
From logic programs updates to action
description updates ?

J. J. Alferes1, F. Banti1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal,
jja | banti@di.fct.unl.pt

2 Dipartimento di Informatica, Università di Pisa, Italy,
brogi@di.unipi.it

Abstract. An important branch of investigation in the field agents has
been the definition of high level languages for representing effects of ac-
tions, the programs written in such languages being usually called action
programs. Logic programming is an important area in the field of knowl-
edge representation and some languages for specifying updates of Logic
Programs had been defined. In this work we address the problem of estab-
lishing relationships between action programs and Logic Programming
updates languages, particulary the newly defined Evolp language. Our
investigation leads to the definition of a new paradigm for representing
actions called Evolp action programs. We provide translations of some of
the most known action description languages into Evolp action programs,
and underline some peculiar features of this newly defined paradigm. One
of such feature is that Evolp action programs can easily express changes
in the very rules of the domains, including rules describing changes.

1 Introduction

In the last years the concept of agent had became central in the field of Artificial
Intelligence. “An agent is just something that acts” [25]. Given the importance
of the concept, ways of representing actions and their effects on the environment
had been studied. A branch of investigation in this topic has been the definition
of high level languages for representing effects of actions [7, 12, 14, 15], the pro-
grams written in such languages being usually called action programs. Action
programs specify which facts (or fluents) change in the environment after the
execution of a set of actions. Several works exist on the relation between these
action languages and Logic Programming (LP) (e.g. [5, 12, 20]). However, de-
spite the fact that LP has been successfully used as a language for declaratively
representing knowledge, the mentioned works basically use LP for providing an
operational semantics, and implementation, for action programs. This is so be-
cause normal logic programs [11], and most of their extensions, have no in-built

? This work was partially supported by project FLUX (POSI/40958/SRI/2001) and
by project SOCS (IST-2001-32530).

means for dealing with changes, something which is quite fundamental for the
relation with action languages.

In recent years some effort was devoted to explore the problem of how to
update logic programs with new rules [3, 8, 9, 18, 19]. Here, knowledge is conveyed
by sequences of programs, where each program in a sequence is an update to
the previous ones. For determining the meaning of sequences of logic programs,
rules from previous programs are assumed to hold by inertia after the updates
(given by subsequent programs) unless rejected by some later rule. LP update
languages [2, 4, 10, 18], besides giving meaning to sequences of logic programs,
also provide in-built mechanisms for constructing such sequences. In other words,
LP update languages extend LP by providing means to specify and reason about
rule updates. In [5] the authors show, by examples, a possible use the LP update
language LUPS [4] for representing actions. However, the work done does not
establish an exact relationship between existing action languages and LP update
languages and also the eventual advantages of LP update languages approach
to actions are still not clear. The present work tries to clarify these points. Our
investigation focuses on the newly defined Evolp language [2].

In section 2 we review some background and notation. In section 3 we show
how to use macros defined in Evolp as an action description paradigm. Programs
written in such macro language are called Evolp action programs (EAPs). We il-
lustrate the usage of EAPs by an example involving a variant of the classical Yale
Shooting Problem. In section 4 we establish the relationship between EAPs and
existing approaches by providing simple translations of the action languages A
[12], B [13] (which is a subset of the language proposed in [14]), and (the definite
fragment of) C [15] into EAPs, thus showing that EAPs are at least as expressive
as the cited action languages. Coming to this point the next question is what
are the possible advantages of EAPs. The underlying idea of action frameworks
is to describe dynamic environment. This is usually done by describing rules
that specify, given a set of external actions, how the environment evolves. In
a dynamic environment, however, not only the facts but also the “rules of the
game” can change, in particular the rules describing the changes. The capability
of describing such kind of meta level changes is, in hour opinion, an important
feature of an action description language. In section 5 we address this topic in
the context of EAPs and show EAPs seem, in this sense, more flexible than other
paradigms. Evolp provides specific commands that allow for the specification of
updates to the initial program but also provides the possibility to specify up-
dates of these updates commands. We show, by successive elaborations of the
Yale shooting example defined in section 3.1, how to use this feature to describe
successive elaborations of the problem during the evolution of the environment.
Finally, in section 6, we conclude and trace a route for future developments.

2 Background and notation

In this section we briefly recall syntax and semantics of dynamic logic programs
[1] and the syntax and semantics for Evolp[2]. We also recall some basic notions
and notation for action description languages.

2.1 Dynamic logic programs and Evolp

The main idea of logic programs updates is to update a logic program by another
logic program or by a sequence of logic programs, also called dynamic logic
programs (DLP) the initial program corresponding to the initial knowledge of a
given (dynamic) domain, and the subsequent ones to successive updates of the
domain. To represent negative information in logic programs and their updates,
DLP requires generalized logic programs (GLPs) [21], which allows for default
negation not A not only in the premises of rules but also in their heads. A
language L is any set of propositional atoms. A literal in L is either an atom
of L or the negation or such an atom. In general, given any set of atoms F
we denote the by FLit the set of literals over F . Given a literal L, if L = Q,
where Q is an atom, by not L we denote the negative literal not Q. Viceversa, if
L = not Q, by not L we denote the atom Q. A GLP defined over a propositional
language L is a set of rules of the form L ← Body, where L is a literal in L,
and Body is a set of literals in L.3 We say a set of literals Body is true in
an interpretation I (or that I satisfies Body) iff Body ⊆ I. In the paper we
will use programs containing variables. As usual when programming within the
stable models semantics, a program with variables stands for the propositional
program obtained as the set of all possible ground instantiation of the program.

Two rules τ and η are conflicting (denoted by τ ./ η) iff the head of τ is the
atom A and the head of η is not A or viceversa. A dynamic logic program over
a language L is a sequence P1 ⊕ . . . ⊕ Pm (also denoted ⊕Pm

i) where the Pis
are GLPs defined over L. The refined stable model semantics of DLP defined in
[1] assigns to each sequence P1 ⊕ . . .⊕ Pn a set of stable models (that is proven
there to coincide with the stable models based semantics defined in [21] when the
sequence is formed by a single GLP). The rationale for the definition of a stable
model M of a DLP is made in accordance with the causal rejection principle
[9, 18]: If the body of a rule in a given update is true in M the considered rule
rejects all the conflicting rules in previous updates, which means that such rules
are ignored in the computation of the stable model. In the refined semantics for
DLPs such rule also rejects any conflicting rule in the same update. Moreover,
an atom A is assumed false by default if there is no rule, in none of the programs
in the sequence, with head A and a true body in M . Formally:

Default(⊕Pm
i ,M) = {not A | 6 ∃ A← Body ∈

⋃
Pi ∧Body ⊆M}

RejS(⊕Pm
i ,M) = {τ | τ ∈ Pi : ∃ η ∈ Pj i ≤ j, τ ./ η ∧ Body(η) ⊆M}

where M is an interpretation, i.e. any set of literals in L such that, for each atom
A, either A ∈ M or not A ∈ M . If ⊕Pm

i is clear from the context, we omit it
as first argument of the above functions.

3 Note that, by defining rule bodies as sets, the order and number of occurrences of
literals does not matter.

Definition 1. Let ⊕Pm
i be a DLP over language L and M a interpretation. M

is a refined stable model of ⊕Pm
i iff

M = least
(⋃

Pi \RejS(M)) ∪Default(M)
)

where least(P) denotes the least Herbrand model of the definite program [22]
obtained by considering each negative literal not A in P as a new atom.

Having defined the meaning of sequences of programs, we are left with the
problem of how to come up with those sequences. This is the subject of LP update
languages [2, 4, 10, 18]. Among the existing languages, Evolp [2] uses a particulary
simple syntax, which extends the usual syntax of GLPs by introducing the special
predicate assert/1. Given any language L, the language Lassert is recursively
defined as follows: every atom in L is also in Lassert; for any rule τ over Lassert,
the atom assert(τ) is in Lassert; nothing else is in Lassert. An Evolp program
over L is any GLP over Lassert. An Evolp sequence is a sequence (or DLP) of
Evolp programs. The rules of an Evolp program are called Evolp rules.

Intuitively an expression assert(τ) stands for “update the program with the
rule τ”. Notice the possibility in the language to nest an assert expression in
another. The intuition behind the Evolp semantics is quite simple. Starting from
the initial Evolp sequence ⊕Pm

i we compute the set, SM(⊕Pm
i), of the stable

models of ⊕Pm
i . Then, for any element M in SM(⊕Pm

i), we update the initial
sequence with the program Pm+1 consisting of the set of rules τ such that the
atom assert(τ) belongs to M . In this way we obtain the sequence ⊕Pm

i ⊕Pm+1.
Since SM(⊕Pm

i) contains, in general, several models we may have different lines
of evolution. The process continues by obtaining the various SM(⊕Pm+1

i) and,
with them, various ⊕Pm+2

i . Intuitively, the program starts at step 1 already
containing the sequence ⊕Pm

i . Then it updates itself with the rules asserted
at step 1, thus obtaining step 2. Then, again, it updates itself with the rules
asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program.
If, at a given step n, the programs receives the external update En, the rules
in En are added to the last self update for the purpose of computing the stable
models determining the next evolution but, in the successive step n+1 they are
no longer considered (that’s why they are called events). Formally:

Definition 2. Let n be a natural number. An evolution interpretation of length
n, of an evolving logic program ⊕Pm

i with an event sequence ⊕Ei is any finite
sequenceM = M1, . . . ,Mn of interpretations over Lassert. The evolution trace
Tr(P) associated with an evolution interpretation M1, . . . ,Mn is the sequence
P1 ⊕ . . .⊕ Pn+m where Pm+i = {τ | assert(τ) ∈Mi−1} for m + 1 < i ≤ n + m

Definition 3. Let ⊕Pm
i be any Evolp sequence with external events ⊕En

i (where
n is a natural number), and M = M1, . . . ,Mn be an evolving interpretation of
length n with trace P1 ⊕ . . . ⊕ Pn+m. M is an evolving stable model of ⊕Pm

i

with event sequence ⊕Ei at step n iff Mk is a refined stable model of the program
P1 ⊕ . . . ⊕ (Pk ∪ Ek) for any k with m + 1 ≤ k ≤ n + m.

2.2 Action languages

The purpose of an action language is to provide ways of describing how an
environment evolves given a set of external actions. A specific environment that
can be modified through external actions is called an action domain. To any
action domain we associate a pair of sets of atoms F and A. We call the elements
of F fluent atoms or simply fluents and the elements of A action atoms or
simply actions. Basically the fluents are the observable in the environment and
the actions are, clearly, the external actions. A fluent literal (resp. action literal)
is an element of FLit (resp. an element of ALit). In the following, Q will be in
general a fluent atom, F a fluent literal and A an action atom. A state of the
world (or simply a state) is any interpretation over F . We say a fluent literal F
is true at a given state s iff F belongs to s.

Each action language provides ways of describing action domains through
sets of expression called an action programs. Usually, the semantics of an action
program is defined in terms of a transition system i.e. a function whose argument
is any pair (s,K), where s is a state of the world and K is a subset of A, and
whose value is any set of states of the world. Intuitively, given the current state
of the world, a transition system specifies which are the possible resulting states
after performing, simultaneously, all the actions in K.

Two kinds of expressions that are common within action description lan-
guages are static and dynamic rules. The static rules basically describe the rule
of the domain, while dynamic rules describe effects of actions. A dynamic rule
has a set of preconditions, namely conditions that have to be satisfied in the
present state in order to have a particular effect in the future state, and post-
conditions describing such an effect.

In the following we will consider three existing action languages, namely:
A, B and C. The language A [13] is very simple, allowing only dynamic rules of
the form A causes F if Cond where Cond is a conjunction of fluent literals, such
rule intuitively means: performing the action A causes L to be true in the next
state if Cond is true in the current state. The language B [13] is an extension of
A which also considers static rules, i.e. expression of the form F if Body where
Body is a conjunction of fluent literals which, intuitively, means: if Body is true
in the current state, then F is also true in the current state. A fundamental
notion in both A and B is fluent inertia [13]. A fluent F is inertial if its truth
value is preserved from a state to another, unless it is changed by the (direct or
indirect) effect of an action. For a detailed definition of the semantics of A and
B see [13].

Static and dynamic rules are also the bricks of the action language C [16, 15].
Static rules in C are of the form caused J if H while dynamic rules are of the
form caused J if H after O where J and H are formulae such that any literal in
them is a fluent literal and O is any formula such that any literal in it is a fluent
or an action literal. The formula O is the precondition of the dynamic rule and
the static rule caused J if H is its postcondition. The semantic of C is based on
causal theories[15]. Casual theories are sets of rules of the form caused J if H
meaning: If H is true this is an explanation for J . Within causal theories is that

something is true iff it is caused by something else. Given any action program
P , a state s and a set of actions K, we consider the causal theory T given by the
static rules of P and the postconditions of the dynamic rules whose preconditions
are true in s ∪K. Then s′ is a possible resulting state iff it is a casual model of
T . For a more detailed background on action languages see [12].

3 Evolp action programs

As we have seen, Evolp and action description languages share the idea of a sys-
tem that evolves. In both, the evolution is influenced by external events (respec-
tively, updates and actions). Evolp is actually a programming language devised
for representing any kind of computational problem, while action description lan-
guages are devised for the specific purpose of describing actions. A natural idea
is then to develop special kind of Evolp sequences for representing actions and
then compare such kind of programs with existing action description languages.
We will call this kind of programs Evolp Action Programs (EAPs).

Following the philosophy of Evolp we use the basic construct assert for defin-
ing special-purpose macros. As it happens for other action description languages,
EAPs are defined over a set of fluents F and a set of actions A. A state of the
world, in EAPs, is any interpretation over F . To describe action domains we use
an initial Evolp sequence, I ⊕ D. The Evolp program D contains the descrip-
tion of the environment, while I contains some initial declarations, as it will be
clarified later. As in B and C, EAPs contain static and dynamic rules.

A static rule is simply an Evolp rule of the form F ← Body where F is a
fluent literal and Body is a set of fluent literals.

A dynamic rule over (F ,A) is a (macro) expression effect(τ)← Cond where
τ is any static rule F ← Body and Cond is any set of fluent or action literals.
Such an expression simply stand for the following set of Evolp rules:

F ← Body, event(L← Body) (1) assert(event(F ← Body))← Cond. (2)
assert(not event(F ← Body))← event(τ), not assert(event(F ← Body)) (3)

where event(F ← Body) is a new literal. The intuitive meaning of such a rule is
that the static rule τ has to be considered only in those states whose predecessor
satisfies condition Cond. Since some of the conditions literals in Cond may be
action atoms, such a rule may describe the effect of a given set of actions under
some conditions. In fact, the above set of rules fits with this intuitive meaning.
Rule (1) is not applicable whenever event(L← Body) is false. If at some step n
the conditions Cond are satisfied, then, by rule (2), event(L← Body) becomes
true at step n + 1. Hence, at step n + 1, the rule (1) will play the same role as
static rule F ← Body. If at step n + 1 Cond is no longer satisfied, then, by rule
(3) the literal event(L ← Body) will become false again and then the rule (1)
will be again not effective. The behaviour of effect is different from the assert
command. If we assert τ , it remains by inertia, while with effect it lasts for one
step only. Moreover, if we assert τ , such rule could reject another rule while a
rule inside an effect expression does not reject static rules.

Besides static and dynamic rules, we still need another brick to complete our
construction. As we have seen in the description of the B language, a notable
concept is fluent inertia. This idea is not explicit in Evolp where the rules (and
not the fluents) are preserved by inertia. Nevertheless, we can show how to obtain
fluent inertia using macro programming in Evolp. An inertial declarations over
(F ,A) is a (macro) expression inertial(K), where K ⊆ F . The intended intuitive
meaning of such expression is that the fluents in K are inertial. Before defining
what this expression stands for, we state that the program I is always of the form
initialize(F), where initialize(F) stands for the set of rules (where F is any
fluent literal in FLit, and prev(F) are new atoms not in F ∪ A): F ← prev(F)
The inertial declaration inertial(K) stands for the set (where F ranges over K):

assert(prev(F))← F. assert(not prev(F))← not F.

Let us consider the behaviour of this macro. If we do not declare F as an inertial
fluent the rule F ← prev(F) has no effect. If we declare F as an inertial literal,
prev(F) is true in the current state iff in the previous state F was true. Hence
in this case F is true in the current state unless there is a static or dynamic
rule that rejects such assumption. Viceversa, if F was false in the previous state
then, F is true in the current one iff it is derived by a static or dynamic rule.
We are now ready to formalize the syntax of Evolp action programs.

Definition 4. Let F and A be two disjoint sets of propositional atoms. An
Evolp action program (EAP) over (F , A) is any Evolp sequence I ⊕D where :
I = Initialize(F) , and D is any set consisting of static rules, dynamic rules
and inertial declarations over (F ,A)

Given an Evolp action program I⊕D, the initial state of the world s (which,
as stated above is an interpretation over F) is passed to the program together
with the set K of the actions performed at s, as part of an external event. A
resulting state is the last element of any evolving stable model of I ⊕ D given
the event s ∪K restricted to the set of fluent literals. I.e:

Definition 5. Let I ⊕D be any EAP over (F , A) and s a state of the world.
Then s′ is a resulting state from s given I ⊕D and the set of actions K iff there
exists an evolving stable model M1,M2 of I ⊕D given the external event s ∪K
such that s′ ≡F M2(where by s′ ≡F M2 we simply mean s′∩FLit = M2∩FLit).

The definition can be immediately generalized to sequences of set of actions.

Definition 6. Let I ⊕D be any EAP and s a state of the world. Then s′ is a
resulting state from s given I ⊕ D and the sequence of actions K1 . . . , Kn iff
there exists an evolving stable model M1, . . . Mn of I⊕D given the external event
s ∪K1, . . . , Kn such that s′ ≡F Mn.

Since EAPs are based on the Evolp semantics, which is an extension of the
stable model semantics for normal logic programs, we can easily prove that the
complexity of the computation of the two semantics is the same.

Theorem 1. Let I ⊕ D be any EAP over (F ,A), s a state of the world and
K ⊆ A. To find a resulting state s′ from s given I ⊕D and the set of actions K
is an NP-hard problem.

It is important to notice that, if the initial state s does not satisfies the static
rules of the EAP, the correspondent Evolp sequence has no stable model, and
hence there will be no successor state. From now onwards we assume that the
initial state satisfies the static rules of the domain.

We now show an example of usage of EAPs by elaborating on probably the
most famous example of reasoning about actions. The presented elaboration
highlights some important features of EAPs: the possibility of handling non-
deterministic effects of actions, non-inertial fluents, non-executable actions, and
effects of actions lasting for just one state.

3.1 An elaboration of the Yale shooting problem

In the original Yale shooting problem [26], there is a single-shot gun which is
initially unloaded, and a turkey which is initially alive. We can load the gun and
shoot the turkey. If we shoot, the gun becomes unloaded and the turkey dies.
We consider a slightly more complex scenario where there are several turkeys
and where the shooting action refers to a specific turkey. Each time we shoot
a specific turkey, we either hit and kill the bird or miss it. Moreover the gun
becomes unloaded and there is be a bang. It is not possible to shoot with an
unloaded gun. We also add the property that any turkey moves iff it is not dead.

For expressing the non executable the problem we make use of a standard
technique used in LP under the stable model semantics. Suppose the used EAP
contains dynamic rules of the form effect(u ← not u) ← Cond where u is a
literal which does not appear elsewhere. In the following we use, for such rules,
the notation effect(⊥)← Cond. This kind of rules means that, if Cond is true
in the current state, then there is no resulting state. This come from the known
fact that programs containing u← not u has no stable models.

To represent this situation we use the set of fluents: {dead(X),moving(X),
missed(X), hit(X), loaded, bang} plus the auxiliary fluent u, and the actions
load and shoot(X) (where the X is instantiated with the various turkeys). The
fluents dead and loaded are inertial fluents, since their truth value should remain
unchanged until modified by some action effect. The fluents missed, hit and
bang are not inertial. Finally, for every turkey t, the fluent moving(t) is not
declared as inertial. The problem is encoded by the EAP I ⊕ D, where I =
initialize(loaded, moving(X), dead missed(X), hit(X), u), and D is

effect(loaded)← load. moving(X)← not dead(X)
effect(⊥)← shoot(X), not loaded effect(not loaded.)← shoot(X)
effect(dead(X)← hit(X))← shoot(X) effect(bang)← shoot(X)
effect(hit(X)← not missed(X))← shoot(X) inertial(loaded)
effect(missed(X)← not hit(X))← shoot(X) inertial(dead(X))

Let us analyze this EAP. Rule effect(⊥) ← shoot(X), not loaded encodes
the impossibility to execute the action shoot(X) when the gun is unloaded.

The static rule moving(X) ← not dead(X) implies that, for any turkey tk,
moving(tk) is true if dead(tk) is false. Since this is the unique rule for moving(tk)
we obtain that moving(tk) is true iff dead(tk) is true. Notice that declaring
moving(tk) as inertial, would result, in our description, in the possibility of
having a moving dead turkey! In fact, suppose we insert inertial(moving(X))
in the EAP above. Suppose further that moving(tk) is true at state s, that we
shoot at tk and kill it. Since moving(tk) is an inertial fluent, in the resulting
state dead(tk) is true but moving(tk) also remains true by inertia. Also notable
is how effects that last only for one state, like the noise provoked by the shoot
are easily encoded. The last three dynamic rules encodes a non deterministic
behaviour, each shoot action can either hit and kill a turkey or miss it.

We provide an example of a possible evolution. In the following we adopt
the usual convention of the Stable Models semantics where we omit the negative
literals belonging to an interpretation, hence any interpretation is represented
as a set of atoms. Let us consider the initial state {}. The state will remain
unchanged until we perform some action. If we load the the gun, the program is
updated by the external event {load}. In the unique successor state, the fluent
loaded is true and nothing else is changed. The truth value of the fluent remains
unchanged (by inertia) until we perform some other action. The same applies for
the fluents dead(t) where tk is any turkey. The fluents bang,missed(tk), hit(tk)
remains false by default. If we shoot at a specific turkey (let us call the turkey
Smith) we update the program with the event shoot(smith). Now several things
happen. First, loaded become false, and bang becomes true, as an effect of the
action. Moreover, the rules hit(smith)← missed(smith) and missed(smith)←
hit(smith) are considered as rules of the domain for one state. As a consequence
we can have two possible resulting states. In the first one missed(smith) is
true, and all the others fluents are false. In the second one hit(smith) is true,
missed(smith) is false and, by the static rule dead(X) ← hit(X), the fluent
dead(smith) becomes true. In both the resulting states, nothing happens to the
truth value of dead(tk), hit(tk) and dead(tk) for tk 6= smith.

4 Relationship to existing action languages

In this section we show embeddings into EAPs of the action languages B and
(the definite fragment of) C 4. We will assume that the considered initial states
are consistent wrt the static rules of the program, i.e. if the body of a static rule
is true in the considered state, the head is true as well.

Let us consider first the B language. The basic ideas of static and dynamic
rules of B and EAPs are very similar. The main difference between the two is
that in B all the fluents are considered as inertial, whilst in EAPs only those
that are declared as such are inertial. The translation of B into EAPs is then
straightforward: All fluents are declared as inertial and then the syntax of static

4 The embedding of language A is not explicitly exposed here since A is a (proper)
subset of the B language.

and dynamic rules is adapted. In the following we use, with abuse of notation,
Body and Cond both for conjunctions of literals and for sets of literals.

Definition 7. Let P be any action program in B over the fluent language F .
The translation B(P,F) is the couple (IB ⊕ DBP ,FB) where: FB ≡ F , IB =
initialize(F) and DBP contains exactly the following rules:

– inertial(F) for each fluent F ∈ F
– a rule L← Body for any static rule L if Body in P .
– a rule effect(L)← A, Cond. for any dynamic rule A causes L if Cond in

P .

Theorem 2. Let P be any B action program over F , (IB ⊕DBP ,F) its trans-
lation, s a state and K any set of actions. Then s′ is a resulting state from s
given P and the set of actions K iff it is a resulting state from s given IB⊕DBP

and the set of actions K.

Let us consider now the action language C. It is known that the computation
of the possible resulting states in the full C language is

∑2
P -hard, [15]. So, this

language belongs to a category with higher complexity than EAPs which are
NP-hard. However, only a fragment of C is implemented and the complexity of
such fragment is NP . This fragment is known as the definite fragment of C [15].
In such fragment static rules are expressions of the form caused F if Body
where F is a fluent literal and Body is a conjunction of fluent literals, while
dynamic rules are expressions of the form caused not F if Body after Cond
where Cond is a conjunction of fluent or action literals5. For this fragment it is
possible to provide a translation into EAPs.

The main problem of the translation of C into EAPs lies the simulation of
causal reasoning with stable model semantics. The approach followed here to
encode causal reasoning with stable models is in line with the one proposed
in [20]. We need to introduce some auxiliary predicates and define a syntactic
transformation of rules. Let F be a set of fluents, by FC we denote the set of
fluents F ∪ {FN | F ∈ F}. We add, for each F ∈ F , the constraints:

← not F, not FN . ← F, FN . (2)

Let F be a fluent and Body = F1, . . . , Fn a conjunction of fluent literals. We will
use the following notation: F = not FN , not F = not F and Body = F1, . . . , Fn

Definition 8. Let P be any action program in C over the fluent language F .
The translation C(P,F) is the couple (IC ⊕DCP ,FC) where: FC is defined as
above, IC ≡ initialize(FC) and DCP consists exactly of the following rules:

– a rule effect(F ← Body) ← Cond, for any dynamic rule in P of the form
caused F if Body after Cond;

5 The definite fragment defined in [15] is (apparently) more general, allowing Cond
and Body to be arbitrary formulae. However, it is easy to prove that such kind of
expressions are equivalent to a set of expressions of the form described above

– a rule effect(FN ← Body)← Cond, for any dynamic rule in P of the form
caused not F if Body after Cond;

– a rule F ← Body, for any static rule in P of the form caused F if Body;
– a rule FN ← Body, for any static rule in P of the form caused not F if Body;
– The rules (2) for each fluent in F .

For this translation we obtain a result similar to the one obtained for the trans-
lations of the B language. In this case:

Theorem 3. Let P be any C action program over F , (IC⊕DCP ,FC) its trans-
lation, s a state, sC the interpretation over FC defined as follows:

sC = s ∪ {Q | Q ∈ s} ∪ {not Q | not Q ∈ s}

and K any set of actions. Then s∗ is a resulting state from sC given IC ⊕DCP

and the set of actions K iff there exists s′ such that s′ is a resulting state from
s, given P and the set of actions K.

By showing translations of the action languages B and C into EAPs, we proved
that EAPs are at least as expressive as such languages. Moreover the provided
translations are quite simple (basically one EAP static or dynamic rule for each
static or dynamic rule in the other languages). The next natural question is: Are
they more expressive?

5 Updates of action domains

Action description languages describe the rules governing a domain where actions
are performed. In practical situations, it may happen that the very rules of the
domain change with time too. EAPs are just a particular kind of Evolp sequences.
So, as in general Evolp sequences they can be updated by external events.

When we want to update the existing rules by the rule τ , we just add the fact
assert(τ) as an external event. This way, the rule τ is asserted and the existing
Evolp sequence is updated. Following this line, we extend EAPs, allowing the
external events updating an EAP to contain facts of the form assert(τ) where
τ is an Evolp rule and show how they can be used to express updates to EAPs.

To illustrate how to update an EAP, we come back to the example of section
3.1. Let I⊕D be the EAP defined in that section. Let us now consider that after
some shots, and dead turkeys, we acquire rubber bullets. We can now either load
the gun with normal bullets or with a rubber bullet, but not with both. If we
shoot with a rubber loaded gun, we never kill a turkey.

To describe this change in the domain, we introduce a new inertial fluent
representing the gun being loaded with rubber bullets. We have to express that,
if the gun is rubber-loaded, we can not kill the turkey. For this purpose we
introduce the new macro: not effect(F ← Body) ← Cond where F , is a fluent
literal, Body is a set of fluents literals and Cond is a set of fluent or action literals.
We refer to such expressions as effects inhibitions. This macro simply stands for
the rule assert(not event(F ← Body)) ← Cond where event(F ← Body) is a

new atom. The intuitive meaning is that, if the condition Cond is true in the
current state, any dynamic rule whose effect is the rule F ← Body is ignored.

To encode the changes described above, we update the EAP with the external
event E1 consisting of the facts assert(I1) where I1 = (initialize(rubber loaded)).
Then, in the subsequent state, we update the program with the external update
E2 = assert(D1) where D1 is the set of rules6

effect(⊥)← rubber loaded, load.
inertial(rubber loaded)
effect(⊥)← loaded, rubber load.
not effect(dead(X)← hit(X))← rubber loaded.

Let us analyze the proposed updates. First, the fluent rubber loaded is initial-
ized. It is important to initialize any fluent before starting to use it. The newly
introduced fluent is declared as inertial and two dynamic rules are added spec-
ifying that load actions are not executable when the gun is already loaded in
a different way. Finally we use the new command to specify that the effect
dead(X)← hit(X) does not occurs if, in the previous state, the gun was loaded
with rubber bullets. Since this update is more recent than the original rule
effect(dead(X)← hit(X))← shoot(X), such dynamic rule is updated.

It is also possible to update static rules and the descriptions of effects of an
action. Suppose the cylinder of the gun becomes dirty and, whenever one shoots,
the gun may either work properly or fail. If the gun fails, the action shoot has no
effect. We introduce two new fluents in the program with the event assert(I2)
where I2 = initialize(fails, work)). Then, we assert the event E2 = assert(D2)
where D2 is the following EAP

effect(fails← not work)← shoot(X). effect(work ← not fails)← shoot(X).
not bang ← fails. not unloaded← fails.
not missed← fails. not missed← fails.

This last example is important since it shows how to update the effects of a
dynamic rule via a new static rule. It is also possible to update the effects of
a dynamic rule via another dynamic rule. We show a possible evolution of the
updated system. Suppose currently the gun is not loaded. We load the gun with a
rubber bullet and then we shoot to the turkey named Trevor. The initial state is
{}. The first set of actions is {rubber load} The resulting state after this action
is s′ ≡ {rubber loaded}. Suppose we perform the action load. Since the EAP
is updated with the dynamic rule effect(⊥) ← rubber loaded, load. there is
no resulting state. This happens because we have performed a non executable
action. Suppose, instead, the second set of actions is {shoot(trevor)}. There are
three possible resulting states. In one the gun fails. In this case, the resulting
state is, again, s′. In the second, the gun works but the bullet misses Trevor. In
this case, the resulting state is s′′1 ≡ {missed(trevor)}. Finally, the gun works
6 In the remainder we use the notation assert(U), where U is a set of macros (which

are themselves sets of Evolp rules) for the set of all facts assert(τ) such that τ is a
rule used in: there exists a macro η in U with τ ∈ η.

and the bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still alive.
In this case the resulting state is s′′2 ≡ {hit(trevor)}.

The events introduced changes in the behaviour of the original EAP. This
opens a new problem. In classical action languages we do not care about the pre-
vious history of the world: If the current state of the world is s, the computation
of the resulting states is not affected by the states before s. In the case of EAPs
the situation is different, since external updates can change the behaviour of the
considered EAP. Fortunately, we do not have to care about the whole history
of the world, but just about those events containing new initializations, inertial
declarations, effects inhibitions, and static and dynamic rules.

It is possible to have a compact description of an EAP that is updated
several times via external events. For that we need to further extend the original
definition of EAPs.

Definition 9. An updated Evolp action program over (F ,A) is any sequence
I⊕D1⊕. . .⊕Dn where I is initialize(F), and the various Dk are sets consisting
of static rules, dynamic rules, inertial declarations and effects inhibitions such
that any fluent appearing in Dk belongs to F

In general, if we update an Evolp action program I ⊕ D with the subsequent
events assert(I1), assert(D1), where I1 ⊕ D1 is another EAP, we obtain the
equivalent updated Evolp action program (I ∪ I1)⊕D ⊕D1 Formally:

Theorem 4. Let I ⊕D1⊕ . . .⊕Dk be any update EAP over (F ,A). Let
⊕

En
i

be a sequence of events such that: E1 = K1 ∪ s where s is any state of the world
and K is any set of actions and the others Eis are: any set of actions Kα, or
any set initialize(Fβ) where Fβ ⊆ F , or any Di with 1 ≤ i ≤ k. Then s′ is a
resulting state from s given I⊕D1⊕ . . .⊕Dk and the sequence of sets of actions⊕

Kα iff there exists an evolving stable model M1, . . . , Mn of I ⊕D with event
sequence

⊕
En

i such that Mn ≡F s

For instance, the updates to the original EAP of the example in this section are
equivalent to the updated EAP is Isum⊕D⊕D1⊕D2 such that Isum ≡ I ∪ I1 ∪ I2

where I and D are as in example of section 3.1 and the Iis and Dis are as in
the description above.

Yet one more possibility opened by updated Evolp action programs is to cater
for successive elaborations of a program. Consider an initial problem described
by an EAP I⊕D. If we want to describe an elaboration of the program, instead of
rewriting I⊕D we can simply update it with new rules. This gives a new answer
to the problem of elaboration tolerance [24] and also open the new possibility of
automatically update action programs by other action programs.

The possibility to elaborate an action program is also discussed in [15] in the
context of the C+ language. The solution proposed is to consider C+ programs
whose rules have one extra fluent atom in their bodies that are assumed false by
default. The elaboration of an action program P is the program P ∪U where U
is a new action program. The rules in U can defeat the rules in P by changing
the truth value of the extra literals in their bodies. An advantage of EAP is that,
in this framework, the possibility of updating rules is a built-in feature rather

then a programming technique involving manipulation of rules and introduction
of new fluents. Moreover, in EAPs we can simply encode the new behaviours of
the domain by new rules and then let these new rules update the previous ones.

6 Conclusions and future work

In this paper we have explored the possibility of using logic programs updates
languages as action description languages. In particular we have focused our
attention on the Evolp language. As a first point, we have defined a new ac-
tion language paradigm, christened Evolp action programs, defined as a macro
language over Evolp. We have provided an example of usage of such language.
We have compared Evolp action programs with action languages A, B, C and
provided simple translations into Evolp of these languages. Moreover we have
shown, both by theoretical argumentation and practical examples, how some
expressive capabilities of EAPs seem to be not replicable in these languages.
Finally we have also shown and argued about the capability of (⊕Pm

i ,
⊕

Ei) to
handle changes in the domain during the execution of actions.

Several important topics are not touched here, and will be subject of future
work. An important field of research is how to deal, in the Evolp context, with the
problem of planning [23]. Yet another topic involves the possibility of concurrent
execution of actions. EAPs allow the this possibility, nevertheless, we have not
fully explored this topic, and confronted the results with extant works [6, 17].
Finally EAPs have to be implemented and tested in real and complex contexts.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-7), vol-
ume 1730 of LNAI, Berlin, 2004. Springer.

2. J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs.
In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th
European Conference on Logics in Artificial Intelligence (JELIA’02), volume 2424
of LNAI, pages 50–61. Springer-Verlag, 2002.

3. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1–3):43–70, September/October 2000.

4. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

5. J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma.
Preliminary exploration on actions as updates. In M. C. Meo and M. V. Ferro,
editors, Proceedings of the 1999 Joint Conference on Declarative Programming
(AGP-99), 1999.

6. C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal
of Logic Programming, 31:85–118, 1997.

7. C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, ob-
servations and hypotheses. Journal of Logic Programming, 31, April–June 1997.

8. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), Cambridge, November 1999. MIT Press.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics
based on causal rejection. Theory and Practice of Logic Programming, 2:711–767,
November 2002.

10. T. Either, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative
update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649–654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

13. M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on AI, 16,
1998.

14. E. Giunchiglia, J. Lee, V. Lifschiz, N. Mc Cain, and H. Turner. Representing actions
in logic programs and default theories: a situation calculus approach. Journal of
Logic Programming, 31:245–298, 1997.

15. E. Giunchiglia, J. Lee, V. Lifschiz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 2003.

16. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623–630, 1998.

17. J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In
William Nebel, Bernhard; Rich, Charles; Swartout, editor, Proc. IJCAI-03, pages
1079–1084, Cambridge, MA, 2003. To Appear.

18. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, 2003.

19. J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In
LPKR’97: workshop on Logic Programming and Knowledge Representation, 1997.

20. V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspective, chapter
Action languages, answer sets and planning, pages 357–373. Springer Verlag, 1999.

21. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

22. John Wylie Lloyd. Foundations of Logic Programming. Springer,, Berlin, Heidel-
berg, New York,, 1987.

23. J. McCarthy. Programs with commons sense. In Proceedings of Teddington Con-
ference on The Mechanization of Thought Process, pages 75–91, 1959.

24. J. McCarthy. Mathematical logic in artificial intelligence, pages 297–311. Daedalus,
1988.

25. S. Russel and P. Norvig. Artificial Intelligence A Modern Approach, page 4. Arti-
ficial Intelligence. Prentice Hall, 1995.

26. D. McDermott S. Hanks. Nonmonotonic logic and temporal projection. Artificial
Intelligence, 33:379–412, (1987).

