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Abstra
tConvex polyhedra are the basis for several abstra
tions used in stati
 analy-sis and 
omputer-aided veri�
ation of 
omplex and sometimes mission 
riti
alsystems. For su
h appli
ations, the identi�
ation of an appropriate 
omplexity-pre
ision trade-o� is a parti
ularly a
ute problem, so that the availability of awide spe
trum of alternative solutions is mandatory. We survey the range ofappli
ations of polyhedral 
omputations in this area; give an overview of thedi�erent 
lasses of polyhedra that may be adopted; outline the main polyhe-dral operations required by automati
 analyzers and veri�ers; and look at somepossible 
ombinations of polyhedra with other numeri
al abstra
tions that havethe potential to improve the pre
ision of the analysis. Areas where furthertheoreti
al investigations 
an result in important 
ontributions are highlighted.Key words: Stati
 analysis, 
omputer-aided veri�
ation, abstra
tinterpretation.
1. Introdu
tionThe appli
ation of polyhedral 
omputations to the analysis and veri�
ationof 
omputer programs has its origin in a groundbreaking paper by Cousot andHalbwa
hs [31℄. There, the authors applied the theory of abstra
t interpretation[28, 29℄ to the stati
 determination of linear equality and inequality relationsamong program variables. In essen
e, the idea 
onsists in interpreting a pro-gram (as will be explained in more detail in Se
tions 2.1 and 3) on a domain of
onvex polyhedra instead of the 
on
rete domain of (sets of ve
tors of) ma
hinenumbers. Ea
h program operation is 
orre
tly approximated by a 
orresponding
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operation on polyhedra and measures are taken to ensure that the approximate
omputation always terminates. At the end of this pro
ess, the obtained poly-hedra en
ode provably 
orre
t linear invariants of the analyzed program (i.e.,linear equalities and inequalities that are guaranteed to hold for ea
h programexe
ution and for ea
h program input).As we show in this paper, relational information 
on
erning the data obje
tsmanipulated by programs or other devi
es is 
ru
ial for a broad range of appli-
ations in the �eld of automati
 or semi-automati
 program manipulation: it
an be used to prove the absen
e of 
ertain kinds of errors; it 
an verify that
ertain pro
esses always terminate or stabilize; it 
an pinpoint the position oferrors in the system; and it 
an enable the appli
ation of optimizations. Despitethis, due to the la
k of e�
ient, robust and publi
ly available implementationsof 
onvex polyhedra and of the required operations, the line of work begun byCousot and Halbwa
hs did not see mu
h development until the beginning ofthe 1990s. Sin
e then, this approa
h has been in
reasingly adopted and today
onvex polyhedra are the basis for several abstra
tions used in stati
 analy-sis and 
omputer-aided veri�
ation of 
omplex and sometimes mission 
riti
alsystems. For su
h appli
ations, the identi�
ation of an appropriate 
omplexity-pre
ision trade-o� is a parti
ularly a
ute problem: on the one hand, relationalinformation provided by general polyhedra is extremely valuable; on the otherhand, its high 
omputational 
ost makes it a fairly s
ar
e resour
e that must bemanaged with 
are. This implies, among other things, that general polyhedramust be 
ombined with simpler polyhedra in order to a
hieve s
alability. Asthe 
omplexity-pre
ision trade-o� varies 
onsiderably between di�erent appli
a-tions, the availability of a wide spe
trum of alternative solutions is mandatory.In this paper, we survey the range of appli
ations of polyhedral 
omputationsin the area of the analysis and veri�
ation of hardware and software systems: wedes
ribe in detail one important �and histori
ally, �rst� appli
ation of poly-hedral 
omputations in the �eld of formal methods, the linear invariant analysisfor imperative programs; we provide an a

ount of linear hybrid systems that isbased dire
tly on polyhedra; and we explain with an example how polyhedralapproximations 
an be applied to analog systems. The paper also provides anoverview of the main polyhedral operations required by these appli
ations, briefdes
riptions of some of the di�erent 
lasses of polyhedra that may be adopted,depending on the parti
ular 
ontext, and a look at some possible 
ombinations ofpolyhedra with other numeri
al abstra
tions that have the potential to improvethe pre
ision of the analysis. Areas where further theoreti
al investigations 
anresult in important 
ontributions are highlighted. Some bibliographi
 referen
esand a few examples have been omitted from this paper for spa
e reasons; theinterested reader 
an �nd them in the te
hni
al report version [13℄.The plan of the paper is as follows. Se
tion 2 introdu
es the required notionsand notations. Se
tion 3 demonstrates the use of polyhedral 
omputations inthe spe
i�
ation of a linear invariant analysis for a simple imperative language.Se
tion 4 is devoted to polyhedral approximation te
hniques for hybrid systems,whi
h, as shown in Se
tion 5 
an also be applied to purely analog systems.Se
tion 6 presents several families of polyhedral approximations. The most2



important operations that su
h approximations must provide are illustrated inSe
tion 7. Se
tion 8 
on
ludes.2. PreliminariesWe assume some basi
 knowledge about latti
e theory [20℄. Let (S,⊑) and
(T,�) be two partially ordered sets; the fun
tion f : S → T is monotoni
 if,for all x0, x1 ∈ S, x0 ⊑ x1 implies f(x0) � f(x1). If (S,⊑) ≡ (T,�), sothat f : S → S, an element x ∈ S su
h that x = f(x) is a �xpoint of f .If (S,⊑,⊥,⊤,⊔,⊓) is a 
omplete latti
e, then f is 
ontinuous if it preservesthe least upper bound of all in
reasing 
hains, i.e., for all x0 ⊑ x1 ⊑ · · · in
S, it satis�es f(

⊔

xi

)

=
⊔

f(xi); in su
h a 
ase, the least �xpoint of f withrespe
t to the partial order `⊑', denoted lfp f , 
an be obtained by iterating theappli
ation of f starting from the bottom element ⊥, thereby 
omputing theupward iteration sequen
e ⊥ = f0(⊥) ⊑ f1(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ · · ·,up to the �rst non-zero limit ordinal ω; namely, lfp f = fω(⊥)
def
=

⊔

i<ω f
i(⊥).For ea
h f0 : S0 → T0 and f1 : S1 → T1, the fun
tion f0[f1] : (S0 ∪ S1) →

(T0 ∪ T1) is de�ned, for ea
h x ∈ S0 ∪ S1, so that f0[f1](x) = f1(x), if x ∈ S1,and f0[f1](x) = f0(x), otherwise.For n > 0, we denote by v = (v0, . . . , vn−1) ∈ Rn an n-tuple (ve
tor) of realnumbers; R+ is the set of non-negative real numbers; 〈v,w〉 denotes the s
alarprodu
t of ve
tors v,w ∈ R
n; the ve
tor 0 ∈ R

n has all 
omponents equal tozero. We write v ::w to denote the tuple 
on
atenation of v ∈ Rn and w ∈ Rm,so that v ::w ∈ Rn+m.Let x be an n-tuple of distin
t variables. Then β =
(

〈a,x〉 ⊲⊳ b
) denotes alinear inequality 
onstraint, for ea
h ve
tor a ∈ R

n, where a 6= 0, ea
h s
alar
b ∈ R, and ⊲⊳ ∈ {≥, >}. A linear inequality 
onstraint β de�nes a (topologi
ally
losed or open) a�ne half-spa
e of Rn, denoted by con

(

{β}
).A set P ⊆ Rn is a (
onvex) polyhedron if and only if P 
an be expressedas the interse
tion of a �nite number of a�ne half-spa
es of R

n, i.e., as thesolution P = con(C) of a �nite set of linear inequality 
onstraints C (
alled a
onstraint system). The set of all polyhedra on the ve
tor spa
e Rn is denotedas Pn. When partially ordered by set-in
lusion, 
onvex polyhedra form a lat-ti
e (Pn,⊆, ∅,R
n,⊎,∩) having the empty set and R

n as the bottom and topelements, respe
tively; the binary meet operation, returning the greatest poly-hedron smaller than or equal to the two arguments, is easily seen to 
orrespondto set-interse
tion; the binary join operation, returning the least polyhedrongreater than or equal to the two arguments, is denoted `⊎' and 
alled 
onvexpolyhedral hull (poly-hull, for short). In general, the poly-hull of two polyhedrais di�erent from their 
onvex hull [76℄.A relation ψ ⊆ Rn × Rn (of dimension n) is said to be a�ne if there exists
ℓ ∈ N and ai, ci ∈ R

n, bi ∈ R and ⊲⊳i ∈ {≥, >}, for ea
h i = 1, . . . , ℓ, su
h that
∀v,w ∈ R

n : (v,w) ∈ ψ ⇐⇒
ℓ

∧

i=1

(

〈ci,w〉 ⊲⊳i 〈ai,v〉 + bi
)

.

3



Any a�ne relation of dimension n 
an thus be en
oded by ℓ linear inequalities ona 2n-tuple of distin
t variables x ::x′ (playing the role of v and w, respe
tively),therefore de�ning a polyhedron in P2n. The set of polyhedra Pn is 
losed underthe (dire
t or inverse) appli
ation of a�ne relations: i.e., for ea
h P ∈ Pn andea
h a�ne relation ψ ⊆ Rn ×Rn, the image ψ(P) and the preimage ψ−1(P) arein Pn.2.1. Abstra
t InterpretationThe semanti
s of a hardware or software system is a mathemati
al des
rip-tion of all its possible run-time behaviors. Di�erent semanti
s 
an be de�nedfor the same system, depending on the details being re
orded. Abstra
t inter-pretation [28, 29℄ is a formal method for relating these semanti
s a

ording totheir level of abstra
tion, so that questions about the behavior of a system 
anbe provided with sound, possibly approximate answers.The 
on
rete semanti
s c ∈ C of a program is usually formalized as theleast �xpoint of a 
ontinuous semanti
 fun
tion F : C → C, where the 
on
retedomain (C,⊑,⊥,⊤,⊔,⊓) is a 
omplete latti
e of semanti
 properties; in manyinteresting 
ases, the 
omputational order `⊑' 
orresponds to the approximationrelation, so that c1 ⊑ c2 holds if c1 is a stronger property than c2 (i.e., c2
orre
tly approximates c1).For instan
e, the run-time behavior of a program may be de�ned in termsof a transition system 〈Σ, t, ι〉, where Σ is a set of states, ι ⊆ Σ is the subset ofinitial states, and t ∈ ℘(Σ × Σ) is a binary transition relation mapping a stateto its possible su

essor states. Letting Σ⋆ denote the set of all �nite sequen
esof elements in Σ, the initial history of a forward 
omputation 
an be re
ordedas a partial exe
ution tra
e τ = σ0 · · ·σm ∈ Σ⋆ starting from an initial state
σ0 ∈ ι and su
h that any two 
onse
utive states σi and σi+1 are related bythe transition relation, i.e., (σi, σi+1) ∈ t. In su
h a 
ontext, an element of the
on
rete domain (

℘(Σ⋆),⊆, ∅,Σ⋆,∪,∩
) is a set of partial exe
ution tra
es andthe 
on
rete semanti
s is lfp(F), where the semanti
 fun
tion is de�ned by

F = λX ∈ ℘(Σ⋆) . X ∪ { τ ∈ Σ⋆ | τ = σ0 ∈ ι }

∪
{

τσi+1 ∈ Σ⋆
∣

∣ τ = σ0 · · ·σi ∈ X, (σi, σi+1) ∈ t
}

.An abstra
t domain1 (D♯,⊑,⊥,⊔) 
an be often modeled as a bounded join-semilatti
e, so that it has a bottom element ⊥ and the least upper bound d♯
1⊔d

♯
2exists for all d♯

1, d
♯
2 ∈ D♯. This domain is related to the 
on
rete domain by amonotoni
 and inje
tive 
on
retization fun
tion γ : D♯ → C. Monotoni
ity andinje
tivity mean that the abstra
t partial order is equivalent to the approxima-tion relation indu
ed on D♯ by the 
on
retization fun
tion γ. Conversely, the
on
rete domain is related to the abstra
t one by a partial abstra
tion fun
tion

α : C ֌ D♯ su
h that, for ea
h c ∈ C, if α(c) is de�ned then c ⊑ γ
(

α(c)
). In

1To avoid notational burden, we will freely overload the latti
e-theoreti
 symbols `⊑', `⊥',`⊔', et
., exploiting 
ontext to disambiguate their meaning.4



parti
ular, we assume that α(⊥) = ⊥ is always de�ned; when needed or useful,we will require a few additional properties.For example, a �rst abstra
tion of the semanti
s above, typi
ally adopted forthe inferen
e of invarian
e properties of programs [28, 29℄, approximates a set oftra
es by the set of states o

urring in any one of the tra
es. The rea
hable statesare thus 
hara
terized by elements of the 
omplete latti
e (

℘(Σ),⊆, ∅,Σ,∪,∩
),whi
h plays here the role of the abstra
t domain. The 
on
retization fun
-tion relating D♯ = ℘(Σ) to C = ℘(Σ⋆) is de�ned, for ea
h d♯ ∈ ℘(Σ), by

γ(d♯)
def
= { τ ∈ Σ⋆ | τ = σ0 · · ·σm, ∀i = 0, . . . ,m : σi ∈ d♯ }. The 
on
rete seman-ti
 fun
tion F : ℘(Σ⋆) → ℘(Σ⋆) 
an thus be approximated by the monotoni
abstra
t semanti
 fun
tion A : ℘(Σ) → ℘(Σ) de�ned by

A = λd♯ ∈ ℘(Σ) . d♯ ∪ ι ∪
{

σ′ ∈ Σ
∣

∣ ∃σ ∈ d♯ . (σ, σ′) ∈ t
}

.This abstra
t semanti
 fun
tion is sound with respe
t to the 
on
rete semanti
fun
tion in that it satis�es the lo
al 
orre
tness requirement
∀c ∈ C : ∀d♯ ∈ D♯ : c ⊑ γ(d♯) =⇒ F(c) ⊑ γ

(

A(d♯)
)

,ensuring that ea
h iteration F i(⊥) in the 
on
rete �xpoint 
omputation is ap-proximated by 
omputing the 
orresponding abstra
t iteration Ai
(

α(⊥)
). Inparti
ular, the least �xpoint of F is approximated by any post-�xpoint of A[29℄, i.e., any abstra
t element d♯ ∈ D♯ su
h that A(d♯) ⊑ d♯.A
tually, the abstra
tion de�ned above satis�es an even stronger property,in that the abstra
t semanti
 fun
tion A is the most pre
ise of all the soundapproximations of F that 
ould be de�ned on the 
onsidered abstra
t domain.This happens be
ause the two domains are related by a Galois 
onne
tion [28℄,i.e., there exists a total abstra
tion fun
tion α : C → D♯ satisfying

∀c ∈ C : ∀d♯ ∈ D♯ : α(c) ⊑ d♯ ⇐⇒ c ⊑ γ(d♯).Namely, α(c)
def
=

{

σi ∈ Σ
∣

∣ τ = σ0 · · ·σm ∈ c, i ∈ {0, . . . ,m}
}.For Galois 
onne
tions it 
an be shown that α(c) is the best possible ap-proximation in D♯ for the 
on
rete element c ∈ C; similarly, α ◦ F ◦ γ (i.e.,the fun
tion A de�ned above) is the best possible approximation for F [28℄.Su
h a result is provided with a quite intuitive reading; in order to approxi-mate the 
on
rete fun
tion F on an abstra
t element d♯ ∈ D♯: we �rst applythe 
on
retization fun
tion γ so as to obtain the meaning of d♯; then we applythe 
on
rete fun
tion F ; �nally, we abstra
t the result so as to obtain ba
k anelement of D♯.Abstra
t interpretation theory 
an thus be used to spe
ify (semi-) automati
program analysis tools that are 
orre
t by design. Of 
ourse �due to well-known unde
idability results� any fully automati
 tool 
an only provide partial,though safe answers.2.2. Abstra
t Domains for Numeri
 and Boolean ValuesThe rea
hable state abstra
tion des
ribed above is just one of the possi-ble semanti
 approximations that 
an be adopted when spe
ifying an abstra
t5



semanti
s. A further, typi
al approximation 
on
erns the des
ription of thestates of the transition system. Ea
h state σ ∈ Σ may be de
omposed into, e.g.,a set of numeri
al or Boolean variables that are of interest for the appli
ationat hand; new abstra
t domains 
an be de�ned (and 
omposed [28℄) so as tosoundly des
ribe the possible values of these variables.As an expository example, assume that part of a state is 
hara
terized bythe value of an integer variable. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) 
anbe abstra
ted to the 
on
rete domain of integers (

℘(Int),⊆, ∅, Int,∪,∩
). Thisdomain is further approximated by an abstra
t domain (

Int♯,⊑,⊥,⊔
), via the
on
retization fun
tion γI : Int♯ → ℘(Int). Elements of Int♯ are denoted by

m♯, possibly subs
ripted. We assume that the partial abstra
tion fun
tion
αI : ℘(Int) ֌ Int♯ is de�ned on all singletons {m} ∈ ℘(Int) and on the wholeset Int. We also assume that there are abstra
t binary operations `�', `�' and`�' on Int♯ that are sound with respe
t to the 
orresponding operations on
℘(Int) whi
h, in turn, are the obvious pointwise extensions of addition, sub-tra
tion and multipli
ation over the integers. More formally, for `�' we require
γI(m

♯
0 �m♯

1) ⊇
{

m0 +m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

} for ea
h m♯
0,m

♯
1 ∈ Int♯,i.e., soundness with respe
t to addition. Similar requirements are imposed on`�' and `�'. Even though the de�nition of Int♯ is 
ompletely general, familiesof integer intervals 
ome naturally to mind for this role.Suppose now that some other part of the state is 
hara
terized by the value ofa Boolean expression. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) 
an be abstra
tedto the �nite domain (

℘(Bool),⊆, ∅,Bool,∪,∩
), where Bool = {ff, tt} is the setof Boolean values. In general, su
h a �nite domain may be further approximatedby an abstra
t domain (Bool♯,⊑,⊥,⊤,⊔,⊓), related to the 
on
rete domain bya Galois 
onne
tion. Elements of Bool♯ are denoted by t♯, possibly subs
ripted,and we 
an de�ne abstra
t operations `�', `6' and `7' on Bool♯ that are soundwith respe
t to the pointwise extensions of Boolean negation, disjun
tion and
onjun
tion over ℘(Bool). For instan
e, for the operation `6' to be sound withrespe
t to disjun
tion on ℘(Bool), it is required that

γB(t♯0 6 t♯1) ⊇
{

t0 ∨ t1
∣

∣ t0 ∈ γB(t♯0), t1 ∈ γB(t♯1)
}

for ea
h t♯0 and t♯1 in Bool♯. Likewise for `7'. For `�' the 
orre
tness require-ment is that, for ea
h t♯ in Bool♯, γB(� t♯) ⊇
{

¬t
∣

∣ t ∈ γB(t♯)
}. Abstra
t
omparison operations �,4 : Int♯ × Int♯ → Bool♯ 
an then be de�ned to 
or-re
tly approximate the equal-to and less-than tests: for ea
h m♯

0,m
♯
1 ∈ Int♯,

γB(m♯
0 � m♯

1) ⊇
{

m0 = m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

}; likewise for `4'.Simple abstra
t domains su
h as the ones above 
an be 
ombined in di�erentways so as to obtain quite a

urate approximations [28℄. In some 
ases, however,the required pre
ision level may only be obtained by a suitable initial 
hoi
e ofthe abstra
t domain. As a notable example, suppose that some part of the state
σ ∈ Σ is 
hara
terized by n (integer or real valued) numeri
 variables and theappli
ation at hand needs some relational information about these variables. Insu
h a 
ontext, an approximation based on a simple 
onjun
tive 
ombination of

6



n 
opies of the domain Int♯ des
ribed above will be almost useless. Rather, anew approximation s
heme 
an be devised by modeling states using the domain
(

℘(Rn),⊆, ∅,Rn,∪,∩
), where ea
h ve
tor v ∈ R

n is meant to des
ribe a possiblevaluation for the n variables. A further abstra
tion should map this domain soas to retain some of the relations holding between the values of the n variables.If a �nite set of linear inequalities provides a good enough approximation, thenthe natural 
hoi
e is to abstra
t this domain into the abstra
t domain of 
onvexpolyhedra (Pn,⊆, ∅,R
n,⊎,∩) [31℄. In this 
ase, the 
on
rete and abstra
t do-mains are not related by a Galois 
onne
tion and, hen
e, a best approximationmight not exist.2 Nonetheless, the 
onvex polyhedral hull (partial) abstra
tionfun
tion ⊎ : ℘(Rn)֌ Pn is de�ned in most of the 
ases of interest and providesthe best possible approximation. Most of the arithmeti
 operations seen before
an be en
oded (or approximated) by 
omputing images of a�ne relations.2.3. Widening OperatorsIt should be stressed that, in general, the abstra
t semanti
s just des
ribedis not �nitely 
omputable. For instan
e, both the domain of 
onvex polyhedraand the domain of integer intervals have in�nite as
ending 
hains, so that thelimit of a 
onverging �xpoint 
omputation 
annot generally be rea
hed in a�nite number of iterations.A �nite 
omputation 
an be enfor
ed by further approximations resultingin a Noetherian abstra
t domain, i.e., a domain where all as
ending 
hainsare �nite. Alternatively, and more generally, it is possible to keep an abstra
tdomain with in�nite 
hains, while enfor
ing that these 
hains are traversed in a�nite number of iteration steps. In both 
ases, termination is usually a
hieved tothe detriment of pre
ision, so that an appropriate trade-o� should be pursued.Widening operators [27, 29℄ provide a simple and general 
hara
terization forthe se
ond option.De�nition2.1. The partial operator ∇ : D♯ ×D♯

֌ D♯ is a widening if:1. for all d♯, e♯ ∈ D♯, d♯ ⊑ e♯ implies that d♯ ∇ e♯ is de�ned and e♯ ⊑ d♯ ∇ e♯;2. for all in
reasing 
hains e♯
0 ⊑ e♯

1 ⊑ · · · , the in
reasing 
hain de�ned by
d♯
0

def
= e♯

0 and d♯
i+1

def
= d♯

i ∇ (d♯
i ⊔ e

♯
i+1), for i ∈ N, is not stri
tly in
reasing.It 
an be proved that, for any monotoni
 operator A : D♯ → D♯, the upwarditeration sequen
e with widenings starting at the bottom element d♯

0
def
= ⊥ andde�ned by

d♯
i+1

def
=

{

d♯
i , if A(d♯

i) ⊑ d♯
i ,

d♯
i ∇

(

d♯
i ⊔ A(d♯

i)
)

, otherwise,
onverges to a post-�xpoint of A after a �nite number of iterations. Clearly,the 
hoi
e of the widening has a deep impa
t on the pre
ision of the results2This happens, for instan
e, when approximating an n-dimensional ball with a 
onvexpolyhedron. 7



m ∈ Int
def
= Z t ∈ Bool

def
= {tt,ff} x ∈ Var

def
= {x0, x1, x2, . . .}

Aexp ∋ a ::= m | x | a0 + a1 | a0 − a1 | a0 ∗ a1

Bexp ∋ b ::= t | a0 = a1 | a0 < a1

Stmt ∋ s ::= skip | x := a | s0; s1 | if b then s0 else s1 | while bdo sFigure 1: Abstra
t syntax of the simple imperative language
obtained. Designing a widening whi
h is appropriate for a given appli
ation istherefore a di�
ult (but possibly rewarding) a
tivity.3. Analysis and Veri�
ation of Computer ProgramsIn this se
tion we begin a review of the appli
ations of polyhedral 
omputa-tions to analysis and veri�
ation problems starting with the the work of Cousotand Halbwa
hs [31℄. This seminal paper on the automati
 inferen
e of linearinvariants for imperative programs 
onstituted a major leap forward for at leasttwo reasons. First, the polyhedral domain proposed by Cousot and Halbwa
hswas 
onsiderably more powerful than all the data-�ow analyses known at thattime, in
luding the rather sophisti
ated one by Karr whi
h was limited to linearequalities [55℄. Se
ondly, the use of 
onvex polyhedra as an abstra
t domainestablished abstra
t interpretation as the right methodology for the de�nitionof 
omplex and 
orre
t program analyzers.We illustrate the basi
 ideas by partially spe
ifying the analysis of linearinvariants for a very simple imperative language. The simpli
ity of the languagewe have 
hosen for expository purposes should not mislead the reader: theapproa
h is generalizable to any imperative (and, for that matter, fun
tionaland logi
) language [9℄. The abstra
t syntax of the language is presented inFigure 1. The basi
 synta
ti
 
ategories, 
orresponding to the sets Int, Bool and
Var, are de�ned dire
tly. From these, the 
ategories of arithmeti
 and Booleanexpressions and of statements are de�ned by means of BNF rules. Noti
e theuse of synta
ti
 meta-variables: for instan
e, to save typing we will 
onsistentlydenote by s, possibly subs
ripted or supers
ripted, any element of Stmt.The 
on
rete semanti
s of programs is formally de�ned using the naturalsemanti
s approa
h [54℄. This, in turn, is a �big-step� operational semanti
sde�ned by stru
tural indu
tion on program stru
tures in the style of Plotkin[66℄. First we de�ne the notion of store, whi
h is any mapping between a �niteset of variables and elements of Int. Formally, a store is an element of theset Store

def
= {σ : V → Int | V ⊆ Var, V �nite } and denoted by the letter σ,possibly subs
ripted or supers
ripted. The store obtained from σ ∈ Store bythe assignment of m ∈ Int to x ∈ dom(σ), denoted by σ[m/x], is de�ned sothat, for ea
h x′ ∈ dom(σ), σ[m/x](x′) = m, if x′ = x, and σ[m/x](x′) = σ(x′),otherwise.
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〈m,σ〉
a
→ m 〈x, σ〉

a
→ σ(x)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 + a1, σ〉
a
→ m0 +m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 − a1, σ〉
a
→ m0 −m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 ∗ a1, σ〉
a
→ m0 ·m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 = a1, σ〉
b
→ (m0 = m1)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 < a1, σ〉
b
→ (m0 < m1)

〈skip, σ〉 s
→ σ

〈a, σ〉
a
→ m

〈x := a, σ〉
s
→ σ[m/x]

〈s0, σ〉
s
→ σ′′ 〈s1, σ

′′〉
s
→ σ′

〈s0; s1, σ〉
s
→ σ′

〈b, σ〉
b
→ tt 〈s0, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff 〈s1, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff

〈while bdo c, σ〉 s
→ σ

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′′ 〈while bdo c, σ′′〉

s
→ σ′

〈while bdo c, σ〉 s
→ σ′

Figure 2: Con
rete semanti
s rule s
hemata for the �nite 
omputations of the simple imper-ative language
The 
on
rete evaluation relations that 
omplete the de�nition of the 
on
retesemanti
s for our simple language are de�ned by stru
tural indu
tion from aset of rule s
hemata. The evaluation relations for terminating 
omputations are

a
→ ⊆ (Aexp×Store)×Int, for arithmeti
 expressions, b

→ ⊆ (Bexp×Store)×Bool,for Boolean expressions, and s
→ ⊆ (Stmt × Store) × Store, for statements. Thejudgment 〈a, σ〉

a
→ m means that when expression a is exe
uted in store σit results in the integer m. The judgment 〈b, σ〉

b
→ t is similar. Note thatexpressions do not have, in our simple language, side e�e
ts. The judgment

〈s, σ〉
s
→ σ′ means that the statement s, exe
uted in store σ, results in a (possiblymodi�ed) store σ′. The rule s
hemata, in the form premise
on
lusion , that de�ne theserelations are given in Figure 2. Rule instan
es 
an be 
omposed in the obviousway to form �nite tree stru
tures, representing �nite 
omputations.The possibly in�nite set of all �nite trees is obtained by means of a least�xpoint 
omputation, 
orresponding to the 
lassi
al indu
tive interpretation ofthe rules in Figure 2. The rule s
hemata in Figure 3 
an be used to dire
tlymodel non-terminating 
omputations and need to be interpreted 
oindu
tively[30℄. The judgment 〈s, σ〉

∞
→ means that the statement s diverges when exe-
uted in store σ. By a suitable adaptation of the 
omputational ordering, bothsets of �nite and in�nite trees 
an be jointly 
omputed in a single least �xpoint

9



〈s0, σ〉
∞
→

〈s0; s1, σ〉
∞
→

〈s0, σ〉
s
→ σ′ 〈s1, σ

′〉
∞
→

〈s0; s1, σ〉
∞
→

〈b, σ〉
b
→ tt 〈s0, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ ff 〈s1, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

∞
→

〈while bdo c, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′ 〈while bdo c, σ′〉

∞
→

〈while bdo c, σ〉 ∞
→Figure 3: Additional 
on
rete semanti
s rule s
hemata for the in�nite 
omputations of thesimple imperative language
omputation [30℄. While these semanti
s 
hara
terizations 
ontain all the infor-mation we need to perform a wide range of program reasoning tasks, they aregenerally not 
omputable: we have thus to resort to approximation.Following the abstra
t interpretation approa
h, as instantiated in [70℄, the
on
rete rule s
hemata are paired with abstra
t rule s
hemata that 
orre
tlyapproximate them. Before doing that, we need to formalize abstra
t domainsfor ea
h 
on
rete domain used by the 
on
rete semanti
s.For simple approximations of integers and Boolean expressions, we 
onsiderthe abstra
t domains Int♯ and Bool♯ introdu
ed in Se
tion 2.2. The last (andmost interesting) abstra
tion we need is one that approximates sets of stores.We thus require an abstra
t domain (

Store♯,⊑,⊥,⊔
) that is related, by meansof a 
on
retization fun
tion γS su
h that γS(⊥) = ∅, to the 
on
rete domain

(

℘(Store),⊆, ∅, Store,∪,∩
). Elements of Store♯ are denoted by σ♯, possiblysubs
ripted. The abstra
t store evaluation and update operators
·[·] : (Store♯ × Aexp) → Int♯,

·[· := ·] :
(

Store♯ × Var × Aexp
)

→ Store♯,

·[·/·] :
(

Store♯ × Var × Int♯
)

→ Store♯are assumed to be sound with respe
t to their 
on
rete 
ounterparts, i.e., su
hthat, for ea
h σ♯ ∈ Store♯, a ∈ Aexp, x ∈ Var and m♯ ∈ Int♯:
γI

(

σ♯[a]
)

⊇
{

m ∈ Int
∣

∣ σ ∈ γS(σ♯), 〈a, σ〉
a
→ m

}

,

γS

(

σ♯
[

x := a]
)

⊇
{

σ′ ∈ Store
∣

∣ σ ∈ γS(σ♯), 〈x := a, σ〉
s
→ σ′

}

,

γS

(

σ♯
[

m♯/x]
)

⊇
{

σ[m/x] ∈ Store
∣

∣ σ ∈ γS(σ♯),m ∈ γI(m
♯)

}

.We also need 
omputable �Boolean �lters� to re�ne the information 
ontainedin abstra
t stores, i.e., two fun
tions φtt, φff : Store♯ ×Bexp → Store♯ su
h that,for ea
h t ∈ Bool, σ♯ ∈ Store♯ and b ∈ Bexp:
γS

(

φt(σ
♯, b)

)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ t

}

.10



We are now in a position to present, in Figure 4, a possible set of domain-independent abstra
t rule s
hemata. These s
hemata allow for the free approx-imation of the ` ' right-hand sides in the 
on
lusions. This means that if, e.g.,premise
〈s,σ〉

s
 σ

♯
1

is an instan
e of some rule, then premise
〈s,σ〉

s
 σ

♯
2

is also an instan
e of thesame rule for ea
h σ♯
2 su
h that σ♯

1 ⊑ σ♯
2. Hen
e the s
hemata in Figure 4 ensure
orre
tness yet leaving 
omplete freedom about pre
ision. The ability to giveup some pre
ision, as we will see, is 
ru
ial in order to ensure the (reasonablyqui
k) termination of the analysis.It is possible to prove that, for ea
h (possibly in�nite) 
on
rete tree T builtusing the s
hemata of Figures 2 and 3, for ea
h (possibly in�nite) abstra
t tree

T ♯ built using the s
hemata of Figure 4, if the 
on
rete tree root is of the form
〈s, σ〉

s
→ σ1 (when the tree is �nite) or 〈s, σ〉

∞
→ (when the tree is in�nite)and the abstra
t tree root is of the form 〈s, σ♯〉
s
 σ♯

1 with σ ∈ γS(σ♯), then T ♯
orre
tly approximates T . This means not only that σ1 ∈ γS(σ♯
1) (when T is�nite), but also that ea
h node in T is 
orre
tly approximated by at least onenode in T ♯. In other words, the abstra
t tree 
orre
tly approximates the entire
on
rete 
omputation (see [9℄ for the details).It is worth stressing the observation by S
hmidt that, even when disregardingthe non-terminating 
on
rete 
omputations, the abstra
t rules still have to beinterpreted 
oindu
tively be
ause most of the �nite 
on
rete trees 
an only beapproximated by in�nite abstra
t trees; for instan
e, all abstra
t trees 
ontain-ing a while loop are in�nite. Sin
e, in general, we 
annot e�e
tively 
omputein�nite abstra
t trees, we still do not have a viable analysis te
hnique. Thesolution is to restri
t ourselves to the 
lass of rational trees, i.e., trees with only�nitely many subtrees and that, 
onsequently, admit a �nite representation.The analysis algorithm is sket
hed in [70℄. For expository purposes, wedes
ribe here a simpli�ed version that, however, is enough to handle the 
on-sidered programming language features. The algorithm works by re
ursively
onstru
ting a �nite approximation for the (possibly in�nite) abstra
t subtreerooted in the 
urrent node (initially, the root of the whole tree). The 
urrentnode n =

(

〈p, σ♯
n〉 rn

), where rn is a pla
eholder for the �yet to be 
omputed�
on
lusion, is pro
essed a

ording to the following alternatives:1. If no an
estor of n has p in the label, the node has to be expanded usingan appli
able abstra
t rule instan
e. Namely, des
endants of the premisesof the rule are (re
ursively) pro
essed, one at a time and from left to right.When the expansion of all the premises has been 
ompleted, in
luding the
ase when the rule has no premise at all, the marker rn is repla
ed by anabstra
t value 
omputed a

ording to the 
on
lusion of the rule.2. If there exists an an
estor node m = 〈p, σ♯
m〉 rm of n labeled by the samesyntax p and su
h that σ♯

n ⊑ σ♯
m, i.e., if node n is subsumed by node m,then the node is not expanded further and the pla
eholder rn is repla
ed bythe least �xpoint of the equation rn = fm(rn), where fm is the expression
orresponding to the 
on
lusion of the abstra
t rule that was used for the
11



〈m,σ♯〉
a
 αI

(

{m}
)

〈x, σ♯〉
a
 σ♯[x]

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 + a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 − a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 ∗ a1, σ
♯〉

a
 m♯

0 �m♯
1

〈t, σ♯〉
b
 αB

(

{t}
)

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 = a1, σ
♯〉

b
 m♯

0 � m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 < a1, σ
♯〉

b
 m♯

0 4 m♯
1

〈skip, σ♯〉
s
 σ♯

〈a, σ♯〉
a
 m♯ (i)

〈x := a, σ♯〉
s
 σ♯[x := a]

〈a, σ♯〉
a
 m♯ (ii)

〈x := a, σ♯〉
s
 σ♯[m♯/x]

〈s0, σ
♯
0〉

s
 σ♯

1 〈s1, σ
♯
1〉

s
 σ♯

2

〈s0; s1, σ
♯
0〉

s
 σ♯

2

〈b, σ♯〉
b
 t♯

〈

s0, φtt(σ
♯, b)

〉 s
 σ♯

0

〈

s1, φff(σ♯, b)
〉 s
 σ♯

1

〈if b then s0 else s1, σ♯〉
s
 σ♯

0 ⊔ σ
♯
1

〈b, σ♯〉
b
 t♯

〈

c, φtt(σ
♯, b)

〉 s
 σ♯

1 〈while bdo c, σ♯
1〉

s
 σ♯

2

〈while bdo c, σ♯〉
s
 φff(σ♯, b) ⊔ σ♯

2Notes:(i) This rule is used if the domain Store
♯ 
an 
apture the assignment pre
isely(e.g., when Store

♯ is a domain of 
onvex polyhedra and a is an a�neexpression). Noti
e that the premise is intentionally not used: its presen
eis required in order to ensure that the abstra
t tree approximates the
on
rete tree in its entirety.(ii) This rule is used when (i) is not appli
able.Figure 4: Abstra
t semanti
s rule s
hemata for the simple imperative language
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expansion of node m.33. Otherwise, there must be an an
estor node m = 〈p, σ♯
m〉 rm of n labeledby the same syntax p, but the subsumption 
ondition σ♯

n ⊑ σ♯
m does nothold. Then there are two options:(a) if the abstra
t domain Store♯ is �nite, we pro
eed as in 
ase (1);(b) if the abstra
t domain Store♯ is in�nite, to ensure 
onvergen
e, a widen-ing `∇' over Store♯ 
an be employed and store σ♯

n in node n is repla
edby σ♯
m ∇ (σ♯

m ⊔ σ♯
n). Then, we pro
eed again as in 
ase (1).The abstra
t semanti
s of Figure 4 and the given algorithm for 
omputing arational abstra
t tree are fully generi
 in that any 
hoi
e for the abstra
t domains

Int♯, Bool♯ and Store♯ will result into a provably 
orre
t analysis algorithm.Fo
using on numeri
al domains, the role of Int♯ 
an be played by any domainof intervals, so that the operations `�', `�' and `�' are the standard ones ofinterval arithmeti
 [1℄; for instan
e, [ml
0,m

u
0 ]� [ml

1,m
u
1 ]

def
= [ml

0 +ml
1,m

u
0 +mu

1 ].More sophisti
ated domains, su
h as modulo intervals [64℄, are able to en
odemore pre
ise information about the set of integer values ea
h variable 
an take.For Store♯, a 
ommon 
hoi
e is to abstra
t from the integrality of variables and
onsider a domain of 
onvex polyhedra whi
h, in ex
hange, allows the tra
kingof relational information. With referen
e to Figure 4, rule (i) 
an be applieddire
tly when the arithmeti
 expression a = 〈a,x〉+b is a�ne; the 
orrespondingpolyhedral operation is the 
omputation of the image of a polyhedron by aspe
ial 
ase of a�ne relation ψ ⊆ Rn ×Rn, 
alled single-update a�ne fun
tion:
(v,w) ∈ ψ ⇐⇒ wk = 〈a,v〉 + b ∧

∧

0≤i<n
i 6=k

wi = vi.

Another spe
ial 
ase, slightly more general than the one above and 
alled single-update bounded a�ne relation, allows among other things to approximate non-linear assignments and to realize rule (ii). For �xed ve
tors a, c ∈ R
n and s
alars

b, d ∈ R:
(v,w) ∈ ψ ⇐⇒ 〈a,v〉 + b ≤ wk ≤ 〈c,v〉 + d ∧

∧

0≤i<n
i 6=k

wi = vi.

Both the rules for the if-then-else and the while 
onstru
ts require the Boolean�lters and least upper bound operations: these are realized by means of inter-se
tions (or the addition of individual 
onstraints) and poly-hulls, respe
tively.These, together with the 
ontainment test used to dete
t the rea
hing of post-�xpoints and the widening (see Se
tion 7) used to ensure termination of theanalysis algorithm, are all the operations required for the analysis of our sim-ple imperative language. More 
omplex languages require other operations: for3As explained in [70℄, the 
omputation of su
h a least �xpoint (in the 
ontext of a 
oin-du
tive interpretation of the abstra
t rules) is justi�ed by the fa
t that here we only need toapproximate the 
on
lusions produ
ed by the terminating 
on
rete 
omputations.13



instan
e, the analysis of languages with 
ommand blo
ks needs to have thepossibility of embedding polyhedra into a spa
e of higher dimension, reorga-nizing the dimensions, and proje
ting polyhedra on spa
es of lower dimension.Other operations are needed to a

ommodate di�erent semanti
 
onstru
tions(e.g., a�ne preimages for ba
kward semanti
s), to allow for the e�
ient mod-eling of data obje
ts (e.g., summarized dimensions to approximate the valuesof unbounded 
olle
tions [41℄), and to help s
alability (e.g., simpli�
ations ofpolyhedra [38℄).Based on suitable variations of the simple linear invariant analysis outlined inthis se
tion (possibly 
ombined with other analyses), many di�erent appli
ationshave been proposed in the literature. Examples in
lude the absen
e of 
ommonrun-time arithmeti
 errors, su
h as �oating-point ex
eptions, over�ows and di-visions by zero [21℄; the absen
e of out-of-bounds array indexing [31, 78℄, as wellas other bu�er overruns 
aused by in
orre
t string manipulations [35, 37℄; theanalysis of programs manipulating (possibly unbounded) heap-allo
ated datastru
tures, so as to prove the absen
e of several kinds of pointer errors (e.g.,memory leaks) [41, 72℄; the 
omputation of input/output argument size rela-tions in logi
 programs [18℄; the dete
tion of potential se
urity vulnerabilities inx86 binaries that allow to bypass intrusion dete
tion systems [57℄; the inferen
eof temporal s
hedulability 
onstraints that a partially spe
i�ed set of real-timetasks has to satisfy [34℄. All of the above are examples of safety properties,whereby a 
omputer program is proved to be free from some undesired behav-ior. However, the 
omputation of invariant linear relations is also an important,often indispensable step when aiming at proving progress properties, su
h as ter-mination [26, 61, 74℄. It should be also stressed that the same approa
h, aftersome minor adaptations, 
an be applied to the analysis of alternative 
omputa-tion paradigms su
h as, e.g., gated data dependen
e graphs [53℄ (an intermediaterepresentation for 
ompilers) and bat
h work�ow networks [77℄ (a form of Petrinet used in work�ow management).4. Analysis and Veri�
ation of Hybrid SystemsHybrid systems (that is, dynami
al systems with both 
ontinuous and dis-
rete 
omponents) are 
ommonly modeled by hybrid automata [2, 38, 49℄.These, often highly 
omplex, systems are usually nonlinear (making them 
om-putationally intra
table as they are). However, linear approximations, whi
h al-low the use of polyhedral 
omputations for the model 
he
king operations, havebeen used su

essfully for the veri�
ation of useful safety properties [36, 38, 75℄.De�nition4.1. (Linear hybrid automaton.) A linear hybrid automaton(of dimension n) is a tuple (Loc, Init,Act, Inv,Lab,Trans) where the �rst 
om-ponent Loc is a �nite set of lo
ations. The three fun
tions Init : Loc → Pn,
Act: Loc → Pn and Inv : Loc → Pn de�ne polyhedra. In parti
ular, for ea
h lo-
ation ℓ ∈ Loc: Init(ℓ) spe
i�es the set of possible initial values the n variables
an take if the automaton starts at ℓ; Act(ℓ) spe
i�es the possible derivativevalues of the n variables, so that, if the automaton rea
hes ℓ with values given14



by the ve
tor v, then after staying there for a delay of t ∈ R+, the values willbe given by a ve
tor v + tw, where w ∈ Act(ℓ); Inv(ℓ) spe
i�es the valuesthat an n-ve
tor v may have at ℓ. The �fth and sixth 
omponents provide aset of syn
hronization labels Lab and a labeled set of a�ne transition relations
Trans ⊆ Loc× Lab× P2n × Loc, required to hold when moving from the sour
elo
ation (the �rst argument) to the target lo
ation (the fourth argument).Observe that the only di�eren
es between this de�nition of a linear hybrid au-tomaton and those in, for example [47, 49℄, are presentational; in parti
ular, aswe have used polyhedra to represent the linear 
onstraints, there is no need toprovide, as is the 
ase in these other de�nitions, an expli
it 
omponent of thesystem 
onsisting of the set of n variables.The syn
hronization labels Lab are required for spe
ifying large systems.Ea
h part of the system is spe
i�ed by a separate automaton, and then parallel
omposition is employed to 
ombine the 
omponents into an automaton for the
omplete system. This ensures that 
ommuni
ation between the automata o
-
urs, via sele
ted input/output variables, between transitions that have the samelabel. Example 4.3 provides a very simple illustration of parallel 
omposition;formal de�nitions are available in [2, 49℄.A linear hybrid automaton 
an be represented by a dire
ted graph whosenodes are the lo
ations and edges are the transitions from the sour
e to thetarget lo
ations. Ea
h node ℓ is labeled by two sets of 
onstraints de�ning thepolyhedra Inv(ℓ) and Act(ℓ). To distinguish these 
onstraints, if, for example
x is a variable used for the 
onstraints de�ning Inv(ℓ), ẋ will be used in the
onstraints de�ning Act(ℓ).4 In the examples, the initial polyhedron Init(ℓ) isassumed to be empty unless there is an arrow to ℓ (with no sour
e node) labeledby the 
onstraint system de�ning Init(ℓ). Ea
h edge τ =

(

ℓ, a,P, ℓ′) ∈ Trans,is labeled by a 
onstraint system C de�ning P and, optionally, by a whi
h isonly in
luded where it is used for the parallel 
omposition of automata. Sin
e
P ∈ P2n, we spe
ify C by using two n-tuples of variables x and x

′, whi
hare interpreted as usual to denote the variables in the sour
e ℓ and target ℓ′lo
ations, respe
tively. We also adopt some helpful shorthand notation: x++and x−− denote x′ = x + 1 and x′ = x − 1, respe
tively; also, 
onstraints ofthe form x′ = x are omitted. The following examples, taken (with some minormodi�
ations) from [2, 47℄, illustrate the automata.Example4.2. A graphi
al view of a water-level monitor automaton is givenin Figure 5. This models a system des
ribing how the water level in a tankis 
ontrolled by a monitor that senses the water level w and operates a pump.When the pump is o�, w falls by 2 
m per se
ond; when the pump is on, w risesby 1 
m per se
ond. However, there is a delay of 2 se
onds from the momentthe monitor signals the pump to 
hange from on to o� or vi
e versa before theswit
h is a
tually operated. Initially the automaton is at ℓ0 with w = 1 and4The dot notation re�e
ts the fa
t that these variables denote the derivatives of the statevariables. 15



it is required that 1 ≤ w ≤ 12 at all times. Thus the monitor must signal thepump to turn on when w = 5 and signal it to turn o� when w = 10.The automaton illustrated in Figure 5 has 2 dimensions with variables wand x, where x denotes the time (in se
onds) sin
e the previous, most re
ent,signal from the monitor. There are four lo
ations ℓi where i = 0, 1, 2, 3. At
ℓ0 and ℓ1 the pump is on, while at ℓ2 and ℓ3 the pump is o�. At ℓ1 and ℓ3 themonitor has signaled a 
hange to the pump swit
h, but this has not yet beenoperated. Thus we have:

Init(ℓ0) = con
(

{w = 1}
)

, Init(ℓ1) = Init(ℓ2) = Init(ℓ3) = ∅,

Inv(ℓ0) = con
(

{w < 10}
)

, Inv(ℓ1) = Inv(ℓ3) = con
(

{x < 2}
)

,

Inv(ℓ2) = con
(

{w > 5}
)

, Act(ℓ0) = Act(ℓ1) = con
(

{ẋ = ẇ = 1}
)

,

Act(ℓ2) = Act(ℓ3) = con
(

{ẋ = 1, ẇ = −2}
)

.There are four transitions τij = (ℓi, ai,Pi, ℓj) ∈ Trans, where i ∈ {0, 1, 2, 3} and
j = i+ 1 (mod 4); the a�ne relations are

P0 = con
(

{w = w′ = 10, x′ = 0}
)

, P1 = con
(

{x = x′ = 2, w′ = w}
)

,

P2 = con
(

{w = w′ = 5, x′ = 0}
)

, P3 = P1.Example4.3. A representation of an automaton for a simple task s
heduler isgiven in Figure 6. This models a s
heduler with two 
lasses of tasks A1 and A2,a
tivated by interrupts I1 and I2. Interrupt I1 (resp., I2) o

urs at most on
eevery 10 (resp., 20) se
onds and a
tivates a task in 
lass A1 (resp., A2), whi
htakes 4 (resp., 8) se
onds to 
omplete. Tasks in A2 have priority and preempttasks in A1. It is required that tasks in A2 never wait.The S
heduler automaton given in Figure 6 is the parallel 
omposition oftwo 
omponent automata: Interrupt whi
h models the assumptions about theinterrupt frequen
ies; and Task, whi
h models the exe
ution of the tasks. TheInterrupt automaton, whi
h has a single lo
ation `Intpt', has variables c1 and
c2; ci (i = 1, 2) measures the time elapsed sin
e interrupt Ii o

urred. The Taskautomaton has three lo
ations: `Idle' when no tasks are running; and `Task1'and `Task2' when tasks in 
lasses A1 (resp., A2) are a
tive. It has, for ea
h
i = 1, 2, variables xi, whi
h measures the exe
ution time of task i, and ki,whi
h 
ounts the number of pending tasks in 
lass task i.The 
ombined S
heduler automaton has variables x1, x2, k1, k2, c1 and c2and lo
ations whi
h are elements of the Cartesian produ
t of the sets of lo
a-tions for Interrupt and Task. As Interrupt has just one lo
ation, ea
h Tasklo
ation ℓ is used to denote the 
orresponding S
heduler lo
ation; here, the ini-tial Init(ℓ), derivative Act(ℓ) and invariant Inv(ℓ) polyhedra for the S
hedulerare the 
on
atenation of the 
orresponding 
omponent polyhedra for the Taskand Interrupt automata (informally, a 
on
atenation of polyhedra P ∈ Pm and
Q ∈ Pn 
an be obtained by �rst embedding P into a ve
tor spa
e of dimen-sion n + m and then add a suitably renamed-apart version of the 
onstraintsde�ning Q). Ea
h transition (ℓ, a,P, ℓ′) in the Task automaton not triggered
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Figure 5: Water-level monitor
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Figure 6: S
heduler
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by interrupts I1 and I2 has a transition (ℓ, a,Q, ℓ′) in the produ
t automatonwhere Q ∈ P6 is obtained by embedding P into a ve
tor spa
e of dimension
6. Letting i = 1, 2, for transitions (ℓ, Ii,P, ℓ

′) and (Intpt, Ii,P
′, Intpt) in theTask and Interrupt automata, respe
tively, there is a transition (ℓ, Ii,Q, ℓ

′) inthe produ
t automaton where Q ∈ P6 is obtained by 
on
atenating P and P ′.Given a linear hybrid automaton, the aim of an analyzer is to 
he
k, or even�nd su�
ient 
onditions that ensure, that a valid run of the system 
annot rea
ha lo
ation and ve
tor of values that violate some requirement of the system.For instan
e, in Example 4.2, we need to show that the water level always liesbetween 1 
m and 12 
m; in Example 4.3, we need to show that no task in A2will ever wait. To show how polyhedral 
omputations 
an be used to prove su
hproperties, we �rst de�ne more formally su
h a run and how rea
hable sets maybe 
omputed. Note that these de�nitions follow, with only minor 
hanges, theapproa
h in [47℄.Letting H = (Loc, Init,Act, Inv,Lab,Trans) be a linear hybrid automatonin n dimensions, a state s of H 
onsists of a pair (ℓ,v), where ℓ ∈ Loc and
v ∈ Inv(ℓ). Given states s = (ℓ,v) and s′ = (ℓ′,v′), a time delay t ∈ R+ anda ve
tor w ∈ Act(ℓ), s →t

w
s′ is a step of H provided that, for all t′ ∈ [0, t),

v + t′w ∈ Inv(ℓ) and, for some (ℓ, a,P, ℓ′) ∈ Trans, (v + tw) ::v′ ∈ P. A runof H is a sequen
e (�nite or in�nite) of steps s0 →t0
w0

s1 →t1
w1

s2 · · ·, where theinitial state s0 = (ℓ0,v0) satis�es the 
ondition v0 ∈ Init(ℓ0). An in�nite rundiverges if the sum ∑

i≥0 ti diverges. For ea
h divergent run where, for i ≥ 0,
si = (ℓi,vi), we asso
iate a (state) behavior β whi
h is a total fun
tion fromtime to states: that is, β(0) = s0 and, for ea
h t > 0, β(t)

def
= (ℓi,v), where

i = min
{

k ∈ N
∣

∣

∑k
j=0 tj > t

} and v = vi + wi

(

t −
∑

j<i tj
). A state s isrea
hable if there exists a divergent run with behavior β and time t ∈ R+ su
hthat β(t) = s. The set of all rea
hable values Rℓ for a lo
ation ℓ is de�ned as:

Rℓ
def
=

{

v ∈ R
n

∣

∣ ∃t ∈ R+ . β(t) = (ℓ,v)
}

.The set of rea
hable values Rℓ at a lo
ation ℓ 
an be 
hara
terized by a systemof �xpoint equations that are de�ned in terms of sets of rea
hable values Rℓ′at lo
ations ℓ′ where (

ℓ′, a,P, ℓ
)

∈ Trans. These equations use the followingoperations on sets of ve
tors in R
n. Let P,Q ∈ P2n and S ⊆ R

n. Then
ψP(S)

def
= {v

′ ∈ R
n | v ∈ S,v ::v′ ∈ P };

S ր Q
def
= {v + tw ∈ R

n | v ∈ S,w ∈ Q, t ∈ R+ }.Note that, if S ∈ Pn, then also ψP(S) ∈ Pn and S ր Q ∈ Pn. The `ր' operator,
alled the time elapse operator, was �rst proposed in [47℄. We 
an now providethe �xpoint equation for Rℓ:
Rℓ =

(

(

Init(ℓ) ∪
⋃

(ℓ′,a,P,ℓ)∈Trans

ψP(Rℓ′) ∩ Inv(ℓ)
)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.1)
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Informally, the �xpoint equation for Rℓ says that the rea
hable values at thelo
ation ℓ are obtained by letting the time elapse either from an initial value for
ℓ or from a value obtained from an in
oming transition. However, the �xpointEquation (4.1) 
annot handle stri
t 
onstraints 
orre
tly and needs modifying;this is illustrated in the following example.Example4.4. Consider again Example 4.2. Then, just applying Equation (4.1)(as proposed in [47℄), the sets of rea
hable values at lo
ations ℓ1, ℓ2, ℓ3 are empty.The reason for this is that, for example, at lo
ation ℓ0, the stri
t 
onstraint
w < 10 must hold, while in the transition from ℓ0 to ℓ1, the transition 
ondition
w = 10 has to hold. On the other hand, it follows from the de�nition of a step,that sin
e one of the derivative 
onstraints at ℓ0 is ẇ = 1; the water level wmay 
ontinue to in
rease up to the topologi
al 
losure of Rℓ0 whi
h is 
onsistentwith w = 10.To resolve this problem, in Equation (4.1) de�ning the 
on
rete 
omputation,
Rℓ′ needs to be repla
ed by c(Rℓ′) ∩

(

Rℓ′ ր Act(ℓ′)
), where c(R′

ℓ) denotes thetopologi
al 
losure of R′
ℓ ⊆ Rn.Observe that, although the linear hybrid automata are spe
i�ed by means ofpolyhedra, the rea
hable set Rℓ for a linear hybrid automaton and lo
ation ℓmaynot be a 
onvex polyhedron sin
e Equation (4.1) uses the set union operation.Therefore, to verify that some states of an automaton are unrea
hable usingstandard polyhedral 
omputations, set union has to be repla
ed by the poly-hull operation ⊎ des
ribed in Se
tion 2. Thus the following �xpoint equation
omputes an approximation R♯

ℓ to the rea
hability set Rℓ.
R♯

ℓ =

(

(

Init(ℓ) ⊎
⊎

(ℓ′,a,P,ℓ)∈Trans

ψP(R♯
ℓ′) ∩ Inv(ℓ)

)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.2)
As for the 
on
rete �xpoint equation, to 
orre
tly handle the stri
t 
onstraintsin Equation (4.2) we need to repla
e R♯

ℓ′ with c(R♯
ℓ′) ∩

(

R♯
ℓ′ ր Act(ℓ′)

).If we let R
♯ denote the tuple {R♯

ℓ | ℓ ∈ Loc } we 
an write Equation (4.2)as R♯
ℓ = Fℓ(R

♯). For all ℓ ∈ Loc, we write R
♯(0)
ℓ = ∅ and, for all k ≥ 1,

R
♯(k+1)
ℓ = Fℓ(R

♯(k)
ℓ ). Then R

♯ 
an be 
omputed iteratively provided the se-quen
e R
♯(0),R♯(1), . . . does not diverge. To handle diverging sequen
es, weapply a widening (see Se
tion 7.2); note that this only needs to be applied atsu�
ient lo
ations so that ea
h 
y
li
 path in the graph of the hybrid automatonhas at least one widening point.Example4.5. Consider again Example 4.2. As there is a single loop passingthrough ℓ0, it is su�
ient to de�ne the set of widening lo
ations as {ℓ0}.With the modi�ed form of Equation (4.2) and the polyhedra widening of [31℄,the 
omputation requires three iterations resulting in polyhedra de�ned by 
on-straint systems Ci for 0 ≤ i ≤ 3 where:

C0 = {1 ≤ w < 10}, C1 = {w − x = 10, 10 ≤ w < 12},

C2 = {w + 2x = 16, 5 < w ≤ 12}, C3 = {w + 2x = 5, 1 < w ≤ 5}.
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Example4.6. Consider again Example 4.3. By applying the above mentionedpolyhedra widening at lo
ation `Task2' only, the analysis for the produ
t au-tomaton terminates in four iterations. After proje
ting onto variables k1 and
k2, the rea
hable values are given by polyhedra de�ned by 
onstraint systems
Ct0, Ct1, and Ct2 for lo
ations `Idle', `Task1' and `Task2', respe
tively, where:

Ct0 = {k1 = k2 = 0}, Ct1 = {k2 = 0, k1 = 1}, Ct2 = {k2 = 1}.Therefore, sin
e at all lo
ations k2 ≤ 1, no task in 
lass A2 will ever have towait. However, as noted in [47℄, be
ause of the 
onvex hull approximation, withthe polyhedral domain the analyzer fails to show that k1 ≤ 2. We thereforeredid the analysis using a domain of powersets of polyhedra (see Se
tion 6.2)and, after taking the poly-hull of the �nal sets and proje
ting onto variables k1and k2, we obtained the polyhedra de�ned by 
onstraint systems C′
t0, C′

t1 and
C′

t2 for lo
ations `Idle', `Task1' and `Task2', respe
tively, where:
C′

t0 = {k1 = k2 = 0}, C′
t1 = {k2 = 0, k1 = 1}, C′

t2 = {k1 ≤ 2, k2 = 1}.Hybrid systems with a�ne or nonlinear dynami
s do not �t the above spe
-i�
ation of a linear system so that the veri�
ation te
hniques des
ribed here arenot dire
tly appli
able. Nonetheless, by partitioning the 
ontinuous state spa
eand over-approximating the dynami
s in ea
h of the partitions, the same te
h-niques used to verify linear hybrid automata 
an be used in these more general
ases [36, 38, 51℄. Su
h an approa
h has also been su

essfully applied in theveri�
ation of analog 
ir
uits, as dis
ussed in the following se
tion.5. Analysis and Veri�
ation of Analog SystemsThe idea of applying formal methods, that originated in the digital world,to analog systems was put forward in [48℄. This is an important step forwardwith respe
t to more traditional methods for the validation of analog 
ir
uitdesigns. A formal veri�
ation tool 
an, for example, ensure that a design satis�es
ertain properties for entire sets of initial states and 
ontinuous ranges of 
ir
uitparameters, something that 
annot be done with simulation.To illustrate the approa
h, we des
ribe a simple example of veri�
ation of anos
illator 
ir
uit, taken from [39℄. To verify properties of the (
y
li
) behaviorof su
h 
ir
uits, 
y
li
 invariants have to be determined. To establish a 
y
li
invariant for a given set of initial states and ranges for the 
ir
uit parameters,one has to show that the 
ir
uit returns to a subset of those initial states, whi
himplies the system will keep traversing the same states inde�nitely.Consider the tunnel-diode os
illator s
hematized in Figure 7(a). The stateof the system at a given instant of time is 
ompletely 
hara
terized by the valuesof the indu
tor 
urrent IL and the diode voltage drop Vd. With these as thestate variables, the system is des
ribed by the se
ond-order state equations
V̇d = 1/C

(

−Id(Vd) + IL
)

, (5.1)
İL = 1/L(−Vd −RIL + Vin). (5.2)
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In [39℄ it is shown how a 
y
li
 invariant 
an be obtained for this 
ir
uit usingthe PHAVer system. First, a pie
ewise a�ne envelope is 
onstru
ted for thetunnel diode 
hara
teristi
 Id(Vd) depi
ted in Figure 7(b): for the parti
ularexample analyzed in [39℄, su�
ient pre
ision is obtained by subdividing therange Vd ∈ [−0.1 V, 0.6 V] into 64 intervals, resulting in a pie
ewise a�ne modelof (5.1). Forward rea
hability 
omputation with PHAVer 
an obtain the set ofstates depi
ted in Figure 7(
). These are the states rea
hable from the set ofinitial states 
orresponding to Vd ∈ [0.42 V, 0.52 V] and IL = 0.6 mA (the baseof the downward-fa
ing triangular shape in Figure 7(
)). As the loop shape
onstituted by the rea
hable states is traversed 
lo
kwise, it 
an be seen thatthe indu
tor 
urrent IL returns to the initial value of 0.6 mA with a diode voltagedrop that is well within the initial range [0.42 V, 0.52 V]. The set of rea
hablestates so obtained is thus an invariant of the 
ir
uit.In [39℄ it is shown that, due to over-approximation, forward rea
hability
an fail to determine invariants of more 
omplex 
ir
uits. A new te
hnique
ombining forward and ba
kward rea
hability with iterative re�nement of thepartitions is thus proposed and shown to be more powerful and e�
ient.6. Families of Polyhedral ApproximationsFor several appli
ations of stati
 analysis and veri�
ation, an approximationbased on the domain of 
onvex polyhedra 
an be regarded as the most appro-priate 
hoi
e. In this se
tion we dis
uss alternative options (simpli�
ations,generalizations, and 
ombinations with other numeri
al domains) that might be
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onsidered when trying either to redu
e the 
ost of the analysis, or to in
reasethe pre
ision of the 
omputed results.6.1. Simpli�
ations of PolyhedraThere are 
ontexts where approximations based on general 
onvex polyhedra,no matter whi
h implementation is adopted, in
ur an una

eptable 
omputa-tional 
ost. In su
h 
ases, the stati
 analysis may resort to further simpli�
ationsso as to obtain useful results within reasonable time and spa
e bounds.A �rst, almost traditional approa
h is based on the identi�
ation of suitablesynta
ti
 sub
lasses of polyhedra. The abstra
t domain of bounding boxes (orintervals [27℄) is based on polyhedra that 
an be represented as �nite 
onjun
-tions of 
onstraints of the form ±xi ≤ d or ±xi < d, leading to the spe
i�
ationof operations whose worst-
ase 
omplexity is linear in the number of spa
e di-mensions. As a more pre
ise alternative, the 
lass of potential 
onstraints [16℄,also known as bounded di�eren
es [6, 32℄, allows for 
onstraints of the form
xi − xj ≤ d or ±xi ≤ d; the abstra
t domain of o
tagons [62℄ also admits 
on-straints of the form xi + xj ≤ d. In these last two 
ases, the operators are
hara
terized by a worst-
ase time 
omplexity whi
h is 
ubi
 in the number ofspa
e dimensions. For all of the approximations mentioned above, improvede�
ien
y also follows from the fa
t that the 
orresponding 
omputations aresimple enough to allow for the adoption of �oating-point data types: in 
on-trast, the spe
i�
ation of safe and e�
ient �oating-point operations for generalpolyhedra is an open problem, so that polyhedra libraries have to be based onunbounded pre
ision data types.Several alternative (synta
ti
 and/or semanti
) simpli�
ation s
hemes havebeen put forward in the re
ent literature. The Two Variables per Linear In-equality abstra
t domain is proposed in [73℄, where 
onstraints take the synta
ti
form axi + bxj ≤ d. In [69℄, an arbitrary family of polyhedra is 
hosen beforestarting the analysis by �xing the slopes of a �nite number of linear inequali-ties, whi
h are 
alled the template 
onstraints ; linear programming te
hniquesare then used to 
ompute pre
ise approximations in the 
onsidered 
lass ofshapes. In 
ontrast, in [68℄, general polyhedra are allowed, but the 
orrespond-ing operations (in parti
ular, the poly-hull and the image of a�ne relations) areapproximated by less pre
ise variants so as to ensure a polynomial worst-
ase
omplexity in the size of the inputs. An even more �exible approa
h is pro-posed in [38℄, where arbitrary polyhedra are approximated, when they be
ometoo 
omplex, by limiting the number of 
onstraints in their des
ription and/orthe magnitude of the 
oe�
ients o

urring in the 
onstraints. These more dy-nami
 approximation s
hemes are promising, in parti
ular for those appli
ationswhere nothing is known in advan
e about the synta
ti
 form of the 
onstraintsthat will be 
omputed during the analysis.An important observation to be made is that there is no a
tual need to prefera priori (and therefore 
ommit to) a spe
i�
 abstra
t domain: the analysis toolmay be based on several abstra
tions, safely swit
hing from more pre
ise, pos-sibly 
ostly domains to more e�
ient, possibly impre
ise ones, and vi
e versa,depending on the 
ontext. When repla
ing a generi
 polyhedron by a simpler22



one, the problem of the identi�
ation of a good over-approximation has to besolved. Depending on the 
ontext, the approa
hes may vary signi�
antly. At oneextreme, when e�
ien
y is really 
riti
al, the adoption of synta
ti
 te
hniquesshould be pursued: for an interesting example, we refer the reader to one ofthe simpli�
ation heuristi
s used in [38℄, where the e�
ient sele
tion of a smallnumber of linear inequalities out of a 
onstraint system is driven by a simple,yet e�e
tive reasoning on the measure of the angles formed by the 
orrespond-ing half-spa
es. At the other extreme, linear programming (LP) optimizationte
hniques may be used so as to obtain the best mat
h in the 
onsidered 
lass ofgeometri
 shapes. For instan
e, the pre
ise approximation of a polyhedron by abounding box (resp., a bounded di�eren
e or o
tagon) 
an be implemented bya linear (resp., quadrati
) number of optimizations of a 
lass of LP problems,where the obje
tive fun
tion varies while the feasible region is invariant andde�ned by the 
onstraints of the polyhedron. Note that, if 
orre
tness has tobe preserved, it is essential that no rounding error is made on the wrong side,so that 
lassi
al �oating-point implementations of LP solvers have to be 
on-sidered unsafe, unless the 
omputed results 
an be 
erti�ed by some other tool.Alternatively, it is possible to 
onsider LP implementations based on unboundedpre
ision data types.When the number of spa
e dimensions to be modeled is beyond a giventhreshold, the whole analysis spa
e 
an be split into a �nite number of smaller,more manageable 
omponents, thereby realizing a further simpli�
ation s
hemethat 
an be 
ombined with those des
ribed above. The splitting strategy varies
onsiderably. In [46℄, Cartesian fa
toring te
hniques are used so as to dynami-
ally partition the spa
e dimensions of a polyhedron into independent subsets;the orthogonal fa
tors are then approximated by lower dimensional polyhedrawith no pre
ision penalty. In an alternative approa
h des
ribed in [21℄, many(possibly overlapping) small subsets of spa
e dimensions, 
alled variable pa
ks,are identi�ed before the start of the analysis by means of synta
ti
 
onditions;the relations holding between the variables in ea
h pa
k are then approximatedby using an o
tagonal abstra
tion. A variation of this is des
ribed in [78℄,where non-overlapping variable pa
ks are dynami
ally 
omputed (and possiblymerged) during the analysis, whereas the relations between the variables in apa
k are approximated by means of potential 
onstraints. In [78℄ it is also ob-served that, sin
e the average size of variables pa
ks is small (5 variables), morepre
ise approximations based on general polyhedra should be feasible.6.2. Generalizations of PolyhedraThere are appli
ations where the restri
tion to the domain of 
onvex polyhe-dra is intrinsi
ally inadequate. This may happen, not only when the veri�
ationproperty of interest is itself non-
onvex, but also when the adopted 
omputa-tion strategy requires that a 
onvex property is proved by passing through anon-
onvex intermediate approximation. This was the 
ase in Example 4.6 ofSe
tion 4, where the upper bound (k1 ≤ 2) on the number of waiting pro
essesfor 
lass A1 was obtained by swit
hing from the domain of 
onvex polyhedra tothe domain of �nite sets of polyhedra.23



The �nite powerset domain 
onstru
tion [7℄ is a spe
ial 
ase of disjun
tive
ompletion [28℄, a systemati
 te
hnique to derive an enhan
ed abstra
t domainstarting from an existing one. A �nite powerset domain implements disjun
-tions by maintaining an expli
it (hen
e �nite) and non-redundant 
olle
tion ofelements of the base-level domain: non-redundan
y means that a 
olle
tion ismade of maximal elements with respe
t to the approximation ordering, so thatno element subsumes another element in the 
olle
tion.For a better understanding of the 
on
epts, whi
h are des
ribed in 
ompletelygeneral terms in [12℄, let us 
onsider the appli
ation of the �nite powerset 
on-stru
tion to the domain of 
onvex polyhedra. This instantiation (whi
h is theone also adopted for the examples developed in [12℄) 
an be used to model non-linear systems as des
ribed, e.g., in Se
tion 5. Then, an element of the abstra
tdomain is a �nite set of maximal 
onvex polyhedra, so that no polyhedron inthe set is 
ontained in another polyhedron in the set. The powerset domainis a latti
e: the bottom and top elements are ∅ and {Rn}, respe
tively; themeet is obtained by removing redundan
ies from the set of all possible binaryinterse
tions of an element in the �rst powerset with an element in the se
ondpowerset; while the binary join is the non-redundant subset of the union ofthe two arguments. Most of the other abstra
t operations needed for a stati
analysis using the �nite powerset domain are easily obtained by �lifting� the
orresponding operations de�ned on the base-level domain, and then reinfor
-ing non-redundan
y. For instan
e, the 
omputation of the image of a �nitepowerset under an a�ne relation is obtained by 
omputing the image of ea
hpolyhedron in the 
olle
tion. However, the 
onstru
tion of a provably 
orre
twidening operator has only re
ently been addressed in [12℄ (see Se
tion 7.2).The generi
 spe
i�
ation of the abstra
t operators of the �nite powerset domainin terms of abstra
t operations on the (arbitrary) base-level domain allows forthe development of a single implementation whi
h is shared by all the possibleinstan
es of the domain 
onstru
tion.An alternative abstra
tion s
heme has been proposed in [15℄ for the 
ase of �-nite 
onjun
tions of polynomial inequalities. Intuitively, a polynomial 
onstraint
an be approximated by means of a linear 
onstraint in a higher dimension ve
-tor spa
e, so that the di�erent terms of the polynomial (e.g., x0, x0x1, x2
0) aremapped to di�erent and independent spa
e dimensions; these linear 
onstraintsare then used to perform an almost 
lassi
al linear relation analysis based on
onvex polyhedra. Due to the linearization step, most of the pre
ision of thepolynomial 
onstraints is initially lost; however, some of the relations hold-ing between the di�erent terms of the original polynomial 
an be re
overed byadding further 
onstraints that are redundant when interpreted in the polyno-mial world, but do 
ontribute to pre
ision in the linearized spa
e. In parti
ular,in [15℄ the polynomial 
onstraints are mapped into �nitely generated polynomial
ones and a degree-bounded produ
t 
losure operator is systemati
ally appliedso as to improve a

ura
y. As a trivial example, let the polynomial terms x0, x1and x0x1 be mapped to the spa
e dimensions y0, y1 and y2, respe
tively. Then,the linearization of the polynomial 
onstraints x0 ≥ 0 and x1 ≥ 0 will produ
ea polyhedron that, while satisfying y0 ≥ 0 and y1 ≥ 0, leaves variable y2 totally24



un
onstrained. By applying the produ
t 
losure operator we also obtain thelinear 
onstraint y2 ≥ 0, thereby re
overing the non-negativity of term x0x1.6.3. Combinations with other Numeri
al Abstra
tionsThere are two basi
 kinds of numeri
al abstra
tions for approximating thevalues of the program variables: outer limits (or bounds within whi
h the val-ues must lie) and the pattern of distribution of these values. The �rst 
an beapproximated by (
onstru
tions based on) 
onvex polyhedra, while the se
ond
an be approximated by sets of 
ongruen
es de�ning latti
es of points we 
allgrids [8, 43℄. Before 
onsidering how these and similar domains may be 
om-bined, we give a brief overview of the domain of grids.Any ve
tor that satis�es 〈a,v〉 = b + µf , for some µ ∈ Z, is said to satisfythe 
ongruen
e relation 〈a,v〉 ≡f b. A 
ongruen
e system K is a �nite set of
ongruen
e relations in Rn. A grid is the set of all ve
tors in Rn that satisfy the
ongruen
es in K. The domain of grids Gn is the set of all grids in R
n orderedby the set in
lusion relation, so that the empty set and Rn are the bottomand top elements of Gn respe
tively and the interse
tion of two grids is itself agrid. Thus, as for the domain of polyhedra, the domain of grids forms a latti
e

(Gn,⊆, ∅,R
n,⊎,∩) where ⊎ denotes the join operation returning the least gridgreater than or equal to the two arguments. For more details 
on
erning allaspe
ts of the domain of grids, see [8℄.The distribution information 
aptured by grids has a number of appli
a-tions in its own right: for instan
e, to ensure that external memory a

essesobey the alignment restri
tion imposed by the host ar
hite
ture, and to enableseveral transformations for e�
ient parallel exe
ution as well as optimizationsthat enhan
e 
a
he behavior. However, here we are primarily 
on
erned withappli
ations that 
an bene�t from the 
ombination of the domain of grids withthat of 
onvex polyhedra. For instan
e, knowing the frequen
y (and position)of the points in a grid, we 
an shrink the polyhedra so that the bounding hyper-planes pass through the grid values; if this leads to a polyhedron with redu
eddimension (su
h as a single point) or one that is empty, it 
an lead, not onlyto improved pre
ision, but also a more e�
ient use of resour
es by the ana-lyzer [3, 65, 67℄.Generi
 
onstru
tions, su
h as dire
t and redu
ed produ
t, 
an be used toprovide a formal basis for the 
ombination of the grid and polyhedral domains[28℄ although the exa
t 
hoi
e of produ
t 
onstru
tion used to build the grid-polyhedral domain needs further study. Both the dire
t and redu
ed produ
tshave problems: the dire
t produ
t has no provision for 
ommuni
ation betweenthe 
omponent domains, thereby losing pre
ision; while the redu
ed produ
t,whi
h is the most pre
ise re�nement of the dire
t produ
t, has exponential
omplexity. It is expe
ted that, for grid-polyhedra, the most useful produ
t
onstru
tion will lie between these extremes. For instan
e, as equalities are
ommon entities for both 
onstraint and 
ongruen
e systems, if an equalityis found to hold in one 
omponent, it is safe to just add this to the other
omponent. In addition, in an element of the grid-polyhedral domain, anyhyperplane that bounds the polyhedron 
omponent 
ould be moved inwards25



until it interse
ts with points of the grid with only linear 
ost on the number ofdimensions. Of 
ourse, this redu
tion on its own is not optimal sin
e the gridpoints in the interse
tion may not lie in the polyhedron itself. For optimalityor, more generally, so as to gain additional pre
ision, we need to experimentwith various forms of the bran
h-and-bound and 
utting-plane algorithms [56℄already well-resear
hed for integer linear programming. What is needed is arange of options for the produ
t 
onstru
tion allowing the user to de
ide on the
omplexity/pre
ision trade-o�. Further work on this is needed, in
luding aninvestigation of other proposals for generi
 produ
ts that lie between the dire
tand redu
ed produ
t, su
h as the lo
al de
reasing iteration method [42℄ and theopen produ
t 
onstru
tion [25℄.7. Polyhedral Computations Pe
uliar to Analysis and Veri�
ationAs observed in the previous se
tions, the analysis of the run-time behaviorof a system 
an be broken down into a set of basi
 operations on the 
hosenabstra
t domains. This means that ea
h abstra
t domain should provide ad-equate 
omputational support for su
h a set and, where appropriate, furtheroperations that might be useful for tuning the 
ost/pre
ision ratio. In this se
-tion, we dis
uss several key issues relevant to the design and implementation ofan abstra
t domain of, or based on, 
onvex polyhedra. Before going into furtherdetail, it should be stressed that the parti
ular 
ontext of the appli
ation playsa signi�
ant and non-trivial role here. For instan
e, in many 
omputational
omplexity studies, it is assumed that a small number of operations (often, justa single one) 
an have arbitrarily large operands; also, it is typi
ally requiredthat exa
t results have to be 
omputed. These assumptions taken togethermay be inappropriate in the 
ontext of stati
 analysis: it is quite often the
ase that a large number of operations will have only small or medium sizedoperands; also, whenever fa
ing an e�
ien
y issue, the exa
tness requirement
an be dropped (provided soundness is maintained). As a 
onsequen
e, the eval-uation of alternative algorithmi
 strategies should be largely based on pra
ti
alexperimentation.7.1. The Double Des
ription MethodConvex polyhedra are typi
ally spe
i�ed by a �nite system of linear inequal-ity 
onstraints and for this representation there are known algorithms (e.g.,based on Fourier-Motzkin elimination [58, 71℄) for most of the operations al-ready mentioned.An alternative approa
h is based on the double des
ription method due toMotzkin et al. [63℄. This method was originally de�ned on the set of topolog-i
ally 
losed 
onvex polyhedra, a sub-latti
e (CPn,⊆, ∅,R
n,⊎,∪) of the latti
eof (not ne
essarily 
losed, or NNC) polyhedra Pn. In the double des
riptionmethod, a 
losed polyhedron may be des
ribed by using a system of non-stri
tlinear inequalities or by using a generator system that re
ords its key geomet-ri
 features. The following is the main theoreti
al result, whi
h is a simple
onsequen
e of well-known theorems by Minkowski and Weyl [76℄.26



Theorem 7.1. The set P ⊆ Rn is a topologi
ally 
losed 
onvex polyhedron ifand only if there exist �nite sets R,P ⊆ Rn of 
ardinality r and p, respe
tively,su
h that 0 /∈ R and P 
an be generated from (R,P ) as follows:
P = {Rρ+ Pπ ∈ R

n | ρ ∈ R
r
+
, π ∈ R

p
+
,
∑p

i=1 πi = 1 }.Intuitively, a point of a polyhedron P is obtained by adding a 
onvex 
ombina-tion of the ve
tors in P (the generating points) to a 
oni
 
ombination of theve
tors in R (the generating rays).It turns out that 
onstraint and generator des
riptions are duals: ea
h repre-sentation 
an be 
omputed starting from the other one. Clever implementationsof this 
onversion pro
edure, improving on the Chernikova's algorithm [23℄, arethe starting point for the development of software libraries that, while being
hara
terized by a worst 
ase 
omputational 
ost whi
h is exponential in thesize of the input, turn out to be pra
ti
ally useful. A 
ommon 
hara
teristi
 ofthese implementations is the exploitation of in
rementality, whereby most of the
omputational work done for an operation is reused to e�
iently 
ompute smallvariations of the 
orresponding result. Further 
omputational enhan
ementsare obtained by the adoption of suitable heuristi
s, ranging from the e�
ienthandling of adja
en
y information [59℄, to a 
areful 
hoi
e of ordering strategiesfor the 
omputation of intermediate results [4, 5, 40℄; the overall 
onstru
tiontypi
ally relies on a tight integration of the basi
 algorithms with a 
arefully
hosen set of data stru
tures [14℄.An important motivation for the adoption of an implementation based on thedouble des
ription method is that the ability to swit
h from a 
onstraint des
rip-tion to a generator des
ription, or vi
e versa, 
an be usefully exploited to providesimple implementations for the basi
 operations on polyhedra. For instan
e, setinterse
tion is easily implemented by taking the union of the 
onstraint systemsrepresenting the two arguments, whereas the poly-hull is implemented by joiningthe generator systems representing the two arguments; and the test for empti-ness 
an be implemented by 
he
king that the generator system has no points.Moreover, a test for subset in
lusion P ⊆ Q 
an be implemented by 
he
king ifea
h point and ea
h ray in a generator system des
ribing P satis�es all linearinequalities in a 
onstraint system des
ribing Q. As a further example, the timeelapse operation spe
i�ed in Se
tion 4, 
an be implemented using the generatorsystems for the argument polyhedra [47℄. That is a generator system for thepolyhedron P ր Q 
an be obtained by adopting the same set of generatingpoints as P and by de�ning its set of rays as the union of the set of generatingrays for P with the set of all the generators (both points and rays) for Q.As seen in Se
tion 3, in the 
ontext of the analysis of imperative languagesone of the most frequent statements is variable assignment, where the expressionassigned is safely approximated by an a�ne relation ψ ⊆ Rn × Rn. The (dire
tor inverse) image of an a�ne relation 
an be naively 
omputed by embedding theinput polyhedron P ⊆ R
n into the spa
e R

2n, interse
ting it with the 
onstraintsde�ning ψ and �nally proje
ting the result ba
k on Rn. However, due to themoves to/from a higher dimensional spa
e, this approa
h su�ers from signi�
ant
27



overheads. Quite often, the expression assigned is a simple a�ne fun
tion ofthe variables' values and 
an thus be exa
tly modeled by 
omputing the imageof a single-update a�ne fun
tion. With the double des
ription method, theimages of a�ne fun
tions are mu
h more e�
iently 
omputed by applying themdire
tly to the generators of the argument polyhedron. A dual approa
h, usingthe 
onstraint des
ription of the polyhedron, allows for the 
omputation of thepreimages of a�ne fun
tions, whi
h 
an be of interest for a ba
kward semanti

onstru
tion, where the initial values of program variables are approximatedstarting from their �nal values. Similar e�
ien
y arguments motivate the studyof spe
i�
 implementations for single-update bounded a�ne relations and otherspe
ial sub
lasses of a�ne relations.7.2. Widening and NarrowingThe �rst widening operator for the domain of 
onvex polyhedra, the so-
alled standard widening proposed in [31℄, 
an be informally des
ribed as follows:suppose that in the post-�xpoint iteration sequen
e we 
ompute as su

essiveiterates the polyhedra Pi and Pi+1; then, the widening keeps all and only the
onstraints de�ning Pi that are also satis�ed by Pi+1. This simple idea, whi
his basi
ally borrowed from the widening operator de�ned on the domain ofintervals [27℄, is quite e�e
tive in ensuring the termination of the analysis (thenumber of 
onstraints de
reases at ea
h iteration); by avoiding the appli
ationof the widening in the �rst few iterations of the analysis and/or by applying the�widening up-to� te
hnique of [45℄, it also provides, in the main, an adequatelevel of pre
ision.Some appli
ation �elds, however, are parti
ularly sensitive to the pre
isionof the dedu
ed numeri
al information, to the point that some authors proposeto give up the termination guarantee and use so-
alled extrapolation operators:examples in
lude the operators de�ned in [50℄ and [52℄, as well as the proposalsin [22℄ and [33℄ for sets of polyhedra and the heuristi
s sket
hed in [19℄.In [10℄ this pre
ision problem is re
onsidered in a more general 
ontext anda framework is proposed that is able to improve upon the pre
ision of a givenwidening while keeping the termination guarantee. The approa
h, whi
h buildson theoreti
al results put forward in work on termination analysis, 
ombinesan existing widening operator, whose termination guarantee should be formally
erti�able, with an arbitrary number of pre
ision improving heuristi
s. Its feasi-bility was demonstrated by instantiating the framework so as to produ
e a newwidening on polyhedra improving upon the pre
ision of the standard wideningin a signi�
ant per
entage of ben
hmarks.For the more 
hallenging 
ase of an abstra
t domain obtained by the �nitepowerset domain 
onstru
tion, several generi
 s
hemes of widenings have beenproposed in [12℄ that are able to �lift� a widening de�ned on the base-leveldomain without 
ompromising its termination guarantee. The instantiation ofsu
h a generi
 approa
h led to the de�nition of the �rst non-trivial and provably
orre
t widenings on a domain of �nite sets of 
onvex polyhedra. Being highlyparametri
, the widening s
hemes proposed in [12℄ 
an be instantiated a

ordingto the needs of the spe
i�
 appli
ation, as done in [44℄. One of the heuristi
28



approa
hes adopted in [12℄ to 
ontrol the pre
ision/
omplexity trade-o� of thewidenings, originally proposed in [22℄, attempts at redu
ing the 
ardinality of apolyhedral 
olle
tion by merging two of its elements whenever their set unionhappens to be a 
onvex polyhedron. The implementation of su
h a heuristi

ould signi�
antly bene�t from the results and algorithms presented in [17℄.It is also worth mentioning that, on
e a post-�xpoint approximation hasbeen obtained by means of an upward iteration sequen
e with widening, itspre
ision 
an be improved by means of a downward iteration, possibly using anarrowing operator [27, 29℄. To the best of our knowledge, no narrowing hasever been de�ned on the domain of 
onvex polyhedra: appli
ations simply stopthe downward 
omputation after a small number of iterations.7.3. Not Ne
essarily Closed Convex PolyhedraMost stati
 analysis appli
ations 
omputing linear inequality relations be-tween program variables 
onsider the domain CPn of topologi
ally 
losed polyhe-dra. One of the underlying motivations is that sometimes (e.g., when workingwith integer valued variables only) stri
t inequalities 
an be �ltered away bysuitable synta
ti
 manipulations; even when this is not the 
ase, the topologi
al
losure approximation may be interpreted as a qui
k and pra
ti
al workaroundto the fa
t that some software libraries do not fully support 
omputations onNNC polyhedra. However, there are appli
ations [2, 24, 47℄ where the ability ofen
oding and propagating stri
t inequalities might be 
ru
ial for the usefulnessof the �nal results.The �rst proposal for a systemati
 implementation of stri
t inequalities in asoftware library based on the double des
ription method was put forward in [47℄:a synta
ti
 translation embeds an n-dimensional NNC polyhedron P ∈ Pn intoan (n+ 1)-dimensional 
losed polyhedron R ∈ CPn+1, by adding a single sla
kvariable ǫ, satisfying the additional side 
onstraints 0 ≤ ǫ ≤ 1. Namely, anystri
t inequality 
onstraint 〈a,x〉 > b is translated into the non-stri
t inequality
onstraint 〈a,x〉 − ǫ ≥ b. The 
omputation is thus performed on the 
losedrepresentation R ∈ CPn+1, with only minor adaptations to the basi
 algorithmsso as to take into a

ount the impli
it stri
t 
onstraint ǫ > 0.While this idea is quite e�e
tive, the resulting software library no longer en-joys all of the properties of the underlying double des
ription implementation:NNC polyhedra 
annot be suitably des
ribed using generator systems, and thegeometri
 intuitions are lost under the �implementation details.� These prob-lems motivated the studies in [11℄, where a proper generalization of the doubledes
ription method to NNC polyhedra was proposed. The main improvementwas the identi�
ation of the 
losure point as a new kind of generator for NNCpolyhedra, leading to the following result generalizing Theorem 7.1:Theorem 7.2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist�nite sets R,P,C ⊆ Rn of 
ardinality r, p and c su
h that 0 /∈ R and
P =

{

Rρ+ Pπ + Cγ
∣

∣ ρ ∈ R
r
+
, π ∈ R

p
+
\ {0}, γ ∈ R

c
+
,
∑p

i=1πi +
∑c

i=1γi = 1
}

.
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The new 
ondition π 6= 0 ensures that at least one of the points of P playsan a
tive role in any 
onvex 
ombination of the ve
tors of P and C. As a
onsequen
e, the ve
tors of C are 
losure points of P, i.e., points that belong tothe topologi
al 
losure of P, but may not belong to P itself.Thanks to the introdu
tion of (stri
t inequalities and) 
losure points, mostof the pros of the double des
ription method now also apply to the domainof NNC polyhedra [11℄: simpler, higher-level implementations of operations onNNC polyhedra 
an be spe
i�ed, reasoned about and justi�ed in terms of anyone of the two dual des
riptions; important implementation issues (su
h as theneed to identify and remove all kinds of redundan
ies in the des
riptions) 
anbe provided with proper solutions; di�erent lower-level en
odings (e.g., an alter-native management of the sla
k variable) 
an be investigated and experimentedwith, without a�e
ting the user of the software library. It would be interesting,from both a theoreti
al and pra
ti
al point of view, to provide a more dire
ten
oding of NNC polyhedra, i.e., one that is not based on the use of sla
k vari-ables; this requires the spe
i�
ation and the 
orresponding proof of 
orre
tnessof a dire
t NNC 
onversion algorithm, potentially a
hieving a major e�
ien
yimprovement.8. Con
lusionIn the �eld of automati
 analysis and veri�
ation of software and hardwaresystems, approximate reasoning on numeri
al quantities is 
ru
ial. As �rstre
ognized in 1978 [31℄, polyhedral 
omputation algorithms 
an be used for theautomati
 inferen
e of numeri
al assertions that 
orre
tly (though usually not
ompletely) 
hara
terize the behavior of a system at some level of abstra
tion.Until the end of the 1990's these te
hniques were not in widespread use,mainly due to the unavailability of robust and e�
ient implementations of 
on-vex polyhedra. As far as we know, the �rst published libraries of polyhedralalgorithms suitable for analysis and veri�
ation purposes have been Polylib, re-leased in 1995, written by Wilde at IRISA [79℄ and based on earlier work byLe Verge [59℄, and the polyhedra library of POLINE (POLyhedra INtegratedEnvironment) written by Halbwa
hs and Proy at Verimag and also released in1995. Both libraries used ma
hine integers to represent the 
oe�
ients of linearequalities and inequalities, something that 
ould easily result into (undete
ted)over�ows. While Polylib provided only a fra
tion of the fun
tionalities o�eredby POLINE's library (whi
h o�ered, among other things, support for NNC poly-hedra), it was available in sour
e format. The POLINE's library, instead, wasdistributed only in binary form for the Sun-4 platform (freely, until about theyear 1996; under rather restri
tive 
onditions afterward). POLINE in
ludedalso a system 
alled POLKA (POLyhedra desK 
Al
ulator) and an analyzerfor linear hybrid automata. A variation of a subset of POLINE's library wasin
orporated into the HyTe
h tool [51℄.The work of Wilde and Le Verge, whi
h was extended by Loe
hner [60℄, ledto the 
reation of PolyLib. The New Polka library by Jeannet, �rst releasedin 2000 and originally based on both IRISA's Polylib and POLINE's library,30



in
orporates the idea �suggested by Fukuda and Prodon [40℄� of lexi
ograph-i
ally sorting the matri
es representing 
onstraints and generators. New Polka,whi
h supports both 
losed and NNC polyhedra, together with Miné's O
tagonAbstra
t Domain Library [62℄ and an interval library 
alled ITV, is now in-
luded in the APRON library. Finally, the Parma Polyhedra Library (PPL),initially inspired by New Polka and �rst released in 2001, is developed and main-tained by the authors of this paper. The PPL supports both 
losed and NNCpolyhedra, bounding boxes, bounded di�eren
e and o
tagonal shapes, grids and
ombinations of the above in
luding the �nite powerset 
onstru
tion [14℄.The above libraries have all been designed spe
i�
ally for appli
ations ofanalysis and veri�
ation su
h as those des
ribed in this paper. However, twolibraries that were designed for solving vertex enumeration/
onvex hull problemshave su

essfully been used in stati
 analysis and 
omputer-aided veri�
ationtools: Fukuda's 
ddlib, an implementation of the double des
ription method[63℄; and lrslib, the implementation by Avis of the reverse sear
h algorithm [4℄.All the libraries mentioned in the last two paragraphs are distributed un-der free software li
enses and support the use of unbounded numeri
 
oe�
ients.This, together with the ever in
reasing available 
omputing power and the grow-ing interest in ensuring the 
orre
tness of 
riti
al systems, has 
aused, in the2000's, the 
ontinuous emergen
e of new tools and appli
ations of polyhedral
omputations in the area of formal methods. As a 
onsequen
e, this is mu
hmore of a new beginning than an end to resear
h in this area. As explained inSe
tions 6 and 7, several open issues remain. Most of them have to do with theneed for e�e
tively managing the 
omplexity-pre
ision trade-o�: the en
ourag-ing results obtained with today's tools are pushing us to apply them to more
omplex systems for a possibly more pre
ise analysis and/or veri�
ation of more
omplex properties.A
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