a given document
D. The set of facts of PC consists of the facts representing the domain ontology
(see Section 3) as well as those representing the pre-processed document (see
Section 4). The rules of PC represent conditions that are to be satisfied in order
D be considered relevant for C.

Example 4. We next provide an incremental construction of a categorization pro-
gram associated with the concept ”DB” of the KIMOS ontology (see example 1).

Rules looking for keyword. We start with the following simple rules looking
for the keyword ”DB”:



r0: t0 : −title( , ”DB”, , ).

r1: t1 : −tokenFrequency(”DB”, F ), F > a.

In rule r0 above, the predicate t0 is true if ”DB” occurs in the title, while
t1 in r1 is true if the frequency F of the token ”DB” is greater than a given
constant a.
We can now refine our keyword search by exploiting synonyms; for instance, we
can restate r0 as

r0: t0 : −title( , X, , ), synonym(X, ”DB”).

and replace r1 by the following two rules:

r2: t2(X, F ) : −synonym(X, ”DB”), word( , X, , ), tokenFrequency(X,F ).

r3: t3 :- F1 = #sum{F,X : t1(F,X)}, F1 > a.

Rule r2 above ”evaluates”, for the concept ”DB” and each of its synonyms,
the respective frequency F ; rule r3, in turn, determines the total number F1 of
times the concept ”DB” and each of its synonyms appears in the text (this is
performed by the aggregate function sum).

Rules looking for terms. Using the next rules we look for the term ”structured
data” within the document:

r4 : t4(I) :- word(I, ”structured”, , ), word(J, ”data”, , ), J = I + 1.

r5 : t5(F ) :- F = #count{I : t5(I)}.

We may relax the above condition, requiring the words ”structured” and ”data”
to be found, in the specified order, within a distance of at most 5 words inside
the same paragraph:

r6 : t6(I) :- word(I, ”structured”, , ), word(J, ”data”, , ), J > I,
L = J − I, L <= 5, sameParagraph(I, J).

r7: sameParagraph(I, J) :- par(Id, Init, F in), I >= Init, J <= Fin.

r8 : t8(F ) :- F = #count{I : t7(I)}.

Rule r8 above counts the number of times the searched term occurs in the same
paragraph.

Rules matching expressions. Next we write rules to recognize, within a para-



graph, an expression of the following type: a verb with stem ”store”, followed
by a name having ”tabl” or ”relat” as its stem (i.e., we are trying to recognize
sentences such as ”data are stored within tables...”).

r9 : t9(I) :- word(I, , ”store”, ”vb”), word(J, , ”tabl”, ), sameParagraph(I, J).

r10 : t10(I) :- word(I, , ”store”, ”vb”), word(J, , ”relat”, ), sameParagraph(I, J).

r11 : t11(F ) :- F = #count{I : t9(I)}.

Rules exploiting the ontology knowledge. We can improve the precision of the
classification process by using the underlying domain ontology. For instance, if
a document talks about some specific instances of the concept ”db”, such as
Oracle, Access, etc. (note that an instance of ”relational DBMS”, which is a
sub-concept of ”db”, is also an instance of ”DB”), it is quite obvious considering
the document as pertinent to the concept ”db”. So, we write the following rules:

r12 : t12(I, F ) :- instance of(”DB”, I), tokenFrequency(I, F ).

r13: t13(N) :- N = #count{I : t11(I, )}.

r14 : t14(F ) :- F = #sum{F1, I : t11(I, F1)}.

r15 : t15(T ) :- T = #count{I : instance of(I, ”DB”)}.

where: r12 provides the number of occurrences of each instance of ”db” in the
document; r13 counts the number of distinct instances of ”db”; r14 provides the
total number of instances (duplicated included) of ”db” and r15 gives the num-
ber of instances of ”db” in the ontology. Finally, the rule

r16 : t16(K, L) :- t13(N), t14(F ), t15(T ),K = N/T, L = F/N.

expresses a measure, in terms of K (the fraction of the instances of ”db” that
are cited within the document) and L (which takes into account the fact that
each instance might be cited several times), of the presence into the document
of words representing instances of the concept ”db”. 2

As we have mentioned before, we use DLV as the categorization engine in
our system. DLV is a very powerful system for the bottom-up evaluation of
disjunctive logic programs extended by a number of constructs (Datalogf is a
subset of the DLV language). It is used in many real applications where efficiency
is a strong constraint.
The evaluation strategy of categorization programs is based on the following two
observations:

– there are documents that are straightforward to classify, i.e., for which simple
keyword-based rules (like r1 − r2 above) are enough; suppose, for instance,



that the word ”db” is contained in the title or it occurs frequently throughout
the text; in such cases we can confidently classify the document at hand
as relevant for the given concept only by using few simple rules (like r1

and r2) and forgetting of the remaining ones occurring in the rest of the
categorization program;

– a deeper semantic analysis is needed only in case of documents that are
difficult to classify because concepts do not appear explicitly; to this end,
the execution of more complex rules (for instance, rules trying to match
complex expressions) is required.

Now, the implementation of the above evaluation strategy proceeds, roughly
speaking, as follows: we structure the categorization program PC , associated to
the concept C, into a number of components, say, c1, ..., cn. Each component
groups rules performing some specific retrieval task, such as word-based search,
term matching, etc., of increasing semantic complexity – that is, each component
is capable to recognize texts that are possibly inaccessible to the ”previous” ones.
Given a document D, the evaluation of PC (w.r.t. D) starts from c1 (the ”lowest”
component) and, as soon as a component ci, 1 ≤ i ≤ n, is ”satisfied” (by D),
the process stops successfully – i.e., D is recognized to be relevant for C and the
fact relevant(D,C) is stated to be true; if no such a component is found, the
classification task fails.

5.3 Ontology-driven Classification Strategy

Let D be a document that has to be classified w.r.t. an ontology O. As we have
seen in the previous subsection, each concept C of O is equipped with a suitable
categorization program PC whose evaluation determines whether D is relevant
for C or not. An exhaustive approach would require to ”prove” D w.r.t. the
categorization program of each concept of O, and this could result in a rather
heavy computation. However, we can drastically reduce the ”search space” if we
adopt an ontology-driven classification technique which exploits the presence of
taxonomic hierarchies. This technique is based on the principle that if a docu-
ment is relevant for a concept then it is so for all of its ancestors within an is-a
taxonomy (unless the contrary is explicitly stated). This principle is expressed
by the following recursive rule:

relevant(D, X) : −relevant(D, Y ), isa(Y, X)

As an example, if a document is relevant for the concept ”Relational DBMS” of
the KIMOS ontology, then it is so for the concepts ”DBMS”, ”DB” and ”Soft-
ware”. If we want to exclude the latter, we simply write:

relevant(D, X) : −relevant(D, Y ), isa(Y, X), X <> ”Software”.

The above inheritance principle suggests us a classification strategy where con-
cepts within a sub-class hierarchy are processed in a bottom-up fashion. As soon



as D is found to be relevant for a concept C in the hierarchy H, it is not any
more processed w.r.t. any of the ancestors of C in H. The relevance association
of D to the ancestors of C is automatically performed by the above recursive
rule.

6 Conclusion

We have presented a prototypical text classification system which relies on a
combined use of ontologies and logic programming. The former are used to rep-
resent the domain knowledge, the latter to recognize concepts within texts. To
this end, each concept of an ontology is equipped with a categorization pro-
gram, i.e., a logic program written in Datalogf – an extension of Datalog by
aggregate functions. A categorization program is designed to discover complex
patterns within texts using the knowledge provided by the underlying ontology.
The classification process is ontology-driven and, as a result, provides a relation-
ship between concepts and documents. The categorization engine is based on
the logic programming system DLV.
So far, we have carried out a number of preliminary tests which seem to be very
promising in terms of efficiency even on large documents. For an instance, we can
classify a document of over 70000 words w.r.t. a Kimos Ontology (7 concepts)
in 0.51 seconds. Further experimentation is currently being performed.
Current work is concerned with the extension of Datalogf with external func-
tions for the efficient execution of tasks such as stemming, substring matching,
etc.
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Abstract. Large databases obtained by the data integration of different source
databases can be incomplete and inconsistent in many ways. The classical logic
is not the appropriate formalism for reasoning about inconsistent databases. Cer-
tain local inconsistencies should not be allowed to significantly alter the intended
meaning of such logic programs. The variety of semantical approaches that have
been invented for logic programs is quite broad. In particular we are interested
for many-valued logics with negation, based on bilattices. We present a 2-valued
logic, based on an Ontological Encapsulation of Many-Valued Logic Program-
ming, which overcome some drawbacks of the previous research approaches in
many-valued logic programming. We defined a Model theory for Herbrand in-
terpretations of ontologically encapsulated logic programs, based on a semantic
reflection of the epistemic many-valued logic.

1 Introduction to Many-valued logic programming

Semantics of logic programs are generally based on a classical 2-valued logic by means
of stable models, [1,2]. Under these circumstances not every program has a stable
model. Three-valued, or partial model semantics had an extensive development for logic
programs generally, [3,4]. Przymusinski extended the notion of stable model to allow
3-valued, or partial, stable models, [5], and showed every program has at least one par-
tial stable model, and the well-founded model is the smallest among them, [6]. Once
one has made the transition from classical to partial models allowingincompleteinfor-
mation, it is a small step to also allow models admittinginconsistentinformation. Doing
so provides a natural framework for the semantic understanding of logic programs that
are distributed over several sites, with possibly conflicting information coming from
different places. As classical logic semantics decrees that inconsistent theories have no
models, classical logic is not the appropriate formalism for reasoning about inconsistent
databases: certain ”localizable” inconsistences should not be allowed to significantly al-
ter the intended meaning of such databases.
So far, research in many-valued logic programming has proceeded along different di-
rections:Signedlogics [7,8] andAnnotatedlogic programming [9,10] which can be
embedded into the first,Bilattice-basedlogics, [11,12], andQuantitative rule-sets,
[13,14]. Earlier studies of these approaches quickly identified various distinctions be-
tween these frameworks. For example, one of the key insights behind bilattices was
the interplay between the truth values assigned to sentences and the (non classic) no-
tion of implication in the language under considerations. Thus, rules (implications) had



weights (or truth values) associated with them as a whole. The problem was to study
how truth values should be propagated ”across” implications. Annotated logics, on the
other hand, appeared to associate truth values with each component of an implication
rather than the implication as a whole. Roughly, based on the way in which uncertainty
is associated with facts and rules of a program, these frameworks can be classified into
implication based(IB) andannotation based(AB).
In the IB approach a rule is of the formA←α B1, .., Bn , which says that the certainty
associated with the implication isα. Computationally, given an assignmentI of logical
values to theBis, the logical value ofA is computed by taking the ”conjunction” of
logical valuesI(Bi) and then somehow ”propagating” it to the rule headA.
In the AB approach a rule is of the formA : f(β1, .., βn) ← B1 : β1, ..., Bn : βn ,
which asserts ”the certainty of the atomA is least (or is in)f(β1, .., βn), whenever the
certainty of the atomBi is at least (or is in)βi, 1 ≤ i ≤ n”, wheref is an n-ary com-
putable function andβi is either constant or a variable ranging over many-valued logic
values.
The comparison in [15] shows:
1- while the way implication is treated on the AB approach is closer to the classical
logic, the way rules are fired in the IB approach has definite intuitive appeal.
2- the AB approach is strictly more expressive than IB. The down side is that query
processing in the AB approach is more complicated, e.g. the fixpoint operator is not
continuous in general, while it is in the IB approaches.
3- the Fitting fixpoint semantics for logic programs, based exclusively on a bilattice-
algebra operators, suffer two drawbacks: the lack of the notion of tautology (bilattice
negation operator is anepistemicnegation) leads to difficulties in defining proof proce-
dures and to the need for additional complex truth-related notions as ”formula closure”;
there is an unpleasant asymmetry in the semantics of implication (which is strictly 2-
valued) w.r.t. all other bilattice operators (which produce any truth value from the bi-
lattice) - it is a sign that strict bilattice language is not enough expressive for logic
programming, and we need some reacher (different) syntax for logical programming.
From the above points, it is believed that IB approach is easier to use and is more
amenable for efficient implementations, but also annotated syntax (but with IB seman-
tics) is useful to overcome two drawbacks above: the syntax of new encapsulated many-
valued logic (in some sense ’meta’-logic for a many-valued bilattice logic) will be 2-
valued and can be syntactically seen as a kind of very simple annotated syntax. Thus
the implication (and classical negation also), not present in a bilattice algebra operators,
will have a natural semantic interpretation in this enriched framework.
In [10] it is shown how the Fitting’s 3-valued bilattice logic can be embedded into
an Annotated Logic Programming which is computationaly very complex. The aim of
this work is (1) to extend the Fittihg’s fixpoint semantics to deal with inconsistencies
also, and (2) to define the notion of a model for such many-valued logic programs by
some kind of ’minimal’ (more simple and less computationally expensive than APC)
logic. In order to respond to these questions we (1) introducebuilt-in predicatesin the
heads of clauses, and (2)encapsulatethe ’object’ epistemic many-valued logic pro-
grams into 2-valued ’meta’ ontological logic programs. We argue that such logic will
be good framework for supporting the data integration systems with key and foreign



key integrity constraints with incomplete and inconsistent source databases, with less
computation complexity for certain answers to conjunctive queries [16,17].
The plan of this paper is the following: Section 2 introduce the Belnap’s bilattice con-
cepts and the particular 4-valued version,B4, used in this paper. In Section 3 is pre-
sented an inference framework for a 4-valued bilattice based logic, particularly for
derivation ofpossiblefacts (w.r.t. true and false facts as in 3-valued strong Kleene’s
logic) and is given a representation theorem for this 4-valued logic. In Section 4 is
developed conceptual framework for encapsulation of this epistemic ’object’ 4-valued
logic into an ontological ’meta’ 2-valued logic by mean ofsemantic reflection. More-
over, is given the definition for a 4-valued implication useful for inconsistent databases
and an example where inconsistency is managed by clauses with built-in predicate in a
head. Finally, Section 5 defines the syntax and themodel theoreticHerbrand semantics
for the ontological encapsulation of many-valued logic programs.

2 Many-valued epistemic logic based on a Bilattice

In [18], Belnap introduced a logic intended to deal in a useful way with inconsis-
tent or incomplete information. It is the simplest example of a non-trivial bilattice and
it illustrates many of the basic ideas concerning them. We denote the four values as
{t, f,ᵀ,⊥}, wheret is true, f is false, ᵀ is inconsistent (both true and false) orpos-
sible, and⊥ is unknown. As Belnap observed, these values can be given two natural
orders:truth order,≤t, andknowledgeorder,≤k, such thatf ≤t ᵀ ≤t t, f ≤t⊥≤t t,
and⊥≤k f ≤k ᵀ, ⊥≤k t ≤k ᵀ. This two orderings define corresponding equivalences
=t and=k. Thus any two membersα, β in a bilattice are equal,α = β, if and only if
(shortly ’iff’ ) α =t β andα =k β.
Meet and join operators under≤t are denoted∧ and∨; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join under≤k are denoted
⊗ (consensus, because it produces the most information that two truth values can agree
on) and⊕ (gullibility , it accepts anything it’s told), such that hold:
f ⊗ t =⊥, f ⊕ t = ᵀ, ᵀ∧ ⊥= f andᵀ∨ ⊥= t.
There is a natural notion of truth negation, denoted∼, (reverses the≤t ordering, while
preserving the≤k ordering): switchingf and t, leaving⊥ andᵀ, and corresponding
knowledge negation, denoted− (reverses the≤k ordering, while preserving the≤t or-
dering), switching⊥ andᵀ, leavingf and t. These two kind of negation commute:
− ∼ x =∼ −x for every memberx of a bilattice.
It turns out that the operations∧,∨ and∼, restricted to{f, t,⊥} are exactly those of
Kleene’s strong 3-valued logic. Any bilattice〈B,≤t,≤k〉 is:
1. Interlaced, if each of the operations∧,∨,⊗ and⊕ is monotone with respect to both
orderings (for instance,x ≤t y impliesx⊗z ≤t y⊗z , x ≤k y impliesx∧z ≤k y∧z).
2. Infinitarily interlaced, if it is complete and four infinitary meet and join operations
are monotone with respect to both orderings.
3. Distributive, if all 12 distributive laws connecting∧,∨,⊗ and⊕ are valid.
4. Infinitarily distributive, if it is complete and infinitary, as well as finitary, distributive
laws are valid. (Note that a bilattice iscompleteif all meets and joins exist, w.r.t. both
orderings. We denote infinitary meet and join w.r.t.≤t by

∧
and

∨
, and by

∏
and

∑



for the≤k ordering; for example, the distributive law for⊗ and
∧

may be given by
x⊗

∧
i yi =

∧
i(x⊗ yi)).

A more general information about bilattice may be found in [19]: he also definesexact
members of a bilattice, whenx = −x (they are 2-valued consistent), andconsistent
members, whenx ≤k −x (they are 3-valued consistent), but a specific 4-valued consis-
tence will be analyzed in the following paragraphs.
The Belnap’s 4-valued bilattice is infinitary distributive. In the rest of this paper we de-
note byB4 a special case of the Belnap’s bilattice. In this way we consider thepossible
value as weak true value and not as inconsistent (that is true and false together). We
have more knowledge for ground atom with such value, w.r.t. the true ground atom,
because we know also that if we assign the true value to such atom we may obtain an
inconsistent database.

3 Representation theorem

Ginsberg [11] defined a world-based bilattices, considering a collection of worldsW ,
where by world we mean some possible way of things might be, and where[U, V ] is
a pair of subsets ofW which express truth of some sentencep, with ≤t,≤k truth and
knowledge preorders relatively, as follows:
1.U is a set of worlds wherep is true,V is a set of worlds wherep is false,P = U

⋂
V

is a set wherep is inconsistent (both true and false), andW − (U
⋃
V ) is a set wherep

is unknown.
2. [U, V ] ≤t [U1, V1] iff U ⊆ U1 and V1 ⊆ V
3. [U, V ] ≤k [U1, V1] iff U ⊆ U1 and V ⊆ V1

Such definition is well suited for the 3-valued Kleene logic, but for the 4-valued logic
used to overcome ”localizable” inconsistencies it is not useful, mainly for two follow-
ing reasons:
1. Theinconsistent(both true and false) top knowledge value in the Belnap’s bilattice
can’t be assigned to sentences, otherwise we will obtain an inconsistent logic theory;
because of that consistent logics in this interpretation can have only three remaining
values. Thus we interpret it aspossiblevalue, which will be assigned to mutually incon-
sistent sentences, and we obtain possibility to have consistent 4-valued logic theories in
order to overcome such inconsistencies.
2. Let denote byT = U − P , F = V − P , whereP is a set of worlds wherep has a
possible logic value. Then we obtain that[U, V ] ≤t [U1, V1] also whenT ⊃ T1, which
is in contrast with our intuition. Consequently, we adopt a triple[T, P, F ] of mutually
disjoint subsets ofW to express truth of some sentencep (W − T

⋃
P

⋃
F are worlds

wherep is unknown), with the following definition for their truth and knowledge orders:
2.1 [T, P, F ] ≤t [T1, P1, F1] iff T ⊆ T1 andF1 ⊆ F
2.2 [T, P, F ] ≤k [T1, P1, F1] iff T ⊆ T1, P ⊆ P1 andF ⊆ F1.
Let us try now to rendermore rationalthese two intuitions described above. In order
to obtain a new bilattice abstraction rationality, useful to manage logic programs with
possible ’localizable’ inconsistencies, we need to consider more deeply thefundamental
phenomenain such one framework. In the process of derivation of new facts, for a given
logic program, based on the ’immediate consequence operator’, we have the following



three truth transformations for ground atoms in a Herbrand base of such program:
1. When ground atom pass fromunknownto true logic value, without generating incon-
sistence. Let denote this action by↑1:⊥� t. The preorder of this 2-valued sublattice
of B, L1 = {⊥, t}, defined by the direction of this transformation, ’truth increasing’,
is ≤1 ≡ ≤t. The meet and join operators for this lattice are∧,∨ respectively. It is also
knowledge increasing.
2. When some ground atom, try to pass from unknown to true/false value, generating an
inconsistency, then is applied theinconsistency repairing, that is thetrue value of the
literal of this atom, in a body of a violated clause with built-in predicate, is replaced by
possiblevalue. Let denote this action by↑2: t � ᵀ. The preorder of this 2-valued sub-
lattice ofB, L2 = {t,ᵀ}, defined by the direction of this transformation, ’knowledge
increasing’. The meet and join operators for this lattice, w.r.t. this ordering are⊗,⊕
respectively. Notice that this transformationdoes not changethe truth ordering because
the ground atom pass from unknown to possible value.
3. When ground atom pass fromunknownto falselogic value, without generating incon-
sistence. Let denote this action by↑3:⊥� f . The preorder of this 2-valued sublattice
of B, L3 = {⊥, f}, defined by the direction of this transformation, ’falsehood increas-
ing’ (inverse of ’truth increasing’), is≤3 ≡ ≤−1

t . The meet and join operators for this
lattice are∨,∧ respectively. It is also knowledge increasing.
Thus, any truth transformation in some multi-valued logic theory (program) can be seen
as composition of these three orthogonal dimensional transformations,i.e. by triples (or
multi-actions), [a1, a2, a3], acting on the idle (default) state[⊥, t,⊥]; for instance the
multi-action [ , , ↑3], composed by the singe action↑3, applied to the default state
generates the ”false” state[⊥, t, f ]. The default state[⊥, t,⊥] in this 3-dimensional
space has role as unknown value for single-dimensional bilattice transformations, that
is it is a ”unknown” state. Consequently, we define this space of states by the cartesian
product of single-dimensional lattices,L1 × L2 × L3, composed by triples[x, y, z],
x ∈ L1 = {⊥, t}, y ∈ L2 = {t,ᵀ} andz ∈ L3 = {⊥, f}.

Definition 1. By L1 � L2 � L3 we mean the bilattice< L1 × L2 × L3,≤B
t ,≤B

k >
where, given anyX = [x, y, z], andX1 = [x1, y1, z1]:
1. Considering that the second transformation does not influence the truth ordering,
X ≤B

t X1 if x ≤1 x1 andz ≤3 z1 , i.e., if x ≤t x1 andz ≥t z1
2. Considering that all three transformations are knowledge increasing, we have
X ≤B

k X1 if x ≤k x1 andy ≤k y1 andz ≤k z1
3.X ∧B X1 =def [(x ∧1 x1, y ∧1 y1), z ∧3 z1] = [x ∧ x1, y ∧ y1, z ∨ z1]
4.X ∨B X1 =def [x ∨1 x1, (y ∨3 y1, z ∨3 z1)] = [x ∨ x1, y ∧ y1, z ∧ z1]
5.X ⊗B X1 =def [x⊗ x1, y ⊗ y1, z ⊗ z1]
6.X ⊕B X1 =def [x⊕ x1, y ⊕ y1, z ⊕ z1]

These three bilattice transformations can be formally defined by lattice homomor-
phisms.

Proposition 1 The following three lattice homomorphisms defines the 3-dimensional
truth transformations:
1. Truth dimension, θ1 = ∨ ⊥: (B,∧,∨,⊗,⊕)→ (L1,∧1,∨1,⊗,⊕),
with ∧1 = ∧, ∨1 = ∨. This is a strong positive transformation, which transforms



falsehood into unknown and possibility in truth.
2. Possibility dimension,θ2 = ∨ ∼ ∨ ᵀ : (B,⊗,⊕) → (L2,⊗,⊕). This is a weak
knowledge transformation which transform unknown into possibility.
3. Falsehood dimension,θ3 = ∧ ⊥: (B,∨,∧,⊗,⊕)→ (L3,∧3,∨3,⊗,⊕),
with∧3 = ∨, ∨3 = ∧. This is a strong negative transformation, which transforms truth
into unknown and possibility into falsehood.
We define the following two mappings between Belnap’s and its derived bilattice:
Dimensional partitioning: θ =< θ1, θ2, θ3 >: B → L1 � L2 � L3 and
Collapsing:ϑ : L1 � L2 � L3 → B, such thatϑ(x1, x2, x3) =def (x1 ⊕ x3) ∧ x2.

These three lattice homomorphisms preserves the bilattice structure ofB into the space
of statesL1 � L2 � L3. That is we have that (′ ′ represents no action)
θ(⊥) = [ , , ]([⊥, t,⊥]) = [⊥, t,⊥], unknown state
θ(f) = [ , , ↑3]([⊥, t,⊥]) = [⊥, t, f ], false state
θ(t) = [↑1, , ]([⊥, t,⊥]) = [t, t,⊥], true state
θ(ᵀ) = [↑1, ↑2, ↑3]([⊥, t,⊥]) = [t,ᵀ, f ], possible state.
Notice that the multi-action[↑1, ↑2, ↑3] represents two cases for repairing inconsis-
tencies: first, when unknown value of some ground atom tries to become true (action
↑1) but makes inconsistency, thus is applied also action↑2 to transform it into possible
value; second, when unknown value of some ground atom tries to become false (action
↑3) but makes inconsistency, thus is applied also action↑2 to transform it into possible
value. Notice that the isomorphism between the set of states and the set of multi-actions
{[a1, a2, a3] | a1 ∈ {↑1, }, a2 ∈ {↑2, }, a3 ∈ {↑3, }} defines thesemanticsto the
bilatticeL1 � L2 � L3.

Proposition 2 Let Imθ ⊆ L1 � L2 � L3 be the bilattice obtained by image of Di-
mensional partitioning. It has also unary operators:
Negation, ∼B = θ ∼ ϑ , and conflation, −B = θ − ϑ.

It is easy to verify thatϑ ◦ θ = idB is an identity onB, and thatϑ is surjective with
θ ◦ ϑ = idImθ. The negation∼B preserves knowledge and inverts truth ordering and
∼B∼B X = X; the conflation−B preserves truth and inverts knowledge ordering
and−B −B X = X; and holds the commutativity∼B −B = −B ∼B . ( for example,
∼B −B = θ ∼ ϑθ−ϑ = θ ∼ idB−ϑ = θ ∼ −ϑ = θ− ∼ ϑ = θ−ϑθ ∼ ϑ = −B ∼B).
So, we obtain that, for anyX = [x, y, z], hold ∼B X =def [∼ z, y,∼ x] and
−BX =def [θ1(−z), θ2(−ϑ(X)), θ3(−x)].
Theorem 1. (Representation theorem) IfB is a 4-valued distributive lattice then there
are its distributive sublattices,L1, L2, L3, such thatB is isomorphic to the sublattice
of L1 � L2 � L3 defined by image of Dimensional partitioningImθ . Moreover the
following diagram (on the left) of bilattice homomorphisms commute

L1 � L2 � L3
θϑ- Imθ

'π1×π3 - L1 � L3 L2(possibility)

@
@

@
@

ϑ
R 	�

�
�

�

'3

B

'4

?
(falsehood)L3

�θ3 B

θ2

6

θ1- L1(truth)



where'π1×π3 is a projection isomorphism,'3 is the isomorphism (restriction ofϑ to
the projectionL1�L3) of Fitting’s representation Th. [20] valid for a 3-valued logics,
and'4 is new 4-valued isomorphism (restriction ofϑ to Imθ , and inverse toθ).
If B has negation and conflation operators that commute with each other, they are pre-
served by all isomorphisms of the right commutative triangle.

Proof. It is easy to verify that all arrows are homomorphisms (w.r.t. binary bilattice
operators). The following table represents the correspondence of elements of these bi-
lattices defined by homomorphisms:

Multi− actions L1 � L2 � L3 Imθ L1 � L3 B
[ , , ] [⊥, t,⊥] [⊥, t,⊥] [⊥,⊥] ⊥
[ , ↑2, ] [⊥,ᵀ,⊥]
[ , , ↑3] [⊥, t, f ] [⊥, t, f ] [⊥, f ] f
[ , ↑2, ↑3] [⊥,ᵀ, f ]
[↑1, , ] [t, t,⊥] [t, t,⊥] [t,⊥] t
[↑1, ↑2, ] [t,ᵀ,⊥]
[↑1, ↑2, ↑3] [t,ᵀ, f ] [t,ᵀ, f ] [t, f ] ᵀ
[↑1, , ↑3] [t, t, f ]

Let prove, for example, that the isomorphismθ : B → Imθ preserves negation and
conflation: ∼B θ(x) = θ ∼ ϑθ(x) = θ ∼ idB(x) = θ(∼ x) , and
−Bθ(x) = θ − ϑθ(x) = θ − idB(x) = θ(−x).

4 Semantic reflection of the epistemic logic

We assume that the Herbrand universe isΓU = Γ
⋃
Ω, whereΓ is ordinary domain

of database constants, andΩ is an infinite enumerable set of marked null values,Ω =
{ω0, ω1, ....}, and for a given logic programP composed by a set of predicate and
function symbols,PS , FS respectively, we define a set of all terms,TS , and its subset
of ground termsT0, then atoms are defined as:
AS = {p(c1, .., cn) | p ∈ PS , n = arity(p) and ci ∈ TS}
The Herbrand base,HP , is the set of all ground (i.e., variable free) atoms. A (ordinary)
Herbrand interpretation is a many-valued mappingI : HP → B. If P is a many-valued
logic program with the Herbrand baseHP , then the ordering relations and operations
in a bilatticeB4 are propagated to the function spaceBHP

4 , that is the set of all Herbrand
interpretations (functions),I = vB : HP → B4, as follows:

Definition 2. Ordering relations are defined on the Function spaceBHP
4 pointwise, as

follows: for any two Herbrand interpretationsvB , wB ∈ BHP
4

1. vB ≤t wB if vB(A) ≤t wB(A) for all A ∈ HP .
2. vB ≤k wB if vB(A) ≤k wB(A) for all A ∈ HP .
3.∼ vB is the interpretation such that(∼ vB)(A) =∼ (vB(A)).
4.−vB is the interpretation such that(−vB)(A) = −(vB(A)).

It is straightforward [19] that this makes a function spaceBHP
4 itself a complete infini-

tary distributive bilattice.



One of the key insights behind bilattices [11,12] was the interplay between the truth
values assigned to sentences and the (non classic) notion ofimplication. The problem
was to study how truth values should be propagated ”across” implications. In [21] is
proposed the following IB based approach to the ’object’ 4-valued logic programming,
which extends the definition given for a 3-valued logic programming [5]:

Definition 3. LetPB be the set of built-in predicates. The valuation,vB : HP → B4, is
extended to logic implication of a ground clausep(c)← B , whereB = B1 ∧ ..∧Bn,
as follows:
vB(B → p(c)) = t , iff vB(p(c)) ≥t vB(B) or (vB(B) = ᵀ and p ∈ PB)

Inconsistency acceptance: if p ∈ PB is a built-in predicate, this clause is satisfied also
when vB(p(c)) = f and vB(B) = ᵀ . This principle extends the previous definition
of implication based only on truth ordering.
In order to obtain such many-valued definition, which generalize the 2-valued definition
given above we will consider the conservative extensions of Lukasiewicz’s and Kleene’s
strong 3-valued matrices (where third logic value⊥ is considered as unknown). So we
obtain the following matrix,f← : B × B → B, for implication (α = t andα =⊥ for
Lukasiewicz’s and Kleene’s case, respectively):

→ t ⊥ ᵀ f
t t ⊥ ᵀ f
⊥ t α ᵀ ⊥
ᵀ t t t t
f t t t t

For our purpose we assume the Lukasiewicz’s extension, i.e.α = t, in order to have
a tautologya ← a for any formulaa, and also to guarantee the truth of a clause (im-
plication) p(c) ← B , whenevervB(p(c)) ≥t vB(B) , as used in fixpoint semantics
for ’immediate consequence operators’. Such conservative extensions are based on the
following observation: the problem to study how the truth values should be propagated
”across” implications can be restricted only totrue implications ( in fact we don’t use
implications when are not true, because the ’immediate consequence operator’ derives
new facts only fortrueclauses, i.e. when implication is true).
Example 1: The built-in predicates(ex, =,≤,≥, ..) may be used for integrity con-
straints: letp(x, y) be a predicate and we define the key-constraint for attributes inx by
(y = z) ← p(x, y), p(x, z), where the atomy = z is based on the built-in predicate
′ =′. Let consider a program : p(x, y)← r(x, y) , (y = z)← p(x, y), p(x, z)
wherer is a source database relation with two tuples,(a, b), (a, c), p is a virtual rela-
tion of this database with key constraint, andx, y, z are object variables. The built-in
predicates have the same prefixed extension inall models of a logic program, and that
their ground atoms aretrue or false. If we assume that,r(a, b), r(a, c) are true, then
such facts are mutually inconsistent forp because of key constraint (b = c is false).
Thus, only one of them may be true in any model of this logic program, for example
r(a, b) . So, if we assign the ’possible’ valueTto r(a, c) (or to both of them), we obtain
that the clause(b = c) ← p(a, b), p(a, c), thanks to theinconsistency acceptance, is
satisfied.



EachHerbrand interpretationis a valuation. Valuations can be extended to maps from
the set of all ground (variable free) formulas toB in the following way:

Definition 4. LetPS be the set of all predicate symbols (PB ⊆ PS is a subset of built-
in predicates), e the special (error) singleton, andI : HP → B be a many-valued
Herbrand interpretation. A valuationI determines:
1. A Generalized interpretation mappingI : PS ×

⋃
i≤ω T i

0 → B
⋃
{e}, such that for

anyc = (c1, .., cn) ∈ T n
0 , I(p, c) = I(p(c)) iff arity(p) = n ; e otherwise.

2. A unique valuation map, also denotedvB : L → B, on the set of all ground formulas
L, according to the following conditions:
2.1.vB(∼ X) =∼ vB(X)
2.2.vB(X } Y ) = vB(X) } vB(Y ), where} ∈ {∧,∨,⊗,⊕ ←}
3. A truth assignmentuB : L → B will be called an extension of a truth assignment
vB if uB(ψ) ≥k vB(ψ) for all ψ ∈ L. If uB is an extension ofvB , we will write
uB ≥k vB .

The ’object’ many-valued logic is based on four bilattice values which areepistemic.
Sentences are to be marked with some of these bilattice logic values, according as to
what the computer has been told; or, with only a slight metaphor, according to what it
believes or knows. Of course these sentenceshavealso Frege’s ontological truth-values
(true and false), independently of what the computer has been told: we want that the
computer can use also these ontological ’meta’ knowledge. Let, for example, the com-
puter believes that the sentencep has a valueT (possible); then the ’meta’ sentence,”I
(computer) believe thatp has a possible value” isontologically true. The many-valued
encapsulation, defined as follows, is just the way to pass from the epistemic (’object’)
many-valued logic into ontological (’meta’) 2-valued logic.
Such encapsulation is characterized by having capability forsemantic-reflection: intu-
itively, for each predicate symbol we need some function whichreflectsits logic seman-
tic over a domainΓU . Let introduce also the set of functional symbolsκp over a domain
ΓU in our logical language in order to obtain an enriched logical language where we
can encapsulate the ’object’ (ordinary) many-valued logic programming. Such set of
functional symbols will be derived from the following Bilattice-semantic mappingK:

Definition 5. A semantic-reflection is a mappingK : PS → (B
⋃
{e})

⋃
i≤ω
T i
0 , and

we denote shortlyκp = K(p) :
⋃

i≤ω T i
0 → B

⋃
{e}, p ∈ PS , such that for any

c = (c1, .., cn) ∈ T n
0 , holds: κp(c) = e iff arity(p) 6= n.

If p is a built-in predicate, then a mappingκp is uniquely defined by: for anyc ∈
T n

0 , n = arity(p), holds thatκp(c) = t if p(c) is true; f otherwise.

5 Ontological encapsulation programming language

The many-valued ground atoms of a bilattice-based logical languageLB can be trans-
formed in ’encapsulated’ atoms of a 2-valued logic in the following simple way: the
original (many-valued) fact that the ground atomA = p(c1, .., cn), of the n-ary pred-
icate p, has an epistemic valueα = κp(c1, .., cn) in B4, we transform in encapsu-
lated atompA(c1, .., cn, α) with meaning ”it is true thatA has a valueα”. Indeed,



what we do is toreplacethe original n-ary predicatep(x1, .., xn) with n+1-ary predi-
catepA(x1, .., xn, α), with the added logic-attributeα. It is easy to verify that for any
given many-valued valuationvB, every ground atompA(c1, .., cn, α) is ontologically
true (whenα = vB(p(c1, .., cn)) ) or false. Let EMV denote this new 2-valued encap-
sulation of many-valued logicfor logic programming.

5.1 Syntax

We distinguish between what the reasoner believes in (at theobject(epistemic many-
valued sublanguage) level), and what is actually true or false in the real world (at the
EMV ontological ’meta’ level), thus, roughly, the ’meta’ level is an (classic) encapsu-
lation of the object level. Thus, we introduce the modal operator of encapsulationE as
follows:

Definition 6. LetP be an ’object’ many-valued logic program with the set of predicate
symbolsPS . The translation in the encapsulated syntax version inPA is as follows:
1. Each positive literal inP , E(p(x1, .., xn)) = pA(x1, .., xn, κp(x1, .., xn));
2. Each negative literal inP , E(∼ p(x1, .., xn)) = pA(x1, .., xn,∼ κp(x1, .., xn));
3. E(φ ∧ ϕ) = E(φ) ∧ E(ϕ);
4. E(φ ∨ ϕ) = E(φ) ∨ E(ϕ) ;
5.E(φ← ϕ) = E(φ)←A E(ϕ) , where←A is a new syntax symbol for the implication
at the encapsulated 2-valued ’meta’ level.
Thus, the obtained ’meta’ program is equal toPA = {E(φ) | φ is a clause inP},
with the 2-valued Herbrand baseHA

P = { pA(c1, .., cn, α) | p(c1, .., cn) ∈ HP and
α ∈ B}

This embedding of the many-valued ’object’ logic programP into a 2-valued ’meta’
logic programPA is anontologicalembedding: views formulae ofP as beliefs and
interprets negation∼ p(x1, .., xn) in rather restricted sense - as belief in the falsehood
of p(x1, .., xn), rather as not believing thatp(x1, .., xn) is true (like in an ontological
embedding for classical negation).
Like for Moore’s autoepistemic operator, for the encapsulation modal operatorE , Eφ
is intended to capture the notion of, ”I know thatφ has a valuevB(φ) ”, for a given
valuationvB of the ’object’ logic program.
LetL be the set of all ground well-formed formulae defined by this Herbrand baseHP

and bilattice operations (included many-valued implication← also), withB ⊆ L. We
define the set of all well-formed encapsulated formulae by:
LA =def {E(ψ) | ψ ∈ L}, so thatHA

P ⊆ LA, thus, we can extend operatorE to all
formulas inL (also to bilattice logic values, such thatE : B → 2 ), so, we obtain

Proposition 3 The encapsulation operatorE is :
1. Nondeductive modal operator, such that, for anyα ∈ B, E(α) = t if α = t; f
otherwise. It cannot be written in terms of the bilattice operations∧,∨,⊗,⊕ and∼.
2. Homomorphism between the ’object’ algebra(L,∧,∨,←) with carrier set of
(positive and negative) literals, and ’meta’ algebra(LA,∧A,∨A,←A), where∧A,∨A

are 2-valued reductions of bilattice meet and join, respectively, denoted by∧,∨ also.



5.2 Semantics

The modal operatorE is more selective than Moore’s modal operatorM (which returs
the truth also when its argument has a possible value). In factM(α) = E(α∨ ⊥).
Notice, that with the transformation of the original ’object’ logic programP into its
annotated ’meta’ version programPA we obtainalways positiveconsistent logic pro-
gram.
A Herbrand interpretation ofPA is a 2-valued mappingIA : HA

P → 2. We denote by

2HA
P the set of all a-interpretations (functions) fromHA

P into 2, and byBHP the set of
all consistentHerbrand many-valued interpretations, fromHP to the bilatticeB. The
meaning of theencapsulationof this ’object’ logic programP into this ’meta’ logic
programPA is fixed into the kind of interpretation to give to such new introduced func-
tional symbolsκp = K(p): in fact we want [21] that they reflect (encapsulate) the
semantics of the ’object’ level logic programP .

Definition 7. (Satisfaction) Theencapsulationof an epistemic ’object’ logic program
P into an ’meta’ programPA means that, for anyconsistentmany-valued Herbrand
interpretationI ∈ BHP and its extensionvB : L → B , the function symbolsκp =
K(p), p ∈ PS reflects this semantics (is compatible to it), i.e.

for any tuple c ∈ T arity(p)
0 , κp(c) = I(p(c)).

So, we obtain a mapping,Θ : BHP → 2HA
P , such thatIA = Θ(I) ∈ 2HA

P with: for
any ground atomp(c) , IA(E(p(c))) = t , if κp(c) = I(p(c)); f otherwise.
Let g be a variable assignment which assigns values fromΓU to object variables. We
extent it to atoms with variables, so thatg(E(p(x1, .., xn))) = E(p(g(x1), .., g(xn))),
and to all formulas in the usual way:ψ/g denotes a ground formula obtained fromψ
by assignmentg, then
1. IA �g E(p(x1, .., xn)) iff κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
IA �g E(∼ p(x1, .., xn)) iff ∼ κp((g(x1), .., g(xn))) = I(p(g(x1), .., g(xn))) .
2. IA �g E(φ ∧ ψ) iff IA �g E(φ) and IA �g E(ψ).
3. IA �g E(φ ∨ ψ) iff IA �g E(φ) or IA �g E(ψ).
4. IA �g E(φ ← ψ) iff vB(φ/g ← ψ/g) is true.

Notice that in this semantics the ’meta’ implication←A , in E(φ) ←A E(ψ) =
E(φ ← ψ) , is based on the ’object’ epistemic many-valued implication← (which is
not classical, i.e.,φ ← ψ 6= φ∨ ∼ ψ) and determines how the logical value of a body
of clause ”propagates” to its head.

Theorem 1 The semantics of encapsulationE is obtained by identifying the semantic-
reflection with theλ-abstraction of Generalized Herbrand interpretation,K = λI , so
that the semantics of many-valued logic programs can be determined byI (at ’object’
level) or, equivalently, by its reflectionK (at encapsulated or ’meta’ level).

Proof. From K = λI we obtain that for anyp(c) ∈ HP holds I(p(c)) = I(p, c) =
λI(p)(c) = K(p)(c) = κp(c), what is the semantic of encapsulation.

We can consider theλ-abstraction of Generalized Herbrand interpretation as an epis-
temic semantics, because, given a Herbrand (epistemic) interpretationI : HP → B,



then for any predicate symbolp and constantc ∈ T arity(p)
0 , holds λI(p)(c) = I(p(c)).

Then the semantic of encapsulation may be defined as follows:

” ontological semantic-reflection≡ epistemic semantics”, that is,K = λI .

Recently, in [22], this semantics is used to give a coalgebraic semantics for
logic programs. Notice that at ’meta’ (ontological) level (differently from∧,∨, which
are classic 2-value boolean operators), the semantics for ’meta’ implication operator,
IA �g E(φ ← ψ) , is not defined onIA �g E(φ) and IA �g E(ψ) . For example, let
IA �g E(p(c)) and IA �g E(q(d)) , with κp(c) = f andκq(d) = t: thenp(c)← q(d)
is false and, consequently, does not holdIA � E(p(c)← q(d)).

Proposition 4 IA �g E(φ) ←A E(ψ) implies IA �g E(φ) and IA �g E(ψ) ,
but not viceversa. The truth ofE(φ/g) and E(ψ/g) are necessary but not sufficient
conditions for the truth ofE(φ/g) ←A E(ψ/g) .

More over ←A has aconstructivisticviewpoint (notice that the implication←A is
satisfied when the body and the head of such clause aretrue, while in the ’object’ logic
program such clause may be satisfied when their body and the headare not truealso).
Thus, by encapsulation of a many-valued ’object’ logic program into a 2-valued ’meta’
logic program we obtain a constructive logic program: in each clause we derive from
the true facts in its body other new true facts.
Following the standard definitions, we say that an interpretationIA, of a programPA,
is amodelof aPA if and only if every clause ofPA is satisfied inIA. In this way we
define amodel theoreticsemantics for encapsulated logic programs.
A set of formulasS, of encapsulated logic EMV,logically entailsa formulaφ, denoted
S � φ, if and only if every model ofS is also a model ofφ.

6 Conclusion

We have presented a programming logic capable of handling inconsistent beliefs and
based on the 4-valued Belnap’s bilattice, which has clear model theory. In the process
of the encapsulation we distinguish two levels: the ’object’ many-valued level of or-
dinary logic programs with epistemic negation based on a bilattice operators, and the
encapsulated or ’meta’ logic programs. In this approach, ’inconsistent’ logic program
(which minimal stable models contain at least an ’inconsistent’ ground atom) at object
level is classic consistent logic program at ’meta’ level also. In such abstraction we
obtained a kind of a minimal Constructivistic Logic where fixpoint ’immediate conse-
quence’ operator is always continuous, and which iscomputationally equivalentto the
standard Fitting’s fixpoint semantics. Following this approach we are able to define a
unique many-valued Herbrand model for databases with inconsistencies based on the
fixpoint of a monotonic (w.r.t. knowledge ordering) immediate consequence operator,
and the inference closure for many-valued logic programming also.
This research is partially supported by the project NoE INTEROP-IST-508011 and the
project SEWASIE-IST-2001-3425. The autor wishes to thank Tiziana Catarci and Mau-
rizio Lenzerini for their support.
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7. G.Escalada Imaz and F.Manyá, “The satisfiability problem for multiple-valued horn formu-
lae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE
Press, Los Alamitos, pp. 250–256, 1994.
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Abstract. In this paper we study data mining query language and optimizations
in the context of a Logic-based Knowledge Discovery Support Environment. i.e.,
a flexible knowledge discovery system with capabilities to obtain, maintain, rep-
resent, and utilize both induced and deduced knowledge. In particular, we focus
on frequent pattern queries, since this kind of query is at the basis of many min-
ing tasks, and it seems appropriate to be encapsulated in a knowledge discovery
system as a primitive operation. We introduce an inductive language for frequent
pattern queries, which is simple enough to be highly optimized and expressive
enough to cover the most of interesting queries. Then we define an optimized
constraint-pushing operational semantics for our inductive language. This seman-
tics is based on a frequent pattern mining operator, which is able to exploit as
much as possible the given set of constraints, and which can adapt its behavior
to the characteristics of the given input set of data.

1 Introduction

Knowledge Discovery in Databases is a complex iterative and interactive process which
involves many different tasks that can bring the analyst from raw dirty data to action-
able knowledge. A rigorous user interaction during such process is needed in order to
facilitate efficient and fruitful knowledge manipulation and discovery. Such a rigorous
interaction can be achieved by means of a set of data mining primitives, that should in-
clude the specification of the source data, the kind of knowledge to be mined, background
or domain knowledge, interestingness measures for patterns evaluation, and finally the
representation of the extracted knowledge. Providing a query language capable to incor-
porate all these features may result, like in the case of relational databases, in a high
degree of expressiveness in the specification of data mining tasks, a clear and well-defined
separation of concerns between logical specification and physical implementation of data
mining tasks, and easy integration with heterogeneous information sources.

Clearly the implementation of this vision presents a great challenge. A path to this
goal is indicated in [10] where Mannila introduces an elegant formalization for the notion
of interactive mining process: the term inductive database refers to a relational database
plus the set of all sentences from a specified class of sentences that are true of the data.

Definition 1. Given an instance r of a relation R, a class L of sentences (patterns),
and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}
The selection predicate q indicates whether a pattern s is considered interesting, and
it is defined as a conjunction of constraints defined by the analyst. In other words,



the inductive database is a database framework which integrates the raw data with
the knowledge extracted from the data and materialized in the form of patterns. In
this way, the knowledge discovery process consists essentially in an iterative querying
process, enabled by a query language that can deal either with raw data or patterns.

1.1 Logic-based Knowledge Discovery Support Environment

The notion of inductive database fits naturally in rule-based languages, such as deductive
databases [6]. A deductive database can easily represent both extensional and intensional
data, thus allowing a higher degree of expressiveness than traditional relational algebra.
Such capability makes it viable for suitable representation of domain knowledge and
support of the various steps of the knowledge discovery process.

The last consideration leads to the definition of a Logic-based Knowledge Discovery
Support Environment (LKDSE in the following) as a deductive database programming
language equipped with inductive rules. The main idea of the previous definition is that
of providing a simple way for modelling the key aspects of a data mining query language:
– the source data and the background knowledge are represented by the relational

extensions;
– deductive rules provide a way of integrating background knowledge in the discovery

process, pre-processing source data, post-processing and reasoning on the newly
extracted knowledge;

– inductive rules provide a way of declaratively invoking mining procedures with ex-
plicit representation of interestingness measures.

Fig. 1. The vision of Logic-based Knowledge Discovery Support Environment.

The main problem of a deductive approach is how to choose a suitable representation
formalism of the inductive part, capable of expressing the correspondence between the
deductive part and the inductive part. More specifically, the problem is how to formalize
the specification of the set L of patterns in a way such that each pattern s ∈ T h(L, r, q)
is represented as an independent (logical) entity (i.e., a predicate) and each manipulation
of r results in a corresponding change in s.



A first attempt to define inductive rules on a deductive database is in [6]. In this work
the notion of inductive rules in a deductive framework is elegantly defined by means of
user-defined aggregates on the Datalog++ logic-based database language and its prac-
tical implementation, namely the LDL++ deductive database system. The resulting
LKDSE has been named LDL-Mine. For lack of space, we shall omit a presentation
of LDL++, and confine ourselves to mention that it is a rule-based language with a
Datalog-like syntax, and a semantics that extends that of relational database query
languages with recursion [7].

The main drawback of using user defined aggregates as a mean to define inductive
queries is the atomicity of the aggregate that makes us loose optimization opportuni-
ties. For instance, in frequent pattern discovery a user may wish to mine only frequent
patterns or rules that satisfy some constraints. This constraints could be used to reduce
the search space of the computation as shown in many works in literature [11, 9, 5, 3, 4].
Unluckily in this approach such constraints can not be directly exploited by the induc-
tive rules but can only be checked by deductive rules after the extraction of the frequent
itemsets. In order to exploit constraints to reduce the search space of the mining algo-
rithm one should redefine the mining aggregate for any particular constraint and query.
This requires nontrivial programming effort for the analyst and however, constraints
satisfaction would be behind the query level, thus losing the transparency which is one
main requirement of inductive database.

1.2 Our Position and Objective

The objective of this research is to study pattern discovery queries (or mining queries or
inductive queries), both by the point of view of the language and of the optimizations
[2], in the context of a Logic-based Knowledge Discovery Support Environment based
on Datalog++ as deductive database language, equipped with inductive rules.

In our vision, the data analyst should have a high-level vision of the data mining
system, without worrying about the details of the computational engine, in the very same
way a database designer has not to worry about query optimizations. The analyst must
be provided with a set of primitives to be used to communicate with the data mining
system, using a data mining query language. The analyst just needs to declaratively
specify in the data mining query how the desired patterns should look like and which
conditions they should obey (a set of constraints). Indeed, the task of composing all
constraints and producing the most efficient mining strategy (execution plan) for the
given data mining query should be left to an underlying query optimizer. This is the
paradigm of Declarative Mining. Following this vision, we define a new language of
inductive queries on top of a deductive database. In our framework an inductive rule is
simply a conjunction of sentences about the desired patterns:
– These sentences are taken form a specified class of sentences and they can be seen

as mining primitives, computed by a specialized algorithm (and not by aggregates
as in the previous approach).

– The set of all admissible sentences is just some ”syntactic sugar” on top of an algo-
rithm. The algorithm is the inductive engine.

– Each sentence can be defined over some deductive predicates (relations) defining the
data source for the mining primitive.



Therefore, in this setting we have a clear distinction between what must be computed
by deductive engine (deductive rules) and what by the inductive engine (inductive rules).
Moreover we clearly specify the relationship between the inductive and the deductive
part of an inductive database: the deductive engine feeds the inductive engine with data
sources by means of the deductive predicates contained in the inductive sentences; the
inductive engine returns in the deductive database predicates representing patterns that
satisfy all the sentences in the inductive rule. Having a well defined and restricted set of
possible sentences allows us to write highly optimized algorithms to compute inductive
rules.

In this paper, we focus on frequent pattern queries over a transactional database [1,
8], i.e. queries which model the pattern discovery task T h(L, r, q), where L is the pattern
domain of itemsets, and q is a minimal frequency constraint, or in other words, q selects
itemsets which which appear in the transactional database a number of times greater
than a user-defined minimum frequency threshold.

The rationale behind this choice is that this kind of query is a simple primitive opera-
tion (nothing more than counting) which is at the basis of practically every mining tasks,
but which is usually the most time-consuming operation in any mining session. There-
fore, it seems appropriate to encapsulate frequency counting in a knowledge discovery
system as a primitive operation, and to study its optimizations.

2 Frequent Pattern Mining

Definition 2 (Frequent Pattern Mining). Let I = {x1, ..., xn} be a set of distinct
literals, usually called items, where an item is an object with some predefined attributes
(e.g., price, type, etc.). An itemset X is a non-empty subset of I. If |X| = k then X is
called a k-itemset. A constraint on itemsets is a function C : 2I → {true, false}. We say
that an itemset I satisfies a constraint if and only if C(I) = true. We define the theory of a
constraint as the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}.
A transaction database D is a bag of itemsets t ∈ 2I , usually called transactions. The
cover of an itemset X in database D, is the set of transactions in D which are superset
of X: covD(X) = {t ∈ D | t ⊇ X}. The support of an itemset X in database D, denoted
suppD(X), is the cardinality of covD(X). Given a user-defined minimum support σ, an
itemset X is called frequent in D if suppD(X) ≥ σ. This defines the minimum frequency
constraint: Cfreq[D,σ](X)⇔ suppD(X) ≥ σ. When the dataset and the minimum support
threshold are clear from the context, we indicate the frequency constraint simply Cfreq .
Thus with this notation, the frequent itemsets mining problem requires to compute the
set of all frequent itemsets Th(Cfreq). In general given a conjunction of constraints C the
constrained frequent itemsets mining problem requires to compute Th(Cfreq) ∩ Th(C).

Example 3 (Market Basket Analysis). The most natural way to think about a transac-
tion database is the sales database of a retail store, where the content of each basket
appearing at the cash register is recorded. In this context a transaction 〈tid ,X〉 rep-
resents a basket identifier and its content. A transaction database can be represented
also as a relational table as shown in Figure 2(a). In that table a transaction or basket
identifier is not explicitly given, but for instance, one could use the couple (date, cust)



date cust. item qty
11-2-97 cust1 beer 10
11-2-97 cust1 chips 20
11-2-97 cust1 wine 2
11-2-97 cust2 wine 2
11-2-97 cust2 beer 10
11-2-97 cust2 pasta 10
11-2-97 cust2 chips 20
13-2-97 cust1 chips 20
13-2-97 cust1 beer 2
13-2-97 cust2 jackets 1
13-2-97 cust2 col shirts 3
13-2-97 cust3 wine 1
13-2-97 cust3 beer 5
15-2-97 cust1 pasta 10
15-2-97 cust1 chips 10
16-2-97 cust1 jackets 1
16-2-97 cust2 wine 1
16-2-97 cust2 pasta 8
16-2-97 cust3 chips 20
16-2-97 cust3 col shirts 3
16-2-97 cust3 brown shirts 2
18-2-97 cust1 pasta 5
18-2-97 cust1 wine 1
18-2-97 cust1 chips 20
18-2-97 cust1 beer 10
18-2-97 cust2 beer 12
18-2-97 cust2 beer 10
18-2-97 cust2 chips 20
18-2-97 cust2 chips 20
18-2-97 cust3 pasta 10

(a)

date cust. itemset
11-2-97 cust1 {beer,chips,wine}
11-2-97 cust2 {wine,beer,pasta,chips}
13-2-97 cust1 {chips,beer}
13-2-97 cust2 {jackets,col shirts}
13-2-97 cust3 {wine,beer}
15-2-97 cust1 {pasta,chips}
16-2-97 cust1 {jackets}
16-2-97 cust2 {wine,pasta}
16-2-97 cust3 {chips,col shirts,brown shirts}
18-2-97 cust1 {pasta,wine,chips,beer}
18-2-97 cust2 {beer,chips}
18-2-97 cust3 {pasta}

(b)

item price type
beer 10 beverage
chips 3 snack
wine 20 beverage
pasta 2 food
jackets 100 clothes
col shirt 30 clothes
brown shirt 25 clothes

(c)

Fig. 2. (a) A sample sales table and (b) one of its transactional representations; (c) the product
table.

to indicate it. If our relational language allows set-valued fields, we can have the same
relation in its transactional representation as in Figure 2(b).

In classical frequent pattern mining, the popular Apriori algorithm [1] exploits an
interesting property of frequency for pruning the exponential search space of the prob-
lem: whenever the support of an itemset violates the frequency constraint, then all its
supersets can be pruned away from the search space, since they will violate the frequency
constraint too. This property of frequency is called antimonotonicity (see Definition 4)
and is the basis of the breadth-first level-wise (from small itemsets to large itemsets)
Apriori exploration and pruning of the search space.

Definition 4 (Antimonotone constraint). Given an itemset X, a constraint CAM is
antimonotone if ∀Y ⊆ X : CAM (X)⇒ CAM (Y ).

As already stated frequency is clearly an antimonotone constraint. Many other kind of
constraints with the same nice property can be defined. For instance one could be in-
terested in mining frequent itemsets with a total sum of prices ≤ 50$: this constraint
is antimonotone because any itemset that already has a sum of prices greater than 50$
will never produce a solution. Adding more items to the itemset will simply make it
more expensive, so it will never satisfy the constraint. Such constraints can be pushed
deeply down into the frequent pattern mining computation since they behave exactly
as the frequency constraint: if they are not satisfiable at an early level (small patterns),
they have no hope of becoming satisfiable later (larger patterns). Moreover, since any



conjunction of antimonotone constraints is antimonotone as well, they can be exploited
all together, in the same way of frequency, to prune the search space. The more anti-
monotone constraints the user specifies, the more selective the search will be.

The case is more subtle for constraints which exhibit the opposite property to anti-
monotonicity.

Definition 5 (Monotone constraint). Given an itemset X, a constraint CM is mono-
tone if: ∀Y ⊇ X : CM (X)⇒ CM (Y ).

Since the frequency computation moves from small to large patterns, we can not push
monotone constraints directly in it. At an early stage, if an itemset is too small or too
cheap to satisfy a monotone constraint, we can not yet say nothing about its supersets.
Perhaps, just adding a very expensive single item to the itemsets could raise the total sum
of prices over the given threshold, thus making the resulting itemset satisfy the monotone
constraint. For this reason the monotone constraints have always been considered “hard
to push”, until the recent proposal of ExAnte [5]. In that work we have shown how mono-
tone constraints can be exploited together with the frequency constraints by means of
data-reduction. A transaction which does not satisfy a monotone constraint (recall here
that a transaction is an itemset) can be deleted by the transaction database. This way,
pushing monotone constraints does not reduce antimonotone pruning opportunities, on
the contrary, such opportunities are boosted. Dually, pushing antimonotone constraints
boosts monotone pruning opportunities: the two components strengthen each other re-
cursively. This idea has been generalized in an Apriori-like computation in ExAMiner
[4].

A succinct constraint CS is such that, whether an itemset X satisfies it or not, can be
determined based on the singleton items which are in X. Informally, given A1, the set of
singleton items satisfying a succinct constraint CS , then any set X satisfying CS is based
on A1 , i.e. X contains a subset belonging to A1 (for the formal definition of succinct
constraints see [11]). A CS constraint is pre-counting pushable, i.e. it can be satisfied at
candidate-generation time: these constraints are pushed in the level-wise computation by
substituting the usual generate apriori procedure, with the proper (w.r.t. CS) candidate
generation procedure.

In Section 5 we describe how these properties of constraints are exploited by the
optimized operational semantics of our framework.

3 Frequent Pattern Queries

In this Section going through a rigorous identification of all its basic components we
provide a definition of frequent pattern query, i.e. a query defining a frequent pattern
mining task over a relational database D.

Definition 6 (Mining View). Given a databaseD a relation V derived from preds(D),
explicitly indicated in the frequent pattern query as data source, is named mining view.

Definition 7 (Transaction id). Given a database D and a relation V derived from
preds(D). Let V with attributes sch(V) be our mining view. Any subset of attributes
T ⊂ sch(V) can be used as transaction id.



Definition 8 (Circumstance attribute). Given a database D and a relation V de-
rived from preds(D). Let V with attributes sch(V) be our mining view. Given a subset
of attributes T ⊂ sch(V) as transaction id, we define any attribute A ∈ sch(R) where R
is a relation in preds(D) circumstance attribute provided that A /∈ T and the functional
dependency T → A holds for in D.

Definition 9 (Item attribute). Given a database D and a relation V derived from
preds(D). Let V with attributes sch(V) be our mining view. Given a subset of attributes
T ⊂ sch(V) as transaction id, let Y = {y|y ∈ sch(V)\T ∧ T → y does not hold};
we define an attribute A ∈ Y an item attribute provided the functional dependency
T A → Y \A holds in D.

Proposition 10. Given a relational database D, a triple 〈V, T , I〉 denoting the mining
view V, the transaction id T , the item attribute I, uniquely identifies a transactional
database, as defined in Definition 2.

Definition 11 (Descriptive attribute). Given a database D and a relation V de-
rived from preds(D). Let V with attributes sch(V) be our mining view. Given a subset
of attributes T ⊂ sch(V) as transaction id, and given A as item attribute; we define de-
scriptive attribute any attribute X ∈ sch(R) where R is a relation in preds(D), provided
the functional dependency T A → X holds in D.

Consider the mining view: sales(tID, locationID, time, product, quantity) where
each attribute has the intended semantics of its name and with tID acting as the trans-
action id. Since the functional dependency {tID} → {locationID} holds, locationID
is a circumstance attribute. The same is true for time. We also have {tID, product} →
{quantity}, thus product is an item attribute, while quantity is a descriptive attribute.

Note that, from the previous definitions, transaction id and the item attribute must
be part of the mining view, while circumstance and descriptive attributes could be
also in other relations. Constraints, as introduced in the previous section, are defined
on item attributes and descriptive attributes. Constraints over the transaction id or
over circumstance attributes are not real constraints since they can be seen as selection
conditions on the transactions to be mined and thus they can be satisfied in the definition
of the mining view. Next definition lists all kinds of constraint that we admit in our
framework.

Constraint Description

s ⊇ {a1, . . . , an} itemset contains

s ⊆ {a1, . . . , an} itemset domain

|s| θ m cardinality constraint

s.d ⊇ S descriptive attribute contains

s.d ⊆ S descriptive attribute domain

aggr{d | i ∈ s ∧ P (i, . . . , d)} θ m aggregate on descriptive attribute

Fig. 3. Bound constraints for frequent pattern query.



Definition 12 (Bound constraints). Given a database D, a mining view V (t, i, . . .)
where t indicates the transaction id and i denotes the item attribute, a relation P (i, . . . , d) ∈
preds(D) where d indicates a descriptive attribute, all kinds of constraint admitted in a
frequent pattern query are listed in Figure 3. The following notation is adopted:
– s is an itemset;
– a1, . . . , an are items;
– d1, . . . , dn are numeric constants of a descriptive attribute;
– m is a numeric constant;
– S is a set-valued or discrete constant;
– θ ∈ {≤,≥,=}
– aggr ∈ {min,max, sum, avg, count, range}

Definition 13 (Frequent pattern query). Given a database D, a frequent pattern
query is a quintuple 〈V, T , I, σ, C〉 denoting the mining view V, the transaction id T ,
the item attribute I, the minimum support threshold σ, and a conjunction of bound
constraints C.

The result of a frequent pattern query is a binary relation recording the set of itemset
which satisfy C and are frequent in the transaction database 〈V, T , I〉 w.r.t. σ and their
supports:

freq〈V,T ,I,σ,C〉(I, S) ≡ {(I, S) | C(I) ∧ supp〈V,T ,I〉(I) = S ∧ S ≥ σ}
Example 14. A frequent pattern query for the sales table in Figure 2 (a), and the
product table in Figure 2 (c), querying itemsets having a support ≥ 3 (transactions are
made grouping by customer and date), and having a total price ≥ 30, could be simply
defined as:

freq〈sales,{date,cust},item,3,sum{p|i∈I∧product(i,p,t)}≥ 30〉(I, S) ≡
{(I, S) | sum{p | i ∈ I∧product(i, p, t)} ≥ 30 ∧ supp〈sales,{date,cust},item〉(I) = S ∧ S ≥ 3}
The result of such query is a relation (I,S) with the following two entries: ({beer,
wine},4) and ({beer, wine, chips},3).

4 Inductive Rules for Frequent Patterns

In this Section we provide the syntactic sugar to express the frequent pattern queries
defined above. As already stated, in our language we drop the user-defined aggregates
approach of LDL-Mine, and we define an inductive rule simply as a conjunction of
sentences about the desired patterns (a conjunction of constraints).

In the following we provide a brief overview of the terms of our language to express
frequent pattern queries. For the full syntax of our language, as well as for the definition
of safe rules, see [2].

Definition 15. An inductive rule is a rule H ← B1, . . . Bn such that:
– B1, . . . Bn is a conjunction of inductive sentences, possibly containing deductive pred-

icates.



– H is the predicate representing the induced pattern.

Since we are modelling frequent pattern queries, a frequency inductive sentence will
always be present in the body of an inductive rule.

Definition 16 (Frequency inductive sentence). Let P be a variable for the induced
frequent pattern, and TDB a transaction database (a set of sets), then freq(P, TDB)
is the frequency inductive sentence which computes suppTDB(P ).

Since we are dealing with frequent itemsets, sets will be first class citizens on which
inductive sentences will be defined. For the same reason, traditional set operations (⊆
,∈, /∈) will be useful to write inductive rules. A set can be a set of numbers, a set of
strings, a set of variables or a set of sets. Moreover, since we want to compute patterns
from transaction databases which can be in relational form, a set of sets can be built by
grouping values of an attribute, as in the following Definition.

Definition 17 (Pseudo-aggregation sentence). Given a relation R such that X ∈
sch(R) and Y ⊂ sch(R). The sentence 〈X|Y 〉 denotes the pseudo aggregation on at-
tribute X grouping by attributes in Y .

In other words, if the term 〈I|{D, C}〉 appears in an inductive rule containing the predicate
sales(D,C,I,Q); it corresponds to the pseudo-aggregate defined by the Datalog++
deductive rule:

sales(D, C, 〈I〉)← sales(D, C, I, Q).

which transforms the table in Figure 2(a) in the table in Figure 2(b).
Finally, in our inductive query language we need to express aggregates on descriptive

attributes, in order to write constraints as those ones introduced in the previous section.
The following example clarifies the relationship between the inductive and the deductive
part of an inductive database, as well as the difference between the aggregate-based
approach and our framework.

Example 18. Consider the frequent pattern query in Example 14: find itemsets having a
support ≥ 3 (transactions are made grouping by customer and date), and having a total
price ≥ 30.

In our framework we have two choices:

1. write an inductive rule to compute all frequent itemsets having a support ≥ 3 and
a deductive to selects those frequent itemsets which satisfy the constraint of having
a total price ≥ 30;

2. write the constraint directly in the body of the inductive rule defining the interesting
patterns.

By a semantical point of view the two approaches are equivalent: they give the same
result. By a purely computational point of view the first choice corresponds to a generate-
and-test approach, while the second choice corresponds to a constraint pushing approach
which is much more efficient.



In the aggregate-based approach of LDL-Mineonly the first choice is possible. We
need a pseudo-aggregate rule to de-normalize the data source, the inductive rule based
on the user defined patterns aggregate, a rule based on the sum aggregate to compute
total sum of prices, and finally a rule to select the resulting patterns.

sales(D, C, 〈I〉) ← sales(D, C, I, Q).
frequentPatterns(patterns〈(3, S)〉)← sales(D, C, S).
sumFP(S, N, sum〈P〉) ← frequentPatterns(S, N), item(L, T, P), member(L, S).
answer(S, N) ← sumFP(S, N, SP), SP >= 30.

In our language, we can express that query with the following inductive rule:

frequent pattern(S, N)← N = freq(S, X), X = 〈I|{D, C}〉, sales(D, C, I, Q),
N >= 3, L ∈ S, sum(P, product(L, P, T)) >= 30.

Observe how in this rule all the basic components of a frequent pattern query are ex-
pressed. First of all we have the mining view declaratively indicated as a predicate in
the body of the rule. Then we have the transaction id expressed in the right part of the
pseudo-aggregation term, and the item attribute in the left part. Moreover we have two
variables to indicate computed patterns and their support, which is constrained to be
no less than a given min-sup threshold.

One could wish to return as result of a frequent pattern query additional information
regarding the induced pattern. Therefore we allow inductive rules with more than two
variables in the head. For sake of consistency, the additional variables must be aggregated
at the itemset level. In other words, only variables describing aggregation of descriptive
attributes are allowed.

For instance, we can ask to return together with itemsets and their supports, also
the total sum of prices of an itemset:

frequent pattern(S, N, TP)← N = freq(S, X), X = 〈I|{D, C}〉, sales(D, C, I, Q),
N >= 3, L ∈ S, TP = sum(P, product(L, P, T)), TP >= 30.

As suggested by Example 18, each inductive rule is equivalent to one or more Datalog++
deductive rules. This observation is used to provide a declarative formal semantics for our
language. In [2] formal semantics of the new inductive rules is provided by showing that
exists a unique mapping from each safe inductive rule of the language to a Datalog++
program with aggregates (we shall omit details for lack of space). Thanks to this mapping
we can define the formal declarative semantics of an inductive rule as the iterated stable
model of the corresponding Datalog++ program [7].

The next example shows how to define an association rules mining tasks in our
framework. More complex examples of frequent pattern queries can be found in [2].

Example 19 (Association Rules). It is well known that the task of computing association
rules is performed by dividing it in two subproblems. In the first one, which is the real
mining task, itemsets which are frequent for the given minimum support threshold are
computed. In the second subproblem, which can be seen as a post-processing filtering
task, the available association rules, for the given confidence threshold, are extracted



from the frequent itemsets computed during the mining phase. In our framework we
compute frequent itemsets by means of an inductive rule, and association rules by means
of a deductive Datalog++ rule.

Suppose we want to compute simple association rules from the table in Figure 2(a),
grouping transactions by day and customer, and having support more than 4 and con-
fidence more than 0.6. The first rule is an inductive rule which defines the computation
of patterns with an absolute support greater than 4.

frequentPatterns(Set, Supp) ← Supp = freq(Set, X), sales(D, C, I, Q),
X = 〈I|{D, C}〉, Supp >= 4.

rules(Left, Right, Supp, Conf)← frequentPatterns(A, Supp), frequentPatterns(R, S1),
subset(R, A), difference(A, R, L), Conf = Supp/S1, Conf >= 0.6.

The second rule is a Datalog++ deductive rule which computes the available associa-
tion rules from the frequent itemsets (the result of the evaluation of the first rule is in
Figure 4(a), while the result of the evaluation of the second rule is in Figure 4(b)).

5 Constraint Pushing Optimization

In Section 2 we have briefly reviewed constraints in frequent pattern mining and their
properties. Such properties can be exploited for pruning the search space, and hence
obtaining an optimized evaluation of frequent pattern queries. Following this approach,
we systematically analyze each kind of constraint admitted in our language, and based on
its properties, we define the constraint manager operator CM for the constraint pushing
in the computation.

Similarly to the work done in [11], we divide all other kind of constraints in classes
according to their properties. The main difference here is that, for us, monotone con-
straints are no longer hard constraints, since we have developed efficient techniques to
push them in the computation, as those ones described in [3–5]. Therefore, we distinguish
between 5 classes of constraints:

CAM constraints that are antimonotone but not succinct: antimonotone constraints
are exploited as usual to prune the search space in the level-wise, Apriori-like com-
putation. They are checked together with frequency as a unique antimonotone con-
straint. Moreover, they are used in a data reduction fashion too, exploiting the real
amalgam of antimonotonicity and monotonicity as described in [4, 5].

Set Supp

{beer} 6
{chips} 7
{wine} 5
{pasta} 5
{beer,chips} 4
{beer,wine} 4

(a)

Left Right Supp Conf

{beer} {chips} 4 0.66
{beer} {wine} 4 0.66
{wine} {beer} 4 0.82

(b)

Fig. 4. (a) The frequentPatterns table and (b) the rules table which are the result of the
evaluation of rules in Example 19.



CM constraints that are monotone but not succinct: Monotone constraints, are
exploited to reduce the input data and to prune the search space as described in
[4, 5].

CAMS constraints that are both antimonotone and succinct: constraints which are
both antimonotone and succinct, can be satisfied before any mining takes place, by
reducing the set of candidates 1-itemsets, to those items which satisfy such con-
straints as described in [11]. However, we can exploit them also in a data reduction
fashion [4, 5].

CMS constraints that are both monotone and succinct: are exploited as mono-
tone constraints, by using them to reduce the data and the search space, and as
succinct constraint in the candidate generation procedure, in the style of [11].

CH hard constraints: Hard constraints, i.e. constraints which are neither antimono-
tone, nor monotone, nor succinct, are used inducing weaker constraints which ex-
hibits some nice properties that allows pushing in the computation, and then they
are checked at the end of the computation. In particular in our small language, as
hard constraints, we have only the family of constraints based on the avg aggre-
gate. The constraint avg{d | i ∈ S ∧P (i, . . . , d)} ≤ m induces the weaker constraint
min{d | i ∈ S ∧ P (i, . . . , d)} ≤ m, which is both monotone and succinct and there-
fore it will be pushed in the computation to reduce the data and the search space.
Analogously the constraint avg{d | i ∈ S ∧ P (i, . . . , d)} ≥ m induces the weaker,
succinct and monotone, constraint max{d | i ∈ S ∧ P (i, . . . , d)} ≥ m. However at
the end of the computation, frequent itemsets which satisfy all constraints will be
checked against the avg based constraint.

A particular kind of constraint is the cardinality constraint: when it is in the form
|s| ≥ m, it is a monotone constraint, and as that is treated. When it is in the form
|s| ≤ m, is an antimonotone constraint, but it differs from the other antimonotone
constraints since it does not need to be checked for all itemsets, since the computation
itself is level-wise (at iteration k we count frequency of k-itemsets). Thus this constraint
just imposes a stopping condition (level m) to the level-wise computation. We create a
special class for this constraint: CStop.

Following the above consideration we define a new operator, that puts each constraint
in the query in the proper class. All these classes, once populated, will feed the mining
algorithm as parameters.

Definition 20 (Constraints manager). Given a conjunction of constraints C, we de-
fine the constraints manager operator, CM(C) as the operator which takes all constraints
in C, and put them in one or more class of constraints, as described in Figure 5.

Once the rule parser operator and the constraint manager have prepared the compu-
tation, an optimized mining operator M(MV, T , I, σ, CAM , CM , CAMS , CMS , CH , CStop)
will start the level-wise Apriori-like computation using all the constraints available in
order to reduce as much as possible the input data and the search space. The details
about how M is implemented, as well as the pseudo-code are reported in [2] and in
Appendix A. The optimized operational semantics for our inductive rules is defined as
in Figure 6.



CID Constraint C CM(C)

1 s ⊇ {a1, . . . , an} CAMS

2 s ⊆ {a1, . . . , an} CMS

3 |s| ≥ m CM

4 |s| ≤ m CStop

5 |s| = m CM , CStop

6 s.d ⊇ S CMS

7 s.d ⊆ S CAMS

8 min{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CMS

9 min{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CAMS

10 min{d | i ∈ S ∧ P (i, . . . , d)} = m CAMS , CMS

11 max{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CAMS

12 max{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CMS

13 max{d | i ∈ S ∧ P (i, . . . , d)} = m CAMS , CMS

CID Constraint C CM(C)

14 sum{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CAM

15 sum{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CM

16 sum{d | i ∈ S ∧ P (i, . . . , d)} = m CAM , CM

17 count{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CAM

18 count{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CM

19 count{d | i ∈ S ∧ P (i, . . . , d)} = m CAM , CM

20 avg{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CH , �→ 8
21 avg{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CH , �→ 12
22 avg{d | i ∈ S ∧ P (i, . . . , d)} = m CH , �→ 8, 12

23 range{d | i ∈ S ∧ P (i, . . . , d)} ≤ m CAM

24 range{d | i ∈ S ∧ P (i, . . . , d)} ≥ m CM

25 range{d | i ∈ S ∧ P (i, . . . , d)} = m CAM , CM

Fig. 5. Constraints Manager Table.

Optimized operational semantics of an inductive rule r

1. if SC(r)
2. then

3. RP(r) = freq〈V,T ,I,σ,C〉(t1, . . . , tn);
4. Q(V) = MV ;
5. CM(C) �→ CAM , CM , CAMS , CMS , CH , CStop

6. M(MV, T , I, σ, CAM , CM , CAMS , CMS , CH , CStop) = S;
7. for all s ∈ S return(s, t1, . . . , tn);
8. else return unsafe rule

Fig. 6. Optimized operational semantics of an inductive rule r.

6 Conclusions

This paper has provided a formalization of frequent pattern queries over relational
databases. This formalization has permitted to define an inductive language for frequent
pattern queries, which is simple enough to be highly optimized and expressive enough
to cover the most of interesting queries. Following the recente results in constrained
frequent pattern mining algorithms, we have defined an optimized constraint-pushing
operative semantics for the queries of the proposed language.

There are some issues left uncovered by this research, for which further investigations
are needed. An important issue is how to tightly integrate the inductive engine (opti-
mized algorithms for inductive query) with the deductive DBMS. This issue is strictly
connected with many other open problems ranging from how to store and index frequent
pattern query results to how to reuse them for incremental query refinement. We believe
that all this class of problems must be attacked together with an unifying approach.
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A Appendix: The Optimized Mining Operator M
In Figure 7 the pseudo-code for the mining operator M is reported. Knowledge of the
algorithms Apriori [1], ExAnte [5], ExAMiner [4] and CAP [11] is required in order to
understand the pseudo-code. The mining operator performs an ExAnte [5] preprocessing
at level 1 (lines from 1 to 18), where:

– both CM and CMS are exploited in order to µ-reduce the input database (lines 3 and
11);

– CAM and CAMS are exploited in order to α-reduce but only at the first round (line
6): after this reduction they will not be checked again at level 1, since they can not
shrink.

Then it starts an Apriori generate and test computation where:

– CStop is used as additional stopping condition (line 22);



– the generate apriori [1] (lines 20 and 24) procedure exploits succinct monotone
constraints, as defined in [11];

– the count procedure is substituted by an ExAMiner count&reduce (line 23) pro-
cedure as defined in [4]: it uses CM , CAM and CMS to reduce the dataset;

– the final test (line 27), check Li for satisfaction of CM and CH .

Note that in the final test of constraints, we do not need to check CMS , since their
satisfaction is assured by the candidate generation procedure. The mining operator M
defined above, corresponds to an ExAMiner1 computation, since it loops only at the
first level, and then goes on strictly level-wise using the count&reduce procedure typical
of ExAMiner. However, it is enriched by pushing all possible constraints in the proper
step of the computation.

Mining operator: M(MV, T , I, σ, CAM , CM , CAMS , CMS , CH , CStop)

1. Items := ∅;
2. forall transactions 〈T , {I}〉 in MV do

3. if {I} ∈ Th(CM ∩ CMS)
4. then forall items i in {I} do

5. i.count++;
6. if i.count == σ and {i} ∈ Th(CAM ∩ CAMS)
7. then Items := Items ∪ i;
8. old number interesting items := |Items|;
9. while |Items| < old number interesting items do

10. MV := α[MV ]Cfreq ;
11. MV := µ[MV ]CM∩CMS ;
12. old number interesting items := |Items|;
13. Items := ∅;
14. forall transactions 〈T , {I}〉 in MV do

15. forall items i in {I} do

16. i.count + +;
17. if i.count == σ then Items := Items ∪ i;
18. end while

19. L1 := Items; C2 := generate apriori(L1, CMS); k := 2;
20. while Ck �= ∅ and not CStop do

21. Lk := count&reduce(Cfreq ∩ CAM , Ck, MV, CM ∩ CMS);
22. Ck+1 := generate apriori(Lk, CMS);
23. k++;
24. end while

25. return
⋃k−1

i=1
Li ∩ Th(CM ) ∩ Th(CH)

Fig. 7. Pseudo-code of the mining operator M.
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C.so Svizzera, 185 – I-10149 Torino (Italy)

torassol@di.unito.it
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Abstract. Nelle piattaforme di e-learning i corsi non possono seguire
una struttura classica. I nuovi strumenti messi a disposizione dalla rete
(chat, forum ipermedialità) impongono una rivisitazione della struttura
dei contenuti e delle strategie didattiche utilizzate. In questo articolo
si vuole descrivere un idea per aiutare i docenti nella definizione di un
corso, inteso come materiale educativo e strategia didattica, avvalendosi
delle capacità espressive e di ragionamento del paradigma logico.

Descrizione del problema

Questi ultimi anni hanno assistito ad un fiorire di piattaforme di e-learning,
mirate all’utilizzo di materiale didattico online, indicato col nome di course-
ware, unità didattica o learning object. La fase più delicata e importante nella
progettazione di un corso, soprattutto se a distanza, è la scelta della strategia
didattica da adottare. Oggigiorno psicologia e pedagogia offrono ai formatori un
panorama di modelli di insegnamento (in aula, a distanza e sul lavoro) molto più
vasto che in passato, nei quali si pone particolare attenzione alla figura del dis-
cente, che passa dal ruolo passivo di uditore a quello attivo di promotore del pro-
prio apprendimento. Questa transizione è facilitata dalla diffusione dell’accesso
ad Internet. Infatti, se nel modello classico gli argomenti (documenti, dispense)
sono presentati in modo sequenziale ed eventuali esempi ed esercitazioni pratiche
non hanno alcuna ricaduta sulla sequenza di presentazione del materiale, legata
alla scaletta del corso, l’utilizzo del Web come veicolo consente al discente un
approccio “esplorativo”, in quanto egli può navigare attraverso i contenuti pro-
posti, soffermandosi su quelli che ritiene più interessanti. In generale una buona
strategia didattica deve consentire un certo grado di esplorazione, vincolando
però le possibilità del discente, il quale deve essere guidato in un percorso di-
dattico fruttuoso e possibilmente personalizzato, nel quale i risultati di test ed
esercizi sono tenuti in considerazione nella scelta del materiale da proporre.

Costruire una strategia didattica significa quindi specificare come le unità
(più tecnicamente: i learning object) devono essere presentate, dal punto di vista
grafico ma anche e soprattutto secondo quale schema o ordine.

Se si riuscisse a rappresentare in modo modulare learning object e strate-
gie didattiche, entrambi potrebbero essere riutilizzati nella costruzione di nuovi



corsi. In questo contesto risulta interessante da un lato definire formalismi e
standard per la specifica di meta-informazioni riguardanti i learning object (ad
es. prerequisiti ed obiettivi), dall’altro sviluppare degli strumenti che aiutino il
docente a comporre il materiale da fruire online per un certo corso, applicando
la strategia didattica da questi ritenuta più opportuna ad un insieme di learn-
ing object disponibili ed eventualmente realizzati da terzi. In generale, sarebbe
addirittura possibile costruire learning object ad hoc per un certo studente,
basandosi sulle preferenze e caratteristiche di quest’ultimo (presenza di esercizi
aggiuntivi, necessità di approfondimenti, eccetera).

In questo articolo si vuole illustrare in breve come DyLOG, un linguaggio
logico per ragionare su azioni e cambiamento, già utilizzato in applicazioni
Web-based educational [3, 4, 2], possa essere utilizzato sia per rappresentare la
conoscenza richiesta per espletare il compito descritto sia per costruire un agente
razionale che, partendo dalla descrizione degli obiettivi didattici di un corso, dalla
descrizione di un insieme di learning object, costituenti i contenuti di un repos-
itory didattico, e dalla specifica astratta di una strategia didattica, sia in grado
di assemblare le specifiche per la presentazione di un corso in una piattaforma
di e-learning.

Learning Object e strategie didattiche come azioni

Un sistema intelligente ragiona sul proprio comportamento e adotta una certa
strategia sulla base di uno stato mentale interno. Il sistema che intendiamo realiz-
zare deve poter ragionare sui learning object (LO nel seguito) per riuscire a com-
porre dei moduli didattici. Occorre quindi fornire una descrizione dichiarativa
dei LO. Una scelta piuttosto immediata è descrivere tali unità come azioni atom-
iche, definendone precondizioni all’esecuzione ed effetti in termini di competenze
da acquisire e competenze offerte. Nel seguito “ereditarietà” è un LO, rappresen-
tato in simil-DyLOG, inerente il concetto di ereditarietà in Java. L’acquisizione
di tale concetto presuppone la conoscenza dei concetti di oggetto e interfac-
cia -knows(oggetti) & knows(interfacce)- e comporta l’acquisizione (causes) di
competenze su binding dinamico, up- e down-casting:

learning object(ereditarieta) causes
knows(dinamic binding) & knows(down casting) & knows(up casting)
if knows(oggetti) & knows(interfacce).

learning object(introduzione) causes
knows(oggetti) & knows(costruttori) & knows(interfacce).

strategy(topic) is
user(initial test, topic) & add los(topic) & user(score test, topic).

Nella definizione di un corso di Java, il sistema automatico farà precedere questo
LO da uno o più moduli che forniscono le competenze precondizione, ad es. “in-
troduzione”. Il repository potrebbe contenere diversi LO che offrono le stesse
competenze ma caratterizzati in modo diverso. L’uso dell’uno o dell’altro consen-
tirà di meglio adattare il materiale prodotto alle esigenze dell’utente. Possiamo
infine interpretare le strategie didattiche come azioni complesse, che definiscono



schemi generici di possibili corsi, svincolati dai contenuti e tali da regolarne la
struttura. Nell’esempio è descritto una strategia didattica (strategy) su un gener-
ico argomento (topic), che produce corsi costituiti da un pre-test, seguito da uno
o più learning object (estratti dal repository da make los) ed un test finale.

Lavori in corso

In questo articolo abbiamo mostrato un possibile uso del linguaggio DyLOG nel
campo dei sistemi per l’e-learning. Il nostro lavoro ora è rivolto allo sviluppo di
un tutor virtuale in grado di sostenere il docente nella definizione di un course-
ware: tramite un agente intelligente vogliamo organizzare i LO seguendo strate-
gie didattiche personalizzabili. A tal fine i LO devono essere arricchiti da una
descrizione semantica del loro contenuto e tipo. Definiti i LO e stabilite le dipen-
denze tra i concetti, per costruire un courseware basterà indicare le competenze
che questo deve fornire e la strategia didattica da seguire. L’agente, ragionando
sulle dipendenze di causa ed effetto e sulle preferenze espresse, produrrà un corso.
Poiché la fruizione di un corso è vincolato dalla tecnologia usata dal sistema
di apprendimento, il nostro agente descriverà il courseware prodotto secondo
lo standard SCORM [1]. Tale standard si è dimostrato una delle proposte di
maggior successo degli ultimi anni nella descrizione del’uso e il riuso dei LO.
Caratteristica interessante della versione più recente di SCORM è che consente
di esprimere la sequenzializzazione e la navigabilità dei learning object tramite
semplici regole di verifica di stato, basate sul grado di completamento misurato
durante l’esecuzione dell’attività. Tali regole derivano direttamente dalla strate-
gia didattica adottata.

Ringraziamenti

Per il loro sostegno e aiuto ringrazio Matteo Baldoni e Cristina Baroglio del
Dipartimento di Informatica dell’Università di Torino.
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Abstract. Inductive learning of recursive logical theories from a set of 
examples is a complex task characterized by three important issues, namely the 
adoption of a generality order stronger than θ-subsumption, the non-
monotonicity of the consistency property, and the automated discovery of 
dependencies between target predicates. Solutions implemented in the learning 
system ATRE are briefly reported in the paper. Moreover, efficiency problems 
of the learning strategy are illustrated and two caching strategies, one for the 
clause generation phase and one for the clause evaluation phase, are described. 
The effectiveness of the proposed caching strategies has been tested on the 
document processing domain. Experimental results are discussed and 
conclusions are drawn. 

1. Introduction 

Inductive Logic Programming (ILP) has evolved from previous research in Machine 
Learning, Logic Programming, and Inductive Program Synthesis. Like Machine 
Learning, it deals with the induction of concepts from observations (examples) and 
the synthesis of new knowledge from experience. Its peculiarity is the use of 
computational logic as the representation mechanism for concept definitions and 
observations.  Typically, the output of an ILP system is a logical theory expressed as 
a set of definite clauses, which logically entail all positive examples and no negative 
example. Therefore, each concept definition corresponds to a predicate definition and 
a concept learning problem is reformulated as a predicate learning problem.  

Learning a single predicate definition from a set of positive and negative examples 
is a classical problem in ILP. In this paper we are interested in the more complex case 
of learning multiple predicate definitions, provided that both positive and negative 
examples of each concept/predicate to be learned are available. Complexity stems 
from the fact that the learned predicates may also occur in the antecedents of the 
learned clauses, that is, the learned predicate definitions may be interrelated and 
depend on one another, either hierarchically or involving some kind of mutual 
recursion. For instance, to learn the definitions of odd and even numbers, a multiple 
predicate learning system will be provided with positive and negative examples of 
both odd and even numbers, and may generate the following recursive logical theory: 

odd(X) ← succ(Y,X), even(Y) 
even(X) ← succ(Y,X), odd(Y) 



even(X) ← zero(X) 
where the definitions of odd and even are interdependent. This example shows that the 
problem of learning multiple predicate definitions is equivalent, in its most general 
formulation, to the problem of learning recursive logical theories. 

There has been considerable debate on the actual usefulness of learning recursive 
logical theories in knowledge acquisition and discovery applications. It is a common 
opinion that very few real-life concepts seem to have recursive definitions, rare 
examples being “ancestor” and natural language [2, 10]. Despite this scepticism, in 
the literature it is possible to find several ILP applications in which recursion has 
proved helpful [7]. Moreover, many ILP researchers have shown some interest in 
multiple predicate learning [6], which presents the same difficulty of recursive theory 
learning in its most general formulation.  

To formulate the recursive theory learning problem and then to explain its main 
theoretical issues, some basic definitions are given below. 

Generally, every logical theory T can be associated with a directed graph 
γ(T)=<N,E>, called the dependency graph of T, in which (i) each predicate of T is a 
node in N and (ii) there is an arc in E directed from a node a to a node b, iff there 
exists a clause C in T, such that a and b are the predicates of a literal occurring in the 
head and in the body of C, respectively. 

A dependency graph allows representing the predicate dependencies of T, where a 
predicate dependency is defined as follows: 

Definition 1 (predicate dependency). A predicate p depends on a predicate q in a 
theory T iff (i) there exists a clause C for p in T such that q occurs in the body of C; or 
(ii) there exists a clause C for p in T with some predicate r in the body of C that 
depends on q. 

Definition 2 (recursive theory). A logical theory T is recursive if the dependency 
graph γ (T) contains at least one cycle. 

In simple recursive theories all cycles in the dependency graph go from a predicate 
p into p itself, that is, simple recursive theories may contain recursive clauses, but 
cannot express mutual recursion.  

Definition 3 (predicate definition). Let T be a logical theory and p a predicate 
symbol. Then the definition of p in T is the set of clauses in T that have p in their 
head. Henceforth, δ(T) will denote the set of predicates defined in T and π (T) will 
denote the set of predicates occurring in T, then δ(T)⊆π (T). 

In a quite general formulation, the recursive theory learning task can be defined as 
follows: 

Given 
• A set of target predicates p1, p2, …, pr to be learned 
• A set of positive (negative) examples Ei

+ ( Ei
- ) for each predicate pi, 1≤i≤r 

• A background theory BK 
• A language of hypotheses LH  that defines the space of hypotheses SH 

Find 
a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr  

(that is, δ(T)={p1, p2, …, pr})  such that for each i, 1≤i≤r, BK∪ T |= Ei
+ (completeness 

property) and BK∪T |≠ Ei
- (consistency property). 



Three important issues characterize recursive theory learning. First, the generality 
order typically used in ILP, namely θ-subsumption [13], is not sufficient to guarantee 
the completeness and consistency of learned definitions, with respect to logical 
entailment [12]. Therefore, it is necessary to consider a stronger generality order, 
which is consistent with the logical entailment for the class of recursive logical 
theories we take into account. 

Second, whenever two individual clauses are consistent in the data, their 
conjunction need not be consistent in the same data [5]. This is called the non-
monotonicity property of the normal ILP setting, since it states that adding new 
clauses to a theory T does not preserve consistency. Indeed, adding definite clauses to 
a definite program enlarges its least Herbrand model (LHM), which may then cover 
negative examples as well. Because of this non-monotonicity property, learning a 
recursive theory one clause at a time is not straightforward. 

Third, when multiple predicate definitions have to be learned, it is crucial to 
discover dependencies between predicates. Therefore, the classical learning strategy 
that focuses on a predicate definition at a time is not appropriate.   

To overcome these problems a new approach to the learning of multiple dependent 
concepts has been proposed in [8] and implemented in the learning system ATRE 
(www.di.uniba.it/∼malerba/software/atre). This approach differs from related works for 
at least one of the following three aspects: the learning strategy, the generalization 
model, and the strategy to recover the consistency property of the learned theory 
when a new clause is added. 

The paper synthesizes and extends the work presented in [8]. In particular, it 
presents a brief overview of solutions proposed and implemented in ATRE to the 
three main issues above. Evolutions of the search strategy are also reported. More 
precisely, two new issues regarding the search space exploration are faced, one 
concerning search bias definition in order to allow the user to guide the search space 
exploration according to his/her preference, and the other one concerning efficiency 
problems due to the computational complexity of the search space. Some solutions 
have been proposed and implemented in a new version of the system ATRE.  

The paper is organized as follows. Section 2 illustrates issues and solutions related 
to the recursive theory learning. Section 3 introduces efficiency problems and 
presents optimization approaches adopted in ATRE. Section 4 illustrates the 
application of ATRE on real-world documents and presents results on efficiency gain. 
Finally, in Section 5 some conclusions are drawn. 

2. Issues and solutions 

2.1 The generality order 

As explained above, in recursive theory learning it is necessary to consider a 
generality order that is consistent with the logical entailment for the class of recursive 
logical theories. A generality order (or generalization model) provides a basis for 
organizing the search space and is essential to understand how the search strategy 
proceeds. The main problem with the well-known θ-subsumption is that the objects 



of comparison are two clauses, say C and D, and no additional source of knowledge 
(e.g., a theory T) is considered. For instance, with reference to the previous example 
on odd and even predicates, the clause: 

C: odd(X) ← succ(Y,X), even(Y) 
logically entails, and hence can be correctly considered more general than  

D: odd(3) ← succ(0,1), succ(1,2), succ(2,3), even(0) 
only if we take into account the theory  

T: even(A) ← succ(B,A), odd(B) 
     even(C) ← zero(C) 
Therefore, we are only interested in those generality orders that compare two 

clauses relatively to a given theory T, such as Buntine's generalized subsumption [3] 
and Plotkin's notion of relative generalization [13, 14].  

Informally, generalized subsumption (≤T) requires that the heads of C and D refer 
to the same predicate, and that the body of D can be used, together with the 
background theory T, to entail the body of C. Unfortunately, generalized subsumption 
is too weak for recursive theories, because in some cases, given two clauses C and D, 
it may happen that T∪{C}|=D holds but it can not be concluded that C≤TD.  

Plotkin's notion of relative generalization [13, 14] was originally proposed for a 
theory T of unit clauses. Buntine [3] reports an extension of relative generalization to 
the case of a theory T composed of definite clauses (not necessarily of unit clauses) 

Definition 4 (relative generalization). Let C and D be two definite clauses. C is 
more general than D under relative generalization, with respect to a theory T, if a 
substitution θ exists such that T = ∀(Cθ ⇒ D). 

The following theorem holds for this extended notion of relative generalization: 
Theorem 1. Let C and D be two definite clauses and T a logical theory. C is more 

general than D under relative generalization, with respect to a theory T, if and only if 
C occurs at most once in some refutation demonstrating T = ∀(C ⇒ D). 

However, this extended notion of relative generalization is still inadequate. From 
one side, it is still weak. Indeed, if we consider the clauses and the theory reported in 
the example above, it is clear that a refutation demonstrating T = ∀(C ⇒ D) involves 
twice the clause C to prove both odd(1) and odd(3).  

Malerba [8] has defined the following generalization order, which proved suitable 
for recursive theories. 

Definition 5 (generalized implication). Let C and D be two definite clauses. C is 
more general than D under generalized implication, with respect to a theory T, 
denoted as C≤T⇒D, if a substitution θ exists such that head(C)θ = head(D) and   
T = ∀(C ⇒ D). 

Decidability of the generalized implication test is guaranteed in the case of Datalog 
clauses [4]. In fact, the restriction to function-free clauses is common in ILP systems, 
such as ATRE, which remove function symbols from clauses and put them in the 
background knowledge by techniques such as flattening [15].  



2.2 The non-monotonicity property 

It is noteworthy that generalized implication compares two definite clauses for 
generalization. This means that the search space structured by this generality order is 
the space of definite clauses. A recursive logical theory is generally composed of 
several clauses, therefore the learning strategy must search for one clause at a time. 
More precisely, a recursive theory T is built step by step, starting from an empty 
theory T0, and adding a new clause at each step. In this way we get a sequence of 
theories  

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T, 
such that Ti+1 = Ti  ∪ {C} for some clause C. If we denote by LHM(Ti) the least 
Herbrand model of a theory Ti, the stepwise construction of theories entails that 
LHM(Ti) ⊆ LHM(Ti+1), for each i∈{0, 1, …, n-1}, since the addition of a clause to a 
theory can only augment the LHM. Henceforth, we will assume that both positive and 
negative examples of predicates to be learned are represented as ground atoms with a 
+ or - label. Therefore, examples may or may not be elements of the models LHM(Ti). 
Let pos(LHM(Ti)) and neg(LHM(Ti)) be the number of positive and negative 
examples in LHM(Ti), respectively. If we guarantee the following two conditions: 

1. pos(LHM(Ti)) < pos(LHM(Ti+1)) for each i∈{0, 1, …, n-1}, and  
2. neg(LHM(Ti)) = 0 for each i∈{0, 1, …, n},  

then after a finite number of steps a theory T, which is complete and consistent, is 
built. This learning strategy is known as sequential covering (or separate-and-
conquer) [9]. 

In order to guarantee the first of the two conditions it is possible to proceed as 
follows. First, a positive example e+ of a predicate p to be learned is selected, such 
that e+ is not in LHM(Ti). The example e+ is called seed. Then the space of definite 
clauses more general than e+ is explored, looking for a clause C, if any, such that 
neg(LHM(Ti ∪ {C})) = ∅. In this way we guarantee that the second condition above 
holds as well. When found, C is added to Ti giving Ti+1. If some positive examples are 
not included in LHM(Ti+1) then a new seed is selected and the process is repeated.  

The second condition is more difficult to guarantee because of the second issue 
presented in the introduction, namely, the non-monotonicity property. Algorithmic 
implications of this property may be effectively illustrated by means of an example. 
Consider the problem of learning the definitions of ancestor and father from a 
complete set of positive and negative examples. Suppose that the following recursive 
theory T2 has been learned at the second step: 

C1: ancestor(X,Y) ← parent(X,Y) 
C2: father(Z,W) ← ancestor(Z,W), male(Z) 

Note that T2 is consistent but still incomplete. Thus a new clause will be generated 
at the third step of the sequential-covering strategy. It may happen that the generated 
clause is the following: 

C: ancestor(A,B) ← parent(A,D),ancestor(D,B) 
which is consistent given T2, but when added to the recursive theory, it makes clause 
C2 inconsistent.  

There are several ways to remove such inconsistency by revising the learned 
theory. Nienhuys-Cheng and de Wolf [11] describe a complete method of 



specializing a logic theory with respect to sets of positive and negative examples. The 
method is based upon unfolding, clause deletion and subsumption. These operations 
are not applied to the last clause added to the theory, but may involve any clause of 
the inconsistent theory. As a result, clauses learned in the first inductive steps could 
be totally changed or even removed. This theory revision approach, however, is not 
coherent with the stepwise construction of the theory T presented above, since it re-
opens the whole question of the validity of clauses added in the previous steps. An 
alternative approach consists of simple syntactic changes in the theory, which 
eventually creates new layers in a logical theory, just as the stratification of a normal 
program creates new strata [1].  

More precisely, a layering of a theory T is a partition of the clauses in T into n 
disjoint sets of clauses or layers Ti such that LHM(T)= LHM(LHM(∪j=0,…,n-2 Tj)∪Tn-1), 
that is, LHM(T) can be computed by iteratively applying the immediate consequence 
operator to Ti, starting from the interpretation LHM(∪j=0,…,i-1 Tj), for each i∈{1, …,n}. 
In [8] an efficient method for the computation of a layering is reported. It is based on 
the concept of collapsed dependency graph and returns a unique layering for a given 
logical theory T. The layering of a theory provides a semi-naive way of computing 
the generalized implication test presented above and provides a solution to the 
problem of consistency recovering when the addition of a clause makes the theory 
inconsistent.   
Theorem. Let T=T0 ∪ … ∪ Ti  ∪ … ∪ Tn-1 be a consistent theory partitioned into n 
layers, and C be a definite clause whose addition to the theory T makes a clause in 
layer Ti  inconsistent. Let p∈{p1, p2, …, pr} be the predicate in the head of C. Let T" be 
a theory obtained from T by substituting all occurrences of p in T with a new 
predicate symbol, p', and T'=T"∪{p(t1, …, tn) ← p'(t1, …, tn)}∪{C}. Then T' is 
consistent and LHM(T) ⊆ LHM(T') \ {p(t1, …, tn) ← p’ (t1, …, tn)}. 

In short, the new theory T' obtained by renaming the predicate p with a new 
predicate name p' before adding C is consistent and keeps the original coverage of T. 
This introduces a first variation of the classical separate-and-conquer strategy 
sketched above, since the addition of a locally consistent clause C generated in the 
conquer stage is preceded by a global consistency check. If the result is negative, the 
partially learned theory is first restructured, and then two clauses, p(t1, …, tn) ← p’ (t1, 
…, tn)  and C, are added. For instance, in the example above the result will be: 

C1': ancestor' (X,Y) ← parent(X,Y) 
C2': father(Z,W) ← ancestor'(Z,W), male(Z) 

  ancestor(U,V) ← ancestor' (U,V) 
C: ancestor(A,B) ← parent(A,D),ancestor(D,B) 

 
It is noteworthy that, in the proposed approach to consistency recovery, new 

predicates are invented, which aim to accommodate previously acquired knowledge 
(theory) with the currently generated hypothesis (clause).  



2.3 Discovering dependencies between predicates 

The third and last issue to deal with is the automated discovery of dependencies 
between target predicates p1, p2, …, pr. A solution to this problem is based on another 
variant of the separate-and-conquer learning strategy. Traditionally, this strategy is 
adopted by single predicate learning systems that generate clauses with the same 
predicate in the head at each step. In multiple predicate learning (or recursive theory 
learning) clauses generated at each step may have different predicates in their heads. 
In addition, the body of the clause generated at the i-th step may include all target 
predicates p1, p2, …, pr for which at least a clause has been added to the partially 
learned theory in previous steps. In this way, dependencies between target predicates 
can be generated.  

Obviously, the order in which clauses of distinct predicate definitions have to be 
generated is not known in advance. This means that it is necessary to generate clauses 
with different predicates in the head and then to pick one of them at the end of each 
step of the separate-and-conquer strategy. Since the generation of a clause depends on 
the chosen seed, several seeds have to be chosen such that at least one seed per 
incomplete predicate definition is kept. Therefore, the search space is actually a forest 
of as many search-trees (called specialization hierarchies) as the number of chosen 
seeds. A directed arc from a node C to a node C' exists if C' is obtained from C by a 
single refinement step. Operatively, the (downward) refinement operator considered 
in this work adds a new literal to a clause. 

The forest can be processed in parallel by as many concurrent tasks as the number 
of search-trees. Each task traverses the specialization hierarchy top-down (or general-
to-specific), but synchronizes traversal with the other tasks at each level. Initially, 
some clauses at depth one in the forest are examined concurrently. Each task is 
actually free to adopt its own search strategy, and to decide which clauses are worth 
to be tested. If none of the tested clauses is consistent, clauses at depth two are 
considered. Search proceeds towards deeper and deeper levels of the specialization 
hierarchies until at least a user-defined number of consistent clauses is found. Task 
synchronization is performed after that all “relevant” clauses at the same depth have 
been examined. A supervisor task decides whether the search should carry on or not 
on the basis of the results returned by the concurrent tasks. When the search is 
stopped, the supervisor selects the “best” consistent clause according to the user’s 
preference criterion. This strategy has the advantage that simpler consistent clauses 
are found first, independently of the predicates to be learned.1 Moreover, the 
synchronization allows tasks to save much computational effort when the distribution 
of consistent clauses in the levels of the different search-trees is uneven. The parallel 
exploration of the specialization hierarchies for odd and even is shown in Fig. 1. 

                                                           
1 Apparently, some problems might occur for those recursive definitions where the recursive 

clause is syntactically simpler than the base clause. However, the proposed strategy does not 
allow the discovery of the recursive clause until the base clause has been found, whatever its 
complexity is. 



 

even(X) ←

even(X) ← zero(X) even(X) ← succ(X,Y) 

odd(X) ← 

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ←zero(X) 
    succ(X,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   succ(X,Z) 

even(0) odd(1) seeds 

Level 0 

Level 1 

Level 2 

even(X) ←

even(X) ← succ(Y,X) even(X) ← succ(X,Y) 

odd(X) ← 

odd(X) ← succ(Y,X) odd(X) ← succ(X,Y) 

even(X) ← succ(Y,X) 
    succ(Z,Y) 

even(X) ←succ(X,Y)
    succ(Y,Z)

odd(X) ← succ(Y,X) 
   zero(Y) 

odd(X) ← succ(Y,X) 
   even(Y) 

even(2) odd(1) seeds 

Level 0 

Level 1 

Level 2 

Fig. 1. Two steps (up and down) of the parallel search for the predicates odd and 
even. Consistent clauses are reported in italics. 

2.4 Some refinements on the learning strategy 

The learning strategy reported in previous section is quite general and there is room 
for several distinct implementations. In particular, the following three points have 
been left unspecified: 1) how seeds are selected; 2) what are the roots of 
specialization hierarchies; 3) what is the search strategy adopted by each task. In this 
section, solutions adopted in the last release of the learning system ATRE are 
illustrated.  

Seed selection is a critical point. In the example of Fig. 1, if the search had started 
from even(2) and odd(1), the first clause added to the theory would have been   
odd(X) ← succ(Y,X), zero(Y), thus resulting in a less compact, though still correct, 
theory for odd and even numbers. Therefore, it is important to explore the 
specialization hierarchies of several seeds for each predicate. When training examples 
and background knowledge are represented either as sets of ground atoms (flattened 
representation) or as ground clauses, the number of candidate seeds can be very high, 
so the choice should be stochastic. The object-centered representation adopted by 
ATRE has the advantage of reducing the number of candidate seeds by partitioning 
the whole set of training examples E into training objects. The main assumption made 
in ATRE is that each object contains examples explained by some base clauses of the 
underlying recursive theory.2 Therefore, by choosing as seeds all examples of 
different concepts represented in one training object, it is possible to induce some of 
the correct base clauses. Since in many learning problems the number of positive 
                                                           
2 Problems caused by incomplete object descriptions violating the above assumption are not 

investigated in this work, since they require the application of abductive operators, which are 
not available in the current version of the system. 



examples in an object is not very high, a parallel exploration of all candidate seeds is 
feasible. Mutually recursive concept definitions will be generated only after some 
base clauses have been added to the theory. 

Seeds are chosen according to the textual order in which objects are input to 
ATRE. If a complete definition of the predicate pj is not available yet at the i-th step 
of the separate-and-conquer search strategy, then there are still some uncovered 
positive examples of pj. The first (seed) object Ok in the object list that contains 
uncovered examples of pj is selected to generate seeds for pj.  

Generally, each specialization hierarchy is rooted in a unit clause, that is, a clause 
with an empty body. However, in some cases, the user has a clear idea of relevant 
properties that should appear in the body of the clauses and is even able to define the 
root of the specialization hierarchies. A language bias has been defined in ATRE to 
allow users to express constraints that should be satisfied by root clauses or by 
interesting clauses in the specialization hierarchy. In its current version, the language 
bias includes the following declarations: 

starting_number_of_literals(pi,N) 
starting_clause(pi,[L1,L2,…,LN]) 

where pi is a target predicate, N is a cardinal number, and [L1,L2,…,LN] represents a 
list of literals. In particular, the starting_number_of_literals declaration specifies the 
initial length of the root clause (at least N literals in the body), while the 
starting_clause declaration specifies a conjunctive constraint on the body of a root 
clause: all literals in the list [L1,L2,…,LN] must occur in the clause. Multiple 
starting_clause declarations for the same target predicate pi specify alternative 
conjunctive constraints for the root clauses of specialization hierarchies associated to 
pi. In addition, the following declaration: 

starting_literal(pi,[L1,L2,…,LN]) 
specifies a disjunctive constraint at literal level for the body of root clauses. Literals 
are expressed as follows: 

f(decl-arg1, …, decl-argn) = Value 
g(decl-arg1, …, decl-argn) ∈ Range 

where decl-arg's are mode declarations for predicate arguments. Declarations are 
applicable only to variables and influence the way of generating variables. Two 
modes are available: old and new. The first mode means that the variable is an input 
variable, that is, it corresponds to a variable already occurring in the clause. The 
second mode means that the variable is a new one. Furthermore, values and ranges of 
predicates can be ground or not. 

The third undefined point of the search strategy concerns the search strategy 
adopted by each task. ATRE applies a variant of the beam-search strategy. The 
system generates all candidate clauses at level l+1 starting from those filtered at level 
l in the specialization hierarchy. During task synchronization, which occurs level-by-
level, the best m clauses are selected from those generated by all tasks. The user 
specifies the beam of the search, that is m, and a set of preference criteria for the 
selection of the best m clauses.  



3. Improving efficiency in ATRE 

In this section we present a novel caching strategy implemented in ATRE to 
overcome efficiency problems. Generally speaking, caching aims to save useful 
information that would be repeatedly recomputed otherwise, with a clear waste of 
time. In ATRE caching affects the two most computationally expensive phases of the 
learning process, namely the clause generation step and the clause evaluation step.  

3.1 Caching for clause generation  
The learning strategy sketched in Section 2.3 presents a large margin for 
optimization. One of the reasons is that every time a clause is added to the partially 
learned theory, the specialization hierarchies are reconstructed for a new set of seeds, 
which may intersect the set of seeds explored in the previous step. Therefore, it is 
possible that the system explores the same specialization hierarchies several times, 
since it has no memory of the work done in previous steps. This is particularly 
evident when concepts to learn are neither recursively definable nor mutually 
dependent. Caching the specialization hierarchies explored at the i-th step of the 
separate-and-conquer strategy and reusing part of them at the (i+1)-th step, seems to 
be a good strategy to decrease the learning time while keeping memory usage under 
acceptable limits.  

First of all, we observe that a necessary condition for reusing a specialization 
hierarchy between two subsequent learning steps is that the associated seed remains 
the same. This means that if the seed of a specialization hierarchy is no longer 
considered at the (i+1)-th step, then the corresponding clauses cached at the i-th step 
can be discarded.  

However, even in the case of same seed, not all the clauses of the specialization 
hierarchy will be actually useful. For instance, the cached copies of a clause C added 
to Ti  can be removed from all specialization hierarchies including it.  Moreover, all 
clauses that cover only positive examples already covered by C can be dropped, 
according to the separate-and-conquer learning strategy. These examples explain why 
a cached specialization hierarchy has to be pruned before considering it at the (i+1)-
th step of the learning strategy.  

Fig.2. An example of search-tree pruning effect on beam-search width. 



In order to maintain unchanged the width of the search beam, some grafting 
operations are necessary after pruning. Indeed, by removing the clauses that will be 
no more examined, the exploration beam decreases. Grafting operations aim to 
consider previous unspecialized clauses in order to restore the beam width, as shown 
in Fig.2. 

Grafting operations are also necessary to preserve the generation of recursive 
clauses. For instance, by looking at the two specialization hierarchies of the predicate 
odd in Fig. 1, it is clear that once the clause  even(X) ← zero(X)  has been added to 
the empty theory (step 1), the consistent clause odd(X) ← succ(Y,X), even(Y)  can be a 
proper node of the specialization hierarchy, since a base clause for the recursive 
definition of the predicate even is already available. Therefore, the grafting operations 
also aim to complete the pruned specialization hierarchy with new clauses that take 
predicate dependencies into account.  

3.2 Caching for clause evaluation  
Evaluating a clause corresponds to determining the lists of positive and negative 
examples covered by the clause itself. This requires a number of generalized 
implication tests, one for each positive or negative example. In ATRE the generalized 
implication test is optimized, however, if the number of tests to perform is high, the 
clause evaluation leads to efficiency problems anyway. To reduce the number of tests, 
we propose to cache the list of positive and negative examples of each clause, as well. 

To clarify this caching technique, we distinguish between dependent clauses, that 
is, clauses with at least one literal in the body whose predicate symbol is a target 
predicate pi, and independent clauses (all the others).  

In independent clauses, the lists of negative examples remain unchanged between 
two subsequent learning steps. Indeed, the addition of a clause C to a partially learned 
theory Ti does not change the set of consequences of an independent clause, whose 
set of negative examples can neither increase nor decrease. Therefore, by caching the 
list of negative examples, the learning system can prevent its computation. 

A different observation concerns the list of positive examples to be covered by the 
partially learned theory. For the same reason reported above it cannot increase, while 
it can decrease since some of the positive examples might have been covered by the 
added clause C. Actually, the set of positive examples of a clause C' generated at the 
(i+1)-th step can be calculated as intersection of the cached set computed at the i-th 
step of the learning strategy and the set of positive examples covered by the parent 
clause of C' in the specialization hierarchy computed at the (i+1)-th step (see Fig. 3). 
In the case of dependent clauses, both lists of the positive and negative examples can 
increase, decrease or remain unchanged, since the addition of a clause C to a partially 
learned theory Ti might change the set of consequences of a dependent clause. 
Therefore, caching the set of positive/negative examples covered by a dependent 
clause is useless.  

It is noteworthy that, differently from the caching technique for clause generation, 
caching for clause evaluation does not require additional memory resources since all 
requested information are kept from the current learning step. 



 

4. Application to document understanding  

The current release of ATRE is implemented in Sictus Prolog and C. It has also been 
integrated in WISDOM++(http://www.di.uniba.it/~malerba/wisdom++), an intelligent 
document processing system, that uses logical theories learned by ATRE to perform 
automatic classification and understanding of document images. In this section we 
show some experimental results for the document image understanding task alone.  

Fig.3. The positive examples list is calculated as intersection of the positive examples
list of the same clause in previous learning step (i) and the positive examples list of the
parent clause in current learning step (i+1). 

Fig. 4. Layout of a document image produced by WISDOM++ (left) and its partial 
description in the logical representation language adopted by ATRE (right). 



A document is characterized by two different structures representing both its 
internal organization and its content: the layout structure and the logical structure. 
The former associates the content of a document with a hierarchy of layout 
components, while the latter associates the content of a document with a hierarchy of 
logical components. Here, the term document understanding denotes the process of 
mapping the layout structure of a document into the corresponding logical structure. 
The document understanding process is based on the assumption that documents can 
be understood by means of their layout structures alone. The mapping of the layout 
structure into the logical structure can be performed by means of a set of rules which 
can be generate automatically by learning from a set of training objects. Each training 
object describes the layout of a document image and the logical components 
associated to layout components (see Fig. 4). 

To empirically investigate the effect of the proposed caching strategies, we 
selected twenty-one papers, published as either regular or short, in the IEEE 
Transactions on Pattern Analysis and Machine Intelligence, in the January and 
February issues of 1996. Each paper is a multi-page document; therefore, the dataset 
is composed by 197 document images in all. Since in the particular application 
domain, it generally happens that the presence of some logical components depends 
on the order page (e.g. author is in the first page), we have decomposed the document 
understanding problem into three learning subtasks, one for the first page of scientific 
papers, another for intermediate pages and the third for the last page. Target 
predicates are only unary and concern the following logical components of a typical 
scientific paper published in a journal: abstract, affiliation, author, biography, 
caption, figure, formulae, index_term, page_number, references, running_head, 
table, title. Some statistics on the dataset obtained from first page documents are 
reported in Table1. 

 

Logical components Number of positive examples 

Abstract 21 
Affiliation 22 
Author 25 
Index_term 11 
Page_number 180 
Running_head 203 
Title 23 
Total 485 

Table 1. Distribution of logical components on first page documents. 

By running ATRE on a document understanding dataset obtained from scientific 
papers, a set of  theories is learned. Some examples of learned clauses follow:  

author(X1)  alignment(X1,X2)=only_middle_col, abstract(X2), 
   height(X1)∈[7..13] 

figure(X1)  type_of(X1)= image, width(X1)∈[12..227], 
   x_pos_centre(X1)∈[335..570] 

references(X1)  to_right(X1,X2), biografy(X2), 



 width(X2)∈[261..265] 
They can be easily interpreted. For instance, the first clause states that if a quite 

short layout component (X1), whose height is between 7 and 13, is centrally aligned 
with another layout component (X2) labelled as the abstract of the scientific paper, 
then it can be classified as the author of the paper. These clauses show that ATRE can 
automatically discover meaningful dependencies between target predicates. 

In the experiments the effect of the caching is investigated with respect to two 
system parameters, the minimum number of consistent clauses found at each learning 
step before selecting the best one and the beam of the search (max_star parameter). 
The former affects the depth of specialization hierarchies, in the sense that the higher 
the number of consistent clauses, the deeper the hierarchies. The latter affects the 
width of the search-tree.  
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Results for the first page learning task are shown in Figures 5 and 6. Percentages 
refer to reduction of the learning time required by ATRE with caching with respect to 
the original release of the system (without caching). Results show a positive 
dependence between the size of the beam and the reduction of the learning time. On 
the contrary, slight increases in the number of consistent clauses do not seem to 
significantly affect the efficiency gain due to caching. 

5. Conclusions 

In this paper issues and solutions of recursive theory learning are illustrated. 
Evolutions on the proposed search strategy to tackle efficiency problems are 
proposed. They have been implemented in ATRE and tested in the document 
understanding domain. Initial experimental results show that the learning task 
benefits from the caching strategy. As future work we plan to perform more extensive 
experiments to investigate the real efficiency gain in other real-world domains. 
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Abstract. An important branch of investigation in the field agents has
been the definition of high level languages for representing effects of ac-
tions, the programs written in such languages being usually called action
programs. Logic programming is an important area in the field of knowl-
edge representation and some languages for specifying updates of Logic
Programs had been defined. In this work we address the problem of estab-
lishing relationships between action programs and Logic Programming
updates languages, particulary the newly defined Evolp language. Our
investigation leads to the definition of a new paradigm for representing
actions called Evolp action programs. We provide translations of some of
the most known action description languages into Evolp action programs,
and underline some peculiar features of this newly defined paradigm. One
of such feature is that Evolp action programs can easily express changes
in the very rules of the domains, including rules describing changes.

1 Introduction

In the last years the concept of agent had became central in the field of Artificial
Intelligence. “An agent is just something that acts” [25]. Given the importance
of the concept, ways of representing actions and their effects on the environment
had been studied. A branch of investigation in this topic has been the definition
of high level languages for representing effects of actions [7, 12, 14, 15], the pro-
grams written in such languages being usually called action programs. Action
programs specify which facts (or fluents) change in the environment after the
execution of a set of actions. Several works exist on the relation between these
action languages and Logic Programming (LP) (e.g. [5, 12, 20]). However, de-
spite the fact that LP has been successfully used as a language for declaratively
representing knowledge, the mentioned works basically use LP for providing an
operational semantics, and implementation, for action programs. This is so be-
cause normal logic programs [11], and most of their extensions, have no in-built

? This work was partially supported by project FLUX (POSI/40958/SRI/2001) and
by project SOCS (IST-2001-32530).



means for dealing with changes, something which is quite fundamental for the
relation with action languages.

In recent years some effort was devoted to explore the problem of how to
update logic programs with new rules [3, 8, 9, 18, 19]. Here, knowledge is conveyed
by sequences of programs, where each program in a sequence is an update to
the previous ones. For determining the meaning of sequences of logic programs,
rules from previous programs are assumed to hold by inertia after the updates
(given by subsequent programs) unless rejected by some later rule. LP update
languages [2, 4, 10, 18], besides giving meaning to sequences of logic programs,
also provide in-built mechanisms for constructing such sequences. In other words,
LP update languages extend LP by providing means to specify and reason about
rule updates. In [5] the authors show, by examples, a possible use the LP update
language LUPS [4] for representing actions. However, the work done does not
establish an exact relationship between existing action languages and LP update
languages and also the eventual advantages of LP update languages approach
to actions are still not clear. The present work tries to clarify these points. Our
investigation focuses on the newly defined Evolp language [2].

In section 2 we review some background and notation. In section 3 we show
how to use macros defined in Evolp as an action description paradigm. Programs
written in such macro language are called Evolp action programs (EAPs). We il-
lustrate the usage of EAPs by an example involving a variant of the classical Yale
Shooting Problem. In section 4 we establish the relationship between EAPs and
existing approaches by providing simple translations of the action languages A
[12], B [13] (which is a subset of the language proposed in [14]), and (the definite
fragment of) C [15] into EAPs, thus showing that EAPs are at least as expressive
as the cited action languages. Coming to this point the next question is what
are the possible advantages of EAPs. The underlying idea of action frameworks
is to describe dynamic environment. This is usually done by describing rules
that specify, given a set of external actions, how the environment evolves. In
a dynamic environment, however, not only the facts but also the “rules of the
game” can change, in particular the rules describing the changes. The capability
of describing such kind of meta level changes is, in hour opinion, an important
feature of an action description language. In section 5 we address this topic in
the context of EAPs and show EAPs seem, in this sense, more flexible than other
paradigms. Evolp provides specific commands that allow for the specification of
updates to the initial program but also provides the possibility to specify up-
dates of these updates commands. We show, by successive elaborations of the
Yale shooting example defined in section 3.1, how to use this feature to describe
successive elaborations of the problem during the evolution of the environment.
Finally, in section 6, we conclude and trace a route for future developments.

2 Background and notation

In this section we briefly recall syntax and semantics of dynamic logic programs
[1] and the syntax and semantics for Evolp[2]. We also recall some basic notions
and notation for action description languages.



2.1 Dynamic logic programs and Evolp

The main idea of logic programs updates is to update a logic program by another
logic program or by a sequence of logic programs, also called dynamic logic
programs (DLP) the initial program corresponding to the initial knowledge of a
given (dynamic) domain, and the subsequent ones to successive updates of the
domain. To represent negative information in logic programs and their updates,
DLP requires generalized logic programs (GLPs) [21], which allows for default
negation not A not only in the premises of rules but also in their heads. A
language L is any set of propositional atoms. A literal in L is either an atom
of L or the negation or such an atom. In general, given any set of atoms F
we denote the by FLit the set of literals over F . Given a literal L, if L = Q,
where Q is an atom, by not L we denote the negative literal not Q. Viceversa, if
L = not Q, by not L we denote the atom Q. A GLP defined over a propositional
language L is a set of rules of the form L ← Body, where L is a literal in L,
and Body is a set of literals in L.3 We say a set of literals Body is true in
an interpretation I (or that I satisfies Body) iff Body ⊆ I. In the paper we
will use programs containing variables. As usual when programming within the
stable models semantics, a program with variables stands for the propositional
program obtained as the set of all possible ground instantiation of the program.

Two rules τ and η are conflicting (denoted by τ ./ η) iff the head of τ is the
atom A and the head of η is not A or viceversa. A dynamic logic program over
a language L is a sequence P1 ⊕ . . . ⊕ Pm (also denoted ⊕Pm

i ) where the Pis
are GLPs defined over L. The refined stable model semantics of DLP defined in
[1] assigns to each sequence P1 ⊕ . . .⊕ Pn a set of stable models (that is proven
there to coincide with the stable models based semantics defined in [21] when the
sequence is formed by a single GLP). The rationale for the definition of a stable
model M of a DLP is made in accordance with the causal rejection principle
[9, 18]: If the body of a rule in a given update is true in M the considered rule
rejects all the conflicting rules in previous updates, which means that such rules
are ignored in the computation of the stable model. In the refined semantics for
DLPs such rule also rejects any conflicting rule in the same update. Moreover,
an atom A is assumed false by default if there is no rule, in none of the programs
in the sequence, with head A and a true body in M . Formally:

Default(⊕Pm
i ,M) = {not A | 6 ∃ A← Body ∈

⋃
Pi ∧Body ⊆M}

RejS(⊕Pm
i ,M) = {τ | τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ ./ η ∧ Body(η) ⊆M}

where M is an interpretation, i.e. any set of literals in L such that, for each atom
A, either A ∈ M or not A ∈ M . If ⊕Pm

i is clear from the context, we omit it
as first argument of the above functions.

3 Note that, by defining rule bodies as sets, the order and number of occurrences of
literals does not matter.



Definition 1. Let ⊕Pm
i be a DLP over language L and M a interpretation. M

is a refined stable model of ⊕Pm
i iff

M = least
(⋃

Pi \RejS(M)) ∪Default(M)
)

where least(P ) denotes the least Herbrand model of the definite program [22]
obtained by considering each negative literal not A in P as a new atom.

Having defined the meaning of sequences of programs, we are left with the
problem of how to come up with those sequences. This is the subject of LP update
languages [2, 4, 10, 18]. Among the existing languages, Evolp [2] uses a particulary
simple syntax, which extends the usual syntax of GLPs by introducing the special
predicate assert/1. Given any language L, the language Lassert is recursively
defined as follows: every atom in L is also in Lassert; for any rule τ over Lassert,
the atom assert(τ) is in Lassert; nothing else is in Lassert. An Evolp program
over L is any GLP over Lassert. An Evolp sequence is a sequence (or DLP) of
Evolp programs. The rules of an Evolp program are called Evolp rules.

Intuitively an expression assert(τ) stands for “update the program with the
rule τ”. Notice the possibility in the language to nest an assert expression in
another. The intuition behind the Evolp semantics is quite simple. Starting from
the initial Evolp sequence ⊕Pm

i we compute the set, SM(⊕Pm
i ), of the stable

models of ⊕Pm
i . Then, for any element M in SM(⊕Pm

i ), we update the initial
sequence with the program Pm+1 consisting of the set of rules τ such that the
atom assert(τ) belongs to M . In this way we obtain the sequence ⊕Pm

i ⊕Pm+1.
Since SM(⊕Pm

i ) contains, in general, several models we may have different lines
of evolution. The process continues by obtaining the various SM(⊕Pm+1

i ) and,
with them, various ⊕Pm+2

i . Intuitively, the program starts at step 1 already
containing the sequence ⊕Pm

i . Then it updates itself with the rules asserted
at step 1, thus obtaining step 2. Then, again, it updates itself with the rules
asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program.
If, at a given step n, the programs receives the external update En, the rules
in En are added to the last self update for the purpose of computing the stable
models determining the next evolution but, in the successive step n+1 they are
no longer considered (that’s why they are called events). Formally:

Definition 2. Let n be a natural number. An evolution interpretation of length
n, of an evolving logic program ⊕Pm

i with an event sequence ⊕Ei is any finite
sequenceM = M1, . . . ,Mn of interpretations over Lassert. The evolution trace
Tr(P ) associated with an evolution interpretation M1, . . . ,Mn is the sequence
P1 ⊕ . . .⊕ Pn+m where Pm+i = {τ | assert(τ) ∈Mi−1} for m + 1 < i ≤ n + m

Definition 3. Let ⊕Pm
i be any Evolp sequence with external events ⊕En

i (where
n is a natural number), and M = M1, . . . ,Mn be an evolving interpretation of
length n with trace P1 ⊕ . . . ⊕ Pn+m. M is an evolving stable model of ⊕Pm

i

with event sequence ⊕Ei at step n iff Mk is a refined stable model of the program
P1 ⊕ . . . ⊕ (Pk ∪ Ek) for any k with m + 1 ≤ k ≤ n + m.



2.2 Action languages

The purpose of an action language is to provide ways of describing how an
environment evolves given a set of external actions. A specific environment that
can be modified through external actions is called an action domain. To any
action domain we associate a pair of sets of atoms F and A. We call the elements
of F fluent atoms or simply fluents and the elements of A action atoms or
simply actions. Basically the fluents are the observable in the environment and
the actions are, clearly, the external actions. A fluent literal (resp. action literal)
is an element of FLit (resp. an element of ALit). In the following, Q will be in
general a fluent atom, F a fluent literal and A an action atom. A state of the
world (or simply a state) is any interpretation over F . We say a fluent literal F
is true at a given state s iff F belongs to s.

Each action language provides ways of describing action domains through
sets of expression called an action programs. Usually, the semantics of an action
program is defined in terms of a transition system i.e. a function whose argument
is any pair (s,K), where s is a state of the world and K is a subset of A, and
whose value is any set of states of the world. Intuitively, given the current state
of the world, a transition system specifies which are the possible resulting states
after performing, simultaneously, all the actions in K.

Two kinds of expressions that are common within action description lan-
guages are static and dynamic rules. The static rules basically describe the rule
of the domain, while dynamic rules describe effects of actions. A dynamic rule
has a set of preconditions, namely conditions that have to be satisfied in the
present state in order to have a particular effect in the future state, and post-
conditions describing such an effect.

In the following we will consider three existing action languages, namely:
A, B and C. The language A [13] is very simple, allowing only dynamic rules of
the form A causes F if Cond where Cond is a conjunction of fluent literals, such
rule intuitively means: performing the action A causes L to be true in the next
state if Cond is true in the current state. The language B [13] is an extension of
A which also considers static rules, i.e. expression of the form F if Body where
Body is a conjunction of fluent literals which, intuitively, means: if Body is true
in the current state, then F is also true in the current state. A fundamental
notion in both A and B is fluent inertia [13]. A fluent F is inertial if its truth
value is preserved from a state to another, unless it is changed by the (direct or
indirect) effect of an action. For a detailed definition of the semantics of A and
B see [13].

Static and dynamic rules are also the bricks of the action language C [16, 15].
Static rules in C are of the form caused J if H while dynamic rules are of the
form caused J if H after O where J and H are formulae such that any literal in
them is a fluent literal and O is any formula such that any literal in it is a fluent
or an action literal. The formula O is the precondition of the dynamic rule and
the static rule caused J if H is its postcondition. The semantic of C is based on
causal theories[15]. Casual theories are sets of rules of the form caused J if H
meaning: If H is true this is an explanation for J . Within causal theories is that



something is true iff it is caused by something else. Given any action program
P , a state s and a set of actions K, we consider the causal theory T given by the
static rules of P and the postconditions of the dynamic rules whose preconditions
are true in s ∪K. Then s′ is a possible resulting state iff it is a casual model of
T . For a more detailed background on action languages see [12].

3 Evolp action programs

As we have seen, Evolp and action description languages share the idea of a sys-
tem that evolves. In both, the evolution is influenced by external events (respec-
tively, updates and actions). Evolp is actually a programming language devised
for representing any kind of computational problem, while action description lan-
guages are devised for the specific purpose of describing actions. A natural idea
is then to develop special kind of Evolp sequences for representing actions and
then compare such kind of programs with existing action description languages.
We will call this kind of programs Evolp Action Programs (EAPs).

Following the philosophy of Evolp we use the basic construct assert for defin-
ing special-purpose macros. As it happens for other action description languages,
EAPs are defined over a set of fluents F and a set of actions A. A state of the
world, in EAPs, is any interpretation over F . To describe action domains we use
an initial Evolp sequence, I ⊕ D. The Evolp program D contains the descrip-
tion of the environment, while I contains some initial declarations, as it will be
clarified later. As in B and C, EAPs contain static and dynamic rules.

A static rule is simply an Evolp rule of the form F ← Body where F is a
fluent literal and Body is a set of fluent literals.

A dynamic rule over (F ,A) is a (macro) expression effect(τ)← Cond where
τ is any static rule F ← Body and Cond is any set of fluent or action literals.
Such an expression simply stand for the following set of Evolp rules:

F ← Body, event(L← Body) (1) assert(event(F ← Body))← Cond. (2)
assert(not event(F ← Body))← event(τ), not assert(event(F ← Body)) (3)

where event(F ← Body) is a new literal. The intuitive meaning of such a rule is
that the static rule τ has to be considered only in those states whose predecessor
satisfies condition Cond. Since some of the conditions literals in Cond may be
action atoms, such a rule may describe the effect of a given set of actions under
some conditions. In fact, the above set of rules fits with this intuitive meaning.
Rule (1) is not applicable whenever event(L← Body) is false. If at some step n
the conditions Cond are satisfied, then, by rule (2), event(L← Body) becomes
true at step n + 1. Hence, at step n + 1, the rule (1) will play the same role as
static rule F ← Body. If at step n + 1 Cond is no longer satisfied, then, by rule
(3) the literal event(L ← Body) will become false again and then the rule (1)
will be again not effective. The behaviour of effect is different from the assert
command. If we assert τ , it remains by inertia, while with effect it lasts for one
step only. Moreover, if we assert τ , such rule could reject another rule while a
rule inside an effect expression does not reject static rules.



Besides static and dynamic rules, we still need another brick to complete our
construction. As we have seen in the description of the B language, a notable
concept is fluent inertia. This idea is not explicit in Evolp where the rules (and
not the fluents) are preserved by inertia. Nevertheless, we can show how to obtain
fluent inertia using macro programming in Evolp. An inertial declarations over
(F ,A) is a (macro) expression inertial(K), where K ⊆ F . The intended intuitive
meaning of such expression is that the fluents in K are inertial. Before defining
what this expression stands for, we state that the program I is always of the form
initialize(F), where initialize(F) stands for the set of rules (where F is any
fluent literal in FLit, and prev(F ) are new atoms not in F ∪ A): F ← prev(F )
The inertial declaration inertial(K) stands for the set (where F ranges over K):

assert(prev(F ))← F. assert(not prev(F ))← not F.

Let us consider the behaviour of this macro. If we do not declare F as an inertial
fluent the rule F ← prev(F ) has no effect. If we declare F as an inertial literal,
prev(F ) is true in the current state iff in the previous state F was true. Hence
in this case F is true in the current state unless there is a static or dynamic
rule that rejects such assumption. Viceversa, if F was false in the previous state
then, F is true in the current one iff it is derived by a static or dynamic rule.
We are now ready to formalize the syntax of Evolp action programs.

Definition 4. Let F and A be two disjoint sets of propositional atoms. An
Evolp action program (EAP) over (F , A) is any Evolp sequence I ⊕D where :
I = Initialize(F) , and D is any set consisting of static rules, dynamic rules
and inertial declarations over (F ,A)

Given an Evolp action program I⊕D, the initial state of the world s (which,
as stated above is an interpretation over F) is passed to the program together
with the set K of the actions performed at s, as part of an external event. A
resulting state is the last element of any evolving stable model of I ⊕ D given
the event s ∪K restricted to the set of fluent literals. I.e:

Definition 5. Let I ⊕D be any EAP over (F , A) and s a state of the world.
Then s′ is a resulting state from s given I ⊕D and the set of actions K iff there
exists an evolving stable model M1,M2 of I ⊕D given the external event s ∪K
such that s′ ≡F M2(where by s′ ≡F M2 we simply mean s′∩FLit = M2∩FLit).

The definition can be immediately generalized to sequences of set of actions.

Definition 6. Let I ⊕D be any EAP and s a state of the world. Then s′ is a
resulting state from s given I ⊕ D and the sequence of actions K1 . . . , Kn iff
there exists an evolving stable model M1, . . . Mn of I⊕D given the external event
s ∪K1, . . . , Kn such that s′ ≡F Mn.

Since EAPs are based on the Evolp semantics, which is an extension of the
stable model semantics for normal logic programs, we can easily prove that the
complexity of the computation of the two semantics is the same.



Theorem 1. Let I ⊕ D be any EAP over (F ,A), s a state of the world and
K ⊆ A. To find a resulting state s′ from s given I ⊕D and the set of actions K
is an NP-hard problem.

It is important to notice that, if the initial state s does not satisfies the static
rules of the EAP, the correspondent Evolp sequence has no stable model, and
hence there will be no successor state. From now onwards we assume that the
initial state satisfies the static rules of the domain.

We now show an example of usage of EAPs by elaborating on probably the
most famous example of reasoning about actions. The presented elaboration
highlights some important features of EAPs: the possibility of handling non-
deterministic effects of actions, non-inertial fluents, non-executable actions, and
effects of actions lasting for just one state.

3.1 An elaboration of the Yale shooting problem

In the original Yale shooting problem [26], there is a single-shot gun which is
initially unloaded, and a turkey which is initially alive. We can load the gun and
shoot the turkey. If we shoot, the gun becomes unloaded and the turkey dies.
We consider a slightly more complex scenario where there are several turkeys
and where the shooting action refers to a specific turkey. Each time we shoot
a specific turkey, we either hit and kill the bird or miss it. Moreover the gun
becomes unloaded and there is be a bang. It is not possible to shoot with an
unloaded gun. We also add the property that any turkey moves iff it is not dead.

For expressing the non executable the problem we make use of a standard
technique used in LP under the stable model semantics. Suppose the used EAP
contains dynamic rules of the form effect(u ← not u) ← Cond where u is a
literal which does not appear elsewhere. In the following we use, for such rules,
the notation effect(⊥)← Cond. This kind of rules means that, if Cond is true
in the current state, then there is no resulting state. This come from the known
fact that programs containing u← not u has no stable models.

To represent this situation we use the set of fluents: {dead(X),moving(X),
missed(X), hit(X), loaded, bang} plus the auxiliary fluent u, and the actions
load and shoot(X) (where the X is instantiated with the various turkeys). The
fluents dead and loaded are inertial fluents, since their truth value should remain
unchanged until modified by some action effect. The fluents missed, hit and
bang are not inertial. Finally, for every turkey t, the fluent moving(t) is not
declared as inertial. The problem is encoded by the EAP I ⊕ D, where I =
initialize(loaded, moving(X), dead missed(X), hit(X), u), and D is

effect(loaded)← load. moving(X)← not dead(X)
effect(⊥)← shoot(X), not loaded effect(not loaded.)← shoot(X)
effect(dead(X)← hit(X))← shoot(X) effect(bang)← shoot(X)
effect(hit(X)← not missed(X))← shoot(X) inertial(loaded)
effect(missed(X)← not hit(X))← shoot(X) inertial(dead(X))

Let us analyze this EAP. Rule effect(⊥) ← shoot(X), not loaded encodes
the impossibility to execute the action shoot(X) when the gun is unloaded.



The static rule moving(X) ← not dead(X) implies that, for any turkey tk,
moving(tk) is true if dead(tk) is false. Since this is the unique rule for moving(tk)
we obtain that moving(tk) is true iff dead(tk) is true. Notice that declaring
moving(tk) as inertial, would result, in our description, in the possibility of
having a moving dead turkey! In fact, suppose we insert inertial(moving(X))
in the EAP above. Suppose further that moving(tk) is true at state s, that we
shoot at tk and kill it. Since moving(tk) is an inertial fluent, in the resulting
state dead(tk) is true but moving(tk) also remains true by inertia. Also notable
is how effects that last only for one state, like the noise provoked by the shoot
are easily encoded. The last three dynamic rules encodes a non deterministic
behaviour, each shoot action can either hit and kill a turkey or miss it.

We provide an example of a possible evolution. In the following we adopt
the usual convention of the Stable Models semantics where we omit the negative
literals belonging to an interpretation, hence any interpretation is represented
as a set of atoms. Let us consider the initial state {}. The state will remain
unchanged until we perform some action. If we load the the gun, the program is
updated by the external event {load}. In the unique successor state, the fluent
loaded is true and nothing else is changed. The truth value of the fluent remains
unchanged (by inertia) until we perform some other action. The same applies for
the fluents dead(t) where tk is any turkey. The fluents bang,missed(tk), hit(tk)
remains false by default. If we shoot at a specific turkey (let us call the turkey
Smith) we update the program with the event shoot(smith). Now several things
happen. First, loaded become false, and bang becomes true, as an effect of the
action. Moreover, the rules hit(smith)← missed(smith) and missed(smith)←
hit(smith) are considered as rules of the domain for one state. As a consequence
we can have two possible resulting states. In the first one missed(smith) is
true, and all the others fluents are false. In the second one hit(smith) is true,
missed(smith) is false and, by the static rule dead(X) ← hit(X), the fluent
dead(smith) becomes true. In both the resulting states, nothing happens to the
truth value of dead(tk), hit(tk) and dead(tk) for tk 6= smith.

4 Relationship to existing action languages

In this section we show embeddings into EAPs of the action languages B and
(the definite fragment of) C 4. We will assume that the considered initial states
are consistent wrt the static rules of the program, i.e. if the body of a static rule
is true in the considered state, the head is true as well.

Let us consider first the B language. The basic ideas of static and dynamic
rules of B and EAPs are very similar. The main difference between the two is
that in B all the fluents are considered as inertial, whilst in EAPs only those
that are declared as such are inertial. The translation of B into EAPs is then
straightforward: All fluents are declared as inertial and then the syntax of static

4 The embedding of language A is not explicitly exposed here since A is a (proper)
subset of the B language.



and dynamic rules is adapted. In the following we use, with abuse of notation,
Body and Cond both for conjunctions of literals and for sets of literals.

Definition 7. Let P be any action program in B over the fluent language F .
The translation B(P,F) is the couple (IB ⊕ DBP ,FB) where: FB ≡ F , IB =
initialize(F) and DBP contains exactly the following rules:

– inertial(F) for each fluent F ∈ F
– a rule L← Body for any static rule L if Body in P .
– a rule effect(L)← A, Cond. for any dynamic rule A causes L if Cond in

P .

Theorem 2. Let P be any B action program over F , (IB ⊕DBP ,F) its trans-
lation, s a state and K any set of actions. Then s′ is a resulting state from s
given P and the set of actions K iff it is a resulting state from s given IB⊕DBP

and the set of actions K.

Let us consider now the action language C. It is known that the computation
of the possible resulting states in the full C language is

∑2
P -hard, [15]. So, this

language belongs to a category with higher complexity than EAPs which are
NP-hard. However, only a fragment of C is implemented and the complexity of
such fragment is NP . This fragment is known as the definite fragment of C [15].
In such fragment static rules are expressions of the form caused F if Body
where F is a fluent literal and Body is a conjunction of fluent literals, while
dynamic rules are expressions of the form caused not F if Body after Cond
where Cond is a conjunction of fluent or action literals5. For this fragment it is
possible to provide a translation into EAPs.

The main problem of the translation of C into EAPs lies the simulation of
causal reasoning with stable model semantics. The approach followed here to
encode causal reasoning with stable models is in line with the one proposed
in [20]. We need to introduce some auxiliary predicates and define a syntactic
transformation of rules. Let F be a set of fluents, by FC we denote the set of
fluents F ∪ {FN | F ∈ F}. We add, for each F ∈ F , the constraints:

← not F, not FN . ← F, FN . (2)

Let F be a fluent and Body = F1, . . . , Fn a conjunction of fluent literals. We will
use the following notation: F = not FN , not F = not F and Body = F1, . . . , Fn

Definition 8. Let P be any action program in C over the fluent language F .
The translation C(P,F) is the couple (IC ⊕DCP ,FC) where: FC is defined as
above, IC ≡ initialize(FC) and DCP consists exactly of the following rules:

– a rule effect(F ← Body) ← Cond, for any dynamic rule in P of the form
caused F if Body after Cond;

5 The definite fragment defined in [15] is (apparently) more general, allowing Cond
and Body to be arbitrary formulae. However, it is easy to prove that such kind of
expressions are equivalent to a set of expressions of the form described above



– a rule effect(FN ← Body)← Cond, for any dynamic rule in P of the form
caused not F if Body after Cond;

– a rule F ← Body, for any static rule in P of the form caused F if Body;
– a rule FN ← Body, for any static rule in P of the form caused not F if Body;
– The rules (2) for each fluent in F .

For this translation we obtain a result similar to the one obtained for the trans-
lations of the B language. In this case:

Theorem 3. Let P be any C action program over F , (IC⊕DCP ,FC) its trans-
lation, s a state, sC the interpretation over FC defined as follows:

sC = s ∪ {Q | Q ∈ s} ∪ {not Q | not Q ∈ s}

and K any set of actions. Then s∗ is a resulting state from sC given IC ⊕DCP

and the set of actions K iff there exists s′ such that s′ is a resulting state from
s, given P and the set of actions K.

By showing translations of the action languages B and C into EAPs, we proved
that EAPs are at least as expressive as such languages. Moreover the provided
translations are quite simple (basically one EAP static or dynamic rule for each
static or dynamic rule in the other languages). The next natural question is: Are
they more expressive?

5 Updates of action domains

Action description languages describe the rules governing a domain where actions
are performed. In practical situations, it may happen that the very rules of the
domain change with time too. EAPs are just a particular kind of Evolp sequences.
So, as in general Evolp sequences they can be updated by external events.

When we want to update the existing rules by the rule τ , we just add the fact
assert(τ) as an external event. This way, the rule τ is asserted and the existing
Evolp sequence is updated. Following this line, we extend EAPs, allowing the
external events updating an EAP to contain facts of the form assert(τ) where
τ is an Evolp rule and show how they can be used to express updates to EAPs.

To illustrate how to update an EAP, we come back to the example of section
3.1. Let I⊕D be the EAP defined in that section. Let us now consider that after
some shots, and dead turkeys, we acquire rubber bullets. We can now either load
the gun with normal bullets or with a rubber bullet, but not with both. If we
shoot with a rubber loaded gun, we never kill a turkey.

To describe this change in the domain, we introduce a new inertial fluent
representing the gun being loaded with rubber bullets. We have to express that,
if the gun is rubber-loaded, we can not kill the turkey. For this purpose we
introduce the new macro: not effect(F ← Body) ← Cond where F , is a fluent
literal, Body is a set of fluents literals and Cond is a set of fluent or action literals.
We refer to such expressions as effects inhibitions. This macro simply stands for
the rule assert(not event(F ← Body)) ← Cond where event(F ← Body) is a



new atom. The intuitive meaning is that, if the condition Cond is true in the
current state, any dynamic rule whose effect is the rule F ← Body is ignored.

To encode the changes described above, we update the EAP with the external
event E1 consisting of the facts assert(I1) where I1 = (initialize(rubber loaded)).
Then, in the subsequent state, we update the program with the external update
E2 = assert(D1) where D1 is the set of rules6

effect(⊥)← rubber loaded, load.
inertial(rubber loaded)
effect(⊥)← loaded, rubber load.
not effect(dead(X)← hit(X))← rubber loaded.

Let us analyze the proposed updates. First, the fluent rubber loaded is initial-
ized. It is important to initialize any fluent before starting to use it. The newly
introduced fluent is declared as inertial and two dynamic rules are added spec-
ifying that load actions are not executable when the gun is already loaded in
a different way. Finally we use the new command to specify that the effect
dead(X)← hit(X) does not occurs if, in the previous state, the gun was loaded
with rubber bullets. Since this update is more recent than the original rule
effect(dead(X)← hit(X))← shoot(X), such dynamic rule is updated.

It is also possible to update static rules and the descriptions of effects of an
action. Suppose the cylinder of the gun becomes dirty and, whenever one shoots,
the gun may either work properly or fail. If the gun fails, the action shoot has no
effect. We introduce two new fluents in the program with the event assert(I2)
where I2 = initialize(fails, work)). Then, we assert the event E2 = assert(D2)
where D2 is the following EAP

effect(fails← not work)← shoot(X). effect(work ← not fails)← shoot(X).
not bang ← fails. not unloaded← fails.
not missed← fails. not missed← fails.

This last example is important since it shows how to update the effects of a
dynamic rule via a new static rule. It is also possible to update the effects of
a dynamic rule via another dynamic rule. We show a possible evolution of the
updated system. Suppose currently the gun is not loaded. We load the gun with a
rubber bullet and then we shoot to the turkey named Trevor. The initial state is
{}. The first set of actions is {rubber load} The resulting state after this action
is s′ ≡ {rubber loaded}. Suppose we perform the action load. Since the EAP
is updated with the dynamic rule effect(⊥) ← rubber loaded, load. there is
no resulting state. This happens because we have performed a non executable
action. Suppose, instead, the second set of actions is {shoot(trevor)}. There are
three possible resulting states. In one the gun fails. In this case, the resulting
state is, again, s′. In the second, the gun works but the bullet misses Trevor. In
this case, the resulting state is s′′1 ≡ {missed(trevor)}. Finally, the gun works
6 In the remainder we use the notation assert(U), where U is a set of macros (which

are themselves sets of Evolp rules) for the set of all facts assert(τ) such that τ is a
rule used in: there exists a macro η in U with τ ∈ η.



and the bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still alive.
In this case the resulting state is s′′2 ≡ {hit(trevor)}.

The events introduced changes in the behaviour of the original EAP. This
opens a new problem. In classical action languages we do not care about the pre-
vious history of the world: If the current state of the world is s, the computation
of the resulting states is not affected by the states before s. In the case of EAPs
the situation is different, since external updates can change the behaviour of the
considered EAP. Fortunately, we do not have to care about the whole history
of the world, but just about those events containing new initializations, inertial
declarations, effects inhibitions, and static and dynamic rules.

It is possible to have a compact description of an EAP that is updated
several times via external events. For that we need to further extend the original
definition of EAPs.

Definition 9. An updated Evolp action program over (F ,A) is any sequence
I⊕D1⊕. . .⊕Dn where I is initialize(F), and the various Dk are sets consisting
of static rules, dynamic rules, inertial declarations and effects inhibitions such
that any fluent appearing in Dk belongs to F

In general, if we update an Evolp action program I ⊕ D with the subsequent
events assert(I1), assert(D1), where I1 ⊕ D1 is another EAP, we obtain the
equivalent updated Evolp action program (I ∪ I1)⊕D ⊕D1 Formally:

Theorem 4. Let I ⊕D1⊕ . . .⊕Dk be any update EAP over (F ,A). Let
⊕

En
i

be a sequence of events such that: E1 = K1 ∪ s where s is any state of the world
and K is any set of actions and the others Eis are: any set of actions Kα, or
any set initialize(Fβ) where Fβ ⊆ F , or any Di with 1 ≤ i ≤ k. Then s′ is a
resulting state from s given I⊕D1⊕ . . .⊕Dk and the sequence of sets of actions⊕

Kα iff there exists an evolving stable model M1, . . . , Mn of I ⊕D with event
sequence

⊕
En

i such that Mn ≡F s

For instance, the updates to the original EAP of the example in this section are
equivalent to the updated EAP is Isum⊕D⊕D1⊕D2 such that Isum ≡ I ∪ I1 ∪ I2

where I and D are as in example of section 3.1 and the Iis and Dis are as in
the description above.

Yet one more possibility opened by updated Evolp action programs is to cater
for successive elaborations of a program. Consider an initial problem described
by an EAP I⊕D. If we want to describe an elaboration of the program, instead of
rewriting I⊕D we can simply update it with new rules. This gives a new answer
to the problem of elaboration tolerance [24] and also open the new possibility of
automatically update action programs by other action programs.

The possibility to elaborate an action program is also discussed in [15] in the
context of the C+ language. The solution proposed is to consider C+ programs
whose rules have one extra fluent atom in their bodies that are assumed false by
default. The elaboration of an action program P is the program P ∪U where U
is a new action program. The rules in U can defeat the rules in P by changing
the truth value of the extra literals in their bodies. An advantage of EAP is that,
in this framework, the possibility of updating rules is a built-in feature rather



then a programming technique involving manipulation of rules and introduction
of new fluents. Moreover, in EAPs we can simply encode the new behaviours of
the domain by new rules and then let these new rules update the previous ones.

6 Conclusions and future work

In this paper we have explored the possibility of using logic programs updates
languages as action description languages. In particular we have focused our
attention on the Evolp language. As a first point, we have defined a new ac-
tion language paradigm, christened Evolp action programs, defined as a macro
language over Evolp. We have provided an example of usage of such language.
We have compared Evolp action programs with action languages A, B, C and
provided simple translations into Evolp of these languages. Moreover we have
shown, both by theoretical argumentation and practical examples, how some
expressive capabilities of EAPs seem to be not replicable in these languages.
Finally we have also shown and argued about the capability of (⊕Pm

i ,
⊕

Ei) to
handle changes in the domain during the execution of actions.

Several important topics are not touched here, and will be subject of future
work. An important field of research is how to deal, in the Evolp context, with the
problem of planning [23]. Yet another topic involves the possibility of concurrent
execution of actions. EAPs allow the this possibility, nevertheless, we have not
fully explored this topic, and confronted the results with extant works [6, 17].
Finally EAPs have to be implemented and tested in real and complex contexts.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-7), vol-
ume 1730 of LNAI, Berlin, 2004. Springer.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs.
In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence (JELIA’02), volume 2424
of LNAI, pages 50–61. Springer-Verlag, 2002.

3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, September/October 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

5. J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma.
Preliminary exploration on actions as updates. In M. C. Meo and M. V. Ferro,
editors, Proceedings of the 1999 Joint Conference on Declarative Programming
(AGP-99), 1999.

6. C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal
of Logic Programming, 31:85–118, 1997.



7. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, ob-
servations and hypotheses. Journal of Logic Programming, 31, April–June 1997.

8. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), Cambridge, November 1999. MIT Press.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics
based on causal rejection. Theory and Practice of Logic Programming, 2:711–767,
November 2002.

10. T. Either, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649–654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

13. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on AI, 16,
1998.

14. E. Giunchiglia, J. Lee, V. Lifschiz, N. Mc Cain, and H. Turner. Representing actions
in logic programs and default theories: a situation calculus approach. Journal of
Logic Programming, 31:245–298, 1997.

15. E. Giunchiglia, J. Lee, V. Lifschiz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 2003.

16. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

17. J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In
William Nebel, Bernhard; Rich, Charles; Swartout, editor, Proc. IJCAI-03, pages
1079–1084, Cambridge, MA, 2003. To Appear.

18. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2003.

19. J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In
LPKR’97: workshop on Logic Programming and Knowledge Representation, 1997.

20. V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspective, chapter
Action languages, answer sets and planning, pages 357–373. Springer Verlag, 1999.

21. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

22. John Wylie Lloyd. Foundations of Logic Programming. Springer,, Berlin, Heidel-
berg, New York,, 1987.

23. J. McCarthy. Programs with commons sense. In Proceedings of Teddington Con-
ference on The Mechanization of Thought Process, pages 75–91, 1959.

24. J. McCarthy. Mathematical logic in artificial intelligence, pages 297–311. Daedalus,
1988.

25. S. Russel and P. Norvig. Artificial Intelligence A Modern Approach, page 4. Arti-
ficial Intelligence. Prentice Hall, 1995.

26. D. McDermott S. Hanks. Nonmonotonic logic and temporal projection. Artificial
Intelligence, 33:379–412, (1987).



Reasoning about logic-based

agent interaction protocols

Matteo Baldoni, Cristina Baroglio,
Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
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Abstract. The skill of reasoning about interaction protocols is very
useful in many situations in the application framework of agent-oriented
software engineering. In particular, we will tackle the cases of protocol
selection, composition and implementation conformance w.r.t. an AUML
sequence diagram. This work is based on DyLOG, an agent language
based on modal logic that allows the inclusion, in the agent specification,
of a set of interaction protocols.

1 Introduction

In Multi-Agent Systems (MASs) the communicative behavior of the agents plays
a very important role, because it is the means by which agents cooperate for
achieving a common goal or for competing for a resource. In order to rule com-
munication, a set of shared protocols is commonly used. One of the most success-
ful languages for designing them is AUML (Agent UML) [21]. This language is
intuitive and easy to use for sketching the interactive behavior of a set of agents.

Our claim is that MAS engineering systems should encompass ways for ob-
taining declarative representations of protocols. The reason is that the use of
declarative languages for protocol specification, although may be less intuitive,
has the advantage of allowing the use of reasoning techniques in tasks like pro-
tocol validation or the verification of properties of the conversations within the
system [13]. For instance, in [6] we proposed a logical framework, based on modal
logic, that allows to include in an agent specification also a set of communication
protocols. In this framework it is possible to reason about the effects of engaging
specific conversations and to verify properties of the protocol: we can plan a con-
versation for achieving a particular goal, which respects the protocol, by checking
if there is an execution trace of the protocol, after which the goal is satisfied.
We can also verify if the composition of some protocols respects some desired
constraint. Moreover, in [5, 7] we have shown how reasoning about conversation
protocols can be used in an open application context where a personal assistant
uses reasoning techniques for customizing the selection and the composition of
web services.

The ability of reasoning about the properties of the interactions that occur
among agents before they actually occur, may also by applied to support a MAS



developer during the design phase of the MAS. For instance, the developer could
be supported in the selection of already developed protocols from a library and
in the verification of compositional properties. Another crucial problem, typical
of this application framework and that we think could be tackled by means of
reasoning techniques, is checking the conformance of a logic agent or of a protocol
implementation to the specification given in AUML during the system design
phase. Broadly speaking an agent is conformant to a given protocol if its behavior
is always legal w.r.t. the protocol; more precisely conformance verification is
interpreted as the problem of checking that an agent never performs any dialogue
move that is not foreseen by the AUML specification.

In particular, in this work we survey over different problems that could be
tackled by means of reasoning techniques: we sketch how protocol conformance
could be verified, how by applying reasoning techniques it is possible to select a
protocol from a catalogue of available AUML diagrams, and also how we could
deal with issues arising from the composition of various protocols in the MAS.

The work is organized as follows. First of all we will briefly describe how
speech acts and protocols can be represented in the DyLOG agent program-
ming language. In Sections 3 and 4 we will describe some major issues inherent
agent-oriented software engineering, and we will show by means of examples how
reasoning techniques can be adopted for solving such problems. Conclusions fol-
low.

2 Specification of interaction protocols in DyLOG

Logic-based executable agent specification languages have been deeply investi-
gated in the last years [20]. In this section we will briefly introduce DyLOG, a
high-level logic programming language for modeling and programming rational
agents, based on a modal theory of actions and mental attitudes where modali-
ties are used for representing actions as well as beliefs for modeling the agent’s
mental state [10, 6]. It accounts both for atomic and complex actions, or pro-
cedures. Atomic actions are either world actions, affecting the world, or mental
actions, i.e. sensing and communicative actions which only affect the agent be-
liefs. Complex actions are defined through (possibly recursive) definitions, given
by means of Prolog-like clauses and by making use of action operators like se-
quence, test and non-deterministic choice. The action theory allows to cope with
the problem of reasoning about complex actions with incomplete knowledge and
in particular to address the temporal projection and planning problem.

Intuitively DyLOG allows the specification of a rational agent that can reason
about its own behavior, can choose a course of actions conditioned by its mental
state, and can use sensors and communication for obtaining fresh knowledge.
The language also allows agents to reason about their communicative behavior
by means of techniques for proving existential properties of the kind: given a
protocol and a set of desiderata, is there a specific conversation, that respects
the protocol, which also satisfies the desired conditions? In the following we will



describe how the communicative behavior of an agent can be represented in
DyLOG and we will sketch the applicable reasoning techniques.

The DyLOG language supports communication both at the level of primitive
speech acts and at the level of interaction protocols. Following the mentalistic
approach, speech acts are considered as atomic actions, described in terms of
preconditions and effects on the agent mental state, of form speech act(agi, agj ,
l), where agi (sender) and agj (receiver) are agents and l (a fluent) is the object
of the communication. Since speech acts can be seen as mental actions, affecting
both the sender’s and the receiver’s mental state, we have modeled them by
generalizing non-communicative action definitions, so to allow also the represen-
tation of the effects of an action executed by some other agent on the current
agent mental state, described by a consistent set of belief fluents. Actually, in
DyLOG each agent has a twofold, personal representation of the speech act:
one is to be used when it is the sender, the other when it is the receiver. Such
a representation provides the capability of reasoning about conversation effects
from the subjective point of view of the agent holding the representation. In the
speech act specification that holds when the agent is the sender, the precondi-
tions contain some sincerity condition that must hold in its mental state. When
it is the receiver, instead, the action is always executable. As an example, let us
define the semantics of the inform speech act within the DyLOG framework:

a) 2(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉>)
b) 2([inform(Self,Other, l)]MSelfBOtherl)
c) 2(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOtherl)
d) 2(> ⊃ 〈inform(Other, Self, l)〉>)
e) 2([inform(Other, Self, l)]BSelfBOtherl)
f) 2(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

Clause (a) states that Self will execute an inform act only if it believes l (we use
the modal operator Bagi to model the beliefs of agent agi) and it believes that
the receiver (Other) does not know l. It also considers possible that the receiver
will adopt its belief (the modal operator Magi is defined as the dual of Bagi ,
intuitively Magiϕ means the agi considers ϕ possible), clause (b), although it
cannot be certain about it -autonomy assumption-. If agent Self believes to be
considered a trusted authority about l by the receiver, it is also confident that
Other will adopt its belief, clause (c). Instead, when Self is the receiver, the
effect of an inform act is that Self will believe that l is believed by the sender
(Other), clause (e), but Self will adopt l as an own belief only if it thinks that
Other is a trusted authority, clauses (f).

DyLOG supports also the development of conversation protocols, that build
on individual speech acts and specify communication patterns guiding the agent
communicative behavior during a protocol-oriented dialogue. Reception of mes-
sages is modeled as a special kind of sensing action, what we call get message

actions. Indeed receiving a message is interpreted as a query for an external in-
put, whose outcome is unpredictable. The main difference w.r.t. normal sensing
actions is that get message actions are defined by means of speech acts performed



by the interlocutor. Protocols are thus expressed by means of a collection of pro-
cedure axioms of the action logic, having form 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where
p0 is the procedure name the pi’s can be i’s communicative acts or special sens-
ing actions for the reception of message. Each agent has a subjective perception
of the communication with other agents, for this reason each protocol has as
many procedural representations as the possible roles in the conversation. The
importance of roles has been underlined also recently in works, such as [17].

Given a set ΠC of simple action laws defining an agent agi’s primitive speech
acts, a set ΠSget of axioms for the reception of messages, and a set ΠCP ,
of procedure axioms specifying a collection of conversation protocols, we de-
note by CKitagi (the communication kit of a DyLOG agent agi), the triple
(ΠC , ΠCP , ΠSget). CKitagi is a part of Πagi

, i.e. the domain description of the
agent agi, including also S0, i.e the initial set of agi’s belief fluents, and eventu-
ally laws and axioms for specifying the agent non communicative behaviors.

2.1 Reasoning about interaction protocols in DyLOG

Given a DyLOG domain description Πagi
containing a CKitagi with the specifi-

cations of the interaction protocols and of the relevant speech acts, a planning

activity can be triggered by existential queries of form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where
each pk (k = 1, . . . ,m) may be an atomic or complex action (a primitive speech
act or an interaction protocol), executed by our agent, or an external1 speech
act, that belongs to CKitagi . Checking if the query succeeds corresponds to an-
swering to the question “is there an execution of p1, . . . , pm leading to a state
where the conjunction of belief fluents Fs holds for agent agi?”. Such an execu-
tion is a plan to bring about Fs. The procedure definition constrains the search
space. During the planning process get message actions are treated as sensing
actions, whose outcome cannot be predicted before the actual execution: since
agents cannot read each other’s mind, they cannot know in advance the answers
that they will receive.

Depending on the task that one has to execute, it may alternatively be nec-
essary to take into account all of the possible alternatives (which, we can foresee
them because of the existence of the protocol) or just to find one of them. In
the former case, the extracted plan will be conditional, in the sense that for
each get message and for each sensing action it will contain as many branches
as possible action outcomes. Each path in the resulting tree is a linear plan that
brings about Fs. In the latter case, instead, the plan is linear.

3 Reasoning about protocols in MAS design

Generally speaking MASs are made of heterogeneous agents, which have differ-
ent ways of representing their knowledge and adopt different mechanisms for

1 By the word external we denote a speech act in which our agent plays the role of
the receiver.



reasoning about it. Despite heterogeneity, agents need to interact and exchange
information in order to cooperate or compete for the control of shared resources.
This is obtained by means of interaction protocols, which result in being the
connective tissue of the system. MAS engineering systems support the design of
interaction protocols by means of graphical editors for the AUML language.

The AUML specification of a protocol is obtained by means of sequence di-
agrams [21], in which the interactions among the participants are modeled as
message exchange and are arranged in time sequences. Sequence diagrams have
two dimensions: the vertical (time) dimension specifying when a message is sent
or expected, and the horizontal dimension that expresses the participants and
their different roles. This kind of representation is very high-level and usually
needs to be further specified in order to arrive to real implementations. In fact,
the semantics of the atomic speech acts is not given by AUML; at implementa-
tion time, depending on the chosen ontology of speech acts, it may be necessary
to express constraints or preconditions that depend on the agent mental state,
that are not reported in the sequence diagrams. Since AUML sequence diagrams
do not represent complete programs, it is not possible to automatically trans-
late them in a way that fully expresses the communicative behavior of one or
more agents in the application scenario. The protocol is to be implemented. On
the other hand, given a protocol implementation it would be nice to have the
possibility of automatically verifying its conformance to the desired protocol.

As mentioned in the introduction, a program is conformant to a protocol if
all the message exchanges that it produces are foreseen by the protocol. The
adoption of a logic formalism for implementing the protocols greatly simplifies
this kind of verification, as we will see in the case of DyLOG in the next section.
Differently of [11], the conformance property will be expressed from a language-
theoretic point of view instead of from a logic point of view, by interpreting the
problem of conformance verification as a problem of inclusion of a context-free
language (CFL) into a regular language. In this process, the particular form
of axiom, namely inclusion axiom, used to define protocol clauses in a DyLOG

implementation, comes to help us. These axioms have interesting computational
properties because they can be considered as rewriting rules [9, 3]. In [12] this
kind of axioms is used for defining grammar logics and some relations between
formal languages and such logics are analyzed.

On the side of protocol implementation, logic languages for reasoning about
action and change, like DyLOG, seem particularly suitable. The reason is that
although AUML accounts for a fast and intuitive prototyping in a graphical
environment, it does not straightforwardly allow the proof of properties of the
resulting system. Nevertheless, given the crucial role that protocols play, the abil-
ity of reasoning about properties of the interactions, occurring among the agents,
is a key stone of the design and engineering of agent systems. By using DyLOG
(or a similar language) it is possible to use the reasoning techniques embedded
in the language for executing various tasks. Thus, besides the verification of the
conformance of an implementation to a protocol, other possible applications of
reasoning techniques include the intelligent use of libraries. In fact, it is not likely



that the designer of a MAS redesigns every time new protocols, instead, he/she
will more likely use catalogues of available protocols, in which searching for one
of interest (notice that search could be based on the concept of conformance). In
this case, the designer will need to know before the actual implementation of the
agent, if the selected protocol fits some specific requisites of the system that is
being developed. This problem can be interpreted as the problem of verifying if
it is possible that a property of interest holds after the execution of the protocol
in a given initial state. In this line, the designer may be interested in verifying
if the composition of a set of protocols will be useful in the current application.

These observations are particularly relevant in the development of MAS pro-
totyping systems (e.g. DCaseLP [19, 1]): in fact, a system which supports the
design of the (communicative) interaction between the agents in a MAS only by
means of AUML sequence diagrams, can carry on verifications only by animating
the system and checking what happens in specific cases. A solution that has clear
limitations since we get information only about the cases that have been tried.
The worst limitation is that it is not possible to return to the system engineer
the assumptions under which a goal is achieved or a property holds after the
interaction.

4 Reasoning about protocols: some examples

Let us now illustrate the usefulness of reasoning techniques in the application
domain of MAS design by means of examples. To this aim, consider this scenario:
a MAS designer must develop a set of interaction protocols for a restaurant and
a cinema that, for promotional reasons, will cooperate as described hereafter. A
customer that makes a reservation at the restaurant will get a free ticket for a
movie shown by the cinema. By restaurant and cinema we do not mean a specific
restaurant or cinema but a generic service provider that will interact with its
customers according to the protocol. Figure 1 reports an example of protocols,
designed in AUML, for the two families of providers; the protocol described by
(iii) is followed by the restaurant while the protocol described by (i) and (ii) is
followed by the cinema. Let us describe the translation of the two protocols into
a DyLOG representation. Observe that each of them has two complementary
views: the view of the customer and the view of the provider. In this example we
report only the view of the customer, which is what we need for the reasoning
process. In the following, the subscripts next to the protocol names are a writing
convention for representing the role that the agent plays; so, for instance, Q

stands for querier, C for customer, and so on. The restaurant protocol is the
following:

(a) 〈reserv rest 1C(Self, Service, T ime)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Time)) ;

BSelfavailable(Time)? ;
get info(Self, Service, reservation(Time)) ;
get info(Self, Service, cinema promo) ;
get info(Self, Service, ft number)〉ϕ



(b) [get info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ

Procedure (a) describes the customer-view of the restaurant protocol. The cus-
tomer asks if a table is available at a certain time, if so, the restaurant informs
the customer that a reservation has been taken and, also, it informs the cus-
tomer that it gained a promotional free ticket for a cinema (cinema promo) and
it returns a code number (ft number). Clause (b) shows how get info can be
implemented as an inform act executed by the service and having as recipient
the customer. In the DyLOG syntax the question mark corresponds to checking
the value of a fluent in the current state while the semicolon is the sequencing
operator of two actions. The cinema protocol, instead is:

(c) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

¬BSelfcinema promo? ;
yes no queryI(Self, Service, pay by(c card)) ;

BSelfpay by(c card)? ;
inform(Self, Service, cc number) ;
get info(Self, Service, reservation(Movie))〉ϕ

(d) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

BSelfcinema promo? ;
inform(Self, Service, ft number) ;
get info(Self, Service, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the cinema alternatively accepts
credit card payments (c) or promotional tickets (d).

4.1 Conformance

Supposing that the designer produced the AUML sequence diagrams reported
in Figure 1, and, then, implemented them in DyLOG, the first problem to solve
is to check the conformance of the implementation w.r.t. the diagrams. For the
sake of simplicity, we will sketch the method that we mean to follow focusing on
one of the drawn protocols: the reserv cinema 1 protocol.

In order to verify the conformance of a DyLOG interaction protocol to an
AUML interaction protocol, that the DyLOG program is supposed to implement,
we represent the AUML sequence diagram as a formal language by means of a
grammar. More precisely, it is quite easy to see that, given a sequence diagram,
it is possible to represent the set of the possible dialogues by means of a regular



CINEMACUSTOMER

queryIf(available(Movie))

X

refuseInform(available(Movie))

inform(~available(Movie))

inform(available(Movie))

yes_no_query

[available(Movie)]
queryIf(cinema_promo)

X

refuseInform(cinema_promo)

inform(~cinema_promo)

inform(cinema_promo)

[available(Movie),cinema_promo]
inform(ft_number) 

[available(Movie),cinema_promo]
inform(reservation(Movie))

yes_no_query

CINEMACUSTOMER

yes_no_query(available(Movie))

[available(Movie)]
yes_no_query(cinema_promo)

[available(Movie),~cinema_promo]
yes_no_query(pay_by(c_card))

[available(Movie),~cinema_promo,
pay_by(c_card)]inform(cc_number) 

[available(Movie,~cinema_promo,
pay_by(c_card)]inform(reservation(Movie))

(i) (ii)

RESTAURANTCUSTOMER

yes_no_query(available(Time)

[available(Time)]
inform(reservation(Time))

[available(Time)]
inform(cinema_promo)

[available(Time)]
inform(ft_numeber)

(iii)

Fig. 1. AUML interaction protocols representing the interactions between the customer
and the provider: (i) and (ii) are followed by the cinema service, (iii) is followed by the
restaurant. Formulas among square brackets represent conditions on the execution of
the speech act.

grammar, whose set of atoms corresponds to the set of atomic speech acts.
For example, let us consider the reserv cinema 1 protocol (see Figure 1 (i)), the
following grammar Greserv cinema 1 represents it2:

Q0 −→ queryIf(customer, cinema, available(Movie)) Q1

Q1 −→ refuseInform(cinema, customer, available(Movie))
Q1 −→ inform(cinema, customer,¬available(Movie))
Q1 −→ inform(cinema, customer, available(Movie)) Q2

Q2 −→ queryIf(cinema, customer, cinema promo) Q3

Q3 −→ refuseInform(customer, cinema, cinema promo)
Q3 −→ inform(customer, cinema,¬cinema promo)
Q3 −→ inform(customer, cinema, cinema promo) Q4

Q4 −→ inform(customer, cinema, ft number) Q5

2 Details about the translation from AUML to the grammar can be found in [8].



Q5 −→ inform(cinema, customer, reservation(Movie))

By means of L(Greserv cinema 1) we denote the language generated by it. Intuitively,
it represents all the legal conversations.

Now, we are in the position to give our first definition of conformance: the
agent conformance.

Definition 1 (Agent conformance). Let D = (Π,CKitagi , S0) be a domain

description, pdylog ∈ CKitagi be an implementation of the interaction protocol

pAUML defined by means of an AUML sequence diagram. Moreover, let us define

the set Σ(S0) as {σ|(Π,CKitagi , S0)`ps〈pdylog〉> w. a. σ}. We say that the agent

described by means of D is conformant w.r.t. the sequence diagram pAUML if

and only if:

Σ(S0) ⊆ L(GpAUML
) (1)

In other words, the agent conformance property holds if we can prove that every
conversation, that is an instance of the protocol implemented in our language (an
execution trace of pdylog), is a legal conversation according to the grammar that
represents the AUML sequence diagram pAUML; that is to say, that conversation
is also generated by the grammar GpAUML

.
The agent conformance depends on the initial state S0. Different initial states

can determine different possible conversations (execution traces). A notion of
agent conformance, that is independent from the initial state, can also be defined:

Definition 2 (Agent strong conformance). Let D = (Π,CKitagi , S0) be a

domain description, let pdylog ∈ CKitagi be an implementation of the interaction

protocol pAUML defined by means of an AUML sequence diagram. Moreover, let

us define the set Σ =
⋃

S Σ(S), where S ranges over all possible initial states.

We say that the agent described by means of D is strongly conformant w.r.t. the
sequence diagram pAUML if and only if:

Σ ⊆ L(GpAUML
) (2)

In other words, the agent strong conformance property holds if we can prove that
every conversation for every possible initial state is a legal conversation, i.e. it is
also generated by the grammar that represents the AUML sequence diagram. It
is easy to see that agent strong conformance (2) implies agent conformance (1).

Agent strong conformance, differently than agent conformance, does not de-
pend on the initial state but it still depends on the set of speech acts defined
in CKitagi . A stronger notion of conformance should require that a DyLOG im-
plementation is conformant w.r.t. an AUML sequence diagram independently of
the semantics of the speech acts. In other world, we would like to prove a sort of
“structural” conformance of the implemented protocol w.r.t. the corresponding
AUML sequence diagram. In order to do this, we define a formal grammar from
the DyLOG implementation of a conversation protocol. In this process, the par-
ticular form of axiom, namely inclusion axiom, used to define protocol clauses
in a DyLOG implementation, comes to help us. Actually, such axioms have a
natural interpretation as rewriting rules [2, 12].



Given a domain description (Π,CKitagi , S0) and an conversation protocol
pdylog ∈ CKitagi = (ΠC , ΠCP , ΠSget), we define the grammar Gpdylog

= (T, V, P, S),
where T is the set of all terms that define the set of speech acts in ΠC , V is the
set of all the terms that define a conversation protocol or a get message action
in ΠCP or ΠSget. P is the set of production rules of the form p0 −→ p1p2 . . . pn

where 〈p0〉ϕ ⊃ 〈p1〉〈p2〉 . . . 〈pn〉ϕ is an axiom that defines either a conversation
protocol (that belongs to ΠCP) or a get message action (that belongs to ΠSget).
Note that test actions 〈Fs?〉 are not reported in the production rules. Finally,
the start symbol S is the symbol pdylog. Let us define L(Gpdylog

) as the language
generated by means of the grammar Gpdylog

. It is easy to see that L(Gpdylog
) is

a context-free language since Gpdylog
is a context-free grammar. Intuitively, the

language L(Gpdylog
) represents all the possible sequences of speech acts (conver-

sations) allowed by the DyLOG protocol pdylog independently of the evolution
of the mental state of the agent.

Definition 3 (Protocol conformance). Let D = (Π,CKitagi , S0) be a domain

description, let pdylog ∈ CKitagi be an implementation of the interaction protocol

pAUML defined by means of an AUML sequence diagram. We say that pdylog is

conformant to the sequence diagram pAUML if and only if:

L(Gpdylog
) ⊆ L(GpAUML

) (3)

It is possible to prove that protocol conformance (3) implies agent strong con-

formance (2).

In this case, it is straightforward to prove that for the customer view
reserv cinema 1C the protocol conformance holds w.r.t. protocol reserv cinema 1.
It is worth noting the following property of the protocol conformance.

Proposition 1. Protocol conformance is decidable.

Proof. Equation (3) is equivalent to L(Gpdylog
)∩L(GpAUML

) = ∅. Now, L(Gpdylog
)

is a context-free language while L(GpAUML
) is a regular language. Since the com-

plement of a regular language is still regular, L(GpAUML
) is a regular language.

The intersection of a context-free language and a regular language is a context-
free language. For context-free languages, the emptiness is decidable [15].

Proposition 1 tells us that an algorithm for verifying protocol conformance
exists. However, we also have a straightforward methodology for implementing
protocols in a way that conformance w.r.t. the AUML specification is respected.
In fact, we can build our implementation starting from the grammar GpAUML

,
and applying the inverse of the process that we described for passing from a
DyLOG implementation to the grammar Gpdylog

. In this way we obtain a skele-
ton of a DyLOG implementation of pAUML that is to be completed by adding
the desired ontology for the speech acts and customized with tests. Such an
implementation trivially satisfies protocol conformance and, then, all the other
degrees of conformance defined above.



4.2 Composition

One example in which it is useful to reason about protocol composition, is the
situation in which the same customer is supposed to interact with the restaurant
and the cinema providers, one after the other. In fact, the developer must be sure
that the customer, by interacting with the composition (by sequentialization)
of the two protocols, will obtain what desired. In particular, suppose that the
developer wants to verify if the protocols that he/she defined allow the following
interaction: it is possible to make a reservation at the restaurant and, then, at
the cinema, taking advantage of the promotion. Let us consider the query:

〈reserv rest 1C(customer, restaurant, dinner) ;
reserv cinema 1C(customer, cinema,movie)〉

(Bcustomercinema promo ∧ Bcustomerreservation(dinner)∧
Bcustomerreservation(movie) ∧ BcustomerBCft number)

that amounts to determine if it is possible to compose the interaction so to re-
serve a table for dinner (Bcustomerreservation(dinner)) and to book a ticket
for the movie movie (Bcustomerreservation(movie)), exploiting a promotion
(Bcustomercinema promo). The obtained free ticket is to be spent (Bcustomer

Bcinema ft number), i.e. customer believes that after the conversation the cho-
sen cinema will know the number of the ticket given by the selected restaurant.

In the case in which the customer has neither a reservation for dinner nor
a reservation for the cinema or a free ticket, the query succeeds, returning the
following linear plan:

queryIf(customer, restaurant, available(dinner)) ;

inform(restaurant, customer, available(dinner)) ;

inform(restaurant, customer, reservation(dinner)) ;
inform(restaurant, customer, cinema promo) ;
inform(restaurant, customer, ft number) ;
queryIf(customer, cinema, available(movie)) ;

inform(cinema, customer, available(movie)) ;

queryIf(cinema, customer, cinema promo) ;
inform(customer, cinema, cinema promo) ;
inform(customer, cinema, ft number) ;
inform(cinema, customer, reservation(movie))

This means that there is first a conversation between customer and restaurant

and, then, a conversation between customer and cinema, that are instances of
the respective conversation protocols, after which the desired condition holds.

Notice that the linear plan will actually lead to the desired goal given that
some assumptions about the provider’s answers hold. In the above plan, assump-
tions have been outlined with a box. For instance, that a seat at the cinema is
free. The difference with the other inform acts in the plan (from a provider to the
customer) is that while for those the protocol does not offer any alternative, the



outlined ones correspond just to one of the possible answers foreseen by the pro-
tocol. In the example they are answers foreseen by a yes no query protocol (see
Figure 1 (i) and [6]). The actual answer can be known only at execution time,
however, thanks to the existence of the protocol, it is possible to understand the
conditions that lead to success.

4.3 Selection

Another situation in which the developer may need support is to search into a
library of available policies for an interaction protocol that describes a service
of interest and that is suitable to the application that he/she is designing. For
instance, the developer must design a protocol for a restaurant that allows to
make a reservation not necessarily using a credit card. In this case the developer
will first search the library of available protocols looking for those that satisfy this
request. This search cannot be accomplished only based on descriptive keywords
but requires a form of reasoning on the way in which the interaction is carried
on. Suppose that search service is a procedure that allows one to search into a
library for a protocol in a given category; then, the query would look like:

〈search service(restaurant, Protocol) ; Protocol(customer, service, time)〉
(Bcustomer¬Bservicecc number ∧ Bcustomerreservation(time))

which means: look for a protocol that has one possible execution, after which
the service provider does not know the customer’s credit card number, and a
reservation has been taken.

5 Conclusions and related work

In this paper we have proposed a logic-based approach to agent interaction proto-
col specification and we have shown the advantages of using reasoning techniques
based on such a logical formalization, especially in the context of agent-oriented
software engineering (AOSE). We used as agent language DyLOG, a high-level
logic programming language for modeling and programming rational agents,
based on a modal theory of actions and mental attitudes, that allows to include
in the agent specification a set of interaction protocols. The DyLOG language
allows reasoning about the effects of engaging specific conversations. By doing
so, an agent can plan a conversation for achieving a particular goal, that re-
spects the protocol, while the system designer can exploit the same reasoning
techniques to select a protocol from a library or to verify if the composition of
a set of given protocols respects some desired constraint.

Moreover, we have shown that our logical representation of protocols allows
us to deal with the matter of checking the agent conformance w.r.t. a protocol
represented as a AUML interaction diagram. This is a crucial problem to face in
an AOSE perspective and it can be considered as a part of the process of engi-
neering interaction protocols sketched in [16]. Indeed, supposing to have both an



AUML sequence diagram, which formally specifies a protocol, and an implemen-
tation of the same protocol in DyLOG, a key problem to solve is checking the
conformance of the implementation to the diagram. In fact, when protocols are
implemented in DyLOG they become part of the agent communication policies,
which are usually determined by the agent mental state. What we check is if
this strategy is conformant to the AUML protocol, at least in the sense that the
agent never performs any illegal dialogue move. In other words we prove a sort
of “structural” conformance of the implemented protocol w.r.t the specification.

The problem of checking the agent conformance to a protocol in a logical
framework has been faced also in [11]. In a broad sense our notion of confor-
mance bears along some similarities with the notion of agent weak conformance,
introduced in this work. In [11] agent communication strategies and protocol
specification are both represented by means of sets of if-then rules in a logic-
based language, which relies on abductive logic programming. A notion of weak
conformance is introduced, which allows to check if the possible moves that an
agent can make, according to a given communication strategy, are legal w.r.t.
the protocol specification. The conformance test is done by abstracting from (i.e.
disregarding) any condition related to the agent private knowledge, which is not
considered as relevant in order to decide weak conformance, although it could,
actually, prevent an agent from performing a particular move.

Our framework allows us to give a finer notion of conformance, for which we
can distinguish different degrees of abstraction with respect to the agent private
mental state. It allows us to define in an elegant manner which parts of a protocol
implementation must fit the protocol specification and to describe in a modular
way how the protocol implementation can be enriched with respect to the pro-
tocol specification, without compromising the conformance. Such an enrichment
is important when using logic agents, that support sophisticated forms of rea-
soning. Indeed, the ability of reasoning about the properties of the interactions
that occur among agents before they actually occur, may by applied to support
a MAS developer during the design phase. We have recently begun to study [4]
the methodological and physical integration of DyLOG into the DCaseLP [1, 18]
MAS prototyping environment following the what already done for integrating
tuProlog [14]. The aim of this work is to enrich the DCaseLP framework with
the ability of reasoning about AUML interaction protocols thanks to a transla-
tion from AUML to DyLOG. In this context it will be extremely useful to have
formal methods for proving conformance properties.
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Abstract. In this paper we address the problem of how the autonomy of agents in
an organization can be enhanced by means of contracts. Contracts are modelled as
legal institutions: systems of legal rules which allow to change the regulative and
constitutive rules of an organization. The methodology we use is to attribute to
organizations mental attitudes, beliefs, desires and goals, and to take into account
their behavior by using recursive modelling.

1 Introduction

One of the main challenges in multi-agent societies is the coordination of the au-
tonomous agents. Coordination can be achieved finding a trade off between a bottom-up
view and a top-down view of the problem. In the former, the MAS is an aggregation
of autonomous agents interacting with each other, where their emergent behavior is not
necessarily the desired one. In the latter, the system’s objectives are achieved without
requiring specific agent’s internal design, by means of organizational design together
with roles and norms as incentives for cooperation.

As Dignumet al. [12] note, however, the interaction structure of the organization
should be not be completely fixed in advance. The autonomy of the agents should be
preserved even if within limits. For this reason, some approaches like [10, 12, 19] in-
troduce the possibility for agents to stipulate contracts. A contract can be defined as a
statement of intent that regulates behavior among organizations and individuals. Con-
tracts have been proposed as means to make explicit the way agents can change the
interaction with and within the society: they create obligations, permissions and new
possibilities of interactions. From a contractual perspective, organizations can be seen
as the possible sets of agreements for satisfying the diverse interests of self interested
individuals [10].

Social order, thus, emerges from the negotiation of contracts about the rights and
duties of participants, rather than being given in advance. But the organization itself
specifies the possible contracts and enforces the obligations created by them as they
were issued by the organization itself. As Ruiter [20] shows, however, from the legal
point of view, legal effects of actions of the members of a legal system (as an organiza-
tion is) are a difficult problem. Contracts do not concern only the regulative aspects of a
legislation (i.e., the rules of behavior specified in obligations), or the constitutive part of
it (i.e., the rules introducing institutional facts such bidding in an auction). Rather, con-
tracts arelegal institutions: “systems of [regulative and constitutive] rules that provide



frameworks for social action within larger rule-governed settings” [20]; in our case the
larger setting is represented by organizations.

This systemic view of legal institutions emerged only recently in legal studies [20],
since legal positivism [15] mainly focused on the regulative aspects of law and its jus-
tification. For this reason is necessary to address the problem of contracts being aware
of the peculiarities of legal institutions.

The research question of this paper is: how can be legal institutions, like contracts,
be formalized? and, as subquestions, how can agents modify the behavior of the orga-
nization via contracts? Which games can agents play when they are allowed to make
contracts?

As methodology we use the agent metaphor: we attribute to organizations mental
attitudes, beliefs, desires and goals, and we take into account their behavior by using
recursive modelling [13]. We apply to organizations the methodology we adopted for
social entities like groups, virtual communities [4] and normative multiagent systems
[3, 7, 6].

In the next section we discuss constitutive rules and how legal institutions are cre-
ated. In Section 3 we discuss the conceptual model, with the definition of obligations
and contracts. In Section 4 we present the games which can be played with contracts,
together with a detailed example. Related work and summary close the paper.

2 Legal institutions

Normative multiagent systems, like organizations, are “sets of agents [...] whose inter-
actions can be regarded as norm-governed; the norms prescribe how the agents ideally
should and should not behave. [...] Importantly, the norms allow for the possibility that
actual behavior may at times deviate from the ideal, i.e., that violations of obligations,
or of agents’ rights, may occur” (Jones and Carmo [16]).

In [3] we formalize the relation between multiagent systems and normative systems
by attributing mental states to agents as well as to normative systems, as proposed by
Boella and Lesmo [2]. The agent metaphor may be seen as an instance of Dennett’s
intentional stance[11] and is inspired by the interpretation of normativemultiagent
systems as dynamic social orders. According to Castelfranchi [8], a social order is a
pattern of interactions among interfering agents “such that it allows the satisfaction of
the interests of some agent”. These interests can be a shared goal, a value that is good
for everybody or for most of the members. But the agents attribute to the normative
system, besides goals, also the ability to autonomously enforce the conformity of the
agents to the norms by means of sanctions. In this approach the obligations of the agents
can be formalized as desires or goals of the normative agent. This representation may
be paraphrased as “Your wish is my command” because the desires or wishes of the
normative agent are the obligations or commands of the other agents.

Most formalizations of normative systems, however, including [3], identify norms
with obligations, prohibitions and permissions. This is not sufficient in complex norma-
tive multiagent systems for the following three reasons. First of all, these norms, called
regulative norms, specify all the conditions when they are applicable. It would be more
economic that regulative norms could factor out particular cases and could refer to



more abstract concepts only. Hence, the normative system should include mechanisms
to introduce new legal categories of abstract entities for classifying possible states of
affairs. Second, the dynamics of the social order is due to the fact that the normative
system evolves over time by introducing new norms and abrogating outdated ones. So
the normative system itself must specify how it can be changed by introducing new
regulative norms, new legal categories and by whom the changes can be done. Third,
the dynamics of a normative system includes the possibility that not only new norms
are introduced by the legislators, but also that ordinary agents create new obligations
and permissions concerning specific agents. This feature is fundamental to preserve the
autonomy of agents inside an organization. In particular, it allows modelling contracts
which introduce new normative relations among agents, like the duty to pay a fee for a
service.

We therefore introduce a formal framework for the construction of normative multi-
agent systems, based on Searle’s notion of the construction of social reality. Searle [21]
argues that there is a distinction between two types of rules, a distinction which also
holds for formal rules like those composing normative systems:

Some rules regulate antecedently existing forms of behaviour. For example,
the rules of polite table behaviour regulate eating, but eating exists indepen-
dently of these rules. Some rules, on the other hand, do not merely regulate an
antecedently existing activity called playing chess; they, as it were, create the
possibility of or define that activity. The activity of playing chess is constituted
by action in accordance with these rules. The institutions of marriage, money,
and promising are like the institutions of baseball and chess in that they are
systems of such constitutive rules or conventions ([21], p. 131).

For Searle, institutional facts like marriage, money and private property emerge
from an independent ontology of “brute” physical facts through constitutive rules of the
form “such and such an X counts as Y in context C” where X is any object satisfying
certain conditions and Y is a label that qualifies X as being something of an entirely
new sort. E.g., “X counts as a presiding official in a wedding ceremony”, “this bit of
paper counts as a five euro bill” and “this piece of land counts as somebody’s private
property”.

Like we formalize obligations in terms of desires and goals, in the next section, we
formalize the constitutive rules as belief rules of the normative agent. E.g., consider a
society which believes that a field fenced by an agent counts as the fact that the field
is property of that agent. The fence is a physical “brute” fact, while being a property is
an institutional fact attributed to the beliefs of the normative system. Regulative norms
which forbid trespassing refer to the abstract concept of property rather than to fenced
fields. As the system evolves, new cases are added to the notion of property, without
changing the regulative norms about property. E.g., if a field is inherited, then it is
property of the heir.

Searle’s analysis of constitutive rules has focused mainly on the attribution of a
new functional status to entities, as in the examples above: marriages, money, property.
Searle’s idea is that constitutive rules “create the possibility or define that activity”. We
believe, however, that the role of constitutive rules is not limited to the creation of an



activity and the construction of new abstract legal categories. Constitutive norms specify
both the creation of legal categories and the evolution of the system: the normative
system itself specifies by means of constitutive rules (included in its belief rules) how
its beliefs, desires and goals can be changed, who can change them, and the limits of
the possible changes. In this way, complex normative systems achieve a legal regime
that includes rules conferring legal powers on certain participants: an agent is turned
on a “private legislator” (Hart, [15]): “he is made competent to determine the course of
law within the sphere of his contracts, trusts, wills and other structures [...] which he is
enabled to build”. Agents become able to design “relatively independentinstitutional
legal orderswithin the comprehensive legal orders” (Ruiter [20]).

The regime of a legal institution can be defined as the set of legal consequences
that flow from the existence of the institution. However, the meaning of “legal conse-
quences” differs from what is normally understood by the term. Usually, since obliga-
tions have a conditional nature, when the conditions of an obligation are satisfied, as a
legal consequence the addressee of the obligation is categorically obliged to fulfill it.
Legal institutions, like contracts, marriages and properties, refer to a different kind of
legal consequences; e.g., the legal rule “in a marriage parents have the reciprocal obli-
gation to take care of and support their children” is not a conditional rule: it expresses
the fact that when a legal institution of marriage comes into existence (say between
Amy and Bob) only then the obligation that the spouses (Amy and Bob) take care and
support their children is created. The same happens with the legal institution of con-
tracts: when a contract comes into existence it creates obligations for the parties, i.e.,
new regulative rules which the normative system considers as its own. E.g., the Italian
Civil Code art. 1173 (sources of obligations) specifies that obligations are created by
contracts and art. 1372 (efficacy of contracts) that a contract has the strength of law (a
contract is an agreement among two or more parties to regulate a juridical relationship
about valuablesexart. 1321).

Moreover, contracts as legal institutions bring with them not only new regulative
rules, but also constitutive ones which create new institutional facts and also new obli-
gations; in this way, it is possible to specify in a contract new procedures for the inter-
action between parties, for specifying the evolution of the contract and how new obliga-
tions are created later. As Dignumet al. [12] notice, a contract specifies the events that
alter the status of the contract. It is necessary to specify an interaction structure which
indicates the possibility of an agent and the consequences of its choices; the contract
must specify how to proceed if a norm is violated and what the violator is expected to
do; e.g., if some payment deadline is not respected, the agent is obliged to pay a double
fee. Since we model contracts as legal institutions, we are now aware that this rule is
not a conditional obligation: it is an obligation created by some event specified in the
contract, in the same way as the contract itself can create obligations. This is possible
because we consider a contract as a legal institution, i.e., a normative system inside
the main normative system: as a normative system it specifies who has the power to
introduce obligations.



3 The conceptual model

In order to provide a formalization of contracts as legal institutions in organizations we
first delineate the conceptual model we adopt.

First of all, the structural concepts and their relations. We have to describe the dif-
ferent aspects of the world and the relationships among them. We therefore introduce
a set of propositional variablesX and we extend it to consider also negative states of
affairs:L(X) = X ∪ {¬x | x ∈ X}. Moreover, forx ∈ X we write∼ x for ¬x and
∼ (¬x) for x. The relations between the propositional variables are given by means of
conditional rules written asR(X) = 2L(X) × L(X): the set of pairs of a set of literals
built from X and a literal built fromX, written asl1 ∧ . . . ∧ ln → l, and, whenn = 0,
> → l. The rules will be used to represent the relations among propositional variables
existing in beliefs, desires and goal of the agents.

Then there are the different sorts of agentsA we consider. Besides real agentsRA
(either human or artificial) we consider as agents in the model also socially constructed
agents like groups, normative systems and organizationsSA. These latter agents do not
exist in the usual sense of the term. Rather, they exist only as they are attributed mental
attitudes by other agents (either real or not). By mental attitudes we mean beliefsB,
desiresD and goalsG.

Coming to the relations existing between these structural concepts, mental attitudes,
even if they do not coincide with, are represented by rules:MD : B∪D∪G → R(X).
When there is no risk of confusion we will abuse the notation by identifying rules and
mental states. To resolve conflicts among motivations we introduce a priority relation by
means of≥: A → 2M ×2M a function from agents to a transitive and reflexive relation
on the powerset of the motivations containing at least the subset relation. We write
≥a for ≥ (a). Moreover, different mental attitudes are attributed to all the different
sorts of agents by the agent description relationAD : A → 2B∪D∪G∪A. We write
Ba = AD(a) ∩B, Aa = AD(a) ∩A for a ∈ A, etc.

Also agents are in the target of theAD relation for the following reason: groups,
normative systems, and organizations agents exist only as profiles attributed by other
agents. So groups, normative systems and organizations exist only as they are described
as agents by other agents, according to the agent description relation. TheAD relation
induces an exists-in-profile relation specifying that an agentb ∈ SA exists only as some
other agents attribute to it mental attitudes:{a | b ∈ Aa}.

Finally, the different sorts of agents are disjoint and are all subsets of the set of
agentsA: RA ∪ SA ⊆ A.

We introduce now concepts concerning informational aspects. First of all, the set
of variables whose truth value is determined by an agent (decision variables) [17] are
distinguished from those which are notP (the parameters).

Besides, we need to represent also the so called “institutional facts”I. They are
states of affairs which exist only inside normative systems and organizations. As dis-
cussed in the previous section, Searle [22] suggests, money, properties, marriages exist
only as part of social reality; since we model social reality by means of the attribution
of mental attitudes to social entities, institutional facts are just in the beliefs of these
agents. Similarly, we need to represent that social entities like normative systems and
organizations are able to change themselves. The actions determining the changes are



called creation actionsC. Finally, we introduce contractsCT : they are agreements be-
tween agents in normative systems or organizations which have legal consequences;
they are defined in Section 3.2.

As concerns the relations among these concepts, we have that parametersP are
a subset of the propositional variablesX. The complement ofX andP represents the
decision variables controlled by the different agents. Hence we have to associate to each
agent a subset ofX \ P by extending again the agent description relationAD : A →
2B∪D∪G∪A∪(X\P ).

Moreover, the institutional factsI are a subset of the parametersP : I ⊆ P . And the
creation actionsC are a subset of the institutional factsC ⊆ I: they do not exist outside
the mind of agents and they have effects on the mental attitudes of agents only as far as
the agents believe they have.

Since social entities depend on the attribution of mental attitudes, we represent their
modification by means of the modification of their mental attitudes expressed as rules.
So the creation action relationCR : {b, d, g}×A×R(X) → C is a mapping from rules
(for beliefs, desires and goals) to propositional variables, whereCR(b, a, r) stands for
the creation ofm ∈ Ba, CR(d, a, r) stands for the creation ofm ∈ Da, andCR(g, a, r)
stands for the creation ofm ∈ Ga, such that the mental attitude is described by the rule
r ∈ R(X): r = MD(m). For space reasons, in this paper we consider only the creation
of new rules and not their deletion from the mental attitudes of an agent.

Since institutional factsI and the creation actionsC exist only in the beliefs of a
normative system or an organization, we need a way to express how these beliefs can be
made true. As we discussed in the previous section, the relations among propositional
variables are expressed as rules. In this case we have rules concerning beliefs about in-
stitutional facts: they are called constitutive rules and represent the “counts as” relations
introduced by Searle [22] (see previous section). We thus identify the subsetCN of the
belief rules which express the relation between propositional variables and institutional
facts: rulesC∪{x} → y ∈ R(X) expressing the fact that a literalx ∈ L(X) in context
C ⊆ Lit(X) counts as the institutional facty ∈ L(I).

Finally, we have to model the effect of the creation actions on the mental attitudes
of agents. For this reason we introduce an update relationUP from creation actions and
mental attitudes to set of rules representing the new mental attitudesUP : {B, D, G}×
C → 2{B,D,G}. Since a decision of an agent can make true some creation actions, the
consequences of these actions must be considered in the subsequent reasoning of the
agent. The update function can be used to define the history of the multiagent system
representing its evolution. Note that in this paper we do not consider the problem of
the belief (and goal) revision. While this problem is sometimes addressed when dealing
with normative systems, we consider here only the problem of introducing we rules and
not of deciding which rules are necessary to get a certain revision.

We can now define a multiagent system as
MAS = 〈RA, SA,X, P,B, D,G, C, AD,MD,≥, I, CT 〉.

We need to introduce normative multiagent systems to model organizations which
are able to issue and enforce obligations: let the normative agento ∈ SA be an agent
representing the organization. Let the norms{n1, . . . , nm} = N be a set. Let the norm
descriptionV : N → Xo ∪ P be a complete function from the norms to the decision



variables of the normative agent together with the parameters: we writeV (n, a) for the
decision variable which represents that there is a violation of normn by agenta ∈ A.
With these elements we define sanction based obligations in the next section. The tu-
ple 〈RA, SA,X, P,B,D, G,C, AD,MD,≥, I, CT,o, N, V 〉 is a normative multia-
gent systemNMAS.

As concerns the behavior of agents, in Section 4, we introduce the games that can
be played between two agentsa ando. Before games, we have to introduce two further
notions: consequences of beliefs and decisions of agents.

To incorporate the consequences of belief rules, we introduce a simple logic of rules
calledout: it takes the transitive closure of a set of rules, called reusable input/output
logic in [18]; out(E,S) be the closure ofS ⊆ L(X) under the rulesE:

– out0(E,S) = S

– outi+1(E, S) = outi(E, S) ∪ {l | L → l ∈ E,L ⊆ outi(E, S)) for i ≥ 0

– out(E, S) = ∪∞0 (E, S)

We can now introduce decisions of agents; they must be consistent with the con-
sequences of beliefs according to the two agentsa (out(Ba, δ)) ando (out(Bo, δo ∪
out(Bo, δa))). The set of decisions∆ is the set of subsetsδ = δa ∪ δo ⊆ L(X) such
that their closures under the beliefsout(Ba, δ) andout(Bo, δo ∪ out(Bo, δa)) do not
contain a variable and its negation.

3.1 Obligations

Since contracts affect the obligations of an agent, we must first summarize their defini-
tion given in [3]. Obligations are defined in terms of goals of the addressee of the norm
a and of the organizationo. The definition of obligation contains several clauses. The
first one is the central clause of our definition and defines obligations of agents as goals
of the normative agent, following the ‘Your wish is my command’ strategy [3]. The first
clause says that the obligation is implied by the desires of agento, implied by the goals
of agento.

The second and third clauses can be read as “the absence ofp is considered as a
violation”. The association of obligations with violations is inspired to Anderson [1]’s
reduction of deontic logic to alethic logic. The third clause says that the agent desires
that there are no violations.

The fourth and fifth clauses relate violations to sanctions. The fourth clause assumes
that agento is motivated not to count behavior as a violation and apply sanctions as long
as their is no violation; otherwise the norm would have no effect. Finally, for the same
reason, we assume in the last clause that the agent does not like the sanction.



Definition 1 (Obligation). LetNMAS = 〈RA, SA, X, P,
B, D,G, C, AD,MD,≥, I, CT,o, N, V 〉 be a normative multiagent system.

Agenta ∈ A is obliged to decide to dox ∈ L(Xa∪P ) with sanctions ∈ L(Xo∪P )
if Y ⊆ L(Xa ∪ P ) in NMAS, written asNMAS |= Oao(x, s|Y ), if and only if:

1. Y → x ∈ Do ∩Go: if agento believesY then it desires and has as a goal thatx.
2. Y ∪{∼x} → V (∼x,a) ∈ Do ∩Go: if agento believesY and ∼x, then it has the

goal and the desireV (∼x,a): to recognize it as a violation by agenta.
3. > → ¬V (∼x,a) ∈ Do: agento desires that there are no violations.
4. Y ∪ {V (∼x,a)} → s ∈ Do ∩ Go: if agento believesY and decidesV (∼x,a),

then it desires and has as a goal that it sanctions agenta.
5. Y → ∼s ∈ Do: if agent o believesY , then it desires not to sanction∼s . This

desire of the normative system expresses that it only sanctions in case of violation.
6. Y → ∼s ∈ Da: if agenta believesY , then it desires∼s, which expresses that it

does not like to be sanctioned.

Permissions and prohibitions can be defined in terms of motivational attitudes, too
[4].

As discussed in [3], sanctions or rewards are not the only possible motivations to
stick to obligations, but they are necessary to cope for the worst cases.

3.2 Contracts

Contracts are part of the beliefs attributed to the organizationo: this fact makes it pos-
sible that they change the beliefs of the organization according to what specified by the
organization itself.

A contractct ∈ CT is created (a fact represented by the institutional factc ∈ I) only
if the organization believes that some other fact has as a consequence thatc is true. More
precisely, if there is some fact which counts asc for the organizationo. This fact can
be a brute fact in the world or another institutional fact. E.g., since contracts are created
by agreements, the contractc is created by the signatures of two agents, two decision
variablese andf : a constitutive norm in the belief rules of agento (e ∧ f → c ∈ Bo).
One reason why the creation of the contractc is introduced as an intermediary between
the agreement and its legal effects is that, as many other institutional facts, it allows
decoupling the conditions of the creation of the institutional facts from its legal effects.
In this way, e.g., it is possible to specify new ways of creating the contract (for instance
using an electronic signature) maintaining the same rules specifying its legal effects.

The effect a contract achieves is to modify the mental attitudes of the normative
system. Usually, it adds more than one rule to the beliefsBo, the desiresDo, or the
goalsGo by making true some creation actions inC. Again, the creation actions are
institutional facts: they are made true only if the organizationo believes that they are
made true by the creation of the contract: e.g.,c → t ∈ Bo, is another constitutive rule,
read asc ∈ I counts as the creation actiont ∈ C. Since a contract counts as several
creation actionst ∈ C, the conclusion is thatc works as an abstraction: rather than
connecting the signatures of the agents with the creation actions, the contract unifies all
the legal effects.



Finally, we consider which mental attitudes are changed. A contract modifies the
mental attitudes of the normative system: since both regulative rules like obligations
and constitutive ones like those composing contracts are themselves defined in terms of
mental attitudes of the normative system, a contract can have legal effects.

By making true some creation actions, a contract is able to create regulative norms
as the obligations of an agenta to pay (pay ∈ Xa) in case the requested good has been
shipped to him;Oao(pay, s | shipped) is defined by the normative goal and desire that
shipped goods are payed:shipped → pay ∈ Do ∩Go; the goal and desire to consider
the lack of payment for shipped goods as a violation:shipped∧¬pay → V (¬pay,a) ∈
Do ∩ Go. And finally, the goal and desire to sanction violations:V (¬pay,a) → s ∈
Do ∩ Go; avoiding the sanction> → ¬s is a desire of agentsa ando, thus, it is a
precondition of the obligation [5].

The creation of the contract achieves these effects on the mental attitudes of the
organizationo since it counts as a series of creation actions: that the goals and desires
defining the obligation are added. Since the counts as relation is described by constitu-
tive rules in the beliefs of agento we have (as concerns goals):

{
c → CR(g,o, shipped → pay),

c → CR(g,o, shipped ∧ ¬pay → V (¬pay,a)),

c → CR(g,o, V (¬pay,a) → s)

} ⊆ Bo.

Also constitutive rules can be created by contracts: they are defined by belief rules
of the normative systemo, so they are created by a creation actionCR(b,o, t) ∈ C.

First of all, the contract may specify some institutional fact which should be used
in the interaction. E.g., the shipment of the exchanged good is an institutional fact
shipped ∈ I; the fact that the good has been shipped is not a brute fact of the world
(the buyer cannot check it), rather it is a fact which holds if there is some docu-
ment like the so called bill of lading (bill ∈ P ) issued by a third party [14]:bill →
shipped is the rulet added to the beliefs of the organizationo by the creation action
CR(b,o, t) ∈ C; the creation action is a consequence of the contractc: the constitutive
rule c → CR(b,o, bill → shipped) ∈ Bo creates another constitutive rule.

Second, constitutive rules created by contracts will introduce new obligations and
new constitutive rules. In this way a contract can specify how new obligations may arise
during the interaction of the parties. We return on [12]’s example: if an agent does not
pay the fee for a shipped good, it is obliged to pay a double sum of money (pay2):
Oao(pay2, s′ | shipped ∧ ¬pay). This obligation is not a preexisting conditional obli-
gation: it is created as a legal consequence of an event, the sanctions for not having
payed the fee. The sanctions, in this case, rather than being a direct punishment for
agenta, counts as the action of creating a second obligation.Note that this obligation



does not exist until the normative system recognizes a violation and applies the sanc-
tion s. This part of the contract is thus represented by the constitutive rules which create
further constitutive rules about goals (wheres′ ∈ Xo is a sanction both feared by agent
a and not desired by agento): e.g.,

{
c → CR(b,o, s → CR(g,o, shipped ∧ ¬pay → pay2)),
c → CR(b,o, s → CR(g,o,¬pay2 → V (¬pay2,a)))

} ⊆ Bo

In summary, a contract is defined as:

Definition 2 (Contract). A contractct ∈ CT is a triple:

1. An institutional factc ∈ I representing that the contractct ∈ CT has been created.
2. A constitutive rule which makes true the institutional factc: Y → c ∈ Bo where

Y ⊆ L(X)
3. A set of constitutive rules having as antecedent the creationc of the contractct and

as consequent creation actions modifying the mental attitudes of the organization
o: c → CR(E,o, r) ∈ Bo whereE = {b, d, g}.

4 Games

The advantage of the attribution of mental attitudes to organizations is that standard
techniques developed in decision and game theory can be applied to reasoning on con-
tracts. Here we consider a simple form of games of two stages only where an agenta
takes the normative agento into account by playing games with it.

When agenta takes its decisionδa it has to minimize its unfulfilled motivational
attitudes. But when it considers these attitudes, it must not only consider its decision
δa and the consequences of this decision; it must consider also the decisionδo of the
organizationo and its consequences, for example that it is sanctioned by agento. So
agenta recursively considers which decision agento will take depending on its different
decisionsδa. Note that here we assume thato is aware of agenta’s decision: hence,
agento takes its decision considering the legal effects of agenta’s decision on its beliefs
and motivations using the update functionUP and the creation actions made true by
the decisionδa.

Given a decisionδa, a decisionδo is optimal for agento if it minimizes the unful-
filled motivational attitudes inDo andGo according to the≥o relation. The decision
of agenta is more complex: for each decisionδa it must consider which is the optimal
decisionδo for agento.

Definition 3 (Recursive modelling).Let:

– the unfulfilled motivations of decisionδ according to agenta ∈ A be the set of
motivations whose body is part of the closure of the decision under the belief rules
but whose head is not.

U(δ,a) = {m ∈ M | MD(m) = l1∧. . .∧ln → l, {l1, . . . , ln} ⊆ out(Ba, δ) andl 6∈
out(Ba, δ)}.
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Fig. 1. The game between agenta and agento.

– the unfulfilled motivations of decisionδ according to agento be the set of motiva-
tions whose body is part of the closure of the decision under the belief rules and
whose head is not, but considering the consequences of agenta’s decision on agent
o’s beliefs and motivations. We writeO = out(Bo, δa) ∩ C for the set of creation
actions which follow fromδa:

U(δ,o) = {m ∈ UP (Do ∪Go, O) | MD(m) = l1 ∧ . . .∧ ln → l, {l1, . . . , ln} ⊆
out(UP (Bo, O), δo ∪ out(Bo, δa)) andl 6∈ out(UP (Bo, O), δo ∪ out(Bo, δa))}.

– A decisionδ (whereδ = δa ∪ δo) is optimal for agento if and only if there is no
decisionδ′o such thatU(δ,o) >o U(δa ∪ δ′o,o). A decisionδ is optimal for agenta
and agento if and only if it is optimal for agento and there is no decisionδ′a such
that for all decisionsδ′ = δ′a ∪ δ′o and δa ∪ δ′′o optimal for agento we have that
U(δ′,a) >a U(δa ∪ δ′′o ,a).

4.1 Example

We now return to the example about trade contracts. For space reasons, we formalize it
as concerns only the obligationOao(pay, s | shipped) and the constitutive rule saying
that the bill of lading counts as the good has been shipped.

We have two agents: the agenta ∈ RA and the organizationo ∈ SA. Agent a
attributes mental attitudes to the organizationo (o∈ Aa).

The agentacan perform the actions of signing a contract and paying ({sign, pay} ⊆
Xa), it believes that it has already signed the contract and the bill of ladingbill ∈ P



has been issued{> → sign,> → bill} ⊆ Ba, it desires not to give its money away
(> → ¬pay,∈ Da) and not to be sanctioned by agento (> → ¬s ∈ Da).

The organizationo does not desire to consider a violator (V (¬pay,a) ∈ Xo) and to
sanction agenta (s ∈ Xo) without motivation:{> → ¬V (¬pay,a),> → ¬s} ⊆ Do.
It believes that if agenta signs (sign) the contract, this counts as the creation (c ∈ I) of
the contract (ct ∈ CT ): sign → c ∈ Bo. It believes that the contract has been signed
and the bill of lading (bill ∈ P ) has been issued{> → sign,> → bill} ⊆ Bo (as
agenta does) and also the constitutive norms concerning the effects of the contract.

The first effect is that the new obligation to pay when the good is shipped is in-
troduced:Oao(pay, s | shipped). The obligation is defined by a set of desires and
goals: the normative goal and desire that shipped goods are payed:shipped → pay ∈
Do ∩ Go; the goal and desire to consider the lack of payment for shipped goods as a
violation: shipped ∧ ¬pay → V (¬pay,a) ∈ Do ∩ Go. And the goal and desire to
sanction violations:V (¬pay,a) → s ∈ Do ∩ Go; note that the desire> → ¬s of
agentsa ando are requested by the definition of obligation. The contract achieves these
effects on the mental attitudes of the organizationo since it counts as a series of creation
actions: that the goals and desires defining the obligation are added. Since the counts as
relation is described by constitutive norms, i.e., belief rules of agento, we have:

{
c → CR(g,o, shipped→pay),

c → CR(d,o, shipped→pay),

c → CR(g,o, shipped ∧ ¬pay→V (¬pay,a)),

c → CR(g,o, V (¬pay,a)→s),

c → CR(d,o, shipped ∧ ¬pay→V (¬pay,a)),

c → CR(d,o, V (¬pay,a)→s)

} ⊆ Bo

The second effect is that the bill of lading (bill) is considered as the proof that
the good has been shipped; the contract creates a constitutive rule in the beliefs of the
normative systemo: c → CR(b,o, bill → shipped) ∈ Bo.

We adopt the perspective of agenta who has to decide whether to pay its fee or not.
To take a decision agenta must recursively model the organizationo’s decision. Agent
a takes the decision whose consequences minimize its unfulfilled motivational attitudes
given the decision of the organization and its consequences. Moreover, the decision of
the organizationo is assumed to be taken from the point of view which considers the
legal effects in the consequencesout(Bo, δa) of agenta’s decision. Agenta has already
signed the contract, so its signature counts as the creation of the contract with its legal
effects,c ∈ out(Bo, δa):



O = out(Bo, δa) ∩ C =
{

CR(g,o, shipped → pay),
CR(d,o, shipped → pay),
CR(g,o, shipped ∧ ¬pay → V (¬pay,a)),
CR(g,o, V (¬pay,a) → s),
CR(d,o, shipped ∧ ¬pay → V (¬pay,a)),
CR(d,o, V (¬pay,a) → s),
CR(b,o, bill → shipped)

}
The updated beliefs and motivations are:

UP (Bo, O) \Bo = {bill → shipped}
UP (Do, O) \ Do = UP (Go, O) \ Go = {shipped → pay, shipped ∧ ¬pay →
V (¬pay,a), V (¬pay,a) → s}

The organizationo has to decide whether agenta’s behavior respects the obligation
or not; in the latter case agento considers this as a violation and sanctions it.

The creation of the new constitutive rule has a further consequence, that the good
has been shipped since the bill of lading counts as such:

shipped ∈ out(UP (Bo, O), {¬V (¬pay,a),¬s} ∪ out(Ba, {¬pay})
Thus, the new obligationOao(pay, s | shipped) has its condition satisfied. If the

agent decides not pay it violates its duty. Agento’s unfulfilled mental attitudes are:

U({¬V (¬pay,a),¬s} ∪ {¬pay},o) ∩ (Do ∪Go) =
{shipped → pay, shipped ∧ ¬pay → V (¬pay,a)}
We assume that fulfilling the set of motivations{shipped → pay, shipped∧¬pay →

V (¬pay,a)} is preferred, according to the ordering≥o on motivations, with respect to
fulfilling {shipped → pay,> → ¬V (¬pay,a),> → ¬s}: sanctioning violations
worths its cost.

So the optimal decision for the organization is to considera’s behavior as a violation
and to sanction itδo = {V (¬pay,a), s}, as the unfulfilled motivations are:

U({V (¬pay,a), s} ∪ {¬pay},o) ∩ (Do ∪Go) =
{shipped → pay,> → ¬V (¬pay,a),> → ¬s}
Instead, given the decision to pay the feeδa = {pay}, the optimal decision of agent

o is not to consider as a violation the behavior of agenta and not to sanction it. Given
δo = {¬V (¬pay,a),¬s} the unfulfilled mental attitudes are:

U({¬V (¬pay,a),¬s} ∪ {pay},o) ∩ (Do ∪Go) = ∅
How does agenta take a decision?

– if δa = {¬pay}, thenδo = {V (¬pay,a), s}:
U({V (¬pay,a), s} ∪ {¬pay},a) ∩ (Da ∪Ga) = {> → ¬s}

– if δa = {pay}, thenδo = {¬V (¬pay,a),¬s}:
U({¬V (¬pay,a),¬s} ∪ {pay},a) ∩ (Da ∪Ga) = {> → ¬pay}
If paying is preferred to being sanctioned{> → ¬s} >a {> → ¬pay}, agenta

decides forδa = {¬pay}.



5 Related work and summary

In this paper we address the problem of defining contracts as legal institutions. Using
the methodology of attributing mental attitudes to social entities like organizations, we
show that contracts have as precondition an agreement which counts as the creation
of the contract and as legal consequences the creation of new mental attitudes. These
attitudes define new obligations as well as new constitutive rules. We also show that the
new constitutive rules can be used to prescribe the subsequent behavior expected by the
parties involved in the contract.

What distinguishes our approach from other models of counts as relations is that we
can connect goals, and obligations defined as goals, to institutional facts inside the over-
all frame of the attribution of the status of agent to the normative system: institutional
facts are beliefs of the normative agent as any other belief.

Teague and Sonenberg [23] discuss the impact on reputation of levelled commit-
ment contracts, i.e., contracts where each party can decommit by paying a predetermi-
nate penalty. While reputation is beyond the scope of this paper, our model of contracts
can specify also the procedures for the parties’ decommitment.

Dignumet al. [12] propose the languageLCR for modelling contracts. They define
contracts as tuples composed of agents, contract clauses, stages and interactional struc-
ture. With respect to their work we do not define the clauses of a contract as conditional
obligations (as also Pacheco and Carmo [19] do). Rather we use constitutive rules which
create obligations when the contract is created or when some relevant event happens.
Finally, as they propose, we give a definition of obligations in terms of violations but
we take a subjective perspective and consider the decision problem of an agent subject
to obligations.

Daskalopulu and Maibaum [9] model contracts as processes having as states legal
relations among the parties. They introduce obligations which are consequences of the
unfulfillment of other obligations. However, they do not consider the role of constitutive
rules in contracts and the fact that violations are recognized only as an effect of the
activity of the normative agent.

Future work concerns extending the games with multiple stages, so to track the evo-
lution of the contract. We also propose contracts for modelling roles using the agent
metaphor. Contracts are used for assigning roles: they create the obligations of the
holder of a role starting from the description of the role. Moreover, roles and func-
tional areas in an organization can be created as new legal institutions. Finally, our
approach can be used to model security issues in virtual communities of agents. Con-
tractual access control has been proposed in recent developments to cope with the issue
of delegating powers to modify rights and permissions.
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Abstract. This paper discusses the integration of a Prolog implementation, tuPro-
log, into the DCaseLP environment for building prototypes of multi-agent sys-
tems (MASs). DCaseLP aims at providing the MAS developer with a plethora
of specification and implementation languages in order to allow him/her to adopt
the best language for each view of the system under specification/implementation.
The integration of tuProlog into DCaseLP represents a step forward in this direc-
tion and allows the re-use of tools and mechanisms previously developed for the
DCaseLP predecessor, CaseLP.

1 Introduction

Multiagent Systems (MASs) involve heterogeneous components which have different
ways of representing their knowledge about the world, about themselves, and about
other agents, and which adopt different mechanisms for reasoning about this knowl-
edge. Despite heterogeneity, agents need to interact and exchange information in order
to cooperate or compete for the control of shared resources; this interaction may follow
sophisticated communication protocols.

For these reasons and due to the complexity of agents behaviour, MASs are difficult
to be correctly and efficiently engineered. Even developing a working prototype may
require a long time and a lot of different skills. In fact, the prototype can involve agents
that would be better modelled and implemented by means of a language based on Horn
clauses, agents that would be easily defined using an expert system-like language, and
others that should be directly implemented in some implementation language, in order
to access existing software packages or the web. Moreover, some general aspects of
the MAS can be better specified with ad-hoc specification languages. For example, the
MAS architecture, the internal agent architecture and the interaction protocols among
agents can be easily specified using graphical tools and languages.

The development of a prototype system of heterogeneous agents can be carried
on in different ways. A first -trivial- solution consists of developing all the agents by
means of the same implementation language and to execute the obtained program. If
this approach is adopted, during the specification stage it would be natural to select
a specification language that can be either directly executed or easily translated into
code, and to specify all the agents in the MAS using it. An opposite solution would

? Parts of this document appear in [5].



be to specify each “view” of the MAS (including the MAS architecture, the interaction
protocols among agents, the internal architecture and functioning of each agent) using
the most suitable language capable to deal with the MAS’s peculiar features, and to
verify, execute, or animate the obtained specifications inside an integrated environment.
Such an environment should offer the means to select the proper specification language
for each view of the MAS, and to check the specifications. This check may be carried
out thanks to formal validation and verification methods or by producing an executable
code and running the prototype thus obtained.

Despite its greater complexity, the last solution has many advantages over the first,
trivial one.

1. By allowing the use of different specification languages for each view of the MAS,
it supports the progressive refinement of specifications: for example, the specifica-
tion of an interaction protocol performed during the early analysis stage does not
need to be as detailed as the complete specification of an agent performed during
the design stage; details can be progressively added while the engineering process
goes on.

2. By allowing the use of different specification languages for the internal architecture
and functioning of each agent,it respects the differences existing among agents,
namely the way they reason and the way they represent their knowledge, the other
agents, and the world.

3. By allowing different implementation languages to be integrated inside the same
running prototype,it allows the direct implementation of some of the agents, skip-
ping the specification stage.

4. In case more than one language fits the requirements of an agent/view under speci-
fication,it allows the developer to choose the language he/she knows best and likes,
thus leading to more reliable specifications and implementations.

Currently, solid and complete environments that allow the integration of hetero-
geneous specification and implementation languages in a seamless way do not exist
yet, but some preliminary steps have been made in this direction, and some initial re-
sults have already been achieved with the development of prototypical environments for
engineering heterogeneous agents. DCaseLP (Distributed CaseLP), integrates a set of
specification and implementation languages in order to model and prototype MASs and
defines a methodology which covers the engineering stages from requirements analysis
to prototype execution, which relies on the use of AUML (Agent UML, [14]) both at
the requirement analysis level and for describing theinteraction protocolsfollowed by
the agents. Although the first release of DCaseLP [12,1] demonstrates that the concepts
underlying the “integrated environment for engineering heterogeneous MAS” can be
put into practice and can give interesting results, it suffers from two limitations that
affect its applicability:

1. it does not provide the means to re-use the code and instruments already developed
for the predecessor of DCaseLP, CaseLP [13]; and

2. it does not provide tools and languages for reasoning about properties of the inter-
actions occurring among the agents.



The last limitation can be addressed by translating AUML interaction protocols
into the DyLOG language [8,4,6], and then integrating DyLOG into DCaseLP. The
exploitation of DyLOG to address the problems of protocol selection, composition and
implementation conformance w.r.t. an AUML sequence diagram is dealt with in [7],
while the integration of DyLOG into DCaseLP is discussed in [5].

The first limitation can be overcome by extending DCaseLP with the ability to inte-
grate agents specified as Prolog theories, as shown in this paper.

The structure of the paper is the following: Section 2 overviews the DCaseLP envi-
ronment and discusses the outcomes of integrating an existing Prolog implementation,
tuProlog, into DCaseLP, while Section 3 discusses the technical details of this integra-
tion. Section 4 shows an example of use of DCaseLP extended by tuProlog; conclusions
follow.

2 The DCaseLP environment

DCaseLP is a prototyping environment where agents specified and implemented in a
given (and fairly limited!) set of languages can be seamlessly integrated. DCaseLP pro-
vides an agent-oriented software engineering methodology to guide the MAS developer
during the analysis of the MAS requirements, the MAS design, and the development of
a working MAS prototype. The methodology is shown in Figure 1. Solid arrows rep-
resent the information flow from one step to the next one. Dotted arrows represent the
iterative refinement of previous choices. The first release of DCaseLP did not deal with
all the stages of the methodology. In particular, the verification stage was not addressed.
In the same way as the integration of DyLOG into DCaseLP will allow us to formally
verify properties of communication protocols, the integration of tuProlog into DCaseLP
discussed in Section 3 will allow us to address the verification phase by re-using the ver-
ification mechanisms developed for CaseLP ([13], Sections 3.3 and 4.4).

DCaseLP is the result of the effort to re-implement CaseLP [13] in order to over-
come its main limitations, namely:

1. its centralization,
2. its poor support to concurrency, and
3. its lack of adherence to existing standards.

The tools and languages supported by the first release of DCaseLP, discussed in
[12,1], are represented in Figure 2 by means of the darker boxes. Lighter boxes represent
the desired extensions in respect to that release. Some of these extensions have already
been made, while some are currently being made, and some others are just part of our
future work.

DCaseLP adopts an existing multiview, use-case driven and UML-based method
[2,3] in the phase of requirements analysis.

Once the requirements of the application have been clearly identified, the developer
can use UML and its agent-oriented extension AUML to describe the interaction pro-
tocols followed by the agents, the general MAS architecture and the agent classes and
instances. Moreover, the developer can also automatically create the rule-based code
for the agents in the MAS in such a way that the UML/AUML specification is satisfied.



Fig. 1.DCaseLP methodology.

Fig. 2.Tools and languages supported by DCaseLP, first release.



In the following, we will assume to use AUML during the requirements analysis stage,
although the translation from AUML into rule-based code is not fully automated (while
the translation from pure UML into code is).

The rule-based language used for the implementation of DCaseLP agents is Jess
[11]. The Jess code obtained from the translation of AUML diagrams must be manually
completed by the developer with the behavioural knowledge which was not explicitly
provided at the specification level. On the one hand, the developer does not need a deep
insight in rule-based languages in order to complete the Jess code, since he/she is guided
by comments included in the automatically generated code. In this way, a developer who
is not confident with rule-based languages can concentrate on the AUML specification
and make a little effort to complete the rule-based code in order to make it executable.
On the other hand, the developer who prefers to define agents in a declarative language
can skip the AUML specification stage and directly write the Jess code.

The choice of Jess as the language for implementing agents was lead by two con-
siderations:

1. being a rule-based language, Jess is suitable for representing both the event-driven
and the goal-driven behaviours of the agents;

2. being implemented in Java, Jess can be easily integrated into the FIPA-compliant
JADE platform.

JADE (Java Agent Development Framework, [9]) provides both a middle-ware that
complies with the FIPA specifications [10] and a set of graphical tools that support the
debugging and deployment phases. The agents can be distributed across several ma-
chines and they can run concurrently. The adoption of JADE as the underlying platform
for implementing DCaseLP was a must in order to overcome the three limitations of
CaseLP. In fact, JADE is distributed, allows the concurrent execution of agents, and is
FIPA-compliant. By integrating Jess into JADE, we were able to easily monitor and de-
bug the execution of Jess agents thanks to the monitoring facilities that JADE provides.
The experiments carried out with the first release of DCaseLP were on a single machine
(see Figure 2: there is only one dark box labelled with “PC” under the JADE box).

The possibility of running the prototype allowed the first release of DCaseLP to
demonstrate its ability in checking the coherence of the AUML diagrams produced dur-
ing the requirements analysis step. Performing such a check is a well known and still
open problem that we could face without additional effort. Nevertheless, that release
still suffered from one limitation: it was not able to integrate any Prolog implementa-
tion. The predecessor of DCaseLP, namely CaseLP, is implemented in Sicstus Prolog
[15], and a lot of work has been done to study and define semi-automatic translators
from high-level specification languages into CaseLP agents, namely agents described
in Sicstus Prolog extended with communication primitives. Limited support to formal
verification of specifications – completely missing in DCaseLP – is indeed provided by
CaseLP. Without the integration of Prolog into DCaseLP, all that work would have been
lost. Recently, we have extended DCaseLP with the ability to integrate agents specified
as Prolog theories. Section 3 discusses how we have integrated an existing Prolog im-
plementation, tuProlog [16], into DCaseLP. The choice of tuProlog was due to two of
its features:



1. it is implemented in Java, which makes its integration into JADE easier, and
2. it is very light, which ensures a certain level of efficiency to the prototype.

The integration of tuProlog into DCaseLP has been completed very recently. Due to
the syntactic differences existing between Sicstus Prolog and tuProlog, CaseLP agents
specified using Sicstus Prolog cannot be simply treated as if they were DCaseLP agents
specified using tuProlog: a translation step from “Sicstus Prolog for CaseLP agents” to
“tuProlog for DCaseLP agents” is necessary. We guess that this translation step can be
easily automatised, thus allowing us to re-use the tools developed for CaseLP inside
DCaseLP; however, its implementation has not been completed due to lack of time.
Again due to time limitations, we did not verify the ability to run JADE, Jess and tuPro-
log agents as part of the same, heterogeneous, MAS. At the time of writing, we have
only developed some examples (one of which is discussed in Section 4) that demon-
strate that tuProlog agents are able to interact with both tuProlog and JADE agents by
taking advantage of the underlying communication middle-ware provided by JADE,
and that the execution of the resulting MAS can be monitored using the tools offered by
JADE. When the translator “Sicstus Prolog→ tuProlog” will be ready, and when the
compatibility between Jess and tuProlog agents will be fully established, DCaseLP will
be closer than now to the integrated environment for engineering heterogeneous MASs
envisaged in Section 1. In particular,

1. It will support the progressive refinement of specifications: for example, the in-
teractions among agents belonging to the MAS and among internal components
of the same agent will be specified in some suitable language (AUML, other lan-
guages provided by CaseLP), will be then formally verified, and will be finally
implemented by adding all the details needed by the MAS or by the single agent to
work.

2. It will respect the differences existing among agents: an agent which reasons in a
goal-driven, backward fashion will be easily defined by means of a tuProlog theory;
a rule-based agent will be better defined using Jess.

3. It will allow the direct implementation of some of the agents: JADE agents are
basically Java agents and thus they are implemented agents, rather than specified
agents.

4. It will allow the developer to choose the language he/she knows best and likes: it
will provide a bunch of languages to choose from.

3 Integrating tuProlog into DCaseLP

The integration of tuProlog into DCaseLP has been carried out in order to provide the
developer of the MAS with a means to define the behaviour of an agent by using another
declarative language besides Jess, and to re-use the code and instruments previously
developed for CaseLP. To do so, tuProlog has been integrated into JADE.

JADE includes a specific package to develop Java agents and a programmer’s guide
containing implementation guidelines that the developer should follow to code his/her
agents in Java. Any Java class that extends the classAgent defined in the package
jade.core of JADE can be considered as a JADE agent. To add tuProlog in DCaseLP,
three Java classes have been defined in a package namedtuPInJADE :



1. the classJadeShell42P , which represents a tuProlog agent in JADE;
2. the classJadeShell42PGui that provides an additional GUI at the loading of

the agent; and
3. the classTuJadeLibrary , which is a tuProlog library (developed in Java) nec-

essary to a tuProlog agent in order to communicate in the JADE platform.

As the name of the class suggests,JadeShell42P behaves as a shell for a tuPro-
log engine. To execute aJadeShell42P agent in JADE, the programmer has to
give, in input, the name of a file containing a tuProlog theory that represents the be-
haviour of the agent (Figure 3). The classJadeShell42PGui differs from class

Fig. 3.JADE shell for a tuProlog engine.

JadeShell42P in the fact that, when loaded into JADE, it does not need the name
of the theory file in the command line: it loads the pop-up window shown in Figure 4
with which the user can browse the file system and select from the list of files the one
defining a tuProlog theory to be used as behaviour of the agent. Such a tuProlog the-

Fig. 4.Window for theory selection.

ory file has only one restriction: it has to begin with the definition of a predicate called



main/0 . When a tuProlog agent is loaded into JADE, it first creates a tuProlog engine
that supports the standard tuProlog libraries and then extends them by loading the ad-
hoc tuProlog library namedTuJadeLibrary . The behaviour of any tuProlog agent
is to use the tuProlog engine, created during its initialisation phase, to always solve the
predicatemain . A typical main predicate calls predicates to read a new message, han-
dle it and carry out some actions such as update of the agent’s knowledge and message
delivery.

The goal’s demonstration is not visible to the programmer: if he/she wants to be
informed of the variable’s bindings made during resolution, he/she has to explicitly
write the variables on the standard output or in some files that he/she can subsequently
go to and read. The only explicit information which is provided for the user regards
the failure of the goal’s demonstration and other situations which raise an error dur-
ing the resolution process. To make this information visible, the packagetuPInJADE
defines the Java classErrorMsg , that is used by the tuProlog agents as a pop-up
window displaying error and failure messages, like the one shown in Figure 5. The

Fig. 5.Window for error and failure messages.

Java classJadeShell42P defines the inner classShell42PBehaviour (named
Shell42PBehaviourGui in the classJadeShell42PGui ) that extends the Java
classCyclicBehaviour defined in the packagejade.core.behaviours of
JADE.

Shell42PBehaviour implements the only behaviour of aJadeShell42P
agent: every time the agent is scheduled by the JADE’s scheduler, it tries to fulfill only
one activity, that is, the resolution of the goalmain . The Shell42PBehaviour
models a cyclic task and cannot be interrupted while executing its action method. The
result is the same as if the agent performed a “while true do main ” statement,
with main being dealt with as an atomic action.

The Java classTuJadeLibrary is the core class dealing with communication
of tuProlog agents in JADE. This library defines the predicatessend andreceive :
they are the directives implementing the sending and receiving of the FIPA compliant
and asynchronous messages to and from agents of a JADE platform. Thesend and
receive predicates simply invoke thesend andreceive methods of a JADE agent,
therefore they not only allow communication among tuProlog agents but also among
ordinary JADE agents and tuProlog agents.

The arguments of thesend predicate are: the performative, the content and the
JADE address/list of addresses of the receiver/receivers of the message. The arguments
of the receive predicate are: the performative, the content and the JADE address of
the sender of the message. Actually, since JADE agents have the possibility to stop their



activity while waiting for a message to arrive in their messages queue, theTuJadeLi-
brary also defines twoblocking receive predicates: one without a timeout and
the other with a timeout. These predicates correspond to theblockingReceive
method of an ordinary JADE agent.

Finally, TuJadeLibrary defines two predicates for converting strings into terms
and vice-versa, namedpack andunpack . They allow tuProlog agents to send strings
as the content of their messages, and to reason over them as if they were tuProlog terms.

4 Example

To show how DCaseLP can be used to develop a working MAS prototype, we use a
simple example drawn from a distributed marketplace scenario.

In such a marketplace, there are two agents (buyer1 and buyer2 ) that want
to buy some fruit (oranges, apples and kiwi) from three agents (seller , seller1
andseller2 ). Agentsbuyer1 , buyer2 , seller1 andseller2 are all tuProlog
agents, whileseller is an ordinary JADE agent.

The agents that sell fruit can receive two kinds of FIPA ACL messages from the
buyers:

1. a request for price: the message received has the performativeREQUESTand the
contentprice(Fruit) , whereFruit is oranges or apples or kiwi;

2. a request for buying: the message received has the performativeREQUESTand
the contentbuy(Fruit, Amount) , whereFruit is oranges or apples or kiwi,
while Amount is the quantity of fruit that the buyer wants to buy.

A seller replies to a price request made by a buyer by sending anINFORMmessage
that has the contentprice(Fruit, Price) , whereFruit is oranges or apples or
kiwi andPrice is the corresponding price.

The reply to a request for buying depends on whether or not the seller has enough
fruit to sell: in case the quantity of fruit that the buyer is willing to buy is less or equal
to the one possessed by the seller, the seller will send the buyer anINFORMmessage
with the contentbought(Fruit) , to inform the buyer that the fruitFruit has been
sold. On the other hand, if the seller does not own enough fruit, it sends the buyer an
INFORMmessage with the contentno more(Fruit) , so the buyer will know it can
no longer buyFruit from that seller.

At the beginning, the buyers send a request for the price of all the fruit to all the
sellers. Once they know the prices of the fruit, they send requests for buying fruit to the
agents that sell it at the cheapest price. The buyers keep sending messages requesting
to buy fruit while they still have money and the sellers have enough fruit to sell.

To give the flavor of how a tuProlog agent looks like, the code below shows a piece
of the tuProlog theory defining the behaviour ofbuyer1 .

main :-
handle msgs,
ask prices,
buy goods.



goods possessed(oranges, 0) :- true.
goods possessed(apples, 0) :- true.
goods possessed(kiwi, 0) :- true.

buys(goods(oranges), quantity(2)) :- true.
buys(goods(apples), quantity(3)) :- true.
buys(goods(kiwi), quantity(12)) :- true.

money(200) :- true.

sellers addresses(["seller1@gruppoai:1099/JADE",
"seller2@gruppoai:1099/JADE",
"seller@gruppoai:1099/JADE"]) :- true.

.............

handle msgs :-
receive(Performative, Message, Sender),
select(Performative, Message, Sender).

select(Performative, Message, Sender) :-
bound(Performative),
bound(Message),
address name(Sender, Name),
unpack(Message,TermMsg),
handle(Performative, TermMsg, Sender).

select( , , ) :- true.

handle("INFORM",
bought(Goods),
Sender) :-

bound(Goods),
address name(Sender,S),
price(S,Goods,P),
retract(money(M)),
retract(goods possessed(Goods,X)),
buys(goods(Goods),quantity(Q)),
N is X + Q,
P \= na,
NM is M - P,
assert(money(NM)),
assert(goods possessed(Goods,N)).



The main predicate defines three activities which consist in handling incoming
messages, asking the price of fruit from sellers (only at the beginning, when the buyer
does not yet know the prices) and buying fruit. After defining themain predicate,
the theory declares the initial state of the buyer:buyer1 possesses no fruit, buys or-
anges in stocks of 2 kilograms, apples in stocks of 3 kilograms and kiwi in stocks of
12 kilograms, and has 200 Euro to spend. The list of addresses of the sellers follows
(sellers addresses ), together with other information not relevant in this context.

The handling of messages consists of receiving one message (calling thereceive
predicate provided by theTuJadeLibrary and introduced in Section 3) and trans-
forming its content, which is a string, into a tuProlog term (calling the user-defined
predicateselect ). Theselect predicate calls theunpack predicate provided by
the TuJadeLibrary in order to transform the string that represents the content of
the message into a term, and then it calls the user-definedhandle predicate on the
performative of the message, the obtained term, and the sender of the message.

In the example considered, a buyer receives a message whose content is the string
bought(Goods) . The buyer knows the price ofGoods (by solving the goalprice(S,
Goods,P) ) and it knows the quantity ofGoods it bought (by solving the goalbu-
ys(goods(Goods),quantity(Q)) ). Having succeeded in buyingGoods, the
buyer must update both the possessed amount ofGoods and the remaining money
(calls to standard Prolog predicatesretract , is andassert ). Similar definitions
of the predicatehandle are provided for any other message that the buyer may receive.

The ordinary JADE agent,seller , is characterised by a Java code partly shown
below.

package tuPInJADE;

import jade.core.Agent;
import jade.core.AID;
import jade.core.behaviours.CyclicBehaviour;
import jade.lang.acl.ACLMessage;

public class Seller extends Agent
{ private int orangesAmount = 5;

private int applesAmount = 5;
private int kiwiAmount = 10;
private int orangesPrice = 105;
private int applesPrice = 80;
private int kiwiPrice = 100;

protected void setup()
{ SellBehaviour p = new SellBehaviour(this);
addBehaviour(p);
}}

class SellBehaviour extends CyclicBehaviour



{ private static boolean done = false;

public SellBehaviour(Agent a)
{ super(a); }

public void action()
{ ACLMessage msg;
while (!done)
{ msg = myAgent.receive();
if (msg != null) handleMsgs(msg); }}

TheSeller class extends the JADEAgent class as any agent running in JADE
must do. The behaviour of the seller is a cyclic behaviour (classSellBehaviour ex-
tendsCyclicBehaviour ) which continuously checks for a message (msg = myA-
gent.receive() ) and, if a message is present, handles it (if (msg != null)
handleMsgs(msg) ).

Once all the agents have been specified using tuProlog or JADE, they can be loaded
into JADE and the execution of the obtained prototype can start. JADE offers the possi-
bility to follow the communication between the agents by means of the “sniffer” agent
which is a GUI whose output is shown in Figure 6.

Fig. 6.Output of the JADE sniffer agent.



The state of the agents’ mailboxes can be inspected thanks to the introspector agent,
a GUI too. Figure 7 shows the state of the mailbox ofbuyer2 . This screen-shot was
taken at the beginning of the simulation; all theINFORMmessages shown are answers
to price requests previously issued bybuyer2 to the sellers.

Fig. 7.JADE window showing the communication among agents.

Details on the messages exchanged can also be inspected. Figure 8 shows the re-
quest for the price of kiwi sent bybuyer2 to seller1 . Figure 9 shows the answer to
this request.

Fig. 8.Price request frombuyer2 to seller1 .

The execution and monitoring of the prototype, obtained by exploiting the tools pro-
vided by JADE, allow the developer to verify whether the agents work well according



Fig. 9.Price answer fromseller1 to buyer2 .

to their intended behaviour. The sniffer agent also allows to save into a file the messages
exchanged by the agents. When that file is loaded by the user through the sniffer agent,
it is possible to view the details of each message by clicking on the arrow representing
the exchange of a message. A user can then check if the messages have been sent in the
expected order (for example, that all the buyers ask for the price of fruit first, and start
buying fruit afterwards), by viewing the content of every single message displayed in
the canvas of the agent sniffer. Without the integration of tuProlog into JADE, verifying
the correctness of communication between agents implemented in Prolog could only
be done by hand: the developer had to put breakpoints in his/her code or he/she had
to write messages on the standard output or in a separate file in order to follow what
was going on during the prototype execution. CaseLP offers graphical debugging tools
more sophisticated than this “by-hand” inspection. Nevertheless, the adoption of the
instruments already provided by a standard, FIPA-compliant and open-source platform,
represents an improvement to the use of proprietary instruments offered by CaseLP.

5 Conclusions and future work

In this paper we have discussed the integration of a Prolog implementation, tuProlog,
into the DCaseLP prototyping environment. Recently, the integration of the DyLOG
executable logic-based language into DCaseLP has been designed, thus enriching the
set of specification/implementation languages supported by DCaseLP. The integration
of tuProlog into DCaseLP represents another step forward in this direction and gives us
two main advantages:

1. It allows us to re-use the work previously done with CaseLP regarding the study and
the definition of semi-automatic translators from high-level specification languages
into Prolog-based communicative agents.

2. It represents a relevant example that we can follow to implement a new DyLOG
interpreter in Java, and to integrate this new interpreter into DCaseLP.



Currently, the two advantages above cannot be exploited in practice because we
did not have time enough to implement all the components, so we need to make the
integration of DyLOG and the languages provided by CaseLP usable. Our future efforts
will be channelled in this implementative direction, in order to make DCaseLP the
integrated environment for engineering and prototyping heterogeneous MAS that it was
intended to be.
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Abstract. In this paper we describe the communication architecture of the DALI
Logic Programming Agent-Oriented language. We have implemented the rele-
vant FIPA compliant primitives, plus others which we believe to be suitable in a
logic setting. We have designed a meta-level where: on the one hand the user can
specify, via two distinguished primitives tell/told, constraints on communication
and/or a communication protocol; on the other hand, meta-rules can be defined
for filtering and/or understanding messages via applying ontologies and forms
of commonsense and case-based reasoning. These forms of meta-reasoning are
automatically applied when needed by a form of reflection.

1 Introduction

Interaction is an important aspect of Multi-agent systems: agents exchange messages,
assertions, queries. This, depending on the context and on the application, can be either
in order to improve their knowledge, or to reach their goals, or to organize useful coop-
eration and coordination strategies. In open systems the agents, though possibly based
upon different technologies, must speak a common language so as to be able to interact.
Agent Communication Languages (ACL), such as the widely-adopted FIPA ACL, pro-
vide standardized catalogues of performatives (communication acts), designed in order
to ensure interoperability among agent systems [12].

However, beyond standard forms of communication, the agents should be capable
of filtering and understanding message contents. A well-understood topic is that of in-
terpreting the content by means of ontologies, which are essentially dictionaries and
descriptions that allow different terminologies to be coped with. In a logic language,
the use of ontologies can be usefully integrated with forms of commonsense and case-
based reasoning, that improve the “understanding” capabilities of an agent. A more
subtle point is that it would be useful for an agent to have the possibility to enforce con-
straints on communication. This implies being able to accept or refuse or rate a message,
based on various conditions like for instance the degree of trust in the sender. This also
implies to be able to follow a communication protocol in “conversations”. Since the
degree of trust, the protocol, the ontology, and other factors, can vary with the context,

? We acknowledge support by theInformation Society Technologies programme of the European
Commission, Future and Emerging Technologiesunder the IST-2001-37004 WASP project.



or can be learned from previous experience, in a logic language agent should and might
be able to perform meta-reasoning on communication, so as to interact flexibly with the
“external world.”

This paper presents the communication architecture of the DALI language. DALI
is an Agent-Oriented Logic Programming language designed for executable specifica-
tion of logical agents, that allows one to define one or more agents interacting among
themselves, with other software entities and with an external environment. A main de-
sign objective for DALI has been that of introducing in a declarative fashion all the
essential features, while keeping the language as close as possible to the syntax and
semantics of the traditional Horn-clause language. In practice, most Prolog programs
can be understood as DALI programs. Special atoms and rules have been introduced for
representing: external events, to which the agent is able to respond (reactivity); actions
(reactivity and proactivity); internal events (previous conclusions which can trigger fur-
ther activity); past and present events (to be aware of what has happened), goals (that
the agent can reach). Then, on the line of the arguments proposed in [10], DALI is an
enhanced logic language with fully logical semantics [5], that integrates rationality and
reactivity, where an agent is able of both backwards and forward reasoning, and has the
capability to enforce “maintenance goals” that preserve her internal state, and “achieve-
ment goal” that pursue more specific objectives. An extended resolution is provided,
so that the DALI interpreter is able to answer queries like in the plain Horn-clause
language, but is also able to cope with the different kinds of events.

We have introduced in DALI a communication architecture that specifies in a flexi-
ble way the rules of interaction among agents, according to the above-mentioned crite-
ria. The various aspects are modeled in a declarative way, are adaptable to the user and
application needs, and can be easily composed. Basically, DALI agents communicate
via FIPA ACL, augmented with some primitives which are suitable for a logic lan-
guage. As a first layer of the architecture, we have introduced a check level that filters
the messages. This layer verifies that the message respects the communication protocol
of the agent, as well as some domain-independent coherence properties. Several other
properties to be checked can be however additionally specified, by expanding the defi-
nition of the distinguished predicatestell/told. If the message does not pass the check,
it is deleted and does not produce any effect. As a second layer, meta-level reasoning
is exploited so as to try to understand messages coming from other software entities by
using ontologies, and forms of commonsense reasoning.

In summary, when a DALI agent receives a message by another agent, the message
is submitted to a check level that controls if it respects the communication protocol
and the conditions expressed by the check rules. If the message gets over this control,
the agent invokes meta-level reasoning in order to understand its content. The meta-
reasoning process uses the agent’s ontology and other properties of the terms occurring
in the message.

It is important to notice that the definition of the enhanced DALI/FIPA ACL is
imported by the agent’s code as a library, so as in principle DALI agents may adopt dif-
ferent communication protocols. Also, checks and constraints on communication can
be modified without affecting (or without even knowing) the agent’s code. The lay-
ers of message check and understanding have a predefined default part. However, as
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mentioned before they can be extended, improved and adapted to the specific user or
application needs by adding rules to the definition of some distinguished predicated.

In this paper we will not be concerned with formal aspects. Rather, we mean to
illustrate the communication architecture, and to demonstrate its usefulness mainly by
means of significant examples.

The paper is organized as follows. We start by shortly describing the main features
of DALI in Section 2. In Section 3 we discuss the new DALI/FIPA protocol and in
Section 4 we introduce DALI communication filter. Then, in Sections 5 and 6 we sum-
marize the meta-reasoning layer and how the new architecture works. In Section 7 we
show an example of communication between DALI agents, and then conclude in Sec-
tion 8 with some final remarks.

2 The DALI language

DALI [4] [5] is an Active Logic Programming language designed for executable spec-
ification of logical agents. A DALI agent is a logic program that contains a particular
kind of rules, reactive rules, aimed at interacting with an external environment. The
environment is perceived in the form of external events, that can be exogenous events,
observations, or messages by other agents. In response, a DALI agent can perform ac-
tions, send messages, invoke goals. The reactive and proactive behavior of the DALI
agent is triggered by several kinds of events: external events, internal, present and past
events. It is important to notice that all the events and actions are timestamped, so as to
record when they occurred. The new syntactic entities, i.e., predicates related to events
and proactivity, are indicated with special postfixes (which are coped with by a pre-
processor) so as to be immediately recognized while looking at a program.

2.1 External Events

The external events are syntactically indicated by the postfixE. When an event comes
into the agent from its “external world”, the agent can perceive it and decide to react.
The reaction is defined by a reactive rule which has in its head that external event.
The special token:>, used instead of: −, indicates that reactive rules performs forward
reasoning. E. g., the body of the reactive rule below specifies the reaction to the external
eventbell ringsE that is in the head. In this case the agent performs an action, postfix
A, that consists in opening the door.

bell ringsE :> open the doorA.

The agent remembers to have reacted by converting the external event into apast event
(time-stamped).

Operationally, if an incoming external event is recognized, i.e., corresponds to the
head of a reactive rule, it is added into a list called EV and consumed according to the
arrival order, unless priorities are specified. Priorities are listed in a separate file of di-
rectives, where (as we will see) the user can “tune” the agent’s behaviour under several
respect. The advantage introducing a separate initialization file is that for modifying the
directives there is no need to modify (or even to understand) the code.
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2.2 Internal Events

The internal events define a kind of “individuality” of a DALI agent, making her proac-
tive independently of the environment, of the user and of the other agents, and allowing
her to manipulate and revise her knowledge [3]. An internal event is syntactically in-
dicated by the postfixI, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, procedures, etc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a default frequency customizable
by means of directives in the initialization file. The user’s directives can tune several
parameters: at which frequency the agent must attempt the internal events; how many
times an agent must react to the internal event (forever, once, twice,. . . ) and when (for-
ever, when triggering conditions occur, . . . ); how long the event must be attempted
(until some time, until some terminating conditions, forever).

For instance, consider a situation where an agent prepares a soup that must cook
on the fire for K minutes. The predicates with postfixP are past events, i.e., events or
actions that happened before, and have been recorded. Then, the first rule says that the
soup is ready if the agent previously turned on the fire, and K minutes have elapsed
since when she put the pan on the stove. The goalsoupreadywill be attempted from
time to time, and will finally succeed when the cooking time will have elapsed. At that
point, the agent has to react to this (by second rule) thus removing the pan and switching
off the fire, which are two actions (postfixA).

soup ready : − turn on the fireP, put pan on the stoveP : T,
cooking time(K), time elapsed(T, K).

soup readyI :> take off pan from stoveA, turn off the fireA.

A suitable directive for this internal event can for instance state that it should
be attempted every 60 seconds, starting from whenput the pan on the stove and
turn on the fire have become past events.

Similarly to external events, internal events which are true by first rule are inserted
in a set IV in order to be reacted to (by their second rule). The interpreter, interleaving
the different activities, extracts from this set the internal events and triggers the reaction
(again according to priorities). A particular kind of internal event is thegoal, postfixG,
that stop being attempted as soon as it succeeds for the first time.

2.3 Present Events

When an agent perceives an event from the “external world”, it doesn’t necessarily
react to it immediately: she has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is indicated by the suffixN.

2.4 Actions

Actions are the agent’s way of affecting her environment, possibly in reaction to an
external or internal event. In DALI, actions (indicated with postfixA) may have or not
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preconditions: in the former case, the actions are defined by actions rules, in the latter
case they are just action atoms. An action rule is just a plain rule, but in order to empha-
size that it is related to an action, we have introduced the new token:<, thus adopting
the syntaxaction :< preconditions. Similarly to external and internal events, actions
are recorded as past actions.

2.5 Past events

Past events represent the agent’s “memory”, that makes her capable to perform its fu-
ture activities while having experience of previous events, and of its own previous con-
clusions. As we have seen in the examples, past event are indicated by the postfixP.
For instance,alarm clock ringsP is an event to which the agent has reacted and which
remains in the agent’s memory. Each past event has a timestamp T indicating when the
recorded event has happened. Memory of course is not unlimited, neither conceptually
nor practically: it is possible to set, for each event, for how long it has to be kept in
memory, or until which expiring condition. In the implementation, past events are kept
for a certain default amount of time, that can be modified by the user through a suitable
directive in the initialization file. Implicitly, if a second version of the same past event
arrives, with a more recent timestamp, the older event is overridden, unless a directive
indicates to keep a number of versions.

3 DALI/FIPA Agent Communication Language

An agent communication language (ACL) is a set of primitives and rules that guide
the interaction among several agents [7]. There are a number of standardized languages
that the agents can use for communication. The most widely acknowledged is the FIPA
ACL, which for the sake of interoperability we have adopted (with few extensions) for
DALI. The specification of FIPA messages has the following structure:

– receiver:name of the agent that receives the message;
– language:the language in which the message is expressed;
– ontology: the vocabulary of the words in the message, or, more generally, the de-

scription of conceptual relationships between terms and sentences of the same do-
main, which are expressed in a different terminology;

– sender:name of the agent that sends the message;
– content: the content of the message, which is the main part, discussed in detail

below.

In DALI, a message which has to be sent has the format:

primitive(content)

whereprimitive is what is called acommunication performative, i.e., the specification
of the intended meaning of the message, which is then further specified bycontent.
For instance,propose(content)is a performative aimed at asking another agent to do
something, where what should be done is specified bycontent. The DALI interpreter
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automatically adds the missing FIPA parameters, thus creating the structure which is
actually sent, i.e.:

message( receiver address, receiver name, sender address, sender name,
language, ontology, primitive(content, sender))

Symmetrically, from a message which is received the interpreter extracts the part
primitive(Content,Sender), that is what the receiver agent has to consider. In most cases,
the receiver will record the itemprimitive(Content,Sender)as a past event. Please notice
thatcontentmay be a conjunction, as the FIPA performatives have different arities.

In the rest of this section, we illustrate the main performatives we adopt. In brackets
we indicate if the primitive is FIPA or if it is peculiar of DALI. In most cases, the
receiver will record the itemprimitive(Content,Sender)as a past event.

sendmessage(DALI)

send message(external event, sender agent)

The act of sending a message to a DALI agent that the receiver will perceive as the
communication that the given external event has happened.

propose(FIPA)

propose(action, [precondition1, ..., preconditionn], sender agent).

The act of asking another agent to perform a certain action, given certain preconditions.
A DALI agent accepts a proposal if the preconditions are all true, else she rejects the
proposal.

acceptproposal (FIPA)

accept proposal( action accepted, [condition1, ..., conditionn], sender agent)or
accept proposal( action accepted, [condition1, ..., conditionn], in response to(),

sender agent)

The action of accepting a previously received proposal to perform an action where the
the conditions of the agreement are enclosed.

reject proposal (FIPA)

reject proposal( action rejected, [reason1, ..., reasonn], sender agent)or
reject proposal( action rejected, [reason1, ..., reasonn], in response to(),

sender agent)

The action of rejecting a proposal to perform some action during a negotiation, listing
the reasons for rejection.

failure (FIPA)

failure(action failed, motivation, sender agent)

The action of telling another agent that an action was attempted but the attempt failed,
enclosing the motivation of the failure.

cancel(FIPA)

cancel(action to cancel, sender agent).

The action of canceling some previously requested action which had a temporal extent
(i.e. cannot be instantaneous).

6



executeproc (DALI)

execute proc(call procedure, sender agent).

The act of invoking a procedure inside a DALI program.

query ref (FIPA)

query ref(property, N, sender agent)

The action of asking another agent for the object referred to by an expression containing
free variables.Propertyis the string on which the matching is attempted, and N is the
requested number of matches for the object to be identified.

inform (FIPA)

inform(something, sender agent) or
inform(primitive, values/motivation, sender agent)

The sender informs the receiver that a certain “something” is happened.

is a fact (DALI)

is a fact(proposition, sender agent)

The act of asking if the proposition indicated in the primitive is true.

refuse(FIPA)

refuse(action refused, motivation, sender agent)

The action of refusing to perform a given action, and of explaining the reason for the
refusal. For example,a DALI agent refuses to do an action if the preconditions of the
corresponding active rules in the DALI logic program are false. The refusal is recorded
as a past event.

confirm (FIPA)

confirm(proposition, sender agent)

The sender informs the receiver that a given proposition is true, where the receiver is
supposed to be uncertain about the proposition. The proposition is asserted as a past
event.

disconfirm (FIPA)

disconfirm(proposition, sender agent)

The sender informs the receiver that a given proposition is false, where the receiver is
instead supposed to believe that the proposition is true. Then, this proposition is deleted
from past events.

4 DALI communication filter

In real applications, the interaction between agents raises the problem of security. If
an agent is not sufficiently self-defending, she can suffer from damages to either her
knowledge base or her rules. It may happen in fact that an agent sends to another one a
message with a wrong content, intentionally or not, thus potentially bringing a serious
damage. How to recognize a correct message? And a wrong message?
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The solution adopted in DALI is aimed at providing a tool for coping, as far as pos-
sible, with these problems. When a message is received, it is examined by a check layer
composed of a structure which is adaptable to the context and modifiable by the user.
This filter checks the content of the message, and verifies if the conditions for the recep-
tion are verified. If the conditions are false, this security level eliminates the supposedly
wrong message. We have constrained the reception of messages by restricting the range
of allowed utterances to the FIPA/DALI primitives, according to additional conditions
defined by the user, or, in perspective, learned by the agent herself. For instance, filtering
conditions can be based upon reliability of the sender agent. The DALI filter is spec-
ified by means of meta-level rules defining the distinguished predicatestell and told.
These meta-rules are contained in a separate file, and can be changed without affecting
or even knowing the DALI code. Then, communication in DALI is elaboration-tolerant
with respect to both the protocol, and the filter.

4.1 Filter for the incoming messages

Whenever a message is received, with content partprimitive(Content,Sender)the DALI
interpreter automatically looks for a correspondingtold rule, which is of the form:

told(Sender, primitive(Content)) : −constraint1, . . . , constraintn.

whereconstraint i can be everything expressible either in Prolog or in DALI. If
such a rule is found, the interpreter attempts to prove told(Sender, primitive(Content)).
If this goal succeeds, then the message is accepted, and primitive(Content)) is added to
the set of the external events incoming into the receiver agent. Otherwise, the message
is discarded. Semantically, this can be understood as implicit reflection up to the filter
layer, followed by a reflection down to whatever activity the agent was doing, with or
without accepting the message. For a detailed and general semantic account of this kind
of reflection, the reader may refer to [1].

Below we propose a number of examples of filtering rules. Notice that each agent
can have her own set of filtering rules. Since she takes these rules from a separate file,
her filtering criteria can vary (by importing a different file) according to the context she
is presently involved into.

The following rule accepts asendmessageprimitive if the receiver agent remem-
bers (presumably from past experience) that the sender is reliable, and believes that the
content is worth knowing.

told( Sender agent, send message(External event)) : −
not(unreliableP (Sender agent)), interesting(External event).

Similarly, the request of either executing a procedure or asserting a fact is taken
into consideration if the agent who is asking us is reliable, and in the former case if we
actually have the code of that procedure, in the latter case if we are interested in the new
fact.

told( Sender agent, execute proc(Procedure)) : −
not(unreliableP (Sender agent)), know(Procedure).

told( Sender agent, is a fact(Proposition)) : −
not(unreliableP (Sender agent)), interesting(Proposition).
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A query ref is acceptable, according to the constraint below, if the Sender agent is
reliable and friendly.

told( Sender agent, query ref(Proposition, 3)) : −
not(unreliableP (Sender agent)), friendly(Sender agent).

The agent accepts aconfirmprimitive if the Sender is reliable and the proposition
is consistent with her knowledge base. The proposition is recorded as a past event and
kept, according to the directive specified in this rule, for 200 seconds. Vice versa, the
agent disconfirms a proposition that she knows if the Sender is reliable.

told( Sender agent, confirm(Proposition), 200) : −
not(unreliableP (Sender agent)),
consistent with knowledge base(Proposition).

told( Sender agent, disconfirm(Proposition)) : −
not(unreliableP (Sender agent)), in knowledge base(Proposition).

The proposal to do an action is acceptable if the agent is specialized for the action
and the Sender is reliable.

told( Sender agent, propose(Action, Preconditions)) : −
not(unreliableP (Sender agent)), specialized for(Action).

The following constraint checks if the communication protocol is respected. An
agent in fact can receive anacceptproposalonly in response topropose. The agent re-
members as a past event (for 200 seconds) that she has accepted the proposal to perform
an action. This information can be used by an internal event for further inferences.

told( Sender agent, accept proposal(Action, Conditions),
in response to(Message), 200) : −
not(unreliableP (Sender agent)),
functor(Message, F, ), F = propose.

We have a similar approach for the other FIPA/DALI primitivesreject proposal,
failure, refuseandinform.

As the previous examples may have suggested, this model allows one to integrate
into the filtering rules the concept the degree of trust. Trust derives from the credibility
of the beliefs and of their sources, from the sources’ number, convergence, and reliabil-
ity. All those parameters are easily expressible in thetold rules. Finally, we emphasize
how this communication filter can express constraints not only for a generic communi-
cation primitive but also for different contents of the same primitive. For example, we
can write:

told(Sender agent, confirm(love me(julie)), forever) : −
not(unreliableP (Sender agent)), ...

When a message is deleted, the DALI interpreter displays the primitive that has not
been accepted and the reason on the operator console. The console is a special window
which is used to activate/stop agents. The user can optionally keep it open in order
either to monitor the agents behaviour, or to participate to the conversation by sending
messages to the agents.

9



4.2 Filter layer for outcoming messages

Symmetrically totold rules, the messages that an agent sends are subjected to a check
via tell rules. There is, however, an important difference: the user can choose which
messages must be checked and which not. The choice is made by setting some param-
eters in the initialization file. The syntax of atell rule is:

tell(Receiver, Sender, primitive(Content)) : −constraint1, . . . , constraintn

For every message that is being sent, the interpreter automatically checks whether
an applicabletell rule exists. If so, the message is actually sent only upon success of the
goaltell(Receiver, Sender, primitive(Content)).

Below we show as an example two of the default rules coping with the DALI/FIPA
primitives. The firsttell rule authorizes the agent to send the message with the primitive
inform if the receiver is active in the environment and is presumably interested to the
information: via rules like this one we can considerably reduce useless exchange of
messages. According to the second rule, the agent sends arefuseonly if the requested
primitive is is a fact or query ref.

tell( Agent To, Agent From, inform(Proposition)) : −
active in the world(Agent To),
specialized(Agent To, Specialization),
related to(Specialization, Proposition).

tell( Agent To, Agent From, refuse(Something, Motivation)) : −
arg(1, Something, Primitive),
functor(Primitive, F ), (F = is a fact; F = query ref).

5 Meta-reasoning layer

In heterogeneous Multi-agent Systems, in general not all the components speak the
same language, and not all of them use the same words to express a concept. The agent
that doesn’t understand a proposition can either accept the defeat and ignore the mes-
sage, or try to apply a reasoning process in order to interpret the message contents. The
latter solution can be more easily put at work by taking advantage of meta-reasoning
capabilities of a logic language. In fact, the use ofontologies, which are dictionaries
of equivalent terms, can be integrated with several kinds of commonsense reasoning.
The ontology of a DALI agent is in a file .txt containing equivalent terms and other
properties useful in the meta-reasoning process. E.g., agentbob’s ontology can be the
following, wheresymmetricis a property of relations, which is asserted to hold of predi-
catefriend), and allows him to conclude bothfriend(bob,lucy)andfriend(lucy,bob)even
if originally he could derive only one. The name of the agent enclosed to each item of
the ontology allows a group of agents to use the same ontology file, though sharing the
contents only partially.

ontology(bob, rain, water falling from sky).
ontology(bob, friend, amico).
. . . symmetric(friend).
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Each DALI agent is provided (again in a separate file) with a distinguished pro-
cedure calledmeta, to support the meta-reasoning process. This procedure by default
includes a number of rules for coping with domain-independent standard situations. The
user can add other rules, thus possibly specifying domain-dependent commonsense rea-
soning strategies for interpreting messages, or implementing a learning strategy to be
applied when all else fails. Below we report some of the default meta-reasoning rules
that apply the equivalences listed in the ontology, and possibly also exploit symmetry
(for binary predicates only):

meta( Initial term, F inal term, Agent Sender) : −
clause(agent(Agent Receiver), ),
functor(Initial term, Functor, Arity), Arity = 0,
((ontology(Agent Sender, Functor, Equivalent term);
ontology(Agent Sender, Equivalent term, Functor));
(ontology(Agent Receiver, Functor, Equivalent term);
ontology(Agent Receiver, Equivalent term, Functor))),
F inal term = Equivalent term.

. . .
meta( Initial term, F inal term, Agent Sender) : −

functor(Initial term, Functor, Arity), Arity = 2,
symmetric(Functor), Initial term = ..List,
delete(List, Functor, Result list),
reverse(Result list, Reversed list),
append([Functor], Reversed list, F inal list),
F inal term = ..F inal list.

The procedure meta is automatically invoked, again via reflection, by the interpreter.
It is necessary to avoid unwanted variable bindings while meta-reasoning about mes-
sages. In DALI, message contents are always reified, i.e., transformed into a ground
term, before they are sent, and thus they are received in reified form. Then, the inter-
preter includes facilities for “reification”, or “naming”, and “de-reification”, or “un-
naming” of language expressions (also this issue is discussed at length in [1]).

6 DALI Communication Architecture

In this section we summarize the overall DALI communication architecture, that puts
together the functionalities of filter, meta-reasoning and the protocol layers. The archi-
tecture consists of three levels: the first level implements the protocol and the filter,
i.e., the first two layers of the communication structure; the second level includes the
meta-reasoning layer; the third level consists of the DALI interpreter, which is able to
activate the agents. Each agent is defined by a .txt file, containing the agent code written
in DALI. When an agent receives an external event through the primitivesendmessage,
the DALI interpreter calls the filter layer by invoking its internal rule:

receive( send message(External event, Agent Sender)) : −
told(Agent Sender, send message(External event)), ...

If the message overcomes the security check, then the interpreter automatically in-
vokes the meta-level in order to understand the external event. The meta reasoning pro-
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cess initially has to “un-name” the message content, so as to verify if (an instance of)
Externaleventbelong to the set of external events known by the agent without applying
the meta procedure. If it is the case, then the agent reacts directly, else the interpreter
takes advantage of meta reasoning capabilities for finally finding a reactive rule of the
logic program applicable to the context.

Similarly, the meta reasoning level is called for the primitives:propose, exe-
cuteproc, query ref andis a fact. The proceduremetain fact contains a special rule for
each different communication act. E. g., the code for the primitiveproposeis reported
below: if the action proposed belong to the actions occurring in the logic program of
agent, then the interpreter sends back to the proposer agent a messageacceptproposal,
else areject proposal.

receive(propose( Action, Conditions, Sender Agent)) : −
told(Sender Agent, propose(Action, Conditions)), . . . ,
call meta propose(Action, Conditions, Sender Agent).

call meta propose( Action, Conditions, Sender Agent) : −
once(call propose(Action, Conditions, Sender Agent)).

call propose( Action, Conditions, Sender Agent) : −
denaming(Action, New action), exists action(New action),
execute propose(New action, Conditions, Sender Agent).

call propose( Action, Conditions, Sender Agent) : −
meta(Action, New term, ), denaming(New term, New action),
exists action(New action),
execute propose(New action, Conditions, Sender Agent).

In the first rule ofcall proposethe interpreter, after the de-naming of the term, ver-
ifies whether the agent knows the action, without applying either the ontology or other
properties. In the second rule, called if the first one fails, the interpreter changes the
name of the action by applying the meta reasoning and, after the de-naming, checks
again if (an instance of) the required action exists among those feasible by the agent.
The link with the part of the DALI interpreter that handles events, goals and actions is
represented by the procedureexecutepropose. Via this procedure the action, if recog-
nized, is put into the queue of actions that are waiting to be executed.

7 Example: an Italian client in an English pub

We propose an example of interaction between DALI agents employing the communi-
cation architecture that we have discussed. We consider four agents: (i)agent waiter:
he is a pub (or cafeteria) waiter that receives orders and serves drinks to clients; (ii)
agentgino: an italian client, who walks into the cafeteria and orders a beer incorrectly;
(iii) agentwife: wife of another client,bob, who is a drunkard and never finds his way
home; (iv)agentfriend: friend of the italian clientgino.

The italian clientgino walks into the pub and orders a beer, mixing Italian and
English languages and mispelling the wordbeer. He sends to the waiter the message:

send message(voglio(gino, ber), gino).
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The waiter speaks a bit of italian, i.e., he applies the item of his ontology:
ontology(,voglio, request), and understands thatvoglio is equivalent torequest. But
he still doesn’t understandber, and thus informsginoabout this problem.

not know(C, P ) : − requestP (C, P ), not(clause(product(P, ), )).
not know(C, P ) : − requestP (C, , P ), not(clause(product(P, ), )).
not knowI(C, P ) :> clause(agent(A),) ,

messageA(C, inform(not know(P ), A)).

gino, not speaking English very well, asks friend for how to formulate his request
correctly:

ask to friend(F ) : − informP (not know(F ), waiter).
ask to friendI(F ) :> clause(agent(Agent), ),

messageA(friend, send message(how tell(F, Agent), Agent)).

The agentfriend, aware of the poor English ofgino, by using the ontology he has
learned during their acquaintance (that thus contains the factontology(gino,ber,beer)),
informs the waiter thatber is equivalent tobeer.

how tellE(F, Agent) :> clause(agent(Ag), ),
clause(ontology(Ag, F, P1), ),
messageA(waiter, inform(how tell(Agent, F, P1), Ag)).

The waiter, when receives the information about the termberadds it to his ontology
and serves the beer (if available).

request(Agent, F, P1) : − informP (how tell(Agent, F, P1), ).
requestI(Agent, F, P1) : − assert(ontology(Agent, F, P1)).
serve drink(C, F ) : − requestP (C, , F ), available(F ).
serve drinkI(C, F ) :> serveA(C, F ).

The agentwife, if the husbandbob isn’t back home by 11 p.m., tries to go to the
pub in order to find out ifbob is there. She asks the waiter (by using the primitive
is a fact) if bobis in the pub. The waiter responds by the primitiveinform, according to
the DALI/FIPA protocol.

not at home(Husband, Today) : − missing husbandP (Husband),
datime(T ), arg(3, T, Today),
arg(4, T, Hour), Hour >= 23.

not at homeI(Husband, Today) :> clause(agent(Agent), ), go to pubA,
messageA(waiter,
is a fact(in pub(M, Today), Agent)).

Then, by exploiting the content of the primitiveinform sent back by the waiter (who
records all clients that enter and exit the pub), knows that the husband is at the pub. She
reacts by screaming, taking her husband home and telling to the waiter that he mustn’t
serve alcoholic drinks to her husband (including wine).

husband in pub : − informP (agree(in pub(gino, 9)), values(yes), waiter),
messageA(waiter, inform(not serve(gino, wine), wife)),
messageA(waiter, confirm(alcoholic(wine), wife)).

The inform andconfirmprimitives sent to the waiter are used by the told rule of
waiter’s check layer:
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told( Ag, send message(request(Ag, P ))) : −
not(informP (not serve(Ag, P ), wife)), alcoholicP (P ).

When the drunkard husband will ask for an alcoholic drink in the future, the mes-
sage will be eliminated.

8 Conclusions

This paper has discussed how communication has been designed and implemented in
the DALI Logic Programming Agent-Oriented language. We have shown the kinds of
interaction and the abstract roles that the DALI/FIPA protocol supports and the func-
tionalities of the check and meta-reasoning layers. We have noticed that the proposed
architecture takes profit of features which are proper of logic languages, such as meta-
reasoning and logical reflection.

There are other FIPA-compliant agent frameworks. A future aim of our experiments
in fact is that of ensuring interoperability between DALI and these other approaches.
A relevant one is JADE, a FIPA-compliant framework fully developed in Java. Each
agent platform, written in Java and importing the JADE libraries, can be split on sev-
eral hosts. Each agent is implemented as a Java thread, and Java events are used for
effective and light-weight communication between agents on the same host. A num-
ber of FIPA-compliant DFs (Directory Facilitators) agents can be started at run time in
order to implement multi-domain applications. About security, JADE provides proper
mechanisms to authenticate and verify the rights assigned to agents. [2]

The 3APL platform is the first platform that has supported easy and direct imple-
mentation and execution of cognitive agents. The platform can be distributed across
different machines connected in a network. Moreover, the 3APL platform is FIPA com-
pliant in the sense that agents running on this platform can in principle communicate
with agents that run on a different FIPA compliant platforms such as JADE. [11]

However, the DALI project demonstrates that a logic programming language with a
logic semantics [5] is able to exhibit, also for communication, features that are as pow-
erful (and even more flexible) as those of approaches that are either not fully logical,
or semantically more complex. The DALI implementation cannot currently compete
in efficiency with others like JADE, which have been developed in the industry, and
on which a lot of effort has been spent by several companies and universities. Never-
theless, DALI is competitive from the point of view of the ease and flexibility of use,
for every kind of application, but especially where context-sensitivity, adaptability and
intelligence are needed. We have equipped DALI with an interface with Java, that has
allowed us to develop applications (namely in component management and reconfigura-
tion in distributed systems [3] ) where the Java part is able to interact at a low level with
legacy systems, and the DALI part implements intelligent reasoning and sophisticated
interaction. The declarative semantics of DALI has been defined in [5]. The operational
semantics is being defined in a Ph.D. Thesis. The behaviour of DALI interpreter has
been modeled and checked by using the Murφ model checker [9]. A future aim of this
research is that of developing and experimenting cooperative models for DALI logical
agents, also based on game theory. As a first step, we are studying formal models for
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making DALI agents adaptive with respect to the level of trust that they assign to the
other agents.
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Abstract. In the design process of distributed systems we may have
to replace abstract specifications of components by more concrete speci-
fications, thus providing more detailed design information. In the context
of process algebra this well-known approach is often referred to as action
refinement. In this paper we study the relationships between action re-
finement, compositionality, and (security) process properties within the
Security Process Algebra (SPA). We formalize the concept of action re-
finement both as a structural inductive definition and in terms of sub-
sequent context compositions. We study compositional properties of our
notion of refinement and provide conditions under which general process
properties are preserved through it. Finally, we consider information flow
security properties and define decidable classes of secure terms which are
closed under action refinement.

1 Introduction

In the development of complex systems it is common practice to first describe
it succinctly as a simple abstract specification and then refine it stepwise to a
more concrete implementation. This hierarchical specification approach has been
successfully developed for sequential systems where abstract-level instructions
are expanded until a concrete implementation is reached (see, e.g., [21]).

In the context of process algebra, this refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete pro-
cesses. We adopt the terminology action refinement to refer to this stepwise
development of systems specified as terms of a process algebra. We refer to [14]
for a survey on the state of the art of action refinement in process algebra.

Action refinement in process algebras is usually defined by extending the
syntax with some compositional operator [1, 13]. Here we follow a different ap-
proach and instead of extending the language, we use a construction based on
context composition. This allows us to reason on the relationships between ac-
tion refinement and the security properties of SPA processes that we have deeply
studied in, e.g., [3]. In the last part of the paper we prove that our definition of
action refinement is indeed equivalent to the one presented in [1].
? This work has been partially supported by the EU Contract IST-2001-32617 “Models
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In this paper we model action refinement as a ternary function Ref taking as
arguments an action r to be refined, a system description E on a given level of
abstraction and an interpretation of the action r on this level by a more concrete
process F on a lower abstraction level. The refined process can be obtained either
by applying a structural inductive definition or through a more complex context
composition as described by the following simple example.

Let E be the process a.r.b.0 + c.0 and r be the action we intend to refine by
the process F ≡ d1.d2.0. The refined process, denoted by Ref (r, E, F ), will be
the process a.d1.d2.b.0 + c.0 which can be obtained in two equivalent ways: (1)
we can either apply a structural inductive definition as follows: Ref (r, E, F ) =
a.Ref (r, r.b.0, F ) + c.0 = a.F ′[b.0] + c.0 where F ′[Y ] is the context d1.d2.Y and
F ′[b.0] is the process d1.d2.b.0; (2) or we can compute the refinement by a single
context composition as E′[F ′[b.0]] where E′[X] is the context a.X + c.0 while
F ′[Y ] is as above the context d1.d2.Y .

Our definitions follow the static syntactic approach to action refinement (see,
e.g., [19]). We prove several compositional properties of our notion of refinement.
Indeed, compositional properties are fundamental in the stepwise development of
complex systems. They allow us to refine sub-components of the system, while
guaranteeing that the final result does not depend on the order in which the
refinements are applied. We also provide conditions under which our notion of
refinement preserves general properties of processes and, in particular, we focus
on security properties.

In system development, it is important to consider security related issues from
the very beginning. Indeed, considering security only at the final step could lead
to a poor protection or, even worst, could make it necessary to restart the devel-
opment from scratch. A security-aware stepwise development requires that the
security properties of interest are either preserved or gained during the develop-
ment steps, until a concrete (i.e., implementable) specification is obtained.

In this paper we consider information flow security properties (see, e.g., [12,
9, 15]), i.e., properties that allow one to express constraints on how information
should flow among different groups of entities. These properties are usually for-
malized by considering two groups of entities labelled with two security levels:
high (H) and low (L). The only constraint is that no information should flow
from H to L. For example, to guarantee confidentiality in a system, it is sufficient
to label every confidential (i.e., secret) information with H and then partition
each system user as H and L, depending on whether such a user is or is not
authorized to access confidential information. The constraint of no information
flow from H to L guarantees that no access to confidential information is possible
by L-labelled users. We consider the bisimulation-based security property named
Persistent Bisimulation-based non Deducibility on Compositions (P BNDC , for
short) [10]. Property P BNDC is based on the idea of Non-Interference [12]
and requires that every state which is reachable by the system still satisfies a
basic Non-Interference property. We show how to both instantiate and extend
the results obtained for general process properties in order to provide decidable
conditions ensuring that P BNDC is preserved under action refinement.
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The paper is organized as follows. In Section 2 we recall some basic notions of
the SPA language. In Section 3 we formalize our notion of action refinement as
a structural inductive definition. We also study its compositional properties. In
Section 4 we reformulate action refinement in terms of context composition and
we state conditions under which general process properties are preserved through
action refinement. In Section 5 we consider the security property P BNDC and
define decidable classes of P BNDC processes which are closed under action
refinement. Finally, in Section 6 we discuss some related works.

2 Basic Notions

The Security Process Algebra (SPA) [9] is a variation of Milner’s CCS [18] where
the set of visible actions is partitioned into two security levels, high and low, in
order to specify multilevel systems. SPA syntax is based on the same elements
as CCS, i.e.: a set L = I ∪ O of visible actions where I = {a, b, . . .} is a set of
input actions and O = {ā, b̄, . . .} is a set of output actions; a special action τ
which models internal computations, not visible outside the system; a function
·̄ : L → L, such that ¯̄a = a, for all a ∈ L. Act = L∪{τ} is the set of all actions.
The set of visible actions is partitioned into two sets, H and L, of high security
actions and low security actions such that H = H and L = L, where H and L
are obtained by applying function ·̄ to all the elements in H and L, respectively.

The syntax of SPA terms is as follows1:

T ::= 0 | Z | a.T | T + T | T |T | T \ v | T [f ] | recZ.T

where Z is a variable, a ∈ Act , v ⊆ L, f : Act → Act is such that f(l̄) = f(l)
for l ∈ L, f(τ) = τ , f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}. We apply the
standard notions of free and bound (occurrences of) variables in a SPA term.
More precisely, all the occurrences of the variable Z in recZ.T are bound ; while
Z is free in a term T if there is an occurrence of Z in T which is not bound.

A SPA process is a SPA term without free variables. We denote by E the set
of all SPA processes, ranged over by E,F, . . ..

The operational semantics of SPA processes is given in terms of Labelled Tran-
sition Systems (LTS, for short). In particular, the LTS (E ,Act ,→), whose states
are processes, is defined by structural induction as the least relation generated
by the axioms and inference rules reported in Figure 1.

Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; E1 + E2 represents the nonde-
terministic choice between the two processes E1 and E2; E1|E2 is the parallel
composition of E1 and E2, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing the silent action τ ;
E \ v is a process E prevented from performing actions in v; E[f ] is the process
E whose actions are renamed via the relabelling function f ; if in T there is
1 Actually in [9] recursion is introduced through constant definitions instead of the

rec operator.
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Prefix
−

a.E
a→ E

Sum
E1

a→ E′
1

E1 + E2
a→ E′

1

E2
a→ E′

2

E1 + E2
a→ E′

2

Parallel
E1

a→ E′
1

E1|E2
a→ E′

1|E2

E2
a→ E′

2

E1|E2
a→ E1|E′

2

E1
l→ E′

1 E2
l̄→ E′

2

E1|E2
τ→ E′

1|E′
2

Restriction
E

a→ E′

E \ v
a→ E′ \ v

if a 6∈ v

Relabelling
E

a→ E′

E[f ]
f(a)→ E′[f ]

Recursion
T [recZ.T [Z]]

a→ E′

recZ.T [Z]
a→ E′

with a ∈ Act and l ∈ L.

Fig. 1. The operational rules for SPA

at most the free variable Z, then recZ.T [Z] is the recursive process which can
perform all the actions of the process obtained by substituting recZ.T [Z] to the
place-holder Z in the term T [Z].

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same semantics
if and only if they cannot be distinguished by an external observer. This is
obtained by defining an equivalence relation over E equating two processes when
they are indistinguishable. In this paper we consider the relations named weak
bisimulation, ≈, and strong bisimulation, ∼, defined by Milner for CCS [18].
They equate two processes if they are able to mutually simulate their behavior
step by step.

We use the following notations: E
a→ E′ to denote the transition labelled by a

from E to E′, E
a=⇒ E′ to denote any sequence of transitions E( τ→)∗ a→ ( τ→)∗E′

where ( τ→)∗ denotes a (possibly empty) sequence of τ labelled transitions, and
E

â=⇒ E′ which stands for E
a=⇒ E′ if a ∈ L, and for E( τ→)∗E′ if a = τ .

We say that E′ is reachable from E if there exist a1, . . . , an ∈ Act such that
E

a1→ . . .
an→ E′.

Weak bisimulation does not care about internal τ actions while strong bisi-
mulation does.
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Definition 1 (Weak and Strong Bisimulation). A symmetric binary rela-
tion R ⊆ E × E over processes is a weak bisimulation if (E,F ) ∈ R implies, for
all a ∈ Act, if E

a→ E′, then there exists F ′ such that F
â=⇒ F ′ and (E′, F ′) ∈ R.

Two processes E,F ∈ E are weakly bisimilar, denoted by E ≈ F , if there exists
a weak bisimulation R containing the pair (E,F ).

The definition of strong bisimulation is obtained by replacing â=⇒ with a→ in
the sentence above. Two processes E,F ∈ E are strongly bisimilar, denoted by
E ∼ F , if there exists a strong bisimulation R containing the pair (E,F ).

The relation ≈ (∼) is the largest weak (strong) bisimulation and it is an
equivalence relation.

A SPA term with free variables can be seen as an environment with holes
(the free occurrences of its variables) in which other SPA terms can be inserted.
The result of this substitution is still a SPA term, which could be a process. For
instance, in the term h.0|(l.X + τ.0) we can replace the variable X with the
process h̄.0 obtaining the process h.0|(l.h̄.0 + τ.0); or we can replace X by the
term a.Y obtaining the term h.0|(l.a.Y + τ.0). When we consider a SPA term as
an environment we call it context2, i.e., a SPA context is a SPA term in which
free variables may occur.

Given a context C, we use the notation C[Y1, . . . , Yn] to emphasize the free
variables Y1, . . . , Yn occurring in C. The term C[T1, . . . , Tn] is obtained from
C[Y1, . . . , Yn] by simultaneously replacing all the free occurrences of Y1, . . . , Yn

with the terms T1, . . . , Tn, respectively. For instance, given the contexts C[X] ≡
h.0|(l.X + τ.0) and D[X, Y ] ≡ (l.X + τ.0)|Y , the notation C[h̄.0] stands for
h.0|(l.h̄.0 + τ.0), while the notation D[h̄.0, l̄.0] stands for (l.h̄.0 + τ.0)|l̄.0.

Following [18] we extend binary relations on processes to contexts as follows.

Definition 2 (Relations on Contexts). Let R ⊆ E × E be a relation over
processes. Let C,D be two contexts with free variables Y1, . . . , Yn. We say that
C[Y1, . . . , Yn] R D[Y1, . . . , Yn] if C[E1, . . . , En] R D[E1, . . . , En] for any choice
of E1, . . . , En ∈ E. We also use C R D to denote C[Y1, . . . , Yn] R D[Y1, . . . , Yn].

As an example, the contexts C[X, Y ] ≡ a.X+τ.Y and D[X, Y ] ≡ a.τ.X+τ.Y
are weakly bisimilar since for all E,F ∈ E it holds a.E + τ.F ≈ a.τ.E + τ.F .

Strong bisimulation is a congruence, i.e., if C[X] ∼ D[X] and E ∼ F , then
C[E] ∼ D[F ]. Weak bisimulation is not a congruence, i.e., if two contexts C[X]
and D[X] are weakly bisimilar, and two processes E and F are weakly bisimilar,
then C[E] and D[F ] are not necessarily weakly bisimilar. However, weak bisim-
ulation is a congruence over the guarded SPA language whose terms are defined
by replacing the production T + T with a.T + a.T in the SPA syntax.

3 Action Refinement

It is standard practice in software development to obtain the final program start-
ing from an abstract, possibly not executable, specification by successive refine-
ment steps. Abstract operations are replaced by more detailed programs which
2 Notice that a SPA term denotes either a process or a context.
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can be further refined, until a level is reached where no more abstractions occur.
In the context of process algebra, this stepwise development amounts to inter-
preting actions on a higher level of abstraction by more complicated processes
on a lower level. This is obtained by introducing a mechanism to replace actions
by processes. There are several ways to do this. We adopt the syntactic approach
and define the refinement step as a syntactic process transformation.

We need to introduce some notation. Given a process F and a variable Y ,
we denote by F 0[Y ] the context obtained by replacing each occurrence of 0 in F
with the variable Y . As an example, consider the process F ≡ recZ.(a.Z + b.0).
Then F 0[Y ] ≡ recZ.(a.Z + b.Y ).

To introduce our notion of action refinement we also need to define which are
the refinable actions of a process. This concept is based on the following notions
of bound and free actions.

Definition 3. (Bound and Free actions) Let T be a SPA term. The set of
bound actions of T , denoted by bound(T ), is inductively defined as follows:

bound(0) = ∅
bound(Z) = ∅ where Z is a variable
bound(a.T ) = bound(T )
bound(T1 + T2) = bound(T1) ∪ bound(T2)
bound(T1|T2) = bound(T1) ∪ bound(T2)
bound(T \ v) = bound(T ) ∪ v
bound(T [f ]) = bound(T ) ∪ {a, f(a) | f(a) 6= a}
bound(recZ.T ) = bound(T )

An action occurring in T is said to be free if it is not bound. We denote by
free(T ) the set of free actions of T .

In practice, an action is bound in a term T if either it is restricted in a
subterm of T or it belongs to the domain or the codomain of a relabelling
function f occurring in T . For instance, the actions a and ā occur bound in the
process E ≡ a.0 + recZ.((ā.Z + b.a.0) \ {a, ā}).

An abstract action r occurring in a process E is refinable if r is not bound in
E and, in order to avoid problems with synchronizations, r̄ does not occur in E.
We also require that the process F which is intended to refine r is different from
0 and that it does not contain the parallel operator. Moreover, r and r̄ should not
occur in F otherwise we would enter into an infinite loop of refinements. Finally
we impose that the free actions of F are not bound in E and vice-versa, to avoid
undesired bindings of actions in the refined process. All these requirements are
formalized in the following notion of refinability. We will discuss them in the
next subsection.

Definition 4. (Refinability) Let E,F be SPA processes and r ∈ L. The action
r is said to be refinable in E with F if:

(a) F is not the process 0;
(b) F does not contain any occurrence of the parallel operator;
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(c) r 6∈ bound(E) and r̄ does not occur in E;
(d) r and r̄ do not occur in F ;
(e) for all subterm E′ of E, (bound(E′) ∩ free(F )) ∪ (bound(F ) ∩ free(E′)) = ∅

Example 1. Consider the processes E ≡ (r.a.0|ā.b.0) \ {a, ā} and F ≡ c.d.0. In
this case action r is refinable in E with F .

Consider now the processes E as above and F1 ≡ b.0+(c.d.0)\{b}. In this case
condition (e) of Definition 4 is not satisfied since bound(F1)∩ free(E) = {b} 6= ∅.
Hence r is not refinable in E with F1. ut

The refinement of an abstract action r in a process E with a refining process
F is obtained by replacing each occurrence of r in E with F . In order to support
action refinement, in the literature the prefixing operator is usually replaced
by sequential composition ”;” (see [1, 13]). Here we follow a different approach
and instead of extending the language, we use a construction based on context
composition. Thus, for instance the refinement of the action r in the process
E ≡ a.r.b.0 with the process F ≡ c.d.0 is obtained by substituting b.0 for Y in
a.F 0[Y ] ≡ a.c.d.Y , i.e., it is the process a.F 0[b.0]. The conditions on the refinable
actions and the fact that F does not contain the parallel operator, ensure that
our notion of action refinement is comparable with more classical ones like, e.g.,
[1] (see Section 6). Moreover, the fact that we do not modify our language, allows
us to directly apply our security notions for SPA processes also when reasoning
on action refinement.

Our notion of action refinement is defined by structural induction on the
process to be refined.

Definition 5. (Action Refinement) Let E,F be SPA processes such that r is
an action refinable in E with F . The refinement of r in E with F is the process
Ref (r, E, F ) inductively defined on the structure of E as follows:

(1) Ref (r,0, F ) ≡ 0
(2) Ref (r, Z, F ) ≡ Z
(3) Ref (r, r.E1, F ) ≡ F 0[Ref (r, E1, F )]
(4) Ref (r, a.E1, F ) ≡ a.Ref (r, E1, F ), if a 6= r
(5) Ref (r, E1[f ], F ) ≡ Ref (r, E1, F )[f ]
(6) Ref (r, E1 \ v, F ) ≡ Ref (r, E1, F ) \ v
(7) Ref (r, E1 + E2, F ) ≡ Ref (r, E1, F ) + Ref (r, E2, F )
(8) Ref (r, E1|E2, F ) ≡ Ref (r, E1, F )|Ref (r, E2, F )
(9) Ref (r, recZ.E1, F ) ≡ recZ.Ref (r, E1, F )

Point (3) of definition above deals with the basic case in which we replace
an occurrence of r with the refining process F . If E ≡ r.E1 and r is the only
occurrence of r in E, then Ref (r, E, F ) ≡ F 0[Ref (r, E1, F )] ≡ F 0[E1] represent-
ing the process which first behaves as F and then, when the execution of F is
terminated, proceeds as E1. In all the other cases the refinement process enters
inside the components of E. This is correct also when restriction or relabelling
operators are involved since conditions (c), (d) and (e) of Definition 4 guarantee
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that we never refine restricted or relabelled actions and that undesired bindings
of actions will never occur.

Example 2. Let E ≡ r.a.0 + b.0 and F ≡ c.0 + d.0. It is immediate to observe
that r is refinable in E with F . By applying points 7. and 3. of Definition 5 we
get Ref (r, E, F ) ≡ c.a.0 + d.a.0 + b.0.

Let E ≡ (a.r.b.0) \ {b} and F ≡ c.d.0. Since bound(E) = {b} and b does
not occur in F , r is refinable in E with F . By applying points 6., 4. and 3. of
our definition of action refinement we get Ref (r, E, F ) ≡ (a.c.d.b.0)\{b}. Notice
that, our notion of refinability does not allow us to refine r in E with F1 ≡ b.d.0.
However, as done in [1], we can first apply an α conversion mapping E into the
equivalent process E1 ≡ (a.r.e.0) \ {e} and then refine r in E1 with F1 getting
the expected process (a.b.d.e.0) \ {e}.

Let E ≡ a.r.b.0|r.c.0 and F ≡ c.d.0. Applying our definition we get that
Ref (r, E, F ) ≡ a.c.d.b.0|c.d.c.0. As expected, since in E there are two occur-
rences of r we replace them with two copies of F . In this way it is possible that
new synchronizations are generated. ut

From now on when we write Ref (r, E, F ) we tacitly assume that r is refinable
in E with F .

Notice that we do not allow the use of the parallel composition in the process
F . In fact, if E ≡ r.a.0 and F ≡ b.0|c.0, by applying our notion of refinement we
would obtain the process b.a.0|c.a.0, i.e., we would duplicate part of E. Usually
this undesired behavior is avoided by exploiting the concatenation operator ”;”
in the definition of action refinement (obtaining the process (b.0|c.0); a.0). Here
instead, we prefer to impose restrictions on F . This assumption is only mildly re-
strictive since, if F is a finite state3 process, then there always exists a process F1,
strongly bisimilar to F , which does not contain any occurrence of the parallel op-
erator (see [17]). For instance, in the previous example it is sufficient to consider
F1 ≡ b.c.0 + c.b.0 in order to get the expected Ref (r, E, F1) ≡ b.c.a.0 + c.b.a.0.

At any fixed abstraction level during the top-down development of a program,
it is unrealistic to think that there is just one action to be refined at that level.
Compositional properties of the refinement operation allow us to discard the
ordering in which the refinements occur.

First we show that our refinement is local to the components in which the
action to be refined occurs. This is a consequence of the following theorem.

Theorem 1. Let E1, . . . , En and F be terms. Let C[Z1, . . . , Zn] be a context
with no occurrences of r and r̄. It holds

Ref (r, C[E1, . . . , En], F ) ≡ C[Ref (r, E1, F ), . . . ,Ref (r, En, F )].

Hence, if we have a term G which is of the form E1|E2| . . . |En and the
action r occurs only in Ei it is sufficient to apply the refinement to Ei to obtain
Ref (r, G, F ) ≡ E1|E2| . . . |Ref (r, Ei, F )| . . . |En.
3 A process is finite state if it reaches only a finite number of different processes. Notice

that a finite state process can be recursive.
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Example 3. Consider the process G ≡ recV.(a.V + recW.(a.W + r.W )). We can
decompose it into C[Z] ≡ recV (a.V +Z) and E ≡ recW.(a.W +r.W ) and apply
the refinement to E. If F ≡ b.c.0 we get that Ref (r, E, F ) ≡ recW.(a.W +b.c.W ).
Hence, Ref (r, G, F ) ≡ recV.(a.V + recW.(a.W + b.c.W )). ut

If we need to refine two actions in a process E, then the order in which we
apply the refinements is irrelevant.

Theorem 2. Let E be a term. Let F1 and F2 be two terms with no occurrences
of r1, r2, r̄1, and r̄2.

Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r1,Ref (r2, E, F2), F1).

Example 4. Let E ≡ r1.a.0 + r2.b.r2.0, F1 ≡ b.0 and F2 ≡ c.0. We have that
Ref (r2,Ref (r1, E, F1), F2) ≡ b.a.0 + c.b.c.0 ≡ Ref (r1,Ref (r2, E, F2), F1). ut

Moreover, we can refine r1 in E using F1 and r2 in F1 using F2 independently
from the order in which the refinements are applied as stated by the following
theorem.

Theorem 3. Let E,F1, F2 be terms such that r1 and r̄1 do not occur in F2.

Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r1, Ref(r2, E, F2),Ref (r2, F1, F2)).

Example 5. Let E ≡ r1.a.0 + a.r2.0, F1 ≡ b.r20 and F2 ≡ c.0. We have
Ref (r2,Ref (r1, E, F1), F2) ≡ Ref (r2, b.r2.a.0 + a.r2.0, F2) ≡ b.c.a.0 + a.c.0 ≡
Ref (r1, r1.a.0 + a.c.0, b.c.0) ≡ Ref (r1,Ref (r2, E, F2),Ref (r2, F1, F2)). ut

4 Preserving Process Properties under Refinement

A process property P is nothing but a class of processes, i.e., the class of processes
which satisfy P. In particular, we are interested in classes of processes expressing
security notions, i.e., classes of processes which are all secure (with respect to a
particular notion of security). We intend to investigate conditions under which
notions of security are preserved under action refinement. This correspond to
analyze conditions under which classes of processes are closed with respect to
action refinement.

We start by characterizing our notion of refinement uniquely in terms of
context composition, spelling out the recursion on the structure of E. To do this
we introduce a suitable operation which realizes the necessary links from the
parts of E which precede an occurrence of r and the parts of E which follow
that occurrence. In other words we have to hook F to E, whenever an action r
occurs.

We define the set E@r of the parts of E which syntactically follow the outer-
most occurrences of an action r, and the context E{r} which represents the part
of E before the outermost occurrences of r.
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Definition 6 (E@r and E{r}). Let E be a SPA term and r be a refinable
action in E. The set of terms E@r is inductively defined as follows:

0@r = ∅; Z@r = ∅;
(r.T )@r = {T}; (a.T )@r = T@r, if a 6= r;
(T1 + T2)@r = T1@r ∪ T2@r; (T1|T2)@r = T1@r ∪ T2@r;
(T \ v)@r = T@r; (T [f ])@r = T@r;
(recZ.T )@r = T@r.

Let E@r = {T1, . . . , Tn} and {XT1 , . . . , XTn
} be a set of distinct variables in-

dexed in the elements of E{r}. The context E{r} is inductively defined as follows

0{r} = 0; Z{r} = Z;
(r.T ){r} = XT ; (a.T ){r} = a.(T{r}), if a 6= r;
(T1 + T2){r} = T1{r}+ T2{r}; (T1|T2){r} = T1{r}|T2{r};
(T \ v){r} = (T{r}) \ v; (T [f ]){r} = (T{r})[f ];
(recZ.T ){r} = recZ.(T{r}).

Notice that if E@r = {T1, . . . , Tn}, then {XT1 , . . . , XTn
} is the set of free

variables of E{r}. In the following we will write E{r} to denote the context
E{r}[XT1 , . . . , XTn

]. Thus E{r}[S1, . . . , Sn] represents the term obtained from
E{r}[XT1 , . . . , XTn ] by simultaneously replacing all the free occurrences of the
variables XT1 , . . . , XTn with the terms S1, . . . , Sn, respectively.

Example 6.

– Let E ≡ r.0|a.0. We have that E@r is {0} and E{r} is X0|a.0.
– Let E ≡ (a.r.0 + b.r.c.r.a.0) | r.0. The set E@r contains two processes

and is equal to {0, c.r.a.0}. Note that the term c.r.a.0 in E@r contains an
occurrence of r. The context E{r} is (a.X0 + b.Xc.r.a.0) | X0. The set of the
free variables of E{r} is exactly {XT | T ∈ E@r}.

– Let E ≡ recZ.(a.Z+r.Z). We have that E@r is {Z} and E{r} is recZ.(a.Z+
XZ). In this case E@r has only one element which is not a process. ut

The refinement of an action r in E with F can be equivalently obtained by
successive context compositions as follows.

Definition 7 (Partial Refinement). Let E and F be terms, and r ∈ Act be
an action refinable in E with F . Let Y be a variable which does not occur neither
in E nor in E{r} nor in F . Let E@r = {T1, . . . , Tn}. The partial refinement
ParRef (r, E, F ) of r in E with F is defined as

ParRef (r, E, F ) ≡ E{r}[F 0[T1], . . . , F 0[Tn]].

The following theorem provides an alternative characterization of our notion
of refinement.

Theorem 4. The refinement Ref (r, E, F ) of r in E with F satisfies

– Ref (r, E, F ) ≡ ParRef 0(r, E, F ) ≡ E, if r does not occur in E;

10



– Ref (r, E, F ) ≡ ParRef n+1(r, E, F ) ≡ ParRef (r,ParRef n(r, E, F ), F ), if r
occurs n + 1 times in E.

Intuitively E@r are the parts of E which syntactically follow the occurrences
of the action r, while E{r} is the part of E which precedes the r’s. The holes
XT ’s in E{r} serve to hook the refinement F . Similarly, the free variable Y of
F 0[Y ] serves to hook the elements of E@r after the execution of F . The partial
refinement ParRef (r, E, F ) replaces in E as many occurrences as possible of r
with F . In the case of nested occurrences of r (e.g., r.a.r.0) the partial refinement
replaces only the first occurrence. Hence in order to replace all the occurrences
in the worst case it is necessary to compute the partial refinement n times, where
n is the number of occurrences of r in E. We would obtain the same result by
arbitrarily choosing at each step one occurrence of r replacing it with F , and
going on until there are no more occurrences of the refineble action r.

Example 7. We consider again the second process of Example 6, i.e., let E ≡
(a.r.0 + b.r.c.r.a.0) | r.0 and F ≡ e.f.0. The partial refinement ParRef (r, E, F )
is the process E′ ≡ (a.e.f.0 + b.e.f.c.r.a.0) | e.f.0. The context E′{r} coincides
with (a.e.f.0 + b.e.f.c.Xa.0) | e.f.0. Hence Ref (r, E, F ) = ParRef (r, E′, F ) =
(a.e.f.0 + b.e.f.c.e.f.a.0) | e.f.0. ut

Let P be a generic process property. We are now ready to introduce some
conditions which imply that P is preserved under action refinement.

Definition 8 (P-refinable contexts). Let P be a class of processes. A class
C of contexts is said to be a class of P-refinable contexts if:

– if C ∈ C and C is a process, then C ∈ P;
– if C,D ∈ C, then C[D] ∈ C;
– if C ∈ C and r is refinable in C, then C@r ∪ {C{r}} ⊆ C.

Theorem 5. Let P be a class of processes and C be a class of P-refinable con-
texts. Let E and F be processes. If E,F 0[Y ] ∈ C, then Ref (r, E, F ) is a process
in P and it is a P-refinable context in C.

In order to apply Theorem 5 we need to be able to characterize classes of
P-refinable contexts. In the following section we analyze one of the security prop-
erty considered in [3], namely P BNDC , and we show how to apply Theorem 5.

5 Action Refinement and Information Flow Security

Information flow security in a multilevel system aims at guaranteeing that no
high level (confidential) information is revealed to users running at low security
levels [11, 9, 16], even in the presence of any possible malicious process (attacker).
Persistent Bisimulation-based Non Deducibility on Composition (P BNDC , for
short) [10] is an information flow security property suitable to analyze processes
in completely dynamic hostile environments, i.e., environments which can be
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dynamically reconfigured at run-time. The notion of P BNDC is based on the
idea of Non-Interference [12] and requires that every state which is reachable by
the system still satisfies a basic Non-Interference property. If this holds, one is
assured that even if the environment changes during the execution no malicious
attacker will be able to compromise the system, as every possible reachable
state is guaranteed to be secure. In this paper we present P BNDC through its
unwinding characterization (see [3]).

The definition of P BNDC in terms of unwinding condition points out that
all the high level actions of a P BNDC process can be locally simulated by a
sequence of τ actions.

Definition 9 (P BNDC). A process E is P BNDC if for all E′ reachable from
E and for all h ∈ H, if E′ h→ E′′, then E′ τ̂=⇒ E′′′ with E′′ \H ≈ E′′′ \H.

Example 8. Let l ∈ L and h ∈ H. The process h.l.h.0 + τ.l.0 is P BNDC . The
process h.l.0 is not P BNDC . ut

Example 9. Let us consider a distributed data base (adapted from [14]) which
can take two values and which can be both queried and updated. In particular,
the high level user can query it through the high level actions qry1 and qry2,
while the low level user can only update it through the low level actions upd1

and upd2. Hence qry1, qry2 ∈ H and upd1, upd2 ∈ L. We can model the data
base with the SPA process E defined as

E ≡ recZ.(qry1.Z + upd1.Z + τ.Z+
upd2.recW.(qry2.W + upd2.W + τ.W + upd1.Z)).

The process E is P BNDC . Indeed, whenever a high level user queries the data
base with a high level action moving the system to a state X then a τ action
moving the system to the same state X may be performed, thus masking the
high level interactions with the system to low level users. ut

The decidability of P BNDC has been proved in [10] and an efficient (poly-
nomial) algorithm has been presented in [3]. A proof system which allows us
to incrementally build P BNDC processes has been obtained by exploiting both
the unwinding characterization of P BNDC (Definition 9) and the compositional
properties of P BNDC with respect to most of the operators of the SPA lan-
guage. Here we exploit the same compositionality properties to define classes of
P BNDC and P BNDC -refinable contexts.

Definition 10 (The classes Crec and Cpar).

– Crec is the class of contexts containing: the process 0; Z, where Z is a vari-
able; l.C, with l ∈ L ∪ {τ}, h.C + τ.C, with h ∈ H, C \ v, C[f ], C1 + C2,
and recZ.C, with C,C1, C2 ∈ Crec.

– Cpar is the class of contexts containing: the process 0; Z, where Z is a vari-
able; l.C, with l ∈ L ∪ {τ}, h.C + τ.C, with h ∈ H, C \ v, C[f ], C1 + C2,
and C1|C2, with C,C1, C2 ∈ Cpar.

12



Theorem 6. The classes Crec and Cpar are P BNDC-refinable.

Next corollary is an immediate consequence of Theorems 5 and 6.

Corollary 1. Let E and F be processes. If E,F 0[Y ] ∈ Crec (resp. ∈ Cpar), then
Ref (r, E, F ) is a P BNDC process and it is in Crec (resp. ∈ Cpar).

Example 10. Consider again the abstract specification of the distributed data
base represented through the SPA process E of Example 9. The process E be-
longs to the class Crec of Definition 10. In fact, C1 ≡ qry2.W + upd2.W + τ.W +
upd1.Z ∈ Crec, then C2 ≡ recW.C1 ∈ Crec. Hence, C3 ≡ qry1.Z +upd1.Z +τ.Z +
upd2.C2 ∈ Crec. Thus E ≡ recZ.C3 ∈ Crec.

We can refine the update actions by requiring that each update is requested
and confirmed, i.e., we refine upd1 using F1 ≡ req1.cnf1.0 and upd2 using F2 ≡
req2.cnf2.0, where req1, cnf1, req2, cnf2 are low security level actions. We obtain
that the process Ref(upd2, Ref(upd1, E, F1), F2) is

recZ.(qry1.Z + req1.cnf1.Z + τ.Z+
req2.cnf2.recW.(qry2.W + req2.cnf2.W + τ.W + req1.cnf1.Z)).

Since F 0
1 [Y ] and F 0

2 [Y ] are in Crec, by applying Theorem 1 we have that the
process Ref(upd2, Ref(upd1, E, F1), F2) is P BNDC . ut

By exploiting the compositionality of P BNDC with respect to ! (see [4]) we
obtain that the above results hold also if we extend the class Cpar by including
all the contexts of the form !C with C ∈ Cpar.

We conclude this section observing that it is immediate to prove Theorem 1
also for the properties Compositional P BNDC (CP BNDC, for short) and Pro-
gressing P BNDC (PP BNDC, for short) presented in [3].

6 Related Work

Action refinement has been extensively studied in the literature. There are es-
sentially two interpretations of action refinement: semantic and syntactic (see
[13]). In the semantic interpretation an explicit refinement operator, written
E[r → F ], is introduced in the semantic domain used to interpret the terms
of the algebra. The semantics of E[r → F ] models the fact that r is an action
of E to be refined by process F . In the syntactic approach, the same situation
is modelled by syntactically replacing r by F in E. The replacement can be
static, i.e., before execution, or dynamic, i.e., r is replaced as soon as it occurs
while executing E. In order to correctly formalize the replacement, the process
algebra is usually equipped with an operation of sequential composition (rather
than the more standard action prefix), as, e.g., in ACP, since otherwise it would
not be closed under the necessary syntactic substitution. Our approach to ac-
tion refinement follows the static, syntactic interpretation. However, the use of
context composition to realize the refinement allows us to keep the original SPA
language without introducing a sequential composition operator for processes.

13



Our definition of action refinement is equivalent, in most cases, to the clas-
sical static syntactic approaches presented in the literature. We show this by
comparing our definition with the one proposed by Aceto and Hennessy in [1]
to model action refinement for CCS processes. First, observe that the language
considered in [1] is a variation of CCS with the sequential operator ; but with-
out recursion and renaming. Moreover, their semantics is expressed as a strong
bisimilarity extended with a condition on the termination of processes, here de-
noted by ∼√. In [1] a refinement is nothing but a function ρ : L → E which
maps each action a into its refinement. Given a process E its refinement Eρ is
obtained by syntactically replacing each action a occurring in E with ρ(a). Since
by Definition 4 we can avoid the parallel operator in the refining process F , the
following theorem holds.

Theorem 7. Let E and F be two processes without recursion and renaming.
Consider the function ρ : L → E defined as

ρ(a) =
{

F if a = r
a otherwise

Let Eρ be the refinement of E with ρ as defined in [1]. If F is a guarded process,
then

Eρ ∼√ Ref (r, E, F ).

Action refinement is also classified as atomic or non-atomic. Atomic refine-
ment is based on the assumption that actions are atomic and their refinements
should in some sense preserve this atomicity (see, e.g.,[7, 5]). As an example, con-
sider the processes E ≡ r.0|b.0 and F ≡ a1.a2.0. The refinement of r in E with
F is a process (a1.a2).0|b.0 where the execution of a1.a2.0 is non-interruptible,
i.e., action b cannot be executed in between the execution of a1 and a2. On the
other hand, non-atomic refinement is based on the view that atomicity is always
relative to the current level of abstraction and may, in a sense, be destroyed
by the refinement (see, e.g., [1, 8, 20]). In this paper we follow the non-atomic
approach. Actually, this approach is on the whole more popular then the former.

In the literature the term refinement is also used to indicate any transforma-
tion of a system that can be justified because the transformed system implements
the original one on the same abstraction level, by being more nearly executable,
for instance more deterministic. The implementation relation is expressed in
terms of pre-orders such as trace inclusion or various kinds of simulation. Many
papers in this tradition can be found in [6]. The relations between this form of
refinement and information flow security have been studied in [2].
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(Extended Abstract)

Program transformation is one of the most prominent methodologies for the
development of declarative programs and, in particular, functional and logic
programs [2,5,9]. The main advantage of this methodology is that it allows one
to deal with the issue of program correctness and the issue of program efficiency
in a separated manner. One first writes a simple, maybe inefficient, program
whose correctness can easily be proved, and then one derives a more efficient
program by applying some given transformation rules which preserve program
correctness.

In the case of definite logic programs, which are of our interest here, the cor-
rectness of the initial program is often very easy to prove because, usually, it is
very close to the formal specification of that same program. On the contrary, the
proof that the rules preserve program correctness is often more intricate (as it
is also the case for functional programs). In particular, these correctness proofs
cannot be done in isolation, in the sense that the correctness of a single transfor-
mation rule depends, in general, on the other rules one applies for transforming
programs.

The correctness of the rules can be either partial or total. We say that a rule
which transforms program P1 into program P2 is partially correct iff M(P1) ⊇
M(P2), where M(P ) denotes the least Herbrand model of any given program P .
Analogously, we say that a rule which transforms program P1 into program P2

is totally correct iff M(P1) = M(P2).
Partial correctness is a straightforward consequence of the fact that the trans-

formation rules, and in particular the familiar unfold/fold rules, basically con-
sist in applying logical equivalences [9]. Indeed, whenever we derive a program
P2 from a program P1 by replacing a formula A by a formula B such that
M(P1) |= A ↔ B, we get M(P1) ⊇ M(P2). However, it is well known that
the opposite inclusion M(P1) ⊆ M(P2) may not hold and, thus, in general, the
unfold/fold transformations are not totally correct as shown by the following
simple example. Let us consider the transformation of program P1 into program
P2, where P1 and P2 are as follows:

P1: p ← q P2: p ← p
q ← q ←

This transformation, which corresponds to an application of the folding rule, is
justified by the fact that the equivalence M(P1) |= p ↔ q holds. However, the



least Herbrand model is not preserved because we have that M(P1) = {p, q} ⊃
{q} = M(P2).

In the case of non-propositional programs it is not easy to check whether
or not the application of an unfold/fold transformation rule is totally correct
(actually, it can be shown that this is an undecidable problem). For this reason, in
their landmark paper Tamaki and Sato proposed suitable applicability conditions
which ensure the total correctness of the transformations [9]. These conditions
are based on: (i) the form of the clauses that can be used in a folding step,
and (ii) annotations of the program clauses that depend on the transformation
history, that is, on the sequence of transformation rules applied during a program
derivation. In particular, they stipulate that: (i) one is allowed to fold a clause
by using a non-recursive clause which is marked as ‘foldable’, and (ii) a clause
is marked as ‘foldable’ if it is derived by unfolding. Thus, conditions (i) and (ii)
express that a clause can be folded only if it is derived by unfolding at a previous
transformation step.

Tamaki-Sato’s approach has been extended in several papers (see, for in-
stance, [4,6,8,10]) by: (i) relaxing the restrictions on the clauses that can be
used in a folding step, and (ii) generalizing the history dependent program an-
notations. The most recent of these papers [8] presents sufficient conditions for
the total correctness of the unfold/fold transformations in the case where several,
possibly recursive clauses are used in a folding step. These conditions are based
on some measures which are incremented or decremented when the unfolding or
folding rules are applied.

Unfortunately, the proofs of total correctness of the unfold/fold transforma-
tions presented in [4,6,8,9,10], use rather complex, ad hoc techniques, and it is
very difficult to understand why they work and how they could be generalized
for dealing with other program transformations or language extensions.

The main contribution of this paper is a logical foundation of the theory of
total correctness of logic program transformations (and in particular unfold/fold
transformations). Our theory is based on the notion of well-founded annotations
and the unique fixpoint principle.

A well-founded annotation is a mapping α that associates with every clause
H ← A1 ∧ . . . ∧Ak of a program P an annotated clause of the form:

H{N} ← c(N, N1, . . . , Nk) ∧A1{N1} ∧ . . . ∧Ak{Nk}
where: (i) the annotation variables N,N1, . . . , Nk range over a set W and should
be considered as extra arguments of the atoms occurring in the clause, and
(ii) for i = 1, . . . , k, the relation c(N,N1, . . . , Nk) implies N > Ni, where > is
a well-founded ordering on W . By applying the well-founded annotation α to
every clause in P , we get an annotated program α(P ) that, by construction,
enjoys the following two properties: (1) for every ground atom A, A ∈ M(P )
iff there exists n ∈ W such that A{n} ∈ M(α(P )), and (2) for every ground
annotated atom A{n}, α(P )∪ {← A{n}} has a finite SLD tree, that is, α(P ) is
terminating. By Property (2), the least Herbrand model of α(P ) is the unique
fixpoint of the immediate consequence operator Tα(P ) [1].



Based on well-founded annotations, we propose a method for totally cor-
rect transformations of definite logic programs. Given a program P1 our method
allows us to derive a program P2 by the following steps: (i) we choose a well-
founded annotation α1 so that from program P1 we produce an annotated pro-
gram α1(P1), (ii) we apply suitable variants of the unfold/fold rules for trans-
forming annotated programs so that from α1(P1) we derive a new terminat-
ing annotated program α2(P2), with α2 possibly different from α1, and finally,
(iii) from α2(P2) we get program P2 by erasing the annotations. The fact that
α2(P2) is terminating is enforced by the transformation rules because they pre-
serve the well-founded ordering >, in the sense that, for every clause derived
by applying the rules, the annotation of the head is greater (w.r.t. ¿) than the
annotation of every atom in the body.

The total correctness of the transformation, that is, M(P1) = M(P2), is
proved as follows. On one hand, the transformation rules act on non-annotated
clauses like the usual unfold/fold rules and, as already mentioned, they ensure
partial correctness, that is, M(P1) ⊇ M(P2). On the other hand, since α2(P2)
is terminating, by the unique fixpoint principle [3,7] we have that M(α1(P1)) ⊆
M(α2(P2)) and, thus, by Property (1) of well-founded annotations, M(P1) ⊆
M(P2).

Notice that in our method neither P1 nor P2 is required to be terminating.
Moreover, our method is parametric w.r.t. the well-founded annotations and, in
particular, w.r.t. the well-founded ordering > used for the derivation of P2 from
P1. By suitable choices of this ordering we can prove the total correctness of the
various variants of the unfold/fold rules proposed in the literature [4,6,8,9,10].

An Example

We revisit an example of program transformation taken from [8] where the total
correctness proof is rather intricate. We show that, on the contrary, the total
correctness of this transformation can easily be established by our well-founded
annotation method. Let us consider the following program P1:

1. thm(X) ← gen(X) ∧ test(X)
2. gen([ ]) ←
3. gen([0|X]) ← gen(X)
4. test(X) ← canon(X)
5. test(X) ← trans(X, Y ) ∧ test(Y )
6. canon([ ]) ←
7. canon([1|X]) ← canon(X)
8. trans([0|X], [1|X]) ←
9. trans([1|X], [1|Y ]) ← trans(X, Y )

where thm(X) holds iff X is a string of 0’s that can be transformed into a string
of 1’s by repeated applications of trans(X, Y ). Given the string X, the predicate
trans(X, Y ) generates the string Y by replacing the leftmost 0 in X by 1. Let
us consider the well-founded annotation α1 that associates with every clause:

H ← A1 ∧ . . . ∧Ak



the annotated clause:
H{N} ← N≥N1+. . .+Nk+1 ∧A1{N1} ∧ . . . ∧Ak{Nk}

where the annotation variables N, N1, . . . , Nk range over non-negative integers
and ≥ is the usual ‘greater or equal’ ordering over integers. Thus, the annotated
program α1(P1) is the following one:

1a. thm(X){N} ← N≥N1+N2+1 ∧ gen(X){N1} ∧ test(X){N2}
2a. gen([ ]){0} ←
3a. gen([0|X]){N} ← N≥N1+1 ∧ gen(X){N1}
4a. test(X){N} ← N≥N1+1 ∧ canon(X){N1}
5a. test(X){N} ← N≥N1+N2+1 ∧ trans(X, Y ){N1} ∧ test(Y ){N2}
6a. canon([ ]){0} ←
7a. canon([1|X]){N} ← N≥N1+1 ∧ canon(X){N1}
8a. trans([0|X], [1|X]){0} ←
9a. trans([1|X], [1|Y ]){N} ← N≥N1+1 ∧ trans(X, Y ){N1}

As already mentioned, the annotated program α1(P1) can be considered as a
logic program where the annotation variables are taken as extra arguments.
The annotated program α1(P1) is terminating because N ≥ N1 + . . .+Nk +1
implies that, for i = 1, . . . , k, N > Ni. (Also P1 is terminating, but we need
not use this property.) Now, let us construct a totally correct transformation by
using unfold/fold transformation rules for annotated programs. The unfolding
and folding rules for annotated programs work exactly like the rules for non-
annotated programs, by considering the annotation variables as extra arguments.
By applying several times the unfolding rule, from clause 1a we derive:

10a. thm([ ]){N} ← N≥2
11a. thm([0|X]){N} ← N≥N1+N2+5 ∧ gen(X){N1} ∧ canon(X){N2}
12a. thm([0|X]){N} ← N≥N1+N2+N3+5 ∧ gen(X){N1}∧

trans(X,Y ){N2} ∧ test([1|Y ]){N3}
Now we apply the goal replacement rule and we replace the annotated atom
test([1|Y ]){N3} by N3 ≥ N4 ∧ test(Y ){N4}. This replacement is justified by
the following two properties: (1) M(P1) |= ∀Y (test([1|Y ]) ↔ test(Y )) and
(2) M(α1(P1)) |= ∀Y ∀N3 (test([1|Y ]){N3} → ∃N4(N3 ≥ N4 ∧ test(Y ){N4})).
By applying the goal replacement rule, clause 12a is replaced by the following
clause:

13a. thm([0|X]){N} ← N≥N1+N2+N4+5 ∧ gen(X){N1}∧
trans(X,Y ){N2} ∧ test(Y ){N4}

By folding clauses 11a and 13a using clauses 4a and 5a we get:
14a. thm([0|X]){N} ← N≥N1+N5+4 ∧ gen(X){N1} ∧ test(X){N5}

Finally, by folding clause 14a using clause 1a, we derive:
15a. thm([0|X]){N} ← N≥N6+3 ∧ thm(X){N6}

The final annotated program is α2(P2) = (α1(P1) − {1a}) ∪ {10a, 15a}. Notice
that in clause 15a the annotation of the head is greater than the annotation of
the body atom (because N ≥ N6 +3 implies N > N6). Thus, α2(P2) is termi-
nating and M(α2(P2)) is the unique fixpoint of Tα2(P2). By the unique fixpoint
principle [3,7], we deduce that M(α1(P1)) ⊆ M(α2(P2)).



Now, let us consider the program P2 obtained by dropping the annotations
from α2(P2), that is, P2 = (P1−{1})∪{10, 15}, where clauses 10 and 15 are the
following:

10. thm([ ]) ←
15. thm([0|X]) ← thm(X)

Notice that, for every ground atom A, we have that A ∈ M(P1) iff there exists a
non-negative integer n such that A{n} ∈ M(α1(P1)), and similarly, A ∈ M(P2)
iff there exists a non-negative integer n such that A{n} ∈ M(α2(P2)). There-
fore, from M(α1(P1)) ⊆ M(α2(P2)) it follows that M(P1) ⊆ M(P2). Since, as
already mentioned, the transformation rules act on non-annotated programs like
the usual unfold/fold transformations, and these transformations are partially
correct, we also have M(P1) ⊇ M(P2). Thus, the transformation of P1 into P2

is totally correct.
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Abstract. In this paper we propose an implementation of the joint fix-
point semantics on top of the DLV system. Our framework provides a
front-end to compromise logic programs (COLPs) representing agents’
requirements or desires in a multi-agent environment. By exploiting a di-
rect mapping from COLP programs to classic logic programs we compute
COLPs’ joint fixpoints modeling a common agreement among agents.
Moreover an option is provided for computing minimal joint fixpoints in
order to deal with situations where minimality is an issue to be consid-
ered.

1 A Framework for Joint Fixpoint Semantics

In a multi-agent environment it is possible to represent agents’ requirements
or desires as logic programs. Then a suitable semantics like the joint fixpoint
(JFP) semantics [1] can be used in order to model any joint decision reflecting
a common agreement among such agents. Consider the following example: the
members of a family (Dad, Mom and their son Charlie, viewed as three agents)
are discussing about buying a new car. Each of them proposes desired or neces-
sary features the car should have.
Dad is more concerned on safety and fuel consumption: he requires twin airbag
and ABS (Anti-lock Brake System) and desires to buy (if possible) a city car.
He accepts to choose a high displacement car but only if it has a diesel engine.
In this case he also accepts to pay for the air conditioner: a low displacement
car wouldn’t have the required power. Metalized paint is tolerated. Further ac-
cessories (e.g. automatic shift, power steering) are considered a waste of money.
Mom is not too much safe with driving so she wants twin airbag in case of an
accident. For the same reason she would like a city car otherwise she desires
power steering to help her while parking. Moreover, she likes comfort: air con-
ditioner, automatic shift, and compact disk player are fine. High displacement,
ABS and metalized paint are accepted, but not really necessary.
Charlie desires as many accessories as possible: an high displacement car with
twin airbag (possibly plus ABS), air conditioner, automatic shift is welcome.
? This work was partially supported by WASP (Working Group on Answer Set Pro-

gramming) IST-2001-37004, 5th framework programme, Information Society Tech-
nologies, Action Line FET (Future and emerging technologies).
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Moreover, he desires metalized paint together with the CD player, but if the
latter is absent then the paint must be metalized. Power steering is accepted
(but not needed) and no problem occurs in case of a city car. Since he pays the
fuel he consumes, if the displacement is high then a diesel engine would be fine.
It is possible to represent the above by three compromise logic programs (COLPs),
PDad, PMom and PCharlie, each expressing the desires and agreements of a dif-
ferent family member:

PDad :

twin airbag ←
abs system ←
okay(city) ←

okay(high disp) ← diesel

okay(air cond) ← high disp

okay(metal) ←
okay(cd) ←

PMom :

twin airbag ←
okay(air cond) ←

okay(auto shift) ←
okay(city) ←

steering ← not city

okay(abs system) ←
okay(metal) ←

okay(cd) ←
okay(high disp) ←

PCharlie :

okay(air cond) ←
okay(auto shift) ←
okay(high disp) ←

okay group(metal,cd) ←
metal ← not cd

okay(city) ←
okay(steering) ←

okay(diesel) ← high disp

okay(twin airbag) ←
okay(abs system) ← twin airbag

Furthermore the knowledge about each user includes rules which characterize
the fuel type (either petrol or diesel):

petrol ← not diesel

diesel ← not petrol

A COLP program is based on a language enriched with special predicates [1]
like okay (resp. okay group) representing single atoms (resp. groups of atoms)
which are tolerated, but not required. In particular okay group(p1, · · · , pn) ex-
presses that the group of arguments p1, · · · , pn is tolerated without implying
that p1, · · · , pn are separately tolerated. In a COLP program required atoms are
represented by simple facts while refused ones can be simply omitted or explic-
itly excluded by integrity constraints. For example, agent Dad refuses automatic
shift since this accessory doesn’t occur either as a fact or as an argument inside
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an okay predicate, however this refuse could be also expressed by the rule:

⊥ ← auto shift

With regard to the example a common agreement will be reached on any of
the following JFPs:

{abs system, twin airbag, cd, city, metal, petrol}
{abs system, twin airbag, air cond, cd, city, diesel, high disp, metal}
{abs system, twin airbag, cd, city, diesel, metal}
{abs system, twin airbag, cd, city, diesel, high disp, metal}
{abs system, twin airbag, city, metal, petrol}
{abs system, twin airbag, air cond, city, diesel, high disp, metal}
{abs system, twin airbag, city, diesel, high disp, metal}
{abs system, twin airbag, city, diesel, metal}

Thus, each joint fixpoint represents a possible choice which is accepted by
all the agents. Further constraints could be added in order to meet a particular
target, e.g. when the car price is expressed as a function of the number and type
of chosen accessories and the agents have an upper bound on the money they can
pay some of the above fixpoints may be rejected. However we do not consider this
possibility in this paper, leaving it as a matter for future work. An interesting
case is when agents’ default desire is saving money. Here minimal joint fixpoints
can be adopted as a solution since they include only the minimum number of
atoms on which there is a common agreement. With regard to the example, the
MJFPs characterizing the (possibly) cheapest cars are the following:

{abs system, twin airbag, city, metal, petrol}
{abs system, twin airbag, city, diesel, metal}

In this work we present a framework which is able to compute either JFPs
or MJFPs given an arbitrary set of COLP programs. In particular we perform
the translation from COLP programs to classic logic programs and implement
the mapping from JFP semantics to SM semantics proposed in [1] in such a
way that a single classic logic program is generated whose stable models are in
one-to-one correspondence with the JFPs. Moreover our framework enhances the
above mapping in order to work with non propositional programs and includes
a wrapper exploiting the DLV system to compute the stable models. Finally, we
compute the minimal joint fixpoints as a further option.

The rest of the paper is structured as follows: in the next section we give
a brief description of JFP semantics and then we consider the mapping from
JFP semantics to SM semantics. In Section 3 we describe in detail the sequence
of operations implementing the mapping and the algorithms exploited by the
framework software modules. Moreover we consider some implementation issues.
Finally, we draw in Section 4 our conclusions by considering possible alternative
solutions to the mentioned problems and proposing some optimizations to the
framework.
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2 The Joint Fixpoint Semantics

Before introducing JFP semantics, we briefly recall some basic concepts about
logic programming [2, 3] and stable models [5, 6]. Further details about JFP
semantics can be found in [1].

2.1 Basic Definitions

A term is either a variable or a constant. Variables are denoted by strings start-
ing with uppercase letters, while those starting with lower case letters denote
constants. An atom or positive literal is an expression p(t1, · · · , tn), where p is a
predicate of arity n and t1, · · · , tn are terms. A negative literal is the negation as
failure (NAF) not a of a given atom a. A clause or rule r is a formula

a ← b1∧ · · · ∧bk∧not bk+1∧ · · · ∧not bm m ≥ 0.

where a, b1, · · · , bk are positive literals and not bk+1, · · · , not bm are negative lit-
erals. a is called the head of r, while the conjunction b1∧ · · · ∧bk∧not bk+1∧
· · · ∧not bm is the body of r. When m = 0 the rule r is said a fact, while if a = ⊥
then r is said an integrity constraint.

A logic program is a finite set of rules. A term (an atom, a rule, a program,
etc.) is called ground, if no variable appears in it. A ground program is also called
a propositional program.

Let V ar(P) be a finite set of atoms. A propositional logic program P defined
on V ar(P) consists of a finite set of rules whose atoms are all in V ar(P).

A logic program is positive if no negative literal occurs in it.
An (Herbrand) interpretation for a program P is a subset of V ar(P). A

positive literal a (resp. a negative literal not a) is true w.r.t. an interpretation I
if a ∈ I (resp. a /∈ I); otherwise it is false. A rule is satisfied (or is true) w.r.t. I
if its head is true or its body is false w.r.t. I. An interpretation I is a (Herbrand)
model of a program P if it satisfies all rules in P.

For each program P, the immediate consequence operator TP is a function
from 2V ar(P) to 2V ar(P) defined as follows. For each interpretation I ⊆ V ar(P),
TP(I) consists of the set of all heads of rules in P whose bodies evaluate to true
in I.

An interpretation I is a fixpoint of a logic program P if I is a fixpoint of the
associated transformation TP , i.e., if TP(I) = I. The set of all fixpoints of P is
denoted by FP (P).

Let I be an interpretation of P and let a ∈ V ar(P) be an atom. We say that a
is supported by I (in P) if there is a rule of P with head a whose body evaluates
to true in I, i.e., if a ∈ TP(I). From the definition of fixpoint it immediately
follows that an interpretation I of P is a fixpoint of P iff I coincides with the
set of all atoms supported by I.

For any interpretation I ⊆ V ar(P), we define T 0
P(I) = I and for all i ≥ 0,

T i+1
P (I) = TP(T i

P(I)). If P is a positive program, then TP is monotonic and thus
has a least fixpoint lfp(P) = T∞P (∅). This least fixpoint coincides with the least
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Herbrand model lm(P) of P, i.e. lm(P) = lfp(P). For non-positive programs P,
TP isn’t in general monotonic, and P does not necessarily have a least fixpoint
(it may even have no fixpoint at all).

2.2 Stable Models

Let P be a logic program and I ⊆ V ar(P) be an interpretation. The Gelfond-
Lifschitz transformation (or simply GL-transformation) of P w.r.t. I, denoted
by PI is the program obtained by P by removing all rules containing a negative
literal not b in the body such that b ∈ I, and by removing all negative literals
from the remaining rules.

Definition 1 ([5]). Given a logic program P and an interpretation M ⊆ V ar(P),
M is a stable model of P if M = T∞PM (∅).

A logic program P admits in general a number (possibly zero) of stable models.
We denote by SM(P) the set of all stable models of the program P.

2.3 Joint Fixpoints

In this section we recall the Joint Fixpoint Semantics for logic programs [1].
Let S = {P1,P2, · · · Pn} be a set of logic programs such that V ar(P1) =

V ar(P2) = · · · = V ar(Pn) = V ar. We define the set JFP (P1,P2, · · · ,Pn) of
joint fixpoints by:

JFP (P1,P2, · · · ,Pn) = FP (P1) ∩ FP (P2) ∩ · · · ∩ FP (Pn).

In words, JFP (P1,P2, · · · ,Pn) consists of all common fixpoints to the programs
P1, · · · ,Pn.

Moreover, we define the set MJFP (P1, · · · ,Pn) of minimal joint fixpoint as:

MJFP (P1, · · · ,Pn) = {F ∈ JFP (P1, · · · ,Pn) |
6 ∃F ′ ∈ JFP (P1, · · · ,Pn) ∧ F ′ ⊂ F}.

MJFP (P1, · · · ,Pn) consists of all minimal common fixpoints to the programs
P1, · · · ,Pn.

2.4 Mapping Joint Fixpoints on Stable Models

In this section we briefly recall the translation from Logic Programming un-
der the Joint Fixpoint Semantics to Logic Programming under Stable Model
Semantics. Further details can be found in [1].

Definition 2. Let P be a program and let M be a set of atoms in V ar(P). We
denote by [M ]P the set {aP | a ∈ M}∪{a′P | a ∈ V ar(P)\M}∪{saP | a ∈ M}.
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Here, with a little abuse of notation, aP , a′P and saP denote new atoms
obtained through a sort of renaming operation performed on a, i.e. given an
atom a, a new atom saP is created whose name is the same of a plus a prefix s
and a suffix P .

Definition 3. Let P be a positive program. We define the program Γ (P) over the
set of atoms V ar(Γ (P)) = {aP | a ∈ V ar(P)}∪{a′P | a ∈ V ar(P)}∪{saP | a ∈
V ar(P)} ∪ {failP} as the union of the sets of rules S1, S2 and S3, defined as
follows:

S1 = {aP ← not a′P | a ∈ V ar(P)} ∪ {a′P ← not aP | a ∈ V ar(P)}

S2 = {saP ← b1
P , ..., bn

P | a ← b1, · · · bn ∈ P}
S3 = {failP ← not failP , saP , not aP | a ∈ V ar(P)}∪

{failP ← not failP , aP , not saP | a ∈ V ar(P)}.
The rules included in S1 guess potential fixpoints among the atoms which

are in V ar(P). Given an atom a ∈ V ar(P), aP represents a possible element of
a fixpoint of P, while a′P is its negated version so that only one of them can be
part of the same fixpoint. In S2 there are rules which characterize atoms which
are possibly included in stable models, and finally the rules in S3 state that an
atom a is part of a fixpoint iff it is included in a stable model, i.e. fixpoints must
be also stable models and vice-versa.

In [1] it was shown that a one-to-one correspondence exists between the set
of fixpoints of a given program P and the set SM(Γ (P)) of stable models of the
program Γ (P).

Now suppose we have a set of positive programs P1, · · · ,Pn over the same set
of propositional variables. In [1] it was found a program J(P1, · · · ,Pn) associated
to the set of programs P1, · · · ,Pn such that the stable models of J(P1, · · · ,Pn)
correspond to the joint fixpoints of P1, · · · ,Pn. J(P1, · · · ,Pn) is constructed by
performing the union of all the programs Γ (Pi), for 1 ≤ i ≤ n, with another
program C(P1, · · · ,Pn) that we next define. Informally, under stable model se-
mantics, rules of programs Γ (P1), Γ (P2), ... , Γ (Pn) have the effect of generating
all the fixpoints of P1, P2, ... , Pn, respectively, while rules of C(P1, · · · ,Pn) se-
lect among these all fixpoints that are simultaneously fixpoints of P1, P2, ... ,
Pn.

Definition 4. Given a set of positive programs P1, · · · ,Pn over the same set of
atomic propositions V ar, C(P1, · · · ,Pn) is the program over V ar′ =

⋃
1≤i≤n{aPi

|
a ∈ V ar} ∪ {fail} defined as follows:

C(P1, · · · ,Pn) = {fail ← not fail, aPi
, not aPj

| 1 ≤ i 6= j ≤ n}.

Moreover, the program J(P1, · · · ,Pn) over
⋃

1≤i≤n V ar(Γ (Pi))∪{fail} is defined
as:

J(P1, · · · ,Pn) = Γ (P1) ∪ · · · ∪ Γ (Pn) ∪ C(P1, · · · ,Pn).
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The next theorem states that there is a one-to-one correspondence between the
set of joint fixpoints of the programs P1, · · · ,Pn and the set of stable models of
the program J(P1, · · · ,Pn).

Theorem 1. Let P1, · · · ,Pn be positive logic programs over the same set of
atomic propositions V ar. Then:

SM(J(P1, · · · ,Pn)) =
⋃

F∈JFP (P1,...,Pn)

{∪1≤i≤n[F ]Pi},

where JFP (P1, · · · ,Pn) is the set of the joint fixpoints of P1, · · · ,Pn.

2.5 Complexity Results

It was shown in [4] that it is NP complete to determine whether a single non-
positive logic program has a fixpoint. The next table briefly introduces some
decision problems and describe their complexity. The reader may find further
details in [1].

Problem Instance Question Complexity

JFP
(JFP existence)

A set of positive logic programs
P1, · · · ,Pn defined over the
same set of propositional vari-
ables.

Is JFP (P1, · · · Pn) 6= ∅, i.e.,
do the programs P1, · · · ,Pn

have a joint fixpoint?
NP complete

MJFPs

(skeptical reasoning
under the JFP

semantics)

A set of positive logic programs
S = {P1, ...,Pn} defined over
the same set of propositional
variables V ar and an atom
p ∈ V ar.

Does it hold that p ∈ I?
For all the minimal joint fix-
points I such that
I ∈ MJFP (P1, · · · ,Pn)

co-NP complete

MJFPc

(credulous
reasoning under the

JFP semantics)

A set of positive logic programs
S = {P1, ...,Pn} defined over
the same set V ar of proposi-
tional variables and an atom
p ∈ V ar.

Does it hold that p ∈ I?
For some minimal joint fix-
point I such that
I ∈ MJFP (P1, · · · ,Pn)

ΣP
2 -complete

3 Framework Implementation

In this section we describe in detail the implementation of the framework.
Our tool has a main front-end accepting in input a list of COLP programs
and computing the joint fixpoints of such programs. This result is accomplished
through several stages as depicted in Figure 1.

In particular the overall process can be segmented into three big steps:

1. Converting a given set of COLP programs into classic propositional logic
programs.

2. Generating a single logic program whose stable models are in one-to-one
correspondence with the joint fixpoints of the input COLP programs.
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Fig. 1. JFP → SM mapping stages and software modules implemented

3. Exploiting the DLV system in order to compute the stable models of such a
program and then computing the (minimal) joint fixpoints.

The first step is accomplished by the following two modules:

3.1 The Module colp2lp

Input: a list of non propositional COLP programs.
Output: a list of non propositional classic logic programs.

This module translates a non propositional COLP program into a classic logic
program, exploiting the conversion rules described in [1]. In particular all okay
and okay group predicates are recognized and accordingly expanded into classic
rules. Moreover each integrity constraint is mapped to a rule whose head atom
doesn’t occur in any other program. With regard to the beginning example, the
COLP PDad is translated into the following classic logic program:

twin airbag ←
abs system ←

city ← city

high disp ← high disp, diesel

air cond ← air cond, high disp

metal ← metal

cd ← cd

As a further example, the statement okay group(metal,cd) included in the
program PCharlie is converted into the following couple of rules:

metal ← metal, cd

cd ← metal, cd
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3.2 The Module ground

Input: a list of non propositional classic logic programs.
Output: a list of propositional classic logic programs.

The mapping proposed in [1] works only with propositional programs. As a
consequence, in order to give practical relevance to the implementation, we have
to deal with the non trivial issue of grounding. Observe that if we have in input
a set of non propositional COLP programs then the straight application of the
mapping presented in Section 2.4 may produce unsafe rules. A program rule is
safe if each variable occurring in that rule appears in at least one positive literal
in the body of the same rule [7, 8]: in particular the rules included in the sets
S1, S3 and C are possibly unsafe because variables may occur as negative lit-
erals inside the body of generated rules. Thus, for each input non propositional
program it is necessary to produce the corresponding propositional version. By
exploiting the tool Lparse [9–13] this module performs the required grounding
on a given set of non propositional programs. However, a further issue has to
be considered: Lparse is optimized to discard those rules whose instantiations
have unsatisfiable bodies, i.e. when some literal in the body is not deducible.
This kind of optimization is not applicable in case of the JFP semantics, where
okay and okay group predicates generate rules discarded by Lparse but mean-
ingful w.r.t. the JFP semantics. Let us show the above issue by the example of
chat forum presented in [1]. In this example we have a chat forum involving a
fixed set of users: Ann, Bob, Connie and Dan. Each user can specify complex
requirements concerning the presence of other users in the forum. The following
COLP program represents the requirements of the user Ann:

in forum(ann) ←
okay(in forum(dan)) ←

okay group(in forum(bob),in forum(connie)) ← subject(soccer)

This program models the following specifications: Ann wants to enter in the
forum and she tolerates the presence of Dan, but she does not require him.
Moreover, the joint presence of Bob and Connie is tolerated, but only if soccer
is a subject of the forum.

The above okay and okay group predicates are translated as follows:

in forum(dan) ← in forum(dan)

in forum(bob) ← in forum(bob), in forum(connie), subject(soccer)

in forum(connie) ← in forum(bob), in forum(connie), subject(soccer)

Finally, the knowledge about each user is enriched by a common knowledge
base, defining the relationships user, day and subject. Furthermore the con-
straint that a chat forum must contain at least two users is also included:
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user(ann) ←
user(bob) ←

user(connie) ←
user(dan) ←

subject(soccer) ←
day(monday) ←

⊥ ← not multiple chat

multiple chat ← in forum(X), in forum(Y), user(X), user(Y), X 6= Y

A straight use of Lparse in order to perform the grounding does not return a
complete instantiation for the above non propositional rule because not all the
in forum predicates are deducible from the program.

This problem has been solved by enriching each non propositional program
with a set of facts, each fact representing a literal occurring in the whole collec-
tion of logic programs. This way, Lparse is forced to generate a full instantiation
for each non propositional rule. Finally we discard from each grounded program
those facts which were previously absent in the non propositional version. Thus
we obtain a propositional logic program with a complete instantiation (here we
only show the relevant part):

multiple chat ← in forum(ann), in forum(bob), user(ann), user(bob)

multiple chat ← in forum(ann), in forum(connie), user(ann), user(connie)

multiple chat ← in forum(ann), in forum(dan), user(ann), user(dan)

multiple chat ← in forum(bob), in forum(ann), user(bob), user(ann)

multiple chat ← in forum(bob), in forum(connie), user(bob), user(connie)

multiple chat ← in forum(bob), in forum(dan), user(bob), user(dan)

multiple chat ← in forum(connie), in forum(ann), user(connie), user(ann)

multiple chat ← in forum(connie), in forum(bob), user(connie), user(bob)

multiple chat ← in forum(connie), in forum(dan), user(connie), user(dan)

multiple chat ← in forum(dan), in forum(ann), user(dan), user(ann)

multiple chat ← in forum(dan), in forum(bob), user(dan), user(bob)

multiple chat ← in forum(dan), in forum(connie), user(dan), user(connie)

3.3 The Module build J

Input: a collection of propositional logic programs.
Output: a single logic program J(P1, · · · ,Pn) whose stable models are in one-to-
one correspondence with the joint fixpoints of the input COLP programs.

This modules implements the translation rules described in Section 2.4.
Briefly, for each program Pi ∈ {P1, · · · ,Pn} the sets of rules S1, S2 and S3

are generated. Afterwards the set C(P1, · · · ,Pn) is created. Finally:

J(P1, · · · ,Pn) =
⋃

Pi∈{P1,···,Pn}

(
S1(Pi) ∪ S2(Pi) ∪ S3(Pi)

) ⋃
C(P1, · · · ,Pn)

is produced as a final result. In the following paragraphs the translation algo-
rithm is shown and commented.
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The Translation Algorithm

Algorithm Translate
Input V ar: Set of atoms, P = {P1, · · · ,Pi, · · · ,Pn}: Set of logic programs over V ar;
Output J(P1, · · · ,Pn): a program associated to the set P such that the stable

models of J(P1, · · · ,Pn) correspond to the joint fixpoints of P1, · · · ,Pn;
var S1, S2, S3, C, Γ (P1), · · · , Γ (Pi), · · · , Γ (Pn): Set of rules, LSet, L: List of atoms;
begin
1. for each integer i | ∃ a program Pi ∈ P do

(* S1 and S3 are created *)
2. S1 = ∅; S2 = ∅; S3 = ∅;
3. for each atom a ∈ V ar do
4. let a1 be a new literal; a1.setName(a.getName + “p” + int2string(i));
5. let a2 be a new literal; a2.setName(a.getName + “ ′ ” + “p” + int2string(i));
6. let r be a new rule; r.setHead([a1.getName]); r.setBody([not a2.getName]);
7. let s be a new rule; s.setHead([a2.getName]); s.setBody([not a1.getName]);
8. S1 = S1 ∪ {r} ∪ {s};
9. let a3 be a new literal; a3.setName(“s” + a.getName + “p” + int2string(i));

10. let a4 be a new literal; a4.setName(“fail” + “p” + int2string(i));
11. let t be a new rule; t.setHead([a4.getName]);
12. t.setBody([not a4.getName, a3.getName, not a1.getName]);
13. let u be a new rule; u.setHead([a4.getName]);
14. u.setBody([not a4.getName, a1.getName, not a3.getName]);
15. S3 = S3 ∪ {t} ∪ {u};
16. end for

(* S2 is created*)
17. for each rule r ∈ Pi | r : a ← b1, · · · , bn do
18. let l be a new literal; l.setName(“s” + a.getName + “p” + int2string(i));
19. LSet = ∅;
20. for each bj ∈ Body(r)
21. let lj be a new literal; lj .setName(bj .getName + “p” + int2string(i));
22. let LSet = LSet ∪ {lj};
23. end for
24. let L = SetToList(LSet);
25. let s be a new rule; s.setHead([l.getName]); s.setBody(L);
26. S2 = S2 ∪ {s};
27. end for

(* Γ (Pi) is created*)
28. Γ (Pi) = S1 ∪ S2 ∪ S3;
29. end for

(* C(P1, · · · ,Pn) is created *)
30. C = ∅;
31. let f be a new literal; f.setName(“fail”);
32. for each atom a ∈ V ar do
33. for each integer i ∈ [1, n] do
34. let aPi

be a new literal; aPi
.setName(a.getName + “p” + int2string(i));

35. for each integer j ∈ [1, n] do
36. if i 6= j then
37. let aPj

be a new literal; aPj
.setName(a.getName + “p” + int2string(j));

38. let r be a new rule; r.setHead([f.getName]);
39. r.setBody([not f.getName, aPi

.getName, not aPj
.getName]);

40. C = C ∪ {r};
41. end if
42. end for
43. end for
44. end for

(* J(P1, · · · ,Pn) is created *)
45. J = ∅;
46. for each integer i ∈ [1, n] do
47. J = J ∪ Γ (Pi);
48. end for
49. J = J ∪ C;
end.
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Comments to the Algorithm

W.l.o.g. we assume the logic programs P1, · · · ,Pn being defined over the same
set V ar. Furthermore we assume V ar being part of the input. A more general
scenario has been implemented where each logic program can be defined on a
different set of atoms V ar(Pi) not being part of the input, but built at run-time.
Moreover the set V ar is generated as the union of all the sets V ar(Pi).

lines 2 - 8: For each program Pi these statements build the set S1:
lines 2 - 5: For each atom a ∈ V ar two literals aPi and a′Pi

are created.
Atoms and literals are treated as objects having an attribute name. We
assume that two methods getName and setName exist which are used
to read / write such attribute. The function int2string returns the string
representation of an integer number.

lines 6 - 8: For each atom a ∈ V ar two rules aPi ← not a′Pi
and a′Pi

←
not aPi are created. Rules are treated as objects having two attributes:
a Head and a Body. The method setHead (resp. setBody) receives a list
L = [l1, · · · , ln] of literals and sets the head (resp. the body) of a specified
rule using the literals inside L. After being created the rules are added
to the set S1.

lines 9 - 16: For each program Pi these statements build the set S3:
lines 9 - 10: For each atom a ∈ V ar two literals saPi

and failPi
are cre-

ated.
lines 11 - 16: For each atom a ∈ V ar two rules failPi

← not failPi
, saPi

,
not aPi

and failPi
← not failPi

, aPi
, not saPi

are created. Finally those
rules are added to the set S3.

lines 17 - 27: For each program Pi, the set S2 is created. In particular:
lines 18 - 23: Each rule r of the form: a ← b1, · · · , bn is renamed to a new

rule s : saPi
← b1

Pi
, · · · , bn

Pi
. A set LSet is used to temporarily store the

literals from the body of s.
lines 24 - 27: The set LSet is converted to a list L which is input to the

method setBody. Then the rule s is added to the set S2.
line 28: For each program Pi a new program Γ (Pi) = S1 ∪ S2 ∪ S3 is created.
lines 30 - 44: The set C = C(P1, · · · ,Pn) is created. In particular for each

atom a ∈ V ar and for each couple of different programs Pi and Pj two
new literals aPi , aPj and a rule of the form fail ← not fail, aPi , not aPj are
created. Then those rules are added to C.

lines 45 - 49: J(P1, · · · ,Pn) is created as J = Γ (P1) ∪ · · · ∪ Γ (Pn) ∪ C.

At this stage we exploit the DLV system [7, 8] in order to compute the stable
models of J(P1, · · · ,Pn).

3.4 The Module parse SM

Input: the stable models of the program J(P1, · · · ,Pn).
Output: the joint fixpoints of P1, · · · ,Pn.
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This module post-processes the output results from DLV. In particular it
filters the stable models of J(P1, · · · ,Pn) extracting the relevant atoms, i.e. those
being part of JFP(P1, · · · ,Pn). Finally the original names those atoms had within
the COLP programs are restored, i.e. name prefixes and suffixes added by the
translation process are discarded. For example, a stable model of J(P1, · · · ,Pn)
is the following:
{s abs system P1, s twin airbag P1, s twin airbag P2, abs system P1,

air cond 1 P1, cd P1, city P1, diesel 1 P1, high disp 1 P1, metal P1,

petrol P1, twin airbag P1, s cd P1, s city P1, s metal P1, s petrol P1,

abs system P2, air cond 1 P2, auto shift 1 P2, cd P2, city P2, diesel 1 P2,

high disp 1 P2, metal P2, petrol P2, steering 1 P2, twin airbag P2,

s abs system P2, s cd P2, s city P2, s metal P2, s petrol P2, abs system P3,

air cond 1 P3, auto shift 1 P3, cd P3, city P3, diesel 1 P3, high disp 1 P3,

metal P3, petrol P3, steering 1 P3, twin airbag P3, s abs system P3, s cd P3,

s city P3, s metal P3, s petrol P3, s twin airbag P3}
where all atoms having a prefix s (the supported atoms) jointly occur with

those without the prefix (the fixpoints) as an effect of the rules in S3. Moreover
the suffix Pi indicates which logic program an atom comes from.

From this stable model the following joint fixpoint is extracted:
{abs system, twin airbag, cd, city, metal, petrol}

3.5 The Module find MJFP

Input: the joint fixpoints of P1, · · · ,Pn.
Output: the minimal joint fixpoints of P1, · · · ,Pn.

The set of minimal joint fixpoints MJFP(P1, · · · ,Pn) is built in a bottom-up
fashion. At the beginning MJFP is empty and the input joint fixpoints are sorted
by ascending cardinality, i.e. the number of included atoms. Fixpoints having the
minimum cardinality are also minimal, thus they are directly included in MJFP.
The remaining fixpoints are separately processed: a fixpoint is discarded if an
element of MJFP exists which is included in it, otherwise it is added to MJFP.
In the following paragraphs the algorithm is shown and commented.

3.6 MJFP Search Algorithm

Algorithm MJFP Search
Input JFP (P1, · · · ,Pn): Set of joint fixpoints of the programs P1, · · · ,Pn.
Output MJFP (P1, · · · ,Pn): Set of minimal joint fixpoints of the programs P1, · · · ,Pn.
var L: List of fixpoints; mincard: Integer; discard: Boolean;
begin
1. for each element f ∈ JFP (P1, · · · ,Pn) do
2. L.append(f);
3. end for
4. sort(L, cardinality, ascending);
5. mincard = card(L.first); MJFP = ∅;
6. for each element l in list L do
7. if card(l) = mincard then MJFP = MJFP ∪ {l};
8. else begin
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9. discard = false;
10. for each element m ∈ MJFP do
11. if {m} ⊆ {l} then discard = true;
12. end for
13. if not discard then MJFP = MJFP ∪ {l};
14. end;
15. end for
end.

Comments to the Algorithm

lines 1 - 3: The elements of JFP (P1, · · · ,Pn) are copied in a list L.
line 4: The elements of L are sorted by ascending cardinalities, i.e. number of

included atoms.
lines 6 - 15: This is the core of the algorithm, in particular:

line 7: Fixpoints having the minimum cardinality are added to MJFP.
lines 8 - 12: Fixpoints not having the minimum cardinality are checked

for set inclusion minimality: if any of them includes an element of MJFP
then it is discarded.

lines 13 - 15: Fixpoints which are not discarded are minimal, so they are
added to MJFP.

Furthermore, even though the algorithm works in polynomial time, space
complexity represents a concrete drawback. In fact all joint fixpoints have to be
computed before finding the minimal ones, i.e. exponential space is required. As
discussed in the next section, an interesting issue to be investigated is of course
the problem of encoding minimality directly into the original programs in order
to avoid space exploitation generated by the previous approach. However, this
approach may have significance every time the number of JFPs is small, that is a
plausible case, since it corresponds to have heterogeneous agents’ requirements.

4 Conclusions and Future Work

In this paper we described a framework which implements the joint fixpoint
semantics introduced in [1] on the top of the DLV system. This semantics is
suitable to model joint decisions of agents represented by logic programs. In
order to meet this target we realized software tools which receive in input a col-
lection of COLP programs, each representing the requirements and desires of an
agent, and generate a single program whose stable models are in one-to-one cor-
respondence to the COLPs’ joint fixpoints. Those stable models are computed
exploiting the DLV system. As a final result we compute the joint fixpoints of
the input COLP programs, i.e. the fixpoints which are common to all the input
COLP programs. Those joint fixpoints represent a common agreement among
the agents. Moreover we embedded an option to compute the minimal joint fix-
points, i.e. the joint fixpoints containing the minimum number of atoms required
to meet a common agreement between the agents. It is easy to see that the com-
putational complexity of the implementation reaches the theoretic one. It has
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been pointed out that searching for the minimal joint fixpoints requires an expo-
nential space, thus a new scheme for the mapping from joint fixpoint semantics
to stable model semantics has to be investigated in order to directly produce the
minimal joint fixpoints. Grounding is another issue that could be solved in an
alternative way: again, by changing the translation scheme it could be possible
to avoid the generation of unsafe rules within the sets S1, S3 and C. This way the
translation process could directly work with non propositional COLP programs,
thus avoiding the overhead produced by the ground instantiations. This is left
for future investigations.
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Mura A.Zamboni 7, 40127 Bologna, Italy

gabbri@cs.unibo.it
� Dipartimento di Scienze, Università di Chieti
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Abstract.
Constraint Handling Rules (CHR) is a committed-choice declarative language
which has been designed for writing constraint solvers. A CHR program consists
of multi-headed guarded rules which allow to rewrite constraints into simpler
ones until a solved form is reached.
CHR has received a considerable attention, both from the practical and from the
theoretical side. Nevertheless, due the use of multi-headed clauses, there are sev-
eral aspects of the CHR semantics which are not been clarified yet. In particular,
no compositional semantics for CHR has been defined so far.
In this paper we introduce a fix-point semantics which characterizes the input/output
behavior of a CHR program and which is and-compositional, that is, which al-
lows to retrieve the semantics of a conjunctive query from the semantics of its
components. Such a semantics can be used as a basis to define incremental and
modular analysis and verification tools.

1 Introduction

Constraint Handling Rules (CHR) [9, 10] is a committed-choice declarative language
which has been specifically designed for writing constraint solvers. The first constraint
logic languages used mainly built-in constraint solvers designed by following a “black
box” approach. This made hard to modify, debug, and analyze a specific solver. More-
over, it was very difficult to adapt an existing solver to the needs of some specific ap-
plications, and this was soon recognized as a serious limitation since often practical
applications involve application specific constraints.

By using CHR one can easily introduce specific user-defined constraints and the
related solver into an host language. In fact, a CHR program consists of (a set of) multi-
headed guarded simplification and propagation rules which are specifically designed to
implement the two most important operations involved in the constraint solving pro-
cess: Simplification rules allow to replace constraints by simpler ones, while preserving
their meaning. Propagation rules are used to add new redundant constraints which do
not modify the meaning of the given constraint and which can be useful for further re-
ductions. It is worth noting that the presence of multiple heads in CHR is an essential
feature which is needed in order to define reasonably expressive constraint solvers (see
the discussion in [10]). However, such a feature, which differentiates this proposal from
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many existing committed choice logic languages, complicates considerably the seman-
tics of CHR, in particular it makes very difficult to obtain a compositional semantics, as
we argue below. This is unfortunate, as compositionality is an highly desirable property
for a semantics. In fact, a compositional semantics provides the basis to define incre-
mental and modular tools for software analysis and verification, and these features are
essential in order to deal with partially defined components. Moreover, in some cases,
modularity allows to reduce the complexity of verification of large systems by consid-
ering separately smaller components.

In this paper we introduce a fix-point semantics for CHR which characterizes the in-
put/output behavior of a program and which is and-compositional, that is, which allows
to retrieve the semantics of a conjunctive query from the semantics of its components.

In general, due to the presence of synchronization mechanisms, the input/ouput
semantics is not compositional for committed choice logic languages and for most con-
current languages in general. Indeed, the need of more complicate semantic structures
based on traces was recognized very early as a necessary condition to obtain a com-
positional model, first for dataflow languages [11] and then in the case of many other
paradigms, including imperative concurrent languages [7] and concurrent constraint and
logic languages [5].

When considering CHR this basic problem is further complicated: due to the pres-
ence of multiple heads the traces consisting of sequences of input/ouput pairs, analo-
gous to those used in the above mentioned works, are not sufficient to obtain a com-
positional semantics. Intuitively the problem can be stated as follows. A CHR rule
� � ��� � � � � cannot be used to rewrite a goal �, no matter how the variables
are constrained (that is, for any input constraint), because the goal consists of a single
atom � while the head of the rule contains two atoms ���. Therefore, if we considered
a semantics based on input/ouput traces, we would obtain the empty denotation for the
goal � in the program consisting of the rule � plus some rules defining �. Analogously
for the goal �. On the other hand, the rule � can be used to rewrite the goal ���.
Therefore, provided that the semantics of � is not empty, the semantics of ��� is not
empty and cannot be derived from the semantics of � and �, that is, such a semantics
is not compositional. It is worth noting that even restricting to a more simple notion
of observable, such as the results of terminating computations, does not simplify this
problem. In fact, differently from the case of ccp languages, also the semantic based on
these observables (usually called resting points) is not compositional for CHR.

Our solution to obtain a compositional model is to use an augmented semantics
based on traces which includes at each steps two “assumptions” on the external envi-
ronment and two “outputs” of the current process: Similarly to the case of the models
for ccp, the first assumption is made on the constraints appearing in the guards of the
rules, in order to ensure that these are satisfied and the computation can proceed. The
second assumption is specific to our approach and contains atoms which can appear in
the heads of rules. This allows us to rewrite a goal � by using a rule whose head �

properly contains �: While this is not possible with the standard CHR semantics, we
allow that by assuming that the external environment provides the “difference” � mi-
nus � and by memorizing such an assumption. The first output element is the constraint
produced by the process, as usual. We also memorize at each step also a second output
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element, consisting of those atoms which are not rewritten in the current derivation and
which could be used to satisfy some assumptions (of the second type) when composing
sequences representing different computations. Thus our model is based on sequences
of quadruples, rather than of simple input/output pairs.

Our compositional semantics is obtained by a fixpoint construction which uses an
enhanced transitions system implementing the rules for assumptions described above.
We prove the correctness of the semantics w.r.t. a notion of observables which char-
acterizes the input/ouput behavior of terminating computations where the original goal
has been completely reduced to built-in constraints. We will discuss later the exten-
sions needed in order to characterize different notions of results, such as the “qualified
answers” used in [10].

The remaining of this paper is organized as follows. Next section introduces some
preliminaries about CHR and its operational semantics. Section 3 contains the defini-
tion of the compositional semantics, while section 4 presents the compositionality and
correctness results. Section 5 concludes by discussing directions for future work.

2 Preliminaries

In this section we first introduce some preliminary notions and then define the CHR
syntax and operational semantics. Even though we try to provide a self-contained ex-
position, some familiarity with constraint logic languages and first order logic could be
useful.

We first need to distinguish the constraints handled by an existing solver, called
built-in (or predefined) constraints, from those defined by the CHR program, called
CHR (or user defined) constraints. An atomic constraint is a first-order predicate (atomic
formula). By assuming to use two disjoint sorts of predicate symbols we then distin-
guish built-in atomic constraints from CHR atomic constraints. A built-in constraint �
is defined by

� ��� ��� � �����

where � is an atomic built-in constraint1. For built-in constraints we assume given
a theory CT which defines their meaning.

On the other hand, according to the usual CHR syntax, we assume that a CHR
constraint is a conjunction of atomic CHR constraints. We use �� 	 to denote built-in
constraints, 
� �� � to denote CHR constraints and ��  to denote both built-in and CHR
constraints (we will call these generically constraints). The capital versions of these
notations will be used to denote multisets of constraints. Furthermore we denote by �
the set of user defined constraints and by � the set of built-in constraints.

We will often use “,” rather than � to denote conjunction and we will often consider
a conjunction of atomic constraints as a multiset of atomic constraints. In particular,
we will use this notation based on multisets in the syntax of CHR. The notation ��� �

where � is a set of variables denotes the existential closure of a formula � with the
1 We could consider more generally first order formulas as built-in constraints, as far as the

results presented here are concerned.
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exception of the variables � which remain unquantified. ����� denotes the free vari-
ables appearing in � and we denote by � the concatenation of sequences and by � the
empty sequence. Furthermore � denotes the multi-set union, while we consider � as an
overloaded operator used both for set and multi-set difference (the meaning depends on
the type of the arguments).

We are now ready to define the CHR syntax.

Definition 1 (Syntax). [10] A CHR simplification rule has the form � � � � � while
a CHR propagation rule has the form � 	 � � � where � is a non-empty multiset of
user-defined constraints, � is a built-in constraint and � is a possibly empty multi-set
of constraints.

A CHR program is a set of CHR simplification and propagation rules. A CHR goal
is a multiset of (both user defined an built-in) constraints.

We prefer to use multisets rather than sequences (as in the original CHR papers)
since multisets appear to correspond more precisely to the nature of CHR rules. We
denote by ����� the set of all goals.

We describe now the operational semantics of CHR as provided by [10] by using a
transition system �� � ������ �
��� (� here stands for “standard”, as opposed to the
semantics we will use later). Configurations in ����� are triples of the form ����� 	
where � are the constraints that remain to be solved, � are the user-defined constraints
that have been accumulated and 	 are the built-in constraints that have been simplified 2.

An initial configuration has the form

��� �� �

and consists of a query �, an empty user-defined constraint and an empty built-in con-
straint.

A final configuration has either the form

����� ��������

when it is failed, i.e. when it contains an inconsistent built-in constraint store repre-
sented by the unsatisfiable constraint false, or has the form

����� 	

when it is successfully terminated, i.e. there are no goals left to solve.
Given a program � , the transition relation 
��� ���� ����� is the least relation

satisfying the rules in Table 1 (for the sake of simplicity, we omit indexing the relation
with the name of the program). The Solve transition allows to update the constraint
store by taking into account a built-in constraint contained in the goal. Without loss of
generality, we will assume that ���	�� � ����� � ���	�. The Introduce transition is

2 In [10] triples of the form ����� ��� were used, where the annotation � , which is not changed
by the transition rules, is used to distinguish the variables appearing in the initial goal from
the variables which are introduced by the rules. We can avoid such an indexing by explicitly
referring to the original goal.
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Solve �� �� � � �� �
� and c is a built-in constraint

������� �� �� ��� ����� �
��

Introduce h is a user-defined constraint
������� �� �� ��� ��� ������ ��

Simplify � � � � 	 	 
 � � � ���� �� �� �� 
���� � �
�� � ��

���� � ��� �� ��� �	 ������ � �
� � ��

Propagate � � � � 	 	 
 � � � ���� �� �� �� 
���� � �
� � ��

���� � ��� �� ��� �	 ���� � ���� � �
� � ��

Table 1. The standard transition system for CHR

used to move a CHR constraint from the goal to the CHR constraint store, where it can
be handled by applying CHR rules. The transitions Simplify and Propagate allow to
rewrite CHR constraints (which are in the CHR constraint store) by using rules from
the program. As usual, in order to avoid variable names clashes, both these transitions
assume that clauses from the program are renamed apart, that is assume that all vari-
ables appearing in a program clause are fresh ones. Both the Simplify and Propagate
transitions are applicable when the current store (	) is strong enough to entail the guard
of the rule (�), once the parameter passing has been performed (this is expressed by the
equation � � � �). Note that, due to the existential quantification over the variables
� appearing in � , in such a parameter passing the information flow is from the actual
parameter (in � �) to the formal parameters (�), that is, it is required that the constraints
� � which have to be rewritten are an instance of the head � . When applied, both these
transitions add the body � of the rule to the current goal and the equation � � � �,
expressing the parameter passing mechanism, to the built-in constraint store. The dif-
ference between Simplify and Propagate is in the fact that while the former transition
removes the constraints � � which have been rewritten from the CHR constraint store,
this is not the case for the latter.

Given a goal �, the operational semantics that we consider observes the final stores
of computations terminating with an empty goal and an empty user-defined constraint.
We call these observables success answers slightly deviating from the terminology of
[10] (a goal which has a success answer is called a data-sufficient goal in [10]).

Definition 2 (Success answers). Let � be a program and let � be a goal. The set
��� ��� of success answers for the query � in the program � is defined as follows

��� ��� � ���������	 � ��� �� � 
��
� ��� �� 	 �
�� ��

In [10] it is considered also the following different notion of answer, obtained by
computations terminating with a user-defined constraint which does not need to be
empty.
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Definition 3 (Qualified answers). Let � be a program and let � be a goal. The set
��� ��� of qualified answers for the query � in the program � is defined as follows

��� ��� � ���������� � 	 � ��� �� � 
��
� ����� 	 �
�� ��

We discuss in Section 5 the extensions needed to characterize also qualified answers.
Note that both previous notions of observables characterize an input/output behavior,
since the input constraint is implicitly considered in the goal.

In the remaining of this paper we will consider only simplification rules since prop-
agation rules can be mimicked by simplification rules, as far as the results contained in
this paper are concerned.

3 A compositional trace semantics

Given a program � , we say that a semantics �� is and-compositional if �� ����� �
���� ������ ���� for a suitable composition operator � which does not depend on the
program � . As mentioned in the introduction, due to the presence of multiple heads
in CHR, the semantics which associate to a program � the function ��� is not and-
compositional, since goals which have the same input/ouput behavior can behave differ-
ently when composed with other goals. Consider for example the program � consisting
of the single rule


� � � �������

(where � is a built-in constraint). According to Definition 3 we have that ��� �
� �
��� ��� � �, while ��� �
� �� � ���������	��� �� � � ��� ��� ��. An analogous
example can be made to show that also the semantics �� is not and-compositional.

The problem exemplified above is different from the classic problem of concur-
rent languages where the interaction of non-determinism and synchronization makes
the input/outuput observables non-compositional. For this reason, considering simply
sequences of (input-output) built-in constraints is not sufficient to obtain a composi-
tional semantics for CHR. We have to use some additional information which allow us
to describe the behavior of goals in any possible and-composition without, of course,
considering explicitly all the possible and-compositions.

The basic idea of our approach is to collect in the semantics also the “missing”
parts of heads which are needed in order to proceed with the computation. For example,
when considering the program � above, we should be able to state that the goal 


produces the constraint �, provided that the external environment (i.e. a conjunctive
goal) contains the CHR constraint �. In other words, � is an assumption which is made
in the semantics describing the computation of 
. When composing (by using a suitable
notion of composition) such a semantics with that one of a goal which contains � we
can verify that the “assumption” � is satisfied and therefore obtain the correct semantics
for 
� �. In order to model correctly the interaction of different processes we have to use
sequences, analogously to what happens with other concurrent paradigms.

This idea is developed in the following by defining a new transition system which
implements this mechanism based on assumptions for dealing with the missing parts
of heads. The new transition system allows to generate the sequences appearing in the
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Solve’ �� �� � � �� �
�

�� �������
� �� ��� �������

� �
��

Simplify’ �� � � � � � 	 	 
 � � ����� �
����� ��  �� �� �� 
���� � �������

� ��� � ��

������� ��� �� ��� �	��� ��� � � �� � �������

Table 2. The transition system for the compositional semantics

compositional model by using a standard fix-point construction. As a first step in our
construction we modify the notion of configuration used before: Since we do not need
to distinguish user defined constraints which appear in the goal from the user defined
constraints which have been already considered for reduction, we merge the first and
the second components of previous triples. On the other hand, we need the information
on the new assumptions, which is added as a label of the transitions.

Thus we define a transition system � � ����� �
�� � where configurations in
Conf are pairs: the first component is a multi-set of indexed atoms (the goal) and
the second one is a built-in constraint (the store). Indexes are associated to atoms in
order to denote the point in the derivation where they have been introduced. More
precisely, atoms in the original goals are labeled by �, while atoms introduced at the
� 
 �� derivation step are labeled by �. Given a program � , the transition relation

��� ���� � ���� � ���� is the least relation satisfying the rules in Table 2.
Note that we consider only Solve and Simplify rules, as the other rules as previously
mentioned are redundant in this context. Solve’ is the same rule as before, while the
Simplify’ rule is modified to consider assumptions: When reducing a goal � by using
a rule having head � , the set of assumption � � � � � (with � �� �) is used to
label the transition (� here denotes multiset difference). Indexes allow us to distinguish
identical occurrences of atoms which have been introduced in different derivation steps.
We will use the notation �
���� to indicate that � is the maximal label occurring in the
(non-atomic) goal � and �� to indicate that all the atoms in � are labeled by �. When no
ambiguity arise, to simplify the notation we will use � � also to denote �
����. In par-
ticular, the notation ���� � � ������ 	 used in some cases in the transitions always
means ��
����� � � ������ 	, that is, if � is the maximal label occurring in � then
all the atoms in � are labeled by � � �. When indexes are not needed we will simply
omit them. As before, we assume that program rules to be used in the new simplify rule
use fresh variables to avoid names captures.

The semantics domain of our compositional semantics is based on sequences which
represent derivations obtained by the transition system in Table 2. More precisely, we
first consider “concrete” sequences consisting of tuples of the form ��� ����� �� 	:
Such a tuple represents exactly a derivation step ��� � 
� ���� 	. The sequences
we consider are terminated by tuples of the form ��� �� �� �� �, which represent a termi-
nating step (see the precise definition below). Since a sequence represents a derivation,
we assume that the “output” goal �� at step � is equal to the “input” goal � at step ���,
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that is, we assume that if

� � � ���� ������ �
�
�� 	������� ���������� �

�
���� 	��� � � �

appears in a sequence, then ��
� � ���� holds.

On the other hand, the input store ���� can be different from the output store 	 �
produced at previous step, since we need to perform all the possible assumptions on the
constraint ���� produced by the external environment in order to obtain a compositional
semantics. However, we assume that if

� � � ���� ������ �
�
�� 	������� ���������� �

�
���� 	��� � � �

appears in a sequence then �� �� ���� � 	� holds: This means that the assumption
made on the external environment cannot be weaker than the constraint store produced
at the previous step. This reflects the monotonic nature of computations, where infor-
mation can be added to the constraint store and cannot be deleted from it. Finally note
that assumptions on CHR constraints (label �) are made only for the atoms which are
needed to “complete” the current goal in order to apply a clause. In other words, no as-
sumption can be made in order to apply clauses whose heads do not share any predicate
with the current goal.

The set of the above described “concrete” sequences, which represent derivation
steps performed by using the new transition system, is denoted by �� .

From these concrete sequences we extract some more abstract sequences which are
the objects of our semantic domain: From each tuple ��� ����� �� 	 in a sequence
Æ � �� we extract a tuple of the form ������� 	 where we consider as before the
input and output store (� and 	, respectively) and the assumptions (�), while we do
not consider anymore the output goal � �. Furthermore, we restrict the input goal � to
that part � consisting of all those user-defined constraints which will not be rewritten
in the (derivation represented by the) sequence Æ. Intuitively � contains those atoms
which are available for satisfying assumptions of other goals, when composing two
different sequences (representing two derivations of different goals). We also assume
that if ������� ��� 	������������ ����� 	��� is in a sequence then �� � ���� holds,
since these atoms which will not be rewritten in the derivation can only augment. We
then define formally the semantic domain as follows.

Definition 4 (Sequences). The semantic domain� containing all the possible sequences
is defined as the set

� � �������� ��� 	� � � � ���� �� ��� �� �
for each !� � � ! � " and for each �� � � � � "
 ��
�� and �� are multisets of CHR indexed constraints,
�� � 	� are built-in constraints such that �� �� 	� � ���

�� � ���� and �� �� ���� � 	���

In order to define our semantics we need two more notions. First, we define an
abstraction operator # which extracts from the concrete sequences in �� (representing
exactly derivation steps) the sequences used in our semantic domain.
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Definition 5. Let Æ � ���� ������ ��� 	� � � � ���� ��� �� ��� �� be a sequence of
derivation steps where we assume that atoms are indexed as previously specified. We
say that an indexed atom �� is stable in Æ if �� appears in �� and in ����, for each
� � � � "
 �. The abstraction operator # � �� � � is then defined inductively as

#��� � �

#���� ������� 	 � Æ�� � ������� 	 � #�Æ��

where � is the multiset consisting of all the indexed atoms in � which are stable in
��� ������� 	 � Æ�.

Then we need the notion of “compatibility” of a tuple w.r.t. a sequence. To this aim
we first provide some further notation: Given a sequence of derivation steps

Æ � ���� ������ ��� 	����� ������ ��� 	� � � � ���� ��� �� ��� ��

we denote by ��"
���Æ� and by �"������Æ� the length of the derivation Æ and the first in-
put store ��, respectively. Moreover using � as a shorthand for the tuple �� �� ������ ��� 	�
we define

������� � ������ 	�� � ������ ������,
�����Æ� � ������,
�����Æ� �

����
��� ������,

��������Æ� � ������,
��������Æ� �

����
��� ���	�� � ������ and

�����Æ� �
����
��� �������� 	�� � ������ ������.

We then define a compatibility as follows.

Definition 6. Let � � ���� ������ ��� 	� a tuple representing a derivation step for
the goal �� and let Æ � ���� ������ ��� 	� � � � ���� ��� �� ��� �� be a sequence of
derivation steps for ��. We say that � is compatible with Æ if the following hold:

1. �� �� �"������Æ� � 	�,
2. �����Æ� � ����� � �,

3. for � � ��� "	, ������� � ������ �
����
��� ���	�� � ��������Æ� and

4. ������� � �����Æ� � �.

Note that if � is compatible with Æ then, by using the notation above, � � Æ is a sequence
of derivation steps for ��. We can now define the compositional semantics.

Definition 7 (Compositional semantics). Let � be a program and let � be a goal. The
compositional semantics of � in the program � , �� � ����� � ����, is defined as

�� ��� � #�� �� ����
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where # is the operator introduced in Definition 5 and� �
� � ����� � ���� � is defined

as follows:

� �� ��� � ���� ������� 	 � Æ � �� � �� ��� � � ������ ��� � 
� ���� 	
and Æ � �� ���� for some Æ such that
��� ������� 	 is compatible with Æ�

�
���� �� �� �� � � �� ��

Formally � �� ��� is defined as the least fixed-point of the corresponding operator
$ � ������ � ���� �� � ����� � ���� � defined by

$�%���� � ���� ������� 	 � Æ � �� � �� ��� � � ������ ��� � 
� ���� 	
and Æ � %���� for some Æ such that
��� ������� 	 is compatible with Æ�

�
���� �� �� �� � � �� ��

In the above definition, the ordering on ����� � ���� � is that of (point-wise
extended) set-inclusion. It is straightforward to check that $ is continuous (on a CPO),
thus standard results ensure that the fixpoint can be calculated by �����

����, where
�� is the identity map and for " & �, �� = � Æ ���� (see for example [8]).

4 Compositionality and correctness

In this section we prove that the semantics defined above is and-compositional and
correct w.r.t. the observables ��� .

In order to prove the compositionality result we first need to define how two se-
quences describing a computation of � and �, respectively, can be composed in order
to obtain a computation of ���. Such a composition is defined by the (semantic) oper-
ator  which performs an interleaving of the actions described by the two sequences and
then eliminates the assumptions which are satisfied in the resulting sequence. For tech-
nical reasons, rather than modifying the existing sequences, the elimination of satisfied
assumptions is performed on new sequences which are generated by a closure operator
' defined as follows.

Definition 8. Let ( be a multiset of indexed atoms and let ) be a sequence in � of the
form

������� ��� 	� � � � ������� ��� 	��

We denote by ) �( the sequence

������� �� �(�	� � � � ������� �� �(�	�

where the multisets difference �� �( considers indexes.
The operator ' � ���� � ���� is defined as follows. Given * � ����, '�*� is the

least set satisfying the following conditions:
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1. * � '�*�;
2. if )� � ������� 	 � )�� � * then �)� � ���� �� �� �� 	 � )��� �( � '�*�

where � � � ���� � � � � ��� � � is a multiset such that there exists a multiset (of
indexed atoms) ( � ����

� � � � � � ���
� � � � such that �� �� ���� � ����, for each

� � ��� "	.

A few explanations are in order. The operator ' is an upper closure operator 3 which
saturates a set of sequences * by adding new sequences where redundant assumptions
can be removed: an assumptions � (in ��) can be removed if �� appears as a stable
atom (in ��). Once a stable atom is “consumed” for satisfying an assumption it is
removed from (the sets of stable atoms of) all the tuples appearing in the sequence, to
avoid multiple uses of the same atom. Note that stable atoms are considered without
the index in the condition �� �� � � �� � � � ��, while they are considered as
indexed atoms in the removal operation � � �( . The reason for this slight complication
is explained by the following example. Assume that we have the set * consisting of the
only sequence ��� �� ����� 	���� ���� ���� ���� 	�. Such a sequence indicates that at the
second step we have an assumption �, while both at the first and at the second step we
have produced a stable atom �, which has been indexed by � and �, respectively. In order
to satisfy the assumption � we can use either �� or ��. However, depending on what
indexed atom we use, we obtain two different simplified sequences in '�*�, namely
��� �� �� 	���� �� ����� 	� and ��� �� ����� 	���� �� ����� 	�, which describes correctly
the two different situations.

Before defining the composition operator  on sequences we need a notation for the
sequences in � analogous to that one introduced for sequences of derivation steps:
Let ) � ������� ��� 	�������� ��� 	� � � � ���� �� ��� 	� � � be a sequence for the
goal �. We define

�����)� � ����� (the free variables of the goal �),
�����)� �

����
��� ������ (the variables in the assumptions of )),

��������)� � ������ �
��

��� ������ (the variables in the stable multisets of )),
��������)� �

����
��� ���	�� � ������ (the variables in the output constraints of )

which are not in the corresponding input constraints),
�����)� � ���������)� � ��������)�� � ������)� � �����)��.

We can now define the composition operator  on sequences. To simplify the nota-
tion we denote by  both the operator acting on sequences and that one acting on sets
of sequences.

Definition 9. The operator  � ��� � ���� is defined inductively as follows. Assume
that )� � ������� ��� 	� � )�� and )� � ������� ��� 	� � )�� are sequences for the
goals �� and ��, respectively. If

������)�� � ������� � ������)�� � ������� � ������ � ������

then )�  )� is defined by cases as follows:
3 � � ���� holds by definition, and it is easy to see that ������� � ���� holds and that � � ��

implies ���� � �����.
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1. If both )� and )� have length �, say )� � ��� �� ��� � and )� � ��� �� ��� �, then

)�  )� � ���� �� �� ���� ���

2. If )� has length � and )� has length & � then

)�  )� � �������� ������ 	��) � ) � )��  )� and �� �� �"������)� � 	���

The symmetric case is analogous and therefore omitted.

3. If both )� and )� have length & � then

)�  )� � �������� �� ���� 	� � ) � � � ) � �)��  )��
and �� �� �"������)� � 	��

�
�������� �� ���� 	� � ) � � � ) � �)�  )���

and �� �� �"������)� � 	��

Finally the composition of sets of sequences  � ���� � ���� � ���� is defined
by:

*�  *� � �) � � � there exist )� � *� and )� � *� such that
) � ������� ��� 	� � � � ���� �� ��� �� � '�)�  )���
������)�� � �����)��� � �����)� � � and for � � ��� "	

������)�� � �����)��� � ������ �
����
��� ���	�� �

��

��� ��������

Using this notion of composition of sequences we can show that the semantics ��

is compositional. Before proving the compositionality theorem we need some technical
lemmas.

Lemma 1. Let � be a goal, Æ � � �� ��� and let ) � #�Æ�. Then ���Æ� � ���)� holds,
where � � � �"
� ���� ������ ��"���� ��� �.

Lemma 2. Let � be a program,�� and�� be two goals and assume that Æ � � �
� ���� ���.

Then there exists Æ� � � �� ���� and Æ� � � �� ����, such that #�Æ� � '�#�Æ��  #�Æ���.

Lemma 3. Let � be a program, let �� and �� be two goals and assume that Æ� �
� �� ���� and Æ� � � �� ���� are two sequences such that the following hold:

1. #�Æ��  #�Æ�� is defined,
2. ) � �������(�� 	� � � � ���� ��(�� �� � '�#�Æ��  #�Æ���,
3. ������#�Æ��� � �����#�Æ���� � �����)� � �,
4. for � � ��� "	, ������#�Æ���������#�Æ����������� �

����
��� ���	���

��
��� ���(��.

Then there exists Æ � � �� ���� ��� such that �����Æ� � �����Æ�� � �����Æ�� and ) �
#�Æ�.

By using the above results we can prove the following theorem.

Theorem 1 (Compositionality). Let � be a program and let �� and �� be two goals.
Then

�� ���� ��� � �� ����  �� �����
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4.1 Correctness

In order to show the correctness of the semantics�� w.r.t. the (input/output) observables
��� , we first introduce a different characterization of ��� obtained by using the new
transition system defined in Table 2.

Definition 10. Let � be a program and let � be a goal and let 
� be (the least rela-
tion) defined by the rules in Table 2. We define

���
� ��� � ��������� � ��� � 
��

� ��� � �
�� ��

The correspondence of �� � with the original notion �� is stated by the following
proposition, whose proof is immediate.

Proposition 1. Let � be a program and let � be a goal. Then

��� ��� � ���
� ����

The observables ���
� , and therefore ��� , describing answers of successful com-

putations can be obtained from � by considering suitable sequences, namely those se-
quences which do not perform assumptions neither on CHR constraints nor on built-in
constraints. The first condition means that the second components of tuples must be
empty, while the second one means that the assumed constraint at step i must be equal
to the produced constraint of steps i-1. We call “connected” those sequences which
satisfy these requirements:

Definition 11 (Connected sequences). Assume that

) � ������� ��� 	� � � � ������� ��� ��

is a sequence in �. We say that ) is connected if �� � � for each !, � � ! � " and
	� � ����, for each �, � � � � "
 �.

The proof of the following result derives from the definition of connected sequence
and an easy inductive argument. Given a sequence) � ������� ��� 	� � � � ������� ��� 	�,
we denote by ������)� the built-in constraint 	�, by �������)� the constraint 	� ���

and by ����
�)� the goal ��.

Proposition 2. Let � be a program and let � be a goal. Then

���
� ��� � ��������� � there exists ) � �� ��� such that �"������)� � ��

) is connected, ����
�)� � � and � � ������)���

The following corollary is immediate from Proposition 1.

Corollary 1 (Correctness). Let � be a program and let � be a goal. Then

��� ��� � ��������� � there exists ) � �� ��� such that �"������)� � ��
) is connected, ����
�)� � � and � � ������)���
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5 Conclusions

In this paper we have introduced a semantics for CHR which is compositional w.r.t.
the and-composition of goals and which is correct w.r.t “success answers”, a notion of
observable which considers the results of successful computations where all the CHR
constraints have been rewritten into built-in constraints. We are not aware of other com-
positional characterizations of CHR answers, so our work can be considered as a first
step which can be extended along several different lines.

Firstly, it would be desirable to obtain a compositional characterization also for
“qualified answers” obtained by considering computations terminating with a user-
defined constraint which does not need to be empty (see Definition 3). This could
be done by a slight extension of our model: The problem here is that, given a tuple
��� ������� 	, in order to reconstruct correctly the qualified answers we need to know
whether the configuration ���� 	 is terminating or not (that is, if ���� 	 �� holds). This
could be solved by introducing some termination modes, at the price of a further com-
plication of the traces used in our semantics.

A second possible extension is the investigation of the full abstraction issue. For ob-
vious reasons it would be desirable to introduce in the semantics the minimum amount
of information needed to obtain compositionality, while preserving correctness. In other
terms, one would like to obtain a results of this kind: �� ��� � �� ���� if and only if,
for any � , ��� ����� � ��� ��

�� �� (our Corollary 1 only ensures that the “only
if” part holds). Such a full abstraction result could be difficult to achieve, however tech-
niques similar to those used in [5, 2] for analogous results in the context of ccp could
be considered

It would be interesting also to study further notions of compositionality, for example
that one which considers union of program rules rather than conjunctions of goals, anal-
ogously to what has been done in [6]. However, due to the presence of synchronization,
the simple model based on clauses defined in [6] cannot be used for CHR.

As mentioned in the introduction, the main interest related to a compositional se-
mantics in the possibility to provide a basis to define compositional analysis and ver-
ification tools. In our case, it would be interesting to investigate to what extent the
compositional proof systems à la Hoare defined in [1, 3] for (timed) ccp languages,
based on resting points and trace semantics, can be adapted to the case of CHR.
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1 Introduction

The demonstration that we propose is meant to show SOCS-SI [1], a logic-based
tool for verification of compliance of agent interaction to protocols based on the
notion of social expectation.

The inputs to SOCS-SI are:

– a text file containing the Social Integrity Constraints (SICs in the following),
used for expressing interaction protocols;

– a text file containing an (abductive) logic program (Social Organization
Knowledge Base, SOKB in the following), used to express declarative knowl-
edge, such as the value of time deadlines;

– a history of events, representing the agent behaviour, recorded from a source
of events. So far, the implementation of SOCS-SI accepts as sources (i) the
user prompt, (ii) a log file, or (iii) a network-based tool for the observation
of the agent interaction.

By means of an abductive proof procedure, SOCS-SI uses SICs and SOKB to
generate expectations about the “ideal” social behaviour of agents, i.e., compliant
to interaction protocols, given a (partial) history of events. SOCS-SI also checks
if the actual agent behaviour corresponds to such expectations. Based on that,
it either outputs an answer of fulfillment (if the agent behaviour is compliant to
the interaction protocols) or violation (if the agent behaviour is not compliant
to interaction protocols).

The demonstration will start with a very brief presentation of the notions of
protocols, social semantics and expectations, and compliance. The proof proce-
dure will then be briefly (and informally) introduced, and the functioning of the
tool, where SICs, SOKB and history files can be visualized.

The scenario presented in the demonstration will be a “first price sealed bid”
auction; for this scenario, we will show an example of fulfillment and one of
violation.

More examples will be shown, if time allows.
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2 The SOCS-SI tool

The Social Infrastructure (SI) tool is an implementation of a logic programming
based framework defined within the SOCS project [2]. The main idea of the
framework is to exploit abduction in order to verify the compliance of agents be-
havior in respect to interactions protocols. Protocols are represented by means of
integrity constraints, while expectations about future (and past) agent behaviors
are mapped onto abducible predicates.

In order to verify compliance, a new proof procedure, SC -IFF, has been
defined and implemented [3]. The SC -IFF is mainly based on the IFF abductive
proof procedure [4], with some extensions:

– The set of facts (events) grows dynamically
– It deals with CLP constraints
– It implements the concepts of fulfillment and violation

SOCS-SI is implemented as a Java-Prolog application, where the abductive
proof procedure is implemented in Prolog. The Graphical User Interface and the
interfaces to the sources of events instead are implemented in Java. Through
the GUI it is possible to observe, for each agent, what events are related to a
certain agent, as well as its expectations. Different colors highlight expectations
of different type: pending, fulfilled and violated. Fig. 1 shows a screenshot of
SOCS-SI : a protocol violation has been detected, as a consequence of a wrong
behavior of an agent. The figure shows the particular case in which an agent
fails to take an action which it was expected to take by some temporal deadline.
As the deadline expires, SOCS-SI promptly detects the violation.

3 Outline of the demonstration

1. (Informal) introduction to the logic-based social framework, to the formalism
expressing the interaction protocols, and to the proof procedure used for
verification.

2. Demonstration scenario: first price sealed bid auction. In this auction, an
auctioneer announces an auction for a single item (which the auctioneer
may want to sell or, as in our example, buy) to a set of agents. By some
deadline, the agents may place a bid for the item. Then, the auctioneer must
decide which bid is the best, and notify by some deadline both the winner
and the losers.

3. Description of the SICs used for expressing the interaction protocols. For
instance, the following SIC:
H(tell(A,B,answer(win,Item,Quote),AuctionId),TWin)--->
EN(tell(A,B,answer(lose,Item,Quote),AuctionId),TLose)
∧ TLose > TWin.
expresses that the auctioneer is not allowed to notify an agent that its bid
has lost after notifying that it has won. The protocol is expressed by four
such SICs.



Fig. 1. The SOCS-SI Graphic User Interface

4. Running SOCS-SI : the GUI will be used to show how to select the interaction
protocols and the event source, and how to observe the agent interaction and
the proof procedure computation. We plan to show at least two examples:
one of fulfillment (the agents will all behave as expected) and one of violation
(for instance, the auctioneer may fail to notify the losers, or may notify an
agent of both winning and losing the auction).
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Introduction. A protein is a list of linked units called aminoacids. There are
20 different kinds of aminoacids and the typical length of a protein is less than
500 units. The Protein Structure Prediction Problem (PSP) is the problem of
predicting the 3D native conformation of a protein, when its aminoacid sequence
is known. The process for reaching this state is called the protein folding. It is
widely accepted that the native conformation ensures a state of minimum free
energy [1]. We assume some energy functions previously defined and we focus on
the problem of finding the 3D conformation that minimizes them. We present two
tools developed following different approaches to this problem. In the first we use
Constraint Logic Programming over finite domains applied on the modeling of
the Protein Structure Prediction problem on the Face-Centered Cubic Lattice [4].
In the second we develop a high-level off-lattice simulation method which makes
use of Concurrent Constraint Programming [3]. The two codes are available at
http://www.dimi.uniud.it/dovier/PF.

CLP(FD) minimization. A non-linear minimization problem can be easier
to solve when the solution’s space is finite. In this context, this can be done
by setting admissible aminoacid’s positions as the vertices of a lattice. We use
the so-called Face-Centered Cubic Lattice [7], which is a good discrete model
for protein’s conformations. We look for the protein conformation in the lattice
that minimizes a function which is the sum of the contributions of all pairs of
aminoacids. Each contribution is non-zero only if two aminoacids are under a
certain lattice distance and the precise value depends on their type as described
in [2]. The tool is written in SICStus Prolog, using the clpfd library and it is
based on [4]. We have added constraints obtained by secondary structure predic-
tion (prediction of some local conformations, such as helices and sheets), which
are currently very accurate, to reach acceptable computation time. We have also
developed a local coordinate system to define torsional angles, which allows to
link efficiently the secondary structure information to the three-dimensional fold-
ing. Moreover, we have implemented a method to dynamically prune the search
tree based on the analysis of the contacts between the aminoacids during the
folding process. The results we obtained allow us to effectively predict proteins
up to 60 aminoacids. The actual version of the tool is much faster that the first
version presented in [5]: for some proteins we have reached a speed up of more
than 200 times. Anyway, time is still considerable, as can be expected from the
NP completeness of the problem. Proteins of length up to 20 are folded correctly



in few seconds, while for longer proteins (around 40 aminoacids) the optimal so-
lution is reached in 3 to 10 hours. Proteins of length 60 take longer time, even if
acceptable solutions are found in about 10 hours (on a PC, 3 GHz, 512MB). The
user can choose the maximum search time and he/she can prune the search tree
imposing a “compact” coefficient that acts on the allowed 3D structure to the
protein. In figure 1 it is shown the tool while working on protein 1YPA of length
63, with time limit of 24h (86400s) and compact factor of 0.17. The solution is
found in 14 hours and saved on a standard “pdb” file viewed using the program
ViewerLite.

Fig. 1. CLP(FD) minimizator

CCP simulation. In this tool, described in [3], we adopt an off-lattice simplified
representation of a protein, where each aminoacid is represented by a center of
interaction. The empirical contact energy function [2] used in the constraint-
based approach is modified and augmented by local terms which describe bond
lengths, bend angles, and torsion angles. Our simulation makes use of concurrent
constraint programming. Basically, each aminoacid of the protein is viewed as
an independent agent that moves in the space and communicates with other
aminoacids. Each agent waits for a communication of the modification of other
aminoacids’ position; after receiving a message, it stores the information in a
list and performs a move. The new position is computed using a Montecarlo
simulation, based on the spatial information available to the aminoacid, which
may not be the current dislocation of the protein, due to asynchrony in the
communication. Once the move is performed, the aminoacid communicates its
new position to all the others. The code has been implemented in Mozart [6].
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We tested our system either on known proteins or on artificial sequences of
aminoacids. The code works properly on sequences of Alanines, that are known
to have a high tendency to form a single helix, while for more complex structures
the minima not always corresponds to the real native conformation. In Figure 2
we show the tool while folding a helix from a sequence of 14 Alanines. As initial
state of the protein we set each aminoacid along a line with a step of the bond
distance (3.8 Å). We run the simulation for 60 seconds on a PC, 1GHz, 256MB.

Fig. 2. CCP Simulator.
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1 The DALI language

DALI [3] [2] is an Active Logic Programming Language designed in the line of [6]
for executable speci cation of logical agents. A DALI agent is a logic program that
contains a particular kind of rules, reactive rules, aimed at interacting with an external
environment. The reactive and proactive behavior of the DALI agent is triggered by
several kinds of events: external, internal, present and past events. All the events and
actions are timestamped, so as to record when they occurred. The new syntactic entities,
i.e., predicates related to events and proactivity, are indicated with special post x es
(which are coped with by a pre-processor) so as to be immediately recognized while
looking at a program.

The external events are syntactically indicated by the post x E. When an event
comes into the agent from its “external world”, the agent can perceive it and decide to
react. The reaction is de ned by a reactive rule which has in its head that external event.
The special token :>, used instead of : −, indicates that reactive rules performs forward
reasoning. The agent remembers to have reacted by converting the external event into a
past event (time-stamped). Operationally, if an incoming external event is recognized,
i.e., corresponds to the head of a reactive rule, it is added into a list called EV and
consumed according to the arrival order, unless priorities are speci ed.

The internal events de ne a kind of “individuality” of a DALI agent, making her
proactive independently of the environment, of the user and of the other agents, and
allowing her to manipulate and revise her knowledge. An internal event is syntactically
indicated by the post x I, and its description is composed of two rules. The  rst one
contains the conditions (knowledge, past events, procedures, etc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a default frequency customizable
by means of directives in the initialization  le. The user’s directives can tune several
parameters: at which frequency the agent must attempt the internal events; how many
times an agent must react to the internal event (forever, once, twice,. . . ) and when (for-
ever, when triggering conditions occur, . . . ); how long the event must be attempted
(until some time, until some terminating conditions, forever).
? We acknowledge support by the Information Society Technologies programme of the European
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When an agent perceives an event from the “external world”, it does not necessarily
react to it immediately: she has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is indicated by the suf x N.

Actions are the agent’s way of affecting her environment, possibly in reaction to
an external or internal event. In DALI, actions (indicated with post x A) may have
or not preconditions: in the former case, the actions are de ne d by actions rules, in
the latter case they are just action atoms. An action rule is just a plain rule, but in
order to emphasize that it is related to an action, we have introduced the new token :<,
thus adopting the syntax action :< preconditions. Similarly to external and internal
events, actions are recorded as past actions.

Past events represent the agent’s “memory”, that makes her capable to perform
future activities while having experience of previous events, and of her own previous
conclusions. Past events, indicated by the suf x P, are kept for a certain default amount
of time, that can be modi ed by the user through a suitable directive in the initialization
 le.

The DALI language has been equipped with a communication architecture consists
of three levels. The  rst level implements a FIPA-compliant [5] communication proto-
col and a  lte r on communication, i.e. a set of rules that decide whether or not receive
or send a message. The DALI communication  lte r is speci ed by means of meta-level
rules de ning the distinguished predicates tell and told. The second level includes a
meta-reasoning layer, that tries to understand message contents, possibly based on on-
tologies and/or on forms of commonsense reasoning. The third level consists of the
DALI interpreter.

The declarative and procedural semantics of DALI, is de ned as an evolutionary
semantics, so as to cope with the evolution of an agent corresponding to the perception
of events [3]. The semantics has been generalized so as to include the communication
architecture [4] by resorting to the general framework RCL (Re ecti ve Computational
Logic) [1] based on the concept of re ection principle.

Following [7] and the references therein, the operational semantics of communica-
tion is de ned [4] by means of a formal dialogue game framework that focuses on the
rules of dialogue, regardless the meaning the agent may place on the locutions uttered.
This means, we do not want to refer to the mental states of the participants.

2 The DALI Interpreter

The DALI interpreter has been implemented in Sicstus Prolog, and includes a FIPA-
compliant communication library. The DALI interpreter is in principle able to interop-
erate with other FIPA-compliant platforms. Presently, we have implemented interoper-
ability with JADE, which is one of the best-known non-logical middleware for agents
(namely, it is written in java). DALI agents can be distributed on the web, as the imple-
mentation of the communication primitives is based on TCP/IP.

The interpreter is composed of three main modules: (i) the DALI active server mod-
ule, that manages the community of DALI agents; (ii) the DALI active user module,
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that provides a user interface for the user to interact with the agents; (iii) the active dali
module, that is automatically activated by the active server whenever an agent is cre-
ated (then, there are as many copies of the active dali module running as the existing
agents).

The DALI/FIPA communication protocol consists of the main FIPA primitives, plus
few new primitives which are peculiar of DALI. The code implementing the FIPA prim-
itives is contained in the  le communication  pa.txt , imported by agents as a library.
The DALI/FIPA communication protocol is implemented by means a piece of DALI
code including suitable tell/told rules. Whenever a message is received, with content
part primitive(Content,Sender) the DALI interpreter automatically looks for a corre-
sponding told rule that speci es whether the message should be accepted. Symmetri-
cally, whenever a message should be sent, with content part primitive(Content,Sender)
the DALI interpreter automatically looks for a corresponding tell rule that speci es
whether the message can be actually issued. The DALI code de ni ng the DALI/FIPA
protocol is contained in a separate prede ned  le, communication.txt, imported by
agents as a library. In this way, both the communication primitives and the commu-
nication protocol can be seen as “input parameters ”of the agent. Typically, a user will
add new application-dependent tell/told rules to the  le communication.txt. Possibly
however, both  les can be replaced, thus specifying a different communication protocol.

Each DALI agent must be generated by specifying the following parameters. (a)
The name of the  le that contains the DALI logic program (a .txt  le). (b) The name of
the agent. (c) The ontology the agent adopts (a .txt  le ); (d) The language (e.g., Italian
or English etc.) used in the communication acts; (e) The name of the  le containing
the communication constraints, a .txt  le; as mentioned, a prede ned standard version
communication.txt is provided. (f) The name of the communication library, a .txt  le;
as mentioned, a standard version communication  pa.txt is provided. (g) The skills that
the agent means to make explicit to the community of DALI agents (e.g., profession,
hobbies, etc.). Below is an example of activation of an agent.

agent(’demo/program/prog’,gino,’demo/pippo ontology.txt’,italian,
[’demo/communication’],[’demo/communication  pa’],[tourist]).

From the program  le, say prog.txt, a pre-processing stage extracts three  les. (1)
The  le prog.ple, that contains a list of the special tokens occurring in the agent pro-
gram, denoting internal and external events, goals, actions, etc. (2) The  le prog.plf, that
contains a list of user-de ned directives, that the DALI environment provides for tuning
the behavior of an agent: the user can decide for instance: the priority among events;
how long to keep memory of past events, and/or upon which conditions they must be
removed; the starting and terminating conditions for attempting internal events, and the
frequency. (3) The  le prog.pl which contains the code of the agent; it must be no-
ticed that all variables are rei ed, so as to guarantee safe communication and reliable
metareasoning capabilities.
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3 Case studies

We are able of course to show many simple examples, aimed at illustrating the basic
language features. More complex case studies can however be demonstrated.

To demonstrate the usefulness of the “internal event” and “goal” mechanisms, we
have considered as a case-study the implementation of STRIPS-like planning. We can
show that it is possible in DALI to design and implement this kind of planning with-
out de ning a meta-interpreter. Rather, each feasible action is managed by the agent’s
proactive behavior: the agent checks whether there is a goal requiring that action, sets
up the possible subgoals, waits for the preconditions to be veri ed, performs the actions
(or records the actions to be done if the plan is to be executed later), and  nally arranges
the postconditions.

We can generalize this example to dynamic planning, where an agent is able to
recover from unwanted or unexpected situation, by suitably modifying its plan.

To explain how the  lter level works, we have implemented and experimented a
case-study that demonstrates how this  lter is powerful enough to express sophisticated
concepts such as expressing and updating the level of trust. Trust is a kind of social
knowledge and encodes evaluations about which agents can be taken as reliable sources
of information or services. We focus on a practical issues: namely, how the level of
Trust in uences communication and choices of the agents.
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1 Introduction

In this demonstration we present a Java library, called JSetL, that offers a
number of facilities to support declarative programming like those usually found
in logic or functional declarative languages: logical variables, list and set data
structures (possibly partially specified), unification and constraint solving over
sets, nondeterminism.

Declarative programming is often associated with constraint programming.
As a matter of fact, constraints provide a powerful tool for stating solutions as
sets of equations and disequations over the selected domains, which are then
solved by using domain specific knowledge, with no concern to the order in
which they occur in the program.

Differently from other works (e.g., [1, 4]) in JSetL we do not restrict our-
selves to constraints, but we try to provide a more comprehensive collection of
facilities to support a real declarative style of programming. Furthermore, we
try to keep our proposal as general as possible, to provide a general-purpose
tool not devoted to any specific application.

2 Main features of JSetL

The most notable characteristics of JSetL are:

• Logical variables. The notion of logical variable (like that usually found in
logic and functional programming languages) is implemented by the class
Lvar. An instance of the class Lvar is created by the Java declaration

Lvar VarName = new Lvar(VarNameExt,VarValue);

where VarName is the variable name, VarNameExt is an optional external
name, and VarValue is an optional value for the variable. The value of
a logical variable can be of any type, provided it supports the equals
method. Logical variables which have no value associated with are said
to be uninitialized. A logical variable remains uninitialized until it gets a

1



value as the result of processing some constraint involving it (in partic-
ular, equality constraints). Constraints are the main operations through
which Lvar objects can be manipulated. Constraints can be used to set
the value of a logical variable as well as to inspect it. No constraint,
however, is allowed to modify the value of a logical variable.

• Lists and sets. List and set data structures (like those in [3]) are provided
by classes Lst and Set, respectively. Instances of these classes are created
by declarations of the form

Lst LstName = new Lst(LstNameExt,LstElemValues);
Set SetName = new Set(SetNameExt,SetElemValues);

where the different fields have the same meaning proposed for Lvar vari-
ables (obviously, transported on the new domains). Lst and Set objects
are dealt with as logical variables, but limited to Lst and Set values.
Moreover, list/set constructor operations are provided to build lists/sets
out of their elements at run-time. The main difference between lists and
sets is that, while in lists the order and repetitions of elements are im-
portant, in sets order and repetitions of elements do not matter. Both
lists and sets can be partially specified, i.e., they can contain uninitialized
logical variables in place of single elements or as a part of the list/set.

• Unification. JSetL provides unification between logical variables—as well
as between Lst and Set objects—basically in the form of equality con-
straints: O1.eq(O2), where O1 and O2 are either Lvar, or Lst, or Set
objects, unifies O1 and O2. Unification allows one both to test equality
between O1 and O2 and to associate a value with uninitialized logical
variables (lists, sets) possibly occurring in the two objects. Note that
solving an equality constraint implies the ability to solve a set unification
problem (cf., e.g., [3]).

• Constraints. Basic set-theoretical operations, as well as equalities, in-
equalities and integer comparison expressions, are dealt with as con-
straints. Constraint expressions are evaluated even if they contain unini-
tialized variables. Their evaluation is carried on in the context of the
current collection of active constraints C (the constraint store) using a
powerful (set) constraint solver, which allows us to compute with par-
tially specified data.

The approach adopted for constraint solving in JSetL is basically the same
developed for CLP(SET ) [2]. To add a constraint C to the constraint
store, the add method of the Solver class can be called as follows:

Solver.add(C)

The order in which constraints are added to the constraint store is com-
pletely immaterial. After constraints have been added to the store, one
can invoke their resolution by calling the solve method:

Solver.solve()



The solve method nondeterministically searches for a solution that sat-
isfies all constraints introduced in the constraint store. If there is no
solution, a Failure exception is generated; otherwise the computation
terminates with success when the first solution is found. The default ac-
tion for this exception is the immediate termination of the current thread.
Constraints that are not solved are left in the constraint store: they will
be used later to narrow the set of possible values that can be assigned to
uninitialized variables.

• Nondeterminism. Constraint solving in JSetL is inherently nondetermin-
istic: the order in which constraints are added/solved does not matter
(dont care nondeterminism); solutions for set constraints (e.g., equality,
membership,. . . ) are computed nondeterministically, using choice points
and backtracking (dont know nondeterminism).

A simple way to exploit nondeterminism is through the use of the Setof
method of the Solver class. This method allows one to explore the whole
search space of a nondeterministic computation and to collect into a set
all the computed solutions for a specified logical variable x.

All these features strongly contribute to support a real declarative program-
ming style in Java. In particular, the use of partially specified dynamic data
structures, the ability to deal with constraint expressions disregarding the or-
der in which they are encountered and the instantiation of the logical variables
possibly occurring in them, as well as the nondeterminism “naturally” sup-
ported by operations over sets, are fundamental features to allow the language
to be used as a highly declarative modeling tool.

3 Programming with JSetL

Example 3.1 All pairs

Check whether all elements of a set s are pairs, i.e., they have the form
[x1,x2], for any x1 and x2.

In mathematical terms, a (declarative) solution for this problem can be
stated as follows: (∀x ∈ s)(∃x1, x2 x = [x1, x2]). The program below shows
how this solution can be immediately implemented in Java using JSetL.

public static void all pairs(Set s) throws Failure {
Lvar x1 = new Lvar();

Lvar x2 = new Lvar();

Lvar x = new Lvar();

Lst pair = Lst.empty.ins1(x2).ins1(x1);

Lvar[] LocalVars = {x1,x2};
Solver.forall(x,s,LocalVars,x.eq(pair));

Solver.solve();

return;

}



Example 3.1 shows the declaration of three logical variables, x1, x2, x, and
the creation of a new object of type Lst, representing a partially specified list
of two elements. The constraints to be solved are introduced by the forall
method, using the LocalVars array to specify existentially quantified (logical)
variables. The call to the solve method allows to check satisfiability of the
current collection of constraints.

The next example is a method to compute the set of all subsets of a given
set. In this case we use the add method to introduce a new constraint and the
setof method to get all possible solutions (not only the first one).

Example 3.2 All solutions

Compute the powerset of a given set s.

public static Set powerset(Set s) throws Failure {
Set r = new Set();

Solver.add(r.subset(s));

return Solver.setof(r);

}

If s is the set {’a’,’b’}, the set returned by powerset is {{},{’a’},{’b’},
{’a’,’b’}}.
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