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Abstract. The skill of reasoning about interaction protocols is very
useful in many situations in the application framework of agent-oriented
software engineering. In particular, we will tackle the cases of protocol
selection, composition and implementation conformance w.r.t. an AUML
sequence diagram. This work is based on DyLOG, an agent language
based on modal logic that allows the inclusion, in the agent specification,
of a set of interaction protocols.

1 Introduction

In Multi-Agent Systems (MASs) the communicative behavior of the agents plays
a very important role, because it is the means by which agents cooperate for
achieving a common goal or for competing for a resource. In order to rule com-
munication, a set of shared protocols is commonly used. One of the most success-
ful languages for designing them is AUML (Agent UML) [21]. This language is
intuitive and easy to use for sketching the interactive behavior of a set of agents.

Our claim is that MAS engineering systems should encompass ways for ob-
taining declarative representations of protocols. The reason is that the use of
declarative languages for protocol specification, although may be less intuitive,
has the advantage of allowing the use of reasoning techniques in tasks like pro-
tocol validation or the verification of properties of the conversations within the
system [13]. For instance, in [6] we proposed a logical framework, based on modal
logic, that allows to include in an agent specification also a set of communication
protocols. In this framework it is possible to reason about the effects of engaging
specific conversations and to verify properties of the protocol: we can plan a con-
versation for achieving a particular goal, which respects the protocol, by checking
if there is an execution trace of the protocol, after which the goal is satisfied.
We can also verify if the composition of some protocols respects some desired
constraint. Moreover, in [5, 7] we have shown how reasoning about conversation
protocols can be used in an open application context where a personal assistant
uses reasoning techniques for customizing the selection and the composition of
web services.

The ability of reasoning about the properties of the interactions that occur
among agents before they actually occur, may also by applied to support a MAS



developer during the design phase of the MAS. For instance, the developer could
be supported in the selection of already developed protocols from a library and
in the verification of compositional properties. Another crucial problem, typical
of this application framework and that we think could be tackled by means of
reasoning techniques, is checking the conformance of a logic agent or of a protocol
implementation to the specification given in AUML during the system design
phase. Broadly speaking an agent is conformant to a given protocol if its behavior
is always legal w.r.t. the protocol; more precisely conformance verification is
interpreted as the problem of checking that an agent never performs any dialogue
move that is not foreseen by the AUML specification.

In particular, in this work we survey over different problems that could be
tackled by means of reasoning techniques: we sketch how protocol conformance
could be verified, how by applying reasoning techniques it is possible to select a
protocol from a catalogue of available AUML diagrams, and also how we could
deal with issues arising from the composition of various protocols in the MAS.

The work is organized as follows. First of all we will briefly describe how
speech acts and protocols can be represented in the DyLOG agent program-
ming language. In Sections 3 and 4 we will describe some major issues inherent
agent-oriented software engineering, and we will show by means of examples how
reasoning techniques can be adopted for solving such problems. Conclusions fol-
low.

2 Specification of interaction protocols in DyLOG

Logic-based executable agent specification languages have been deeply investi-
gated in the last years [20]. In this section we will briefly introduce DyLOG, a
high-level logic programming language for modeling and programming rational
agents, based on a modal theory of actions and mental attitudes where modali-
ties are used for representing actions as well as beliefs for modeling the agent’s
mental state [10, 6]. It accounts both for atomic and complex actions, or pro-
cedures. Atomic actions are either world actions, affecting the world, or mental
actions, i.e. sensing and communicative actions which only affect the agent be-
liefs. Complex actions are defined through (possibly recursive) definitions, given
by means of Prolog-like clauses and by making use of action operators like se-
quence, test and non-deterministic choice. The action theory allows to cope with
the problem of reasoning about complex actions with incomplete knowledge and
in particular to address the temporal projection and planning problem.

Intuitively DyLOG allows the specification of a rational agent that can reason
about its own behavior, can choose a course of actions conditioned by its mental
state, and can use sensors and communication for obtaining fresh knowledge.
The language also allows agents to reason about their communicative behavior
by means of techniques for proving existential properties of the kind: given a
protocol and a set of desiderata, is there a specific conversation, that respects
the protocol, which also satisfies the desired conditions? In the following we will



describe how the communicative behavior of an agent can be represented in
DyLOG and we will sketch the applicable reasoning techniques.

The DyLOG language supports communication both at the level of primitive
speech acts and at the level of interaction protocols. Following the mentalistic
approach, speech acts are considered as atomic actions, described in terms of
preconditions and effects on the agent mental state, of form speech act(agi, agj ,
l), where agi (sender) and agj (receiver) are agents and l (a fluent) is the object
of the communication. Since speech acts can be seen as mental actions, affecting
both the sender’s and the receiver’s mental state, we have modeled them by
generalizing non-communicative action definitions, so to allow also the represen-
tation of the effects of an action executed by some other agent on the current
agent mental state, described by a consistent set of belief fluents. Actually, in
DyLOG each agent has a twofold, personal representation of the speech act:
one is to be used when it is the sender, the other when it is the receiver. Such
a representation provides the capability of reasoning about conversation effects
from the subjective point of view of the agent holding the representation. In the
speech act specification that holds when the agent is the sender, the precondi-
tions contain some sincerity condition that must hold in its mental state. When
it is the receiver, instead, the action is always executable. As an example, let us
define the semantics of the inform speech act within the DyLOG framework:

a) 2(BSelf l ∧ BSelfUOtherl ⊃ 〈inform(Self,Other, l)〉>)
b) 2([inform(Self,Other, l)]MSelfBOtherl)
c) 2(BSelfBOtherauthority(Self, l) ⊃ [inform(Self,Other, l)]BSelfBOtherl)
d) 2(> ⊃ 〈inform(Other, Self, l)〉>)
e) 2([inform(Other, Self, l)]BSelfBOtherl)
f) 2(BSelfauthority(Other, l) ⊃ [inform(Other, Self, l)]BSelf l)

Clause (a) states that Self will execute an inform act only if it believes l (we use
the modal operator Bagi to model the beliefs of agent agi) and it believes that
the receiver (Other) does not know l. It also considers possible that the receiver
will adopt its belief (the modal operator Magi is defined as the dual of Bagi ,
intuitively Magiϕ means the agi considers ϕ possible), clause (b), although it
cannot be certain about it -autonomy assumption-. If agent Self believes to be
considered a trusted authority about l by the receiver, it is also confident that
Other will adopt its belief, clause (c). Instead, when Self is the receiver, the
effect of an inform act is that Self will believe that l is believed by the sender
(Other), clause (e), but Self will adopt l as an own belief only if it thinks that
Other is a trusted authority, clauses (f).

DyLOG supports also the development of conversation protocols, that build
on individual speech acts and specify communication patterns guiding the agent
communicative behavior during a protocol-oriented dialogue. Reception of mes-
sages is modeled as a special kind of sensing action, what we call get message

actions. Indeed receiving a message is interpreted as a query for an external in-
put, whose outcome is unpredictable. The main difference w.r.t. normal sensing
actions is that get message actions are defined by means of speech acts performed



by the interlocutor. Protocols are thus expressed by means of a collection of pro-
cedure axioms of the action logic, having form 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ, where
p0 is the procedure name the pi’s can be i’s communicative acts or special sens-
ing actions for the reception of message. Each agent has a subjective perception
of the communication with other agents, for this reason each protocol has as
many procedural representations as the possible roles in the conversation. The
importance of roles has been underlined also recently in works, such as [17].

Given a set ΠC of simple action laws defining an agent agi’s primitive speech
acts, a set ΠSget of axioms for the reception of messages, and a set ΠCP ,
of procedure axioms specifying a collection of conversation protocols, we de-
note by CKitagi (the communication kit of a DyLOG agent agi), the triple
(ΠC , ΠCP , ΠSget). CKitagi is a part of Πagi

, i.e. the domain description of the
agent agi, including also S0, i.e the initial set of agi’s belief fluents, and eventu-
ally laws and axioms for specifying the agent non communicative behaviors.

2.1 Reasoning about interaction protocols in DyLOG

Given a DyLOG domain description Πagi
containing a CKitagi with the specifi-

cations of the interaction protocols and of the relevant speech acts, a planning

activity can be triggered by existential queries of form 〈p1〉〈p2〉 . . . 〈pm〉Fs, where
each pk (k = 1, . . . ,m) may be an atomic or complex action (a primitive speech
act or an interaction protocol), executed by our agent, or an external1 speech
act, that belongs to CKitagi . Checking if the query succeeds corresponds to an-
swering to the question “is there an execution of p1, . . . , pm leading to a state
where the conjunction of belief fluents Fs holds for agent agi?”. Such an execu-
tion is a plan to bring about Fs. The procedure definition constrains the search
space. During the planning process get message actions are treated as sensing
actions, whose outcome cannot be predicted before the actual execution: since
agents cannot read each other’s mind, they cannot know in advance the answers
that they will receive.

Depending on the task that one has to execute, it may alternatively be nec-
essary to take into account all of the possible alternatives (which, we can foresee
them because of the existence of the protocol) or just to find one of them. In
the former case, the extracted plan will be conditional, in the sense that for
each get message and for each sensing action it will contain as many branches
as possible action outcomes. Each path in the resulting tree is a linear plan that
brings about Fs. In the latter case, instead, the plan is linear.

3 Reasoning about protocols in MAS design

Generally speaking MASs are made of heterogeneous agents, which have differ-
ent ways of representing their knowledge and adopt different mechanisms for

1 By the word external we denote a speech act in which our agent plays the role of
the receiver.



reasoning about it. Despite heterogeneity, agents need to interact and exchange
information in order to cooperate or compete for the control of shared resources.
This is obtained by means of interaction protocols, which result in being the
connective tissue of the system. MAS engineering systems support the design of
interaction protocols by means of graphical editors for the AUML language.

The AUML specification of a protocol is obtained by means of sequence di-
agrams [21], in which the interactions among the participants are modeled as
message exchange and are arranged in time sequences. Sequence diagrams have
two dimensions: the vertical (time) dimension specifying when a message is sent
or expected, and the horizontal dimension that expresses the participants and
their different roles. This kind of representation is very high-level and usually
needs to be further specified in order to arrive to real implementations. In fact,
the semantics of the atomic speech acts is not given by AUML; at implementa-
tion time, depending on the chosen ontology of speech acts, it may be necessary
to express constraints or preconditions that depend on the agent mental state,
that are not reported in the sequence diagrams. Since AUML sequence diagrams
do not represent complete programs, it is not possible to automatically trans-
late them in a way that fully expresses the communicative behavior of one or
more agents in the application scenario. The protocol is to be implemented. On
the other hand, given a protocol implementation it would be nice to have the
possibility of automatically verifying its conformance to the desired protocol.

As mentioned in the introduction, a program is conformant to a protocol if
all the message exchanges that it produces are foreseen by the protocol. The
adoption of a logic formalism for implementing the protocols greatly simplifies
this kind of verification, as we will see in the case of DyLOG in the next section.
Differently of [11], the conformance property will be expressed from a language-
theoretic point of view instead of from a logic point of view, by interpreting the
problem of conformance verification as a problem of inclusion of a context-free
language (CFL) into a regular language. In this process, the particular form
of axiom, namely inclusion axiom, used to define protocol clauses in a DyLOG

implementation, comes to help us. These axioms have interesting computational
properties because they can be considered as rewriting rules [9, 3]. In [12] this
kind of axioms is used for defining grammar logics and some relations between
formal languages and such logics are analyzed.

On the side of protocol implementation, logic languages for reasoning about
action and change, like DyLOG, seem particularly suitable. The reason is that
although AUML accounts for a fast and intuitive prototyping in a graphical
environment, it does not straightforwardly allow the proof of properties of the
resulting system. Nevertheless, given the crucial role that protocols play, the abil-
ity of reasoning about properties of the interactions, occurring among the agents,
is a key stone of the design and engineering of agent systems. By using DyLOG
(or a similar language) it is possible to use the reasoning techniques embedded
in the language for executing various tasks. Thus, besides the verification of the
conformance of an implementation to a protocol, other possible applications of
reasoning techniques include the intelligent use of libraries. In fact, it is not likely



that the designer of a MAS redesigns every time new protocols, instead, he/she
will more likely use catalogues of available protocols, in which searching for one
of interest (notice that search could be based on the concept of conformance). In
this case, the designer will need to know before the actual implementation of the
agent, if the selected protocol fits some specific requisites of the system that is
being developed. This problem can be interpreted as the problem of verifying if
it is possible that a property of interest holds after the execution of the protocol
in a given initial state. In this line, the designer may be interested in verifying
if the composition of a set of protocols will be useful in the current application.

These observations are particularly relevant in the development of MAS pro-
totyping systems (e.g. DCaseLP [19, 1]): in fact, a system which supports the
design of the (communicative) interaction between the agents in a MAS only by
means of AUML sequence diagrams, can carry on verifications only by animating
the system and checking what happens in specific cases. A solution that has clear
limitations since we get information only about the cases that have been tried.
The worst limitation is that it is not possible to return to the system engineer
the assumptions under which a goal is achieved or a property holds after the
interaction.

4 Reasoning about protocols: some examples

Let us now illustrate the usefulness of reasoning techniques in the application
domain of MAS design by means of examples. To this aim, consider this scenario:
a MAS designer must develop a set of interaction protocols for a restaurant and
a cinema that, for promotional reasons, will cooperate as described hereafter. A
customer that makes a reservation at the restaurant will get a free ticket for a
movie shown by the cinema. By restaurant and cinema we do not mean a specific
restaurant or cinema but a generic service provider that will interact with its
customers according to the protocol. Figure 1 reports an example of protocols,
designed in AUML, for the two families of providers; the protocol described by
(iii) is followed by the restaurant while the protocol described by (i) and (ii) is
followed by the cinema. Let us describe the translation of the two protocols into
a DyLOG representation. Observe that each of them has two complementary
views: the view of the customer and the view of the provider. In this example we
report only the view of the customer, which is what we need for the reasoning
process. In the following, the subscripts next to the protocol names are a writing
convention for representing the role that the agent plays; so, for instance, Q

stands for querier, C for customer, and so on. The restaurant protocol is the
following:

(a) 〈reserv rest 1C(Self, Service, T ime)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Time)) ;

BSelfavailable(Time)? ;
get info(Self, Service, reservation(Time)) ;
get info(Self, Service, cinema promo) ;
get info(Self, Service, ft number)〉ϕ



(b) [get info(Self, Service, F luent)]ϕ ⊂ [inform(Service, Self, F luent)]ϕ

Procedure (a) describes the customer-view of the restaurant protocol. The cus-
tomer asks if a table is available at a certain time, if so, the restaurant informs
the customer that a reservation has been taken and, also, it informs the cus-
tomer that it gained a promotional free ticket for a cinema (cinema promo) and
it returns a code number (ft number). Clause (b) shows how get info can be
implemented as an inform act executed by the service and having as recipient
the customer. In the DyLOG syntax the question mark corresponds to checking
the value of a fluent in the current state while the semicolon is the sequencing
operator of two actions. The cinema protocol, instead is:

(c) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

¬BSelfcinema promo? ;
yes no queryI(Self, Service, pay by(c card)) ;

BSelfpay by(c card)? ;
inform(Self, Service, cc number) ;
get info(Self, Service, reservation(Movie))〉ϕ

(d) 〈reserv cinema 1C(Self, Service,Movie)〉ϕ ⊂
〈yes no queryQ(Self, Service, available(Movie)) ;

BSelfavailable(Movie)? ;
yes no queryI(Self, Service, cinema promo) ;

BSelfcinema promo? ;
inform(Self, Service, ft number) ;
get info(Self, Service, reservation(Movie))〉ϕ

Supposing that the desired movie is available, the cinema alternatively accepts
credit card payments (c) or promotional tickets (d).

4.1 Conformance

Supposing that the designer produced the AUML sequence diagrams reported
in Figure 1, and, then, implemented them in DyLOG, the first problem to solve
is to check the conformance of the implementation w.r.t. the diagrams. For the
sake of simplicity, we will sketch the method that we mean to follow focusing on
one of the drawn protocols: the reserv cinema 1 protocol.

In order to verify the conformance of a DyLOG interaction protocol to an
AUML interaction protocol, that the DyLOG program is supposed to implement,
we represent the AUML sequence diagram as a formal language by means of a
grammar. More precisely, it is quite easy to see that, given a sequence diagram,
it is possible to represent the set of the possible dialogues by means of a regular



CINEMACUSTOMER

queryIf(available(Movie))

X

refuseInform(available(Movie))

inform(~available(Movie))

inform(available(Movie))

yes_no_query

[available(Movie)]
queryIf(cinema_promo)

X

refuseInform(cinema_promo)

inform(~cinema_promo)

inform(cinema_promo)

[available(Movie),cinema_promo]
inform(ft_number) 

[available(Movie),cinema_promo]
inform(reservation(Movie))

yes_no_query

CINEMACUSTOMER

yes_no_query(available(Movie))

[available(Movie)]
yes_no_query(cinema_promo)

[available(Movie),~cinema_promo]
yes_no_query(pay_by(c_card))

[available(Movie),~cinema_promo,
pay_by(c_card)]inform(cc_number) 

[available(Movie,~cinema_promo,
pay_by(c_card)]inform(reservation(Movie))

(i) (ii)

RESTAURANTCUSTOMER

yes_no_query(available(Time)

[available(Time)]
inform(reservation(Time))

[available(Time)]
inform(cinema_promo)

[available(Time)]
inform(ft_numeber)

(iii)

Fig. 1. AUML interaction protocols representing the interactions between the customer
and the provider: (i) and (ii) are followed by the cinema service, (iii) is followed by the
restaurant. Formulas among square brackets represent conditions on the execution of
the speech act.

grammar, whose set of atoms corresponds to the set of atomic speech acts.
For example, let us consider the reserv cinema 1 protocol (see Figure 1 (i)), the
following grammar Greserv cinema 1 represents it2:

Q0 −→ queryIf(customer, cinema, available(Movie)) Q1

Q1 −→ refuseInform(cinema, customer, available(Movie))
Q1 −→ inform(cinema, customer,¬available(Movie))
Q1 −→ inform(cinema, customer, available(Movie)) Q2

Q2 −→ queryIf(cinema, customer, cinema promo) Q3

Q3 −→ refuseInform(customer, cinema, cinema promo)
Q3 −→ inform(customer, cinema,¬cinema promo)
Q3 −→ inform(customer, cinema, cinema promo) Q4

Q4 −→ inform(customer, cinema, ft number) Q5

2 Details about the translation from AUML to the grammar can be found in [8].



Q5 −→ inform(cinema, customer, reservation(Movie))

By means of L(Greserv cinema 1) we denote the language generated by it. Intuitively,
it represents all the legal conversations.

Now, we are in the position to give our first definition of conformance: the
agent conformance.

Definition 1 (Agent conformance). Let D = (Π,CKitagi , S0) be a domain

description, pdylog ∈ CKitagi be an implementation of the interaction protocol

pAUML defined by means of an AUML sequence diagram. Moreover, let us define

the set Σ(S0) as {σ|(Π,CKitagi , S0)`ps〈pdylog〉> w. a. σ}. We say that the agent

described by means of D is conformant w.r.t. the sequence diagram pAUML if

and only if:

Σ(S0) ⊆ L(GpAUML
) (1)

In other words, the agent conformance property holds if we can prove that every
conversation, that is an instance of the protocol implemented in our language (an
execution trace of pdylog), is a legal conversation according to the grammar that
represents the AUML sequence diagram pAUML; that is to say, that conversation
is also generated by the grammar GpAUML

.
The agent conformance depends on the initial state S0. Different initial states

can determine different possible conversations (execution traces). A notion of
agent conformance, that is independent from the initial state, can also be defined:

Definition 2 (Agent strong conformance). Let D = (Π,CKitagi , S0) be a

domain description, let pdylog ∈ CKitagi be an implementation of the interaction

protocol pAUML defined by means of an AUML sequence diagram. Moreover, let

us define the set Σ =
⋃

S Σ(S), where S ranges over all possible initial states.

We say that the agent described by means of D is strongly conformant w.r.t. the
sequence diagram pAUML if and only if:

Σ ⊆ L(GpAUML
) (2)

In other words, the agent strong conformance property holds if we can prove that
every conversation for every possible initial state is a legal conversation, i.e. it is
also generated by the grammar that represents the AUML sequence diagram. It
is easy to see that agent strong conformance (2) implies agent conformance (1).

Agent strong conformance, differently than agent conformance, does not de-
pend on the initial state but it still depends on the set of speech acts defined
in CKitagi . A stronger notion of conformance should require that a DyLOG im-
plementation is conformant w.r.t. an AUML sequence diagram independently of
the semantics of the speech acts. In other world, we would like to prove a sort of
“structural” conformance of the implemented protocol w.r.t. the corresponding
AUML sequence diagram. In order to do this, we define a formal grammar from
the DyLOG implementation of a conversation protocol. In this process, the par-
ticular form of axiom, namely inclusion axiom, used to define protocol clauses
in a DyLOG implementation, comes to help us. Actually, such axioms have a
natural interpretation as rewriting rules [2, 12].



Given a domain description (Π,CKitagi , S0) and an conversation protocol
pdylog ∈ CKitagi = (ΠC , ΠCP , ΠSget), we define the grammar Gpdylog

= (T, V, P, S),
where T is the set of all terms that define the set of speech acts in ΠC , V is the
set of all the terms that define a conversation protocol or a get message action
in ΠCP or ΠSget. P is the set of production rules of the form p0 −→ p1p2 . . . pn

where 〈p0〉ϕ ⊃ 〈p1〉〈p2〉 . . . 〈pn〉ϕ is an axiom that defines either a conversation
protocol (that belongs to ΠCP) or a get message action (that belongs to ΠSget).
Note that test actions 〈Fs?〉 are not reported in the production rules. Finally,
the start symbol S is the symbol pdylog. Let us define L(Gpdylog

) as the language
generated by means of the grammar Gpdylog

. It is easy to see that L(Gpdylog
) is

a context-free language since Gpdylog
is a context-free grammar. Intuitively, the

language L(Gpdylog
) represents all the possible sequences of speech acts (conver-

sations) allowed by the DyLOG protocol pdylog independently of the evolution
of the mental state of the agent.

Definition 3 (Protocol conformance). Let D = (Π,CKitagi , S0) be a domain

description, let pdylog ∈ CKitagi be an implementation of the interaction protocol

pAUML defined by means of an AUML sequence diagram. We say that pdylog is

conformant to the sequence diagram pAUML if and only if:

L(Gpdylog
) ⊆ L(GpAUML

) (3)

It is possible to prove that protocol conformance (3) implies agent strong con-

formance (2).

In this case, it is straightforward to prove that for the customer view
reserv cinema 1C the protocol conformance holds w.r.t. protocol reserv cinema 1.
It is worth noting the following property of the protocol conformance.

Proposition 1. Protocol conformance is decidable.

Proof. Equation (3) is equivalent to L(Gpdylog
)∩L(GpAUML

) = ∅. Now, L(Gpdylog
)

is a context-free language while L(GpAUML
) is a regular language. Since the com-

plement of a regular language is still regular, L(GpAUML
) is a regular language.

The intersection of a context-free language and a regular language is a context-
free language. For context-free languages, the emptiness is decidable [15].

Proposition 1 tells us that an algorithm for verifying protocol conformance
exists. However, we also have a straightforward methodology for implementing
protocols in a way that conformance w.r.t. the AUML specification is respected.
In fact, we can build our implementation starting from the grammar GpAUML

,
and applying the inverse of the process that we described for passing from a
DyLOG implementation to the grammar Gpdylog

. In this way we obtain a skele-
ton of a DyLOG implementation of pAUML that is to be completed by adding
the desired ontology for the speech acts and customized with tests. Such an
implementation trivially satisfies protocol conformance and, then, all the other
degrees of conformance defined above.



4.2 Composition

One example in which it is useful to reason about protocol composition, is the
situation in which the same customer is supposed to interact with the restaurant
and the cinema providers, one after the other. In fact, the developer must be sure
that the customer, by interacting with the composition (by sequentialization)
of the two protocols, will obtain what desired. In particular, suppose that the
developer wants to verify if the protocols that he/she defined allow the following
interaction: it is possible to make a reservation at the restaurant and, then, at
the cinema, taking advantage of the promotion. Let us consider the query:

〈reserv rest 1C(customer, restaurant, dinner) ;
reserv cinema 1C(customer, cinema,movie)〉

(Bcustomercinema promo ∧ Bcustomerreservation(dinner)∧
Bcustomerreservation(movie) ∧ BcustomerBCft number)

that amounts to determine if it is possible to compose the interaction so to re-
serve a table for dinner (Bcustomerreservation(dinner)) and to book a ticket
for the movie movie (Bcustomerreservation(movie)), exploiting a promotion
(Bcustomercinema promo). The obtained free ticket is to be spent (Bcustomer

Bcinema ft number), i.e. customer believes that after the conversation the cho-
sen cinema will know the number of the ticket given by the selected restaurant.

In the case in which the customer has neither a reservation for dinner nor
a reservation for the cinema or a free ticket, the query succeeds, returning the
following linear plan:

queryIf(customer, restaurant, available(dinner)) ;

inform(restaurant, customer, available(dinner)) ;

inform(restaurant, customer, reservation(dinner)) ;
inform(restaurant, customer, cinema promo) ;
inform(restaurant, customer, ft number) ;
queryIf(customer, cinema, available(movie)) ;

inform(cinema, customer, available(movie)) ;

queryIf(cinema, customer, cinema promo) ;
inform(customer, cinema, cinema promo) ;
inform(customer, cinema, ft number) ;
inform(cinema, customer, reservation(movie))

This means that there is first a conversation between customer and restaurant

and, then, a conversation between customer and cinema, that are instances of
the respective conversation protocols, after which the desired condition holds.

Notice that the linear plan will actually lead to the desired goal given that
some assumptions about the provider’s answers hold. In the above plan, assump-
tions have been outlined with a box. For instance, that a seat at the cinema is
free. The difference with the other inform acts in the plan (from a provider to the
customer) is that while for those the protocol does not offer any alternative, the



outlined ones correspond just to one of the possible answers foreseen by the pro-
tocol. In the example they are answers foreseen by a yes no query protocol (see
Figure 1 (i) and [6]). The actual answer can be known only at execution time,
however, thanks to the existence of the protocol, it is possible to understand the
conditions that lead to success.

4.3 Selection

Another situation in which the developer may need support is to search into a
library of available policies for an interaction protocol that describes a service
of interest and that is suitable to the application that he/she is designing. For
instance, the developer must design a protocol for a restaurant that allows to
make a reservation not necessarily using a credit card. In this case the developer
will first search the library of available protocols looking for those that satisfy this
request. This search cannot be accomplished only based on descriptive keywords
but requires a form of reasoning on the way in which the interaction is carried
on. Suppose that search service is a procedure that allows one to search into a
library for a protocol in a given category; then, the query would look like:

〈search service(restaurant, Protocol) ; Protocol(customer, service, time)〉
(Bcustomer¬Bservicecc number ∧ Bcustomerreservation(time))

which means: look for a protocol that has one possible execution, after which
the service provider does not know the customer’s credit card number, and a
reservation has been taken.

5 Conclusions and related work

In this paper we have proposed a logic-based approach to agent interaction proto-
col specification and we have shown the advantages of using reasoning techniques
based on such a logical formalization, especially in the context of agent-oriented
software engineering (AOSE). We used as agent language DyLOG, a high-level
logic programming language for modeling and programming rational agents,
based on a modal theory of actions and mental attitudes, that allows to include
in the agent specification a set of interaction protocols. The DyLOG language
allows reasoning about the effects of engaging specific conversations. By doing
so, an agent can plan a conversation for achieving a particular goal, that re-
spects the protocol, while the system designer can exploit the same reasoning
techniques to select a protocol from a library or to verify if the composition of
a set of given protocols respects some desired constraint.

Moreover, we have shown that our logical representation of protocols allows
us to deal with the matter of checking the agent conformance w.r.t. a protocol
represented as a AUML interaction diagram. This is a crucial problem to face in
an AOSE perspective and it can be considered as a part of the process of engi-
neering interaction protocols sketched in [16]. Indeed, supposing to have both an



AUML sequence diagram, which formally specifies a protocol, and an implemen-
tation of the same protocol in DyLOG, a key problem to solve is checking the
conformance of the implementation to the diagram. In fact, when protocols are
implemented in DyLOG they become part of the agent communication policies,
which are usually determined by the agent mental state. What we check is if
this strategy is conformant to the AUML protocol, at least in the sense that the
agent never performs any illegal dialogue move. In other words we prove a sort
of “structural” conformance of the implemented protocol w.r.t the specification.

The problem of checking the agent conformance to a protocol in a logical
framework has been faced also in [11]. In a broad sense our notion of confor-
mance bears along some similarities with the notion of agent weak conformance,
introduced in this work. In [11] agent communication strategies and protocol
specification are both represented by means of sets of if-then rules in a logic-
based language, which relies on abductive logic programming. A notion of weak
conformance is introduced, which allows to check if the possible moves that an
agent can make, according to a given communication strategy, are legal w.r.t.
the protocol specification. The conformance test is done by abstracting from (i.e.
disregarding) any condition related to the agent private knowledge, which is not
considered as relevant in order to decide weak conformance, although it could,
actually, prevent an agent from performing a particular move.

Our framework allows us to give a finer notion of conformance, for which we
can distinguish different degrees of abstraction with respect to the agent private
mental state. It allows us to define in an elegant manner which parts of a protocol
implementation must fit the protocol specification and to describe in a modular
way how the protocol implementation can be enriched with respect to the pro-
tocol specification, without compromising the conformance. Such an enrichment
is important when using logic agents, that support sophisticated forms of rea-
soning. Indeed, the ability of reasoning about the properties of the interactions
that occur among agents before they actually occur, may by applied to support
a MAS developer during the design phase. We have recently begun to study [4]
the methodological and physical integration of DyLOG into the DCaseLP [1, 18]
MAS prototyping environment following the what already done for integrating
tuProlog [14]. The aim of this work is to enrich the DCaseLP framework with
the ability of reasoning about AUML interaction protocols thanks to a transla-
tion from AUML to DyLOG. In this context it will be extremely useful to have
formal methods for proving conformance properties.
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