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AbstratConvex polyhedra are the basis for several abstrations used in stati analy-sis and omputer-aided veri�ation of omplex and sometimes mission ritialsystems. For suh appliations, the identi�ation of an appropriate omplexity-preision trade-o� is a partiularly aute problem, so that the availability of awide spetrum of alternative solutions is mandatory. We survey the range ofappliations of polyhedral omputations in this area; give an overview of thedi�erent lasses of polyhedra that may be adopted; outline the main polyhe-dral operations required by automati analyzers and veri�ers; and look at somepossible ombinations of polyhedra with other numerial abstrations that havethe potential to improve the preision of the analysis. Areas where furthertheoretial investigations an result in important ontributions are highlighted.Key words: Stati analysis, omputer-aided veri�ation, abstratinterpretation.
1. IntrodutionThe appliation of polyhedral omputations to the analysis and veri�ationof omputer programs has its origin in a groundbreaking paper by Cousot andHalbwahs [31℄. There, the authors applied the theory of abstrat interpretation[28, 29℄ to the stati determination of linear equality and inequality relationsamong program variables. In essene, the idea onsists in interpreting a pro-gram (as will be explained in more detail in Setions 2.1 and 3) on a domain ofonvex polyhedra instead of the onrete domain of (sets of vetors of) mahinenumbers. Eah program operation is orretly approximated by a orresponding
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operation on polyhedra and measures are taken to ensure that the approximateomputation always terminates. At the end of this proess, the obtained poly-hedra enode provably orret linear invariants of the analyzed program (i.e.,linear equalities and inequalities that are guaranteed to hold for eah programexeution and for eah program input).As we show in this paper, relational information onerning the data objetsmanipulated by programs or other devies is ruial for a broad range of appli-ations in the �eld of automati or semi-automati program manipulation: itan be used to prove the absene of ertain kinds of errors; it an verify thatertain proesses always terminate or stabilize; it an pinpoint the position oferrors in the system; and it an enable the appliation of optimizations. Despitethis, due to the lak of e�ient, robust and publily available implementationsof onvex polyhedra and of the required operations, the line of work begun byCousot and Halbwahs did not see muh development until the beginning ofthe 1990s. Sine then, this approah has been inreasingly adopted and todayonvex polyhedra are the basis for several abstrations used in stati analy-sis and omputer-aided veri�ation of omplex and sometimes mission ritialsystems. For suh appliations, the identi�ation of an appropriate omplexity-preision trade-o� is a partiularly aute problem: on the one hand, relationalinformation provided by general polyhedra is extremely valuable; on the otherhand, its high omputational ost makes it a fairly sare resoure that must bemanaged with are. This implies, among other things, that general polyhedramust be ombined with simpler polyhedra in order to ahieve salability. Asthe omplexity-preision trade-o� varies onsiderably between di�erent applia-tions, the availability of a wide spetrum of alternative solutions is mandatory.In this paper, we survey the range of appliations of polyhedral omputationsin the area of the analysis and veri�ation of hardware and software systems: wedesribe in detail one important �and historially, �rst� appliation of poly-hedral omputations in the �eld of formal methods, the linear invariant analysisfor imperative programs; we provide an aount of linear hybrid systems that isbased diretly on polyhedra; and we explain with an example how polyhedralapproximations an be applied to analog systems. The paper also provides anoverview of the main polyhedral operations required by these appliations, briefdesriptions of some of the di�erent lasses of polyhedra that may be adopted,depending on the partiular ontext, and a look at some possible ombinations ofpolyhedra with other numerial abstrations that have the potential to improvethe preision of the analysis. Areas where further theoretial investigations anresult in important ontributions are highlighted. Some bibliographi referenesand a few examples have been omitted from this paper for spae reasons; theinterested reader an �nd them in the tehnial report version [13℄.The plan of the paper is as follows. Setion 2 introdues the required notionsand notations. Setion 3 demonstrates the use of polyhedral omputations inthe spei�ation of a linear invariant analysis for a simple imperative language.Setion 4 is devoted to polyhedral approximation tehniques for hybrid systems,whih, as shown in Setion 5 an also be applied to purely analog systems.Setion 6 presents several families of polyhedral approximations. The most2



important operations that suh approximations must provide are illustrated inSetion 7. Setion 8 onludes.2. PreliminariesWe assume some basi knowledge about lattie theory [20℄. Let (S,⊑) and
(T,�) be two partially ordered sets; the funtion f : S → T is monotoni if,for all x0, x1 ∈ S, x0 ⊑ x1 implies f(x0) � f(x1). If (S,⊑) ≡ (T,�), sothat f : S → S, an element x ∈ S suh that x = f(x) is a �xpoint of f .If (S,⊑,⊥,⊤,⊔,⊓) is a omplete lattie, then f is ontinuous if it preservesthe least upper bound of all inreasing hains, i.e., for all x0 ⊑ x1 ⊑ · · · in
S, it satis�es f(

⊔

xi

)

=
⊔

f(xi); in suh a ase, the least �xpoint of f withrespet to the partial order `⊑', denoted lfp f , an be obtained by iterating theappliation of f starting from the bottom element ⊥, thereby omputing theupward iteration sequene ⊥ = f0(⊥) ⊑ f1(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ · · ·,up to the �rst non-zero limit ordinal ω; namely, lfp f = fω(⊥)
def
=

⊔

i<ω f
i(⊥).For eah f0 : S0 → T0 and f1 : S1 → T1, the funtion f0[f1] : (S0 ∪ S1) →

(T0 ∪ T1) is de�ned, for eah x ∈ S0 ∪ S1, so that f0[f1](x) = f1(x), if x ∈ S1,and f0[f1](x) = f0(x), otherwise.For n > 0, we denote by v = (v0, . . . , vn−1) ∈ Rn an n-tuple (vetor) of realnumbers; R+ is the set of non-negative real numbers; 〈v,w〉 denotes the salarprodut of vetors v,w ∈ R
n; the vetor 0 ∈ R

n has all omponents equal tozero. We write v ::w to denote the tuple onatenation of v ∈ Rn and w ∈ Rm,so that v ::w ∈ Rn+m.Let x be an n-tuple of distint variables. Then β =
(

〈a,x〉 ⊲⊳ b
) denotes alinear inequality onstraint, for eah vetor a ∈ R

n, where a 6= 0, eah salar
b ∈ R, and ⊲⊳ ∈ {≥, >}. A linear inequality onstraint β de�nes a (topologiallylosed or open) a�ne half-spae of Rn, denoted by con

(

{β}
).A set P ⊆ Rn is a (onvex) polyhedron if and only if P an be expressedas the intersetion of a �nite number of a�ne half-spaes of R

n, i.e., as thesolution P = con(C) of a �nite set of linear inequality onstraints C (alled aonstraint system). The set of all polyhedra on the vetor spae Rn is denotedas Pn. When partially ordered by set-inlusion, onvex polyhedra form a lat-tie (Pn,⊆, ∅,R
n,⊎,∩) having the empty set and R

n as the bottom and topelements, respetively; the binary meet operation, returning the greatest poly-hedron smaller than or equal to the two arguments, is easily seen to orrespondto set-intersetion; the binary join operation, returning the least polyhedrongreater than or equal to the two arguments, is denoted `⊎' and alled onvexpolyhedral hull (poly-hull, for short). In general, the poly-hull of two polyhedrais di�erent from their onvex hull [76℄.A relation ψ ⊆ Rn × Rn (of dimension n) is said to be a�ne if there exists
ℓ ∈ N and ai, ci ∈ R

n, bi ∈ R and ⊲⊳i ∈ {≥, >}, for eah i = 1, . . . , ℓ, suh that
∀v,w ∈ R

n : (v,w) ∈ ψ ⇐⇒
ℓ

∧

i=1

(

〈ci,w〉 ⊲⊳i 〈ai,v〉 + bi
)

.
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Any a�ne relation of dimension n an thus be enoded by ℓ linear inequalities ona 2n-tuple of distint variables x ::x′ (playing the role of v and w, respetively),therefore de�ning a polyhedron in P2n. The set of polyhedra Pn is losed underthe (diret or inverse) appliation of a�ne relations: i.e., for eah P ∈ Pn andeah a�ne relation ψ ⊆ Rn ×Rn, the image ψ(P) and the preimage ψ−1(P) arein Pn.2.1. Abstrat InterpretationThe semantis of a hardware or software system is a mathematial desrip-tion of all its possible run-time behaviors. Di�erent semantis an be de�nedfor the same system, depending on the details being reorded. Abstrat inter-pretation [28, 29℄ is a formal method for relating these semantis aording totheir level of abstration, so that questions about the behavior of a system anbe provided with sound, possibly approximate answers.The onrete semantis c ∈ C of a program is usually formalized as theleast �xpoint of a ontinuous semanti funtion F : C → C, where the onretedomain (C,⊑,⊥,⊤,⊔,⊓) is a omplete lattie of semanti properties; in manyinteresting ases, the omputational order `⊑' orresponds to the approximationrelation, so that c1 ⊑ c2 holds if c1 is a stronger property than c2 (i.e., c2orretly approximates c1).For instane, the run-time behavior of a program may be de�ned in termsof a transition system 〈Σ, t, ι〉, where Σ is a set of states, ι ⊆ Σ is the subset ofinitial states, and t ∈ ℘(Σ × Σ) is a binary transition relation mapping a stateto its possible suessor states. Letting Σ⋆ denote the set of all �nite sequenesof elements in Σ, the initial history of a forward omputation an be reordedas a partial exeution trae τ = σ0 · · ·σm ∈ Σ⋆ starting from an initial state
σ0 ∈ ι and suh that any two onseutive states σi and σi+1 are related bythe transition relation, i.e., (σi, σi+1) ∈ t. In suh a ontext, an element of theonrete domain (

℘(Σ⋆),⊆, ∅,Σ⋆,∪,∩
) is a set of partial exeution traes andthe onrete semantis is lfp(F), where the semanti funtion is de�ned by

F = λX ∈ ℘(Σ⋆) . X ∪ { τ ∈ Σ⋆ | τ = σ0 ∈ ι }

∪
{

τσi+1 ∈ Σ⋆
∣

∣ τ = σ0 · · ·σi ∈ X, (σi, σi+1) ∈ t
}

.An abstrat domain1 (D♯,⊑,⊥,⊔) an be often modeled as a bounded join-semilattie, so that it has a bottom element ⊥ and the least upper bound d♯
1⊔d

♯
2exists for all d♯

1, d
♯
2 ∈ D♯. This domain is related to the onrete domain by amonotoni and injetive onretization funtion γ : D♯ → C. Monotoniity andinjetivity mean that the abstrat partial order is equivalent to the approxima-tion relation indued on D♯ by the onretization funtion γ. Conversely, theonrete domain is related to the abstrat one by a partial abstration funtion

α : C  D♯ suh that, for eah c ∈ C, if α(c) is de�ned then c ⊑ γ
(

α(c)
). In

1To avoid notational burden, we will freely overload the lattie-theoreti symbols `⊑', `⊥',`⊔', et., exploiting ontext to disambiguate their meaning.4



partiular, we assume that α(⊥) = ⊥ is always de�ned; when needed or useful,we will require a few additional properties.For example, a �rst abstration of the semantis above, typially adopted forthe inferene of invariane properties of programs [28, 29℄, approximates a set oftraes by the set of states ourring in any one of the traes. The reahable statesare thus haraterized by elements of the omplete lattie (

℘(Σ),⊆, ∅,Σ,∪,∩
),whih plays here the role of the abstrat domain. The onretization fun-tion relating D♯ = ℘(Σ) to C = ℘(Σ⋆) is de�ned, for eah d♯ ∈ ℘(Σ), by

γ(d♯)
def
= { τ ∈ Σ⋆ | τ = σ0 · · ·σm, ∀i = 0, . . . ,m : σi ∈ d♯ }. The onrete seman-ti funtion F : ℘(Σ⋆) → ℘(Σ⋆) an thus be approximated by the monotoniabstrat semanti funtion A : ℘(Σ) → ℘(Σ) de�ned by

A = λd♯ ∈ ℘(Σ) . d♯ ∪ ι ∪
{

σ′ ∈ Σ
∣

∣ ∃σ ∈ d♯ . (σ, σ′) ∈ t
}

.This abstrat semanti funtion is sound with respet to the onrete semantifuntion in that it satis�es the loal orretness requirement
∀c ∈ C : ∀d♯ ∈ D♯ : c ⊑ γ(d♯) =⇒ F(c) ⊑ γ

(

A(d♯)
)

,ensuring that eah iteration F i(⊥) in the onrete �xpoint omputation is ap-proximated by omputing the orresponding abstrat iteration Ai
(

α(⊥)
). Inpartiular, the least �xpoint of F is approximated by any post-�xpoint of A[29℄, i.e., any abstrat element d♯ ∈ D♯ suh that A(d♯) ⊑ d♯.Atually, the abstration de�ned above satis�es an even stronger property,in that the abstrat semanti funtion A is the most preise of all the soundapproximations of F that ould be de�ned on the onsidered abstrat domain.This happens beause the two domains are related by a Galois onnetion [28℄,i.e., there exists a total abstration funtion α : C → D♯ satisfying

∀c ∈ C : ∀d♯ ∈ D♯ : α(c) ⊑ d♯ ⇐⇒ c ⊑ γ(d♯).Namely, α(c)
def
=

{

σi ∈ Σ
∣

∣ τ = σ0 · · ·σm ∈ c, i ∈ {0, . . . ,m}
}.For Galois onnetions it an be shown that α(c) is the best possible ap-proximation in D♯ for the onrete element c ∈ C; similarly, α ◦ F ◦ γ (i.e.,the funtion A de�ned above) is the best possible approximation for F [28℄.Suh a result is provided with a quite intuitive reading; in order to approxi-mate the onrete funtion F on an abstrat element d♯ ∈ D♯: we �rst applythe onretization funtion γ so as to obtain the meaning of d♯; then we applythe onrete funtion F ; �nally, we abstrat the result so as to obtain bak anelement of D♯.Abstrat interpretation theory an thus be used to speify (semi-) automatiprogram analysis tools that are orret by design. Of ourse �due to well-known undeidability results� any fully automati tool an only provide partial,though safe answers.2.2. Abstrat Domains for Numeri and Boolean ValuesThe reahable state abstration desribed above is just one of the possi-ble semanti approximations that an be adopted when speifying an abstrat5



semantis. A further, typial approximation onerns the desription of thestates of the transition system. Eah state σ ∈ Σ may be deomposed into, e.g.,a set of numerial or Boolean variables that are of interest for the appliationat hand; new abstrat domains an be de�ned (and omposed [28℄) so as tosoundly desribe the possible values of these variables.As an expository example, assume that part of a state is haraterized bythe value of an integer variable. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) anbe abstrated to the onrete domain of integers (

℘(Int),⊆, ∅, Int,∪,∩
). Thisdomain is further approximated by an abstrat domain (

Int♯,⊑,⊥,⊔
), via theonretization funtion γI : Int♯ → ℘(Int). Elements of Int♯ are denoted by

m♯, possibly subsripted. We assume that the partial abstration funtion
αI : ℘(Int)  Int♯ is de�ned on all singletons {m} ∈ ℘(Int) and on the wholeset Int. We also assume that there are abstrat binary operations `�', `�' and`�' on Int♯ that are sound with respet to the orresponding operations on
℘(Int) whih, in turn, are the obvious pointwise extensions of addition, sub-tration and multipliation over the integers. More formally, for `�' we require
γI(m

♯
0 �m♯

1) ⊇
{

m0 +m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

} for eah m♯
0,m

♯
1 ∈ Int♯,i.e., soundness with respet to addition. Similar requirements are imposed on`�' and `�'. Even though the de�nition of Int♯ is ompletely general, familiesof integer intervals ome naturally to mind for this role.Suppose now that some other part of the state is haraterized by the value ofa Boolean expression. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
) an be abstratedto the �nite domain (

℘(Bool),⊆, ∅,Bool,∪,∩
), where Bool = {ff, tt} is the setof Boolean values. In general, suh a �nite domain may be further approximatedby an abstrat domain (Bool♯,⊑,⊥,⊤,⊔,⊓), related to the onrete domain bya Galois onnetion. Elements of Bool♯ are denoted by t♯, possibly subsripted,and we an de�ne abstrat operations `�', `6' and `7' on Bool♯ that are soundwith respet to the pointwise extensions of Boolean negation, disjuntion andonjuntion over ℘(Bool). For instane, for the operation `6' to be sound withrespet to disjuntion on ℘(Bool), it is required that

γB(t♯0 6 t♯1) ⊇
{

t0 ∨ t1
∣

∣ t0 ∈ γB(t♯0), t1 ∈ γB(t♯1)
}

for eah t♯0 and t♯1 in Bool♯. Likewise for `7'. For `�' the orretness require-ment is that, for eah t♯ in Bool♯, γB(� t♯) ⊇
{

¬t
∣

∣ t ∈ γB(t♯)
}. Abstratomparison operations �,4 : Int♯ × Int♯ → Bool♯ an then be de�ned to or-retly approximate the equal-to and less-than tests: for eah m♯

0,m
♯
1 ∈ Int♯,

γB(m♯
0 � m♯

1) ⊇
{

m0 = m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

}; likewise for `4'.Simple abstrat domains suh as the ones above an be ombined in di�erentways so as to obtain quite aurate approximations [28℄. In some ases, however,the required preision level may only be obtained by a suitable initial hoie ofthe abstrat domain. As a notable example, suppose that some part of the state
σ ∈ Σ is haraterized by n (integer or real valued) numeri variables and theappliation at hand needs some relational information about these variables. Insuh a ontext, an approximation based on a simple onjuntive ombination of

6



n opies of the domain Int♯ desribed above will be almost useless. Rather, anew approximation sheme an be devised by modeling states using the domain
(

℘(Rn),⊆, ∅,Rn,∪,∩
), where eah vetor v ∈ R

n is meant to desribe a possiblevaluation for the n variables. A further abstration should map this domain soas to retain some of the relations holding between the values of the n variables.If a �nite set of linear inequalities provides a good enough approximation, thenthe natural hoie is to abstrat this domain into the abstrat domain of onvexpolyhedra (Pn,⊆, ∅,R
n,⊎,∩) [31℄. In this ase, the onrete and abstrat do-mains are not related by a Galois onnetion and, hene, a best approximationmight not exist.2 Nonetheless, the onvex polyhedral hull (partial) abstrationfuntion ⊎ : ℘(Rn) Pn is de�ned in most of the ases of interest and providesthe best possible approximation. Most of the arithmeti operations seen beforean be enoded (or approximated) by omputing images of a�ne relations.2.3. Widening OperatorsIt should be stressed that, in general, the abstrat semantis just desribedis not �nitely omputable. For instane, both the domain of onvex polyhedraand the domain of integer intervals have in�nite asending hains, so that thelimit of a onverging �xpoint omputation annot generally be reahed in a�nite number of iterations.A �nite omputation an be enfored by further approximations resultingin a Noetherian abstrat domain, i.e., a domain where all asending hainsare �nite. Alternatively, and more generally, it is possible to keep an abstratdomain with in�nite hains, while enforing that these hains are traversed in a�nite number of iteration steps. In both ases, termination is usually ahieved tothe detriment of preision, so that an appropriate trade-o� should be pursued.Widening operators [27, 29℄ provide a simple and general haraterization forthe seond option.De�nition2.1. The partial operator ∇ : D♯ ×D♯

 D♯ is a widening if:1. for all d♯, e♯ ∈ D♯, d♯ ⊑ e♯ implies that d♯ ∇ e♯ is de�ned and e♯ ⊑ d♯ ∇ e♯;2. for all inreasing hains e♯
0 ⊑ e♯

1 ⊑ · · · , the inreasing hain de�ned by
d♯
0

def
= e♯

0 and d♯
i+1

def
= d♯

i ∇ (d♯
i ⊔ e

♯
i+1), for i ∈ N, is not stritly inreasing.It an be proved that, for any monotoni operator A : D♯ → D♯, the upwarditeration sequene with widenings starting at the bottom element d♯

0
def
= ⊥ andde�ned by

d♯
i+1

def
=

{

d♯
i , if A(d♯

i) ⊑ d♯
i ,

d♯
i ∇

(

d♯
i ⊔ A(d♯

i)
)

, otherwise,onverges to a post-�xpoint of A after a �nite number of iterations. Clearly,the hoie of the widening has a deep impat on the preision of the results2This happens, for instane, when approximating an n-dimensional ball with a onvexpolyhedron. 7



m ∈ Int
def
= Z t ∈ Bool

def
= {tt,ff} x ∈ Var

def
= {x0, x1, x2, . . .}

Aexp ∋ a ::= m | x | a0 + a1 | a0 − a1 | a0 ∗ a1

Bexp ∋ b ::= t | a0 = a1 | a0 < a1

Stmt ∋ s ::= skip | x := a | s0; s1 | if b then s0 else s1 | while bdo sFigure 1: Abstrat syntax of the simple imperative language
obtained. Designing a widening whih is appropriate for a given appliation istherefore a di�ult (but possibly rewarding) ativity.3. Analysis and Veri�ation of Computer ProgramsIn this setion we begin a review of the appliations of polyhedral omputa-tions to analysis and veri�ation problems starting with the the work of Cousotand Halbwahs [31℄. This seminal paper on the automati inferene of linearinvariants for imperative programs onstituted a major leap forward for at leasttwo reasons. First, the polyhedral domain proposed by Cousot and Halbwahswas onsiderably more powerful than all the data-�ow analyses known at thattime, inluding the rather sophistiated one by Karr whih was limited to linearequalities [55℄. Seondly, the use of onvex polyhedra as an abstrat domainestablished abstrat interpretation as the right methodology for the de�nitionof omplex and orret program analyzers.We illustrate the basi ideas by partially speifying the analysis of linearinvariants for a very simple imperative language. The simpliity of the languagewe have hosen for expository purposes should not mislead the reader: theapproah is generalizable to any imperative (and, for that matter, funtionaland logi) language [9℄. The abstrat syntax of the language is presented inFigure 1. The basi syntati ategories, orresponding to the sets Int, Bool and
Var, are de�ned diretly. From these, the ategories of arithmeti and Booleanexpressions and of statements are de�ned by means of BNF rules. Notie theuse of syntati meta-variables: for instane, to save typing we will onsistentlydenote by s, possibly subsripted or supersripted, any element of Stmt.The onrete semantis of programs is formally de�ned using the naturalsemantis approah [54℄. This, in turn, is a �big-step� operational semantisde�ned by strutural indution on program strutures in the style of Plotkin[66℄. First we de�ne the notion of store, whih is any mapping between a �niteset of variables and elements of Int. Formally, a store is an element of theset Store

def
= {σ : V → Int | V ⊆ Var, V �nite } and denoted by the letter σ,possibly subsripted or supersripted. The store obtained from σ ∈ Store bythe assignment of m ∈ Int to x ∈ dom(σ), denoted by σ[m/x], is de�ned sothat, for eah x′ ∈ dom(σ), σ[m/x](x′) = m, if x′ = x, and σ[m/x](x′) = σ(x′),otherwise.
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〈m,σ〉
a
→ m 〈x, σ〉

a
→ σ(x)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 + a1, σ〉
a
→ m0 +m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 − a1, σ〉
a
→ m0 −m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 ∗ a1, σ〉
a
→ m0 ·m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 = a1, σ〉
b
→ (m0 = m1)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 < a1, σ〉
b
→ (m0 < m1)

〈skip, σ〉 s
→ σ

〈a, σ〉
a
→ m

〈x := a, σ〉
s
→ σ[m/x]

〈s0, σ〉
s
→ σ′′ 〈s1, σ

′′〉
s
→ σ′

〈s0; s1, σ〉
s
→ σ′

〈b, σ〉
b
→ tt 〈s0, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff 〈s1, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff

〈while bdo c, σ〉 s
→ σ

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′′ 〈while bdo c, σ′′〉

s
→ σ′

〈while bdo c, σ〉 s
→ σ′

Figure 2: Conrete semantis rule shemata for the �nite omputations of the simple imper-ative language
The onrete evaluation relations that omplete the de�nition of the onretesemantis for our simple language are de�ned by strutural indution from aset of rule shemata. The evaluation relations for terminating omputations are

a
→ ⊆ (Aexp×Store)×Int, for arithmeti expressions, b

→ ⊆ (Bexp×Store)×Bool,for Boolean expressions, and s
→ ⊆ (Stmt × Store) × Store, for statements. Thejudgment 〈a, σ〉

a
→ m means that when expression a is exeuted in store σit results in the integer m. The judgment 〈b, σ〉

b
→ t is similar. Note thatexpressions do not have, in our simple language, side e�ets. The judgment

〈s, σ〉
s
→ σ′ means that the statement s, exeuted in store σ, results in a (possiblymodi�ed) store σ′. The rule shemata, in the form premiseonlusion , that de�ne theserelations are given in Figure 2. Rule instanes an be omposed in the obviousway to form �nite tree strutures, representing �nite omputations.The possibly in�nite set of all �nite trees is obtained by means of a least�xpoint omputation, orresponding to the lassial indutive interpretation ofthe rules in Figure 2. The rule shemata in Figure 3 an be used to diretlymodel non-terminating omputations and need to be interpreted oindutively[30℄. The judgment 〈s, σ〉

∞
→ means that the statement s diverges when exe-uted in store σ. By a suitable adaptation of the omputational ordering, bothsets of �nite and in�nite trees an be jointly omputed in a single least �xpoint

9



〈s0, σ〉
∞
→

〈s0; s1, σ〉
∞
→

〈s0, σ〉
s
→ σ′ 〈s1, σ

′〉
∞
→

〈s0; s1, σ〉
∞
→

〈b, σ〉
b
→ tt 〈s0, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ ff 〈s1, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

∞
→

〈while bdo c, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′ 〈while bdo c, σ′〉

∞
→

〈while bdo c, σ〉 ∞
→Figure 3: Additional onrete semantis rule shemata for the in�nite omputations of thesimple imperative languageomputation [30℄. While these semantis haraterizations ontain all the infor-mation we need to perform a wide range of program reasoning tasks, they aregenerally not omputable: we have thus to resort to approximation.Following the abstrat interpretation approah, as instantiated in [70℄, theonrete rule shemata are paired with abstrat rule shemata that orretlyapproximate them. Before doing that, we need to formalize abstrat domainsfor eah onrete domain used by the onrete semantis.For simple approximations of integers and Boolean expressions, we onsiderthe abstrat domains Int♯ and Bool♯ introdued in Setion 2.2. The last (andmost interesting) abstration we need is one that approximates sets of stores.We thus require an abstrat domain (

Store♯,⊑,⊥,⊔
) that is related, by meansof a onretization funtion γS suh that γS(⊥) = ∅, to the onrete domain

(

℘(Store),⊆, ∅, Store,∪,∩
). Elements of Store♯ are denoted by σ♯, possiblysubsripted. The abstrat store evaluation and update operators
·[·] : (Store♯ × Aexp) → Int♯,

·[· := ·] :
(

Store♯ × Var × Aexp
)

→ Store♯,

·[·/·] :
(

Store♯ × Var × Int♯
)

→ Store♯are assumed to be sound with respet to their onrete ounterparts, i.e., suhthat, for eah σ♯ ∈ Store♯, a ∈ Aexp, x ∈ Var and m♯ ∈ Int♯:
γI

(

σ♯[a]
)

⊇
{

m ∈ Int
∣

∣ σ ∈ γS(σ♯), 〈a, σ〉
a
→ m

}

,

γS

(

σ♯
[

x := a]
)

⊇
{

σ′ ∈ Store
∣

∣ σ ∈ γS(σ♯), 〈x := a, σ〉
s
→ σ′

}

,

γS

(

σ♯
[

m♯/x]
)

⊇
{

σ[m/x] ∈ Store
∣

∣ σ ∈ γS(σ♯),m ∈ γI(m
♯)

}

.We also need omputable �Boolean �lters� to re�ne the information ontainedin abstrat stores, i.e., two funtions φtt, φff : Store♯ ×Bexp → Store♯ suh that,for eah t ∈ Bool, σ♯ ∈ Store♯ and b ∈ Bexp:
γS

(

φt(σ
♯, b)

)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ t

}

.10



We are now in a position to present, in Figure 4, a possible set of domain-independent abstrat rule shemata. These shemata allow for the free approx-imation of the ` ' right-hand sides in the onlusions. This means that if, e.g.,premise
〈s,σ〉

s
 σ

♯
1

is an instane of some rule, then premise
〈s,σ〉

s
 σ

♯
2

is also an instane of thesame rule for eah σ♯
2 suh that σ♯

1 ⊑ σ♯
2. Hene the shemata in Figure 4 ensureorretness yet leaving omplete freedom about preision. The ability to giveup some preision, as we will see, is ruial in order to ensure the (reasonablyquik) termination of the analysis.It is possible to prove that, for eah (possibly in�nite) onrete tree T builtusing the shemata of Figures 2 and 3, for eah (possibly in�nite) abstrat tree

T ♯ built using the shemata of Figure 4, if the onrete tree root is of the form
〈s, σ〉

s
→ σ1 (when the tree is �nite) or 〈s, σ〉

∞
→ (when the tree is in�nite)and the abstrat tree root is of the form 〈s, σ♯〉
s
 σ♯

1 with σ ∈ γS(σ♯), then T ♯orretly approximates T . This means not only that σ1 ∈ γS(σ♯
1) (when T is�nite), but also that eah node in T is orretly approximated by at least onenode in T ♯. In other words, the abstrat tree orretly approximates the entireonrete omputation (see [9℄ for the details).It is worth stressing the observation by Shmidt that, even when disregardingthe non-terminating onrete omputations, the abstrat rules still have to beinterpreted oindutively beause most of the �nite onrete trees an only beapproximated by in�nite abstrat trees; for instane, all abstrat trees ontain-ing a while loop are in�nite. Sine, in general, we annot e�etively omputein�nite abstrat trees, we still do not have a viable analysis tehnique. Thesolution is to restrit ourselves to the lass of rational trees, i.e., trees with only�nitely many subtrees and that, onsequently, admit a �nite representation.The analysis algorithm is skethed in [70℄. For expository purposes, wedesribe here a simpli�ed version that, however, is enough to handle the on-sidered programming language features. The algorithm works by reursivelyonstruting a �nite approximation for the (possibly in�nite) abstrat subtreerooted in the urrent node (initially, the root of the whole tree). The urrentnode n =

(

〈p, σ♯
n〉 rn

), where rn is a plaeholder for the �yet to be omputed�onlusion, is proessed aording to the following alternatives:1. If no anestor of n has p in the label, the node has to be expanded usingan appliable abstrat rule instane. Namely, desendants of the premisesof the rule are (reursively) proessed, one at a time and from left to right.When the expansion of all the premises has been ompleted, inluding thease when the rule has no premise at all, the marker rn is replaed by anabstrat value omputed aording to the onlusion of the rule.2. If there exists an anestor node m = 〈p, σ♯
m〉 rm of n labeled by the samesyntax p and suh that σ♯

n ⊑ σ♯
m, i.e., if node n is subsumed by node m,then the node is not expanded further and the plaeholder rn is replaed bythe least �xpoint of the equation rn = fm(rn), where fm is the expressionorresponding to the onlusion of the abstrat rule that was used for the
11



〈m,σ♯〉
a
 αI

(

{m}
)

〈x, σ♯〉
a
 σ♯[x]

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 + a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 − a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 ∗ a1, σ
♯〉

a
 m♯

0 �m♯
1

〈t, σ♯〉
b
 αB

(

{t}
)

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 = a1, σ
♯〉

b
 m♯

0 � m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 < a1, σ
♯〉

b
 m♯

0 4 m♯
1

〈skip, σ♯〉
s
 σ♯

〈a, σ♯〉
a
 m♯ (i)

〈x := a, σ♯〉
s
 σ♯[x := a]

〈a, σ♯〉
a
 m♯ (ii)

〈x := a, σ♯〉
s
 σ♯[m♯/x]

〈s0, σ
♯
0〉

s
 σ♯

1 〈s1, σ
♯
1〉

s
 σ♯

2

〈s0; s1, σ
♯
0〉

s
 σ♯

2

〈b, σ♯〉
b
 t♯

〈

s0, φtt(σ
♯, b)

〉 s
 σ♯

0

〈

s1, φff(σ♯, b)
〉 s
 σ♯

1

〈if b then s0 else s1, σ♯〉
s
 σ♯

0 ⊔ σ
♯
1

〈b, σ♯〉
b
 t♯

〈

c, φtt(σ
♯, b)

〉 s
 σ♯

1 〈while bdo c, σ♯
1〉

s
 σ♯

2

〈while bdo c, σ♯〉
s
 φff(σ♯, b) ⊔ σ♯

2Notes:(i) This rule is used if the domain Store
♯ an apture the assignment preisely(e.g., when Store

♯ is a domain of onvex polyhedra and a is an a�neexpression). Notie that the premise is intentionally not used: its preseneis required in order to ensure that the abstrat tree approximates theonrete tree in its entirety.(ii) This rule is used when (i) is not appliable.Figure 4: Abstrat semantis rule shemata for the simple imperative language

12



expansion of node m.33. Otherwise, there must be an anestor node m = 〈p, σ♯
m〉 rm of n labeledby the same syntax p, but the subsumption ondition σ♯

n ⊑ σ♯
m does nothold. Then there are two options:(a) if the abstrat domain Store♯ is �nite, we proeed as in ase (1);(b) if the abstrat domain Store♯ is in�nite, to ensure onvergene, a widen-ing `∇' over Store♯ an be employed and store σ♯

n in node n is replaedby σ♯
m ∇ (σ♯

m ⊔ σ♯
n). Then, we proeed again as in ase (1).The abstrat semantis of Figure 4 and the given algorithm for omputing arational abstrat tree are fully generi in that any hoie for the abstrat domains

Int♯, Bool♯ and Store♯ will result into a provably orret analysis algorithm.Fousing on numerial domains, the role of Int♯ an be played by any domainof intervals, so that the operations `�', `�' and `�' are the standard ones ofinterval arithmeti [1℄; for instane, [ml
0,m

u
0 ]� [ml

1,m
u
1 ]

def
= [ml

0 +ml
1,m

u
0 +mu

1 ].More sophistiated domains, suh as modulo intervals [64℄, are able to enodemore preise information about the set of integer values eah variable an take.For Store♯, a ommon hoie is to abstrat from the integrality of variables andonsider a domain of onvex polyhedra whih, in exhange, allows the trakingof relational information. With referene to Figure 4, rule (i) an be applieddiretly when the arithmeti expression a = 〈a,x〉+b is a�ne; the orrespondingpolyhedral operation is the omputation of the image of a polyhedron by aspeial ase of a�ne relation ψ ⊆ Rn ×Rn, alled single-update a�ne funtion:
(v,w) ∈ ψ ⇐⇒ wk = 〈a,v〉 + b ∧

∧

0≤i<n
i 6=k

wi = vi.

Another speial ase, slightly more general than the one above and alled single-update bounded a�ne relation, allows among other things to approximate non-linear assignments and to realize rule (ii). For �xed vetors a, c ∈ R
n and salars

b, d ∈ R:
(v,w) ∈ ψ ⇐⇒ 〈a,v〉 + b ≤ wk ≤ 〈c,v〉 + d ∧

∧

0≤i<n
i 6=k

wi = vi.

Both the rules for the if-then-else and the while onstruts require the Boolean�lters and least upper bound operations: these are realized by means of inter-setions (or the addition of individual onstraints) and poly-hulls, respetively.These, together with the ontainment test used to detet the reahing of post-�xpoints and the widening (see Setion 7) used to ensure termination of theanalysis algorithm, are all the operations required for the analysis of our sim-ple imperative language. More omplex languages require other operations: for3As explained in [70℄, the omputation of suh a least �xpoint (in the ontext of a oin-dutive interpretation of the abstrat rules) is justi�ed by the fat that here we only need toapproximate the onlusions produed by the terminating onrete omputations.13



instane, the analysis of languages with ommand bloks needs to have thepossibility of embedding polyhedra into a spae of higher dimension, reorga-nizing the dimensions, and projeting polyhedra on spaes of lower dimension.Other operations are needed to aommodate di�erent semanti onstrutions(e.g., a�ne preimages for bakward semantis), to allow for the e�ient mod-eling of data objets (e.g., summarized dimensions to approximate the valuesof unbounded olletions [41℄), and to help salability (e.g., simpli�ations ofpolyhedra [38℄).Based on suitable variations of the simple linear invariant analysis outlined inthis setion (possibly ombined with other analyses), many di�erent appliationshave been proposed in the literature. Examples inlude the absene of ommonrun-time arithmeti errors, suh as �oating-point exeptions, over�ows and di-visions by zero [21℄; the absene of out-of-bounds array indexing [31, 78℄, as wellas other bu�er overruns aused by inorret string manipulations [35, 37℄; theanalysis of programs manipulating (possibly unbounded) heap-alloated datastrutures, so as to prove the absene of several kinds of pointer errors (e.g.,memory leaks) [41, 72℄; the omputation of input/output argument size rela-tions in logi programs [18℄; the detetion of potential seurity vulnerabilities inx86 binaries that allow to bypass intrusion detetion systems [57℄; the infereneof temporal shedulability onstraints that a partially spei�ed set of real-timetasks has to satisfy [34℄. All of the above are examples of safety properties,whereby a omputer program is proved to be free from some undesired behav-ior. However, the omputation of invariant linear relations is also an important,often indispensable step when aiming at proving progress properties, suh as ter-mination [26, 61, 74℄. It should be also stressed that the same approah, aftersome minor adaptations, an be applied to the analysis of alternative omputa-tion paradigms suh as, e.g., gated data dependene graphs [53℄ (an intermediaterepresentation for ompilers) and bath work�ow networks [77℄ (a form of Petrinet used in work�ow management).4. Analysis and Veri�ation of Hybrid SystemsHybrid systems (that is, dynamial systems with both ontinuous and dis-rete omponents) are ommonly modeled by hybrid automata [2, 38, 49℄.These, often highly omplex, systems are usually nonlinear (making them om-putationally intratable as they are). However, linear approximations, whih al-low the use of polyhedral omputations for the model heking operations, havebeen used suessfully for the veri�ation of useful safety properties [36, 38, 75℄.De�nition4.1. (Linear hybrid automaton.) A linear hybrid automaton(of dimension n) is a tuple (Loc, Init,Act, Inv,Lab,Trans) where the �rst om-ponent Loc is a �nite set of loations. The three funtions Init : Loc → Pn,
Act: Loc → Pn and Inv : Loc → Pn de�ne polyhedra. In partiular, for eah lo-ation ℓ ∈ Loc: Init(ℓ) spei�es the set of possible initial values the n variablesan take if the automaton starts at ℓ; Act(ℓ) spei�es the possible derivativevalues of the n variables, so that, if the automaton reahes ℓ with values given14



by the vetor v, then after staying there for a delay of t ∈ R+, the values willbe given by a vetor v + tw, where w ∈ Act(ℓ); Inv(ℓ) spei�es the valuesthat an n-vetor v may have at ℓ. The �fth and sixth omponents provide aset of synhronization labels Lab and a labeled set of a�ne transition relations
Trans ⊆ Loc× Lab× P2n × Loc, required to hold when moving from the soureloation (the �rst argument) to the target loation (the fourth argument).Observe that the only di�erenes between this de�nition of a linear hybrid au-tomaton and those in, for example [47, 49℄, are presentational; in partiular, aswe have used polyhedra to represent the linear onstraints, there is no need toprovide, as is the ase in these other de�nitions, an expliit omponent of thesystem onsisting of the set of n variables.The synhronization labels Lab are required for speifying large systems.Eah part of the system is spei�ed by a separate automaton, and then parallelomposition is employed to ombine the omponents into an automaton for theomplete system. This ensures that ommuniation between the automata o-urs, via seleted input/output variables, between transitions that have the samelabel. Example 4.3 provides a very simple illustration of parallel omposition;formal de�nitions are available in [2, 49℄.A linear hybrid automaton an be represented by a direted graph whosenodes are the loations and edges are the transitions from the soure to thetarget loations. Eah node ℓ is labeled by two sets of onstraints de�ning thepolyhedra Inv(ℓ) and Act(ℓ). To distinguish these onstraints, if, for example
x is a variable used for the onstraints de�ning Inv(ℓ), ẋ will be used in theonstraints de�ning Act(ℓ).4 In the examples, the initial polyhedron Init(ℓ) isassumed to be empty unless there is an arrow to ℓ (with no soure node) labeledby the onstraint system de�ning Init(ℓ). Eah edge τ =

(

ℓ, a,P, ℓ′) ∈ Trans,is labeled by a onstraint system C de�ning P and, optionally, by a whih isonly inluded where it is used for the parallel omposition of automata. Sine
P ∈ P2n, we speify C by using two n-tuples of variables x and x

′, whihare interpreted as usual to denote the variables in the soure ℓ and target ℓ′loations, respetively. We also adopt some helpful shorthand notation: x++and x−− denote x′ = x + 1 and x′ = x − 1, respetively; also, onstraints ofthe form x′ = x are omitted. The following examples, taken (with some minormodi�ations) from [2, 47℄, illustrate the automata.Example4.2. A graphial view of a water-level monitor automaton is givenin Figure 5. This models a system desribing how the water level in a tankis ontrolled by a monitor that senses the water level w and operates a pump.When the pump is o�, w falls by 2 m per seond; when the pump is on, w risesby 1 m per seond. However, there is a delay of 2 seonds from the momentthe monitor signals the pump to hange from on to o� or vie versa before theswith is atually operated. Initially the automaton is at ℓ0 with w = 1 and4The dot notation re�ets the fat that these variables denote the derivatives of the statevariables. 15



it is required that 1 ≤ w ≤ 12 at all times. Thus the monitor must signal thepump to turn on when w = 5 and signal it to turn o� when w = 10.The automaton illustrated in Figure 5 has 2 dimensions with variables wand x, where x denotes the time (in seonds) sine the previous, most reent,signal from the monitor. There are four loations ℓi where i = 0, 1, 2, 3. At
ℓ0 and ℓ1 the pump is on, while at ℓ2 and ℓ3 the pump is o�. At ℓ1 and ℓ3 themonitor has signaled a hange to the pump swith, but this has not yet beenoperated. Thus we have:

Init(ℓ0) = con
(

{w = 1}
)

, Init(ℓ1) = Init(ℓ2) = Init(ℓ3) = ∅,

Inv(ℓ0) = con
(

{w < 10}
)

, Inv(ℓ1) = Inv(ℓ3) = con
(

{x < 2}
)

,

Inv(ℓ2) = con
(

{w > 5}
)

, Act(ℓ0) = Act(ℓ1) = con
(

{ẋ = ẇ = 1}
)

,

Act(ℓ2) = Act(ℓ3) = con
(

{ẋ = 1, ẇ = −2}
)

.There are four transitions τij = (ℓi, ai,Pi, ℓj) ∈ Trans, where i ∈ {0, 1, 2, 3} and
j = i+ 1 (mod 4); the a�ne relations are

P0 = con
(

{w = w′ = 10, x′ = 0}
)

, P1 = con
(

{x = x′ = 2, w′ = w}
)

,

P2 = con
(

{w = w′ = 5, x′ = 0}
)

, P3 = P1.Example4.3. A representation of an automaton for a simple task sheduler isgiven in Figure 6. This models a sheduler with two lasses of tasks A1 and A2,ativated by interrupts I1 and I2. Interrupt I1 (resp., I2) ours at most oneevery 10 (resp., 20) seonds and ativates a task in lass A1 (resp., A2), whihtakes 4 (resp., 8) seonds to omplete. Tasks in A2 have priority and preempttasks in A1. It is required that tasks in A2 never wait.The Sheduler automaton given in Figure 6 is the parallel omposition oftwo omponent automata: Interrupt whih models the assumptions about theinterrupt frequenies; and Task, whih models the exeution of the tasks. TheInterrupt automaton, whih has a single loation `Intpt', has variables c1 and
c2; ci (i = 1, 2) measures the time elapsed sine interrupt Ii ourred. The Taskautomaton has three loations: `Idle' when no tasks are running; and `Task1'and `Task2' when tasks in lasses A1 (resp., A2) are ative. It has, for eah
i = 1, 2, variables xi, whih measures the exeution time of task i, and ki,whih ounts the number of pending tasks in lass task i.The ombined Sheduler automaton has variables x1, x2, k1, k2, c1 and c2and loations whih are elements of the Cartesian produt of the sets of loa-tions for Interrupt and Task. As Interrupt has just one loation, eah Taskloation ℓ is used to denote the orresponding Sheduler loation; here, the ini-tial Init(ℓ), derivative Act(ℓ) and invariant Inv(ℓ) polyhedra for the Shedulerare the onatenation of the orresponding omponent polyhedra for the Taskand Interrupt automata (informally, a onatenation of polyhedra P ∈ Pm and
Q ∈ Pn an be obtained by �rst embedding P into a vetor spae of dimen-sion n + m and then add a suitably renamed-apart version of the onstraintsde�ning Q). Eah transition (ℓ, a,P, ℓ′) in the Task automaton not triggered
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w = 1

ℓ0

w < 10

ẋ = 1

ẇ = 1

w = 10, x′ = 0signal pump o�
ℓ1

x < 2

ẋ = 1

ẇ = 1

swith o� x = 2

ℓ2

w > 5

ẋ = 1

ẇ = −2

w = 5, x′ = 0signal pump on
ℓ3

x < 2

ẋ = 1

ẇ = −2

x = 2 swith on

Figure 5: Water-level monitor
Interrupt

c1 ≥ 0, c2 ≥ 0 Intpttrue

ċ1 = 1

ċ2 = 1

I1; c1 ≥ 10, c′1 = 0 I2; c2 ≥ 20, c′2 = 0

Task
x1 = x2 = k1 = k2 = 0 Idletrue

ẋ1 = 0

ẋ2 = 1x1 = 4, k1 ≤ 1,

k1−−, x′

1 = 0

I1; k′

1 = 1

x2 = 8, k2 ≤ 1, k1 = 0,

k2−−, x′

2 = 0

I2; k′

2 = 1

Task1
x1 ≤ 4

ẋ1 = 1

ẋ2 = 0 Task2
x2 ≤ 8

ẋ1 = 0

ẋ2 = 1

I2; k′

2 = 1

x2 = 8, k2 ≤ 1, k1 ≥ 1,
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Figure 6: Sheduler
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by interrupts I1 and I2 has a transition (ℓ, a,Q, ℓ′) in the produt automatonwhere Q ∈ P6 is obtained by embedding P into a vetor spae of dimension
6. Letting i = 1, 2, for transitions (ℓ, Ii,P, ℓ

′) and (Intpt, Ii,P
′, Intpt) in theTask and Interrupt automata, respetively, there is a transition (ℓ, Ii,Q, ℓ

′) inthe produt automaton where Q ∈ P6 is obtained by onatenating P and P ′.Given a linear hybrid automaton, the aim of an analyzer is to hek, or even�nd su�ient onditions that ensure, that a valid run of the system annot reaha loation and vetor of values that violate some requirement of the system.For instane, in Example 4.2, we need to show that the water level always liesbetween 1 m and 12 m; in Example 4.3, we need to show that no task in A2will ever wait. To show how polyhedral omputations an be used to prove suhproperties, we �rst de�ne more formally suh a run and how reahable sets maybe omputed. Note that these de�nitions follow, with only minor hanges, theapproah in [47℄.Letting H = (Loc, Init,Act, Inv,Lab,Trans) be a linear hybrid automatonin n dimensions, a state s of H onsists of a pair (ℓ,v), where ℓ ∈ Loc and
v ∈ Inv(ℓ). Given states s = (ℓ,v) and s′ = (ℓ′,v′), a time delay t ∈ R+ anda vetor w ∈ Act(ℓ), s →t

w
s′ is a step of H provided that, for all t′ ∈ [0, t),

v + t′w ∈ Inv(ℓ) and, for some (ℓ, a,P, ℓ′) ∈ Trans, (v + tw) ::v′ ∈ P. A runof H is a sequene (�nite or in�nite) of steps s0 →t0
w0

s1 →t1
w1

s2 · · ·, where theinitial state s0 = (ℓ0,v0) satis�es the ondition v0 ∈ Init(ℓ0). An in�nite rundiverges if the sum ∑

i≥0 ti diverges. For eah divergent run where, for i ≥ 0,
si = (ℓi,vi), we assoiate a (state) behavior β whih is a total funtion fromtime to states: that is, β(0) = s0 and, for eah t > 0, β(t)

def
= (ℓi,v), where

i = min
{

k ∈ N
∣

∣

∑k
j=0 tj > t

} and v = vi + wi

(

t −
∑

j<i tj
). A state s isreahable if there exists a divergent run with behavior β and time t ∈ R+ suhthat β(t) = s. The set of all reahable values Rℓ for a loation ℓ is de�ned as:

Rℓ
def
=

{

v ∈ R
n

∣

∣ ∃t ∈ R+ . β(t) = (ℓ,v)
}

.The set of reahable values Rℓ at a loation ℓ an be haraterized by a systemof �xpoint equations that are de�ned in terms of sets of reahable values Rℓ′at loations ℓ′ where (

ℓ′, a,P, ℓ
)

∈ Trans. These equations use the followingoperations on sets of vetors in R
n. Let P,Q ∈ P2n and S ⊆ R

n. Then
ψP(S)

def
= {v

′ ∈ R
n | v ∈ S,v ::v′ ∈ P };

S ր Q
def
= {v + tw ∈ R

n | v ∈ S,w ∈ Q, t ∈ R+ }.Note that, if S ∈ Pn, then also ψP(S) ∈ Pn and S ր Q ∈ Pn. The `ր' operator,alled the time elapse operator, was �rst proposed in [47℄. We an now providethe �xpoint equation for Rℓ:
Rℓ =

(

(

Init(ℓ) ∪
⋃

(ℓ′,a,P,ℓ)∈Trans

ψP(Rℓ′) ∩ Inv(ℓ)
)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.1)
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Informally, the �xpoint equation for Rℓ says that the reahable values at theloation ℓ are obtained by letting the time elapse either from an initial value for
ℓ or from a value obtained from an inoming transition. However, the �xpointEquation (4.1) annot handle strit onstraints orretly and needs modifying;this is illustrated in the following example.Example4.4. Consider again Example 4.2. Then, just applying Equation (4.1)(as proposed in [47℄), the sets of reahable values at loations ℓ1, ℓ2, ℓ3 are empty.The reason for this is that, for example, at loation ℓ0, the strit onstraint
w < 10 must hold, while in the transition from ℓ0 to ℓ1, the transition ondition
w = 10 has to hold. On the other hand, it follows from the de�nition of a step,that sine one of the derivative onstraints at ℓ0 is ẇ = 1; the water level wmay ontinue to inrease up to the topologial losure of Rℓ0 whih is onsistentwith w = 10.To resolve this problem, in Equation (4.1) de�ning the onrete omputation,
Rℓ′ needs to be replaed by c(Rℓ′) ∩

(

Rℓ′ ր Act(ℓ′)
), where c(R′

ℓ) denotes thetopologial losure of R′
ℓ ⊆ Rn.Observe that, although the linear hybrid automata are spei�ed by means ofpolyhedra, the reahable set Rℓ for a linear hybrid automaton and loation ℓmaynot be a onvex polyhedron sine Equation (4.1) uses the set union operation.Therefore, to verify that some states of an automaton are unreahable usingstandard polyhedral omputations, set union has to be replaed by the poly-hull operation ⊎ desribed in Setion 2. Thus the following �xpoint equationomputes an approximation R♯

ℓ to the reahability set Rℓ.
R♯

ℓ =

(

(

Init(ℓ) ⊎
⊎

(ℓ′,a,P,ℓ)∈Trans

ψP(R♯
ℓ′) ∩ Inv(ℓ)

)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.2)
As for the onrete �xpoint equation, to orretly handle the strit onstraintsin Equation (4.2) we need to replae R♯

ℓ′ with c(R♯
ℓ′) ∩

(

R♯
ℓ′ ր Act(ℓ′)

).If we let R
♯ denote the tuple {R♯

ℓ | ℓ ∈ Loc } we an write Equation (4.2)as R♯
ℓ = Fℓ(R

♯). For all ℓ ∈ Loc, we write R
♯(0)
ℓ = ∅ and, for all k ≥ 1,

R
♯(k+1)
ℓ = Fℓ(R

♯(k)
ℓ ). Then R

♯ an be omputed iteratively provided the se-quene R
♯(0),R♯(1), . . . does not diverge. To handle diverging sequenes, weapply a widening (see Setion 7.2); note that this only needs to be applied atsu�ient loations so that eah yli path in the graph of the hybrid automatonhas at least one widening point.Example4.5. Consider again Example 4.2. As there is a single loop passingthrough ℓ0, it is su�ient to de�ne the set of widening loations as {ℓ0}.With the modi�ed form of Equation (4.2) and the polyhedra widening of [31℄,the omputation requires three iterations resulting in polyhedra de�ned by on-straint systems Ci for 0 ≤ i ≤ 3 where:

C0 = {1 ≤ w < 10}, C1 = {w − x = 10, 10 ≤ w < 12},

C2 = {w + 2x = 16, 5 < w ≤ 12}, C3 = {w + 2x = 5, 1 < w ≤ 5}.
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Example4.6. Consider again Example 4.3. By applying the above mentionedpolyhedra widening at loation `Task2' only, the analysis for the produt au-tomaton terminates in four iterations. After projeting onto variables k1 and
k2, the reahable values are given by polyhedra de�ned by onstraint systems
Ct0, Ct1, and Ct2 for loations `Idle', `Task1' and `Task2', respetively, where:

Ct0 = {k1 = k2 = 0}, Ct1 = {k2 = 0, k1 = 1}, Ct2 = {k2 = 1}.Therefore, sine at all loations k2 ≤ 1, no task in lass A2 will ever have towait. However, as noted in [47℄, beause of the onvex hull approximation, withthe polyhedral domain the analyzer fails to show that k1 ≤ 2. We thereforeredid the analysis using a domain of powersets of polyhedra (see Setion 6.2)and, after taking the poly-hull of the �nal sets and projeting onto variables k1and k2, we obtained the polyhedra de�ned by onstraint systems C′
t0, C′

t1 and
C′

t2 for loations `Idle', `Task1' and `Task2', respetively, where:
C′

t0 = {k1 = k2 = 0}, C′
t1 = {k2 = 0, k1 = 1}, C′

t2 = {k1 ≤ 2, k2 = 1}.Hybrid systems with a�ne or nonlinear dynamis do not �t the above spe-i�ation of a linear system so that the veri�ation tehniques desribed here arenot diretly appliable. Nonetheless, by partitioning the ontinuous state spaeand over-approximating the dynamis in eah of the partitions, the same teh-niques used to verify linear hybrid automata an be used in these more generalases [36, 38, 51℄. Suh an approah has also been suessfully applied in theveri�ation of analog iruits, as disussed in the following setion.5. Analysis and Veri�ation of Analog SystemsThe idea of applying formal methods, that originated in the digital world,to analog systems was put forward in [48℄. This is an important step forwardwith respet to more traditional methods for the validation of analog iruitdesigns. A formal veri�ation tool an, for example, ensure that a design satis�esertain properties for entire sets of initial states and ontinuous ranges of iruitparameters, something that annot be done with simulation.To illustrate the approah, we desribe a simple example of veri�ation of anosillator iruit, taken from [39℄. To verify properties of the (yli) behaviorof suh iruits, yli invariants have to be determined. To establish a yliinvariant for a given set of initial states and ranges for the iruit parameters,one has to show that the iruit returns to a subset of those initial states, whihimplies the system will keep traversing the same states inde�nitely.Consider the tunnel-diode osillator shematized in Figure 7(a). The stateof the system at a given instant of time is ompletely haraterized by the valuesof the indutor urrent IL and the diode voltage drop Vd. With these as thestate variables, the system is desribed by the seond-order state equations
V̇d = 1/C

(

−Id(Vd) + IL
)

, (5.1)
İL = 1/L(−Vd −RIL + Vin). (5.2)
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In [39℄ it is shown how a yli invariant an be obtained for this iruit usingthe PHAVer system. First, a pieewise a�ne envelope is onstruted for thetunnel diode harateristi Id(Vd) depited in Figure 7(b): for the partiularexample analyzed in [39℄, su�ient preision is obtained by subdividing therange Vd ∈ [−0.1 V, 0.6 V] into 64 intervals, resulting in a pieewise a�ne modelof (5.1). Forward reahability omputation with PHAVer an obtain the set ofstates depited in Figure 7(). These are the states reahable from the set ofinitial states orresponding to Vd ∈ [0.42 V, 0.52 V] and IL = 0.6 mA (the baseof the downward-faing triangular shape in Figure 7()). As the loop shapeonstituted by the reahable states is traversed lokwise, it an be seen thatthe indutor urrent IL returns to the initial value of 0.6 mA with a diode voltagedrop that is well within the initial range [0.42 V, 0.52 V]. The set of reahablestates so obtained is thus an invariant of the iruit.In [39℄ it is shown that, due to over-approximation, forward reahabilityan fail to determine invariants of more omplex iruits. A new tehniqueombining forward and bakward reahability with iterative re�nement of thepartitions is thus proposed and shown to be more powerful and e�ient.6. Families of Polyhedral ApproximationsFor several appliations of stati analysis and veri�ation, an approximationbased on the domain of onvex polyhedra an be regarded as the most appro-priate hoie. In this setion we disuss alternative options (simpli�ations,generalizations, and ombinations with other numerial domains) that might be
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onsidered when trying either to redue the ost of the analysis, or to inreasethe preision of the omputed results.6.1. Simpli�ations of PolyhedraThere are ontexts where approximations based on general onvex polyhedra,no matter whih implementation is adopted, inur an unaeptable omputa-tional ost. In suh ases, the stati analysis may resort to further simpli�ationsso as to obtain useful results within reasonable time and spae bounds.A �rst, almost traditional approah is based on the identi�ation of suitablesyntati sublasses of polyhedra. The abstrat domain of bounding boxes (orintervals [27℄) is based on polyhedra that an be represented as �nite onjun-tions of onstraints of the form ±xi ≤ d or ±xi < d, leading to the spei�ationof operations whose worst-ase omplexity is linear in the number of spae di-mensions. As a more preise alternative, the lass of potential onstraints [16℄,also known as bounded di�erenes [6, 32℄, allows for onstraints of the form
xi − xj ≤ d or ±xi ≤ d; the abstrat domain of otagons [62℄ also admits on-straints of the form xi + xj ≤ d. In these last two ases, the operators areharaterized by a worst-ase time omplexity whih is ubi in the number ofspae dimensions. For all of the approximations mentioned above, improvede�ieny also follows from the fat that the orresponding omputations aresimple enough to allow for the adoption of �oating-point data types: in on-trast, the spei�ation of safe and e�ient �oating-point operations for generalpolyhedra is an open problem, so that polyhedra libraries have to be based onunbounded preision data types.Several alternative (syntati and/or semanti) simpli�ation shemes havebeen put forward in the reent literature. The Two Variables per Linear In-equality abstrat domain is proposed in [73℄, where onstraints take the syntatiform axi + bxj ≤ d. In [69℄, an arbitrary family of polyhedra is hosen beforestarting the analysis by �xing the slopes of a �nite number of linear inequali-ties, whih are alled the template onstraints ; linear programming tehniquesare then used to ompute preise approximations in the onsidered lass ofshapes. In ontrast, in [68℄, general polyhedra are allowed, but the orrespond-ing operations (in partiular, the poly-hull and the image of a�ne relations) areapproximated by less preise variants so as to ensure a polynomial worst-aseomplexity in the size of the inputs. An even more �exible approah is pro-posed in [38℄, where arbitrary polyhedra are approximated, when they beometoo omplex, by limiting the number of onstraints in their desription and/orthe magnitude of the oe�ients ourring in the onstraints. These more dy-nami approximation shemes are promising, in partiular for those appliationswhere nothing is known in advane about the syntati form of the onstraintsthat will be omputed during the analysis.An important observation to be made is that there is no atual need to prefera priori (and therefore ommit to) a spei� abstrat domain: the analysis toolmay be based on several abstrations, safely swithing from more preise, pos-sibly ostly domains to more e�ient, possibly impreise ones, and vie versa,depending on the ontext. When replaing a generi polyhedron by a simpler22



one, the problem of the identi�ation of a good over-approximation has to besolved. Depending on the ontext, the approahes may vary signi�antly. At oneextreme, when e�ieny is really ritial, the adoption of syntati tehniquesshould be pursued: for an interesting example, we refer the reader to one ofthe simpli�ation heuristis used in [38℄, where the e�ient seletion of a smallnumber of linear inequalities out of a onstraint system is driven by a simple,yet e�etive reasoning on the measure of the angles formed by the orrespond-ing half-spaes. At the other extreme, linear programming (LP) optimizationtehniques may be used so as to obtain the best math in the onsidered lass ofgeometri shapes. For instane, the preise approximation of a polyhedron by abounding box (resp., a bounded di�erene or otagon) an be implemented bya linear (resp., quadrati) number of optimizations of a lass of LP problems,where the objetive funtion varies while the feasible region is invariant andde�ned by the onstraints of the polyhedron. Note that, if orretness has tobe preserved, it is essential that no rounding error is made on the wrong side,so that lassial �oating-point implementations of LP solvers have to be on-sidered unsafe, unless the omputed results an be erti�ed by some other tool.Alternatively, it is possible to onsider LP implementations based on unboundedpreision data types.When the number of spae dimensions to be modeled is beyond a giventhreshold, the whole analysis spae an be split into a �nite number of smaller,more manageable omponents, thereby realizing a further simpli�ation shemethat an be ombined with those desribed above. The splitting strategy variesonsiderably. In [46℄, Cartesian fatoring tehniques are used so as to dynami-ally partition the spae dimensions of a polyhedron into independent subsets;the orthogonal fators are then approximated by lower dimensional polyhedrawith no preision penalty. In an alternative approah desribed in [21℄, many(possibly overlapping) small subsets of spae dimensions, alled variable paks,are identi�ed before the start of the analysis by means of syntati onditions;the relations holding between the variables in eah pak are then approximatedby using an otagonal abstration. A variation of this is desribed in [78℄,where non-overlapping variable paks are dynamially omputed (and possiblymerged) during the analysis, whereas the relations between the variables in apak are approximated by means of potential onstraints. In [78℄ it is also ob-served that, sine the average size of variables paks is small (5 variables), morepreise approximations based on general polyhedra should be feasible.6.2. Generalizations of PolyhedraThere are appliations where the restrition to the domain of onvex polyhe-dra is intrinsially inadequate. This may happen, not only when the veri�ationproperty of interest is itself non-onvex, but also when the adopted omputa-tion strategy requires that a onvex property is proved by passing through anon-onvex intermediate approximation. This was the ase in Example 4.6 ofSetion 4, where the upper bound (k1 ≤ 2) on the number of waiting proessesfor lass A1 was obtained by swithing from the domain of onvex polyhedra tothe domain of �nite sets of polyhedra.23



The �nite powerset domain onstrution [7℄ is a speial ase of disjuntiveompletion [28℄, a systemati tehnique to derive an enhaned abstrat domainstarting from an existing one. A �nite powerset domain implements disjun-tions by maintaining an expliit (hene �nite) and non-redundant olletion ofelements of the base-level domain: non-redundany means that a olletion ismade of maximal elements with respet to the approximation ordering, so thatno element subsumes another element in the olletion.For a better understanding of the onepts, whih are desribed in ompletelygeneral terms in [12℄, let us onsider the appliation of the �nite powerset on-strution to the domain of onvex polyhedra. This instantiation (whih is theone also adopted for the examples developed in [12℄) an be used to model non-linear systems as desribed, e.g., in Setion 5. Then, an element of the abstratdomain is a �nite set of maximal onvex polyhedra, so that no polyhedron inthe set is ontained in another polyhedron in the set. The powerset domainis a lattie: the bottom and top elements are ∅ and {Rn}, respetively; themeet is obtained by removing redundanies from the set of all possible binaryintersetions of an element in the �rst powerset with an element in the seondpowerset; while the binary join is the non-redundant subset of the union ofthe two arguments. Most of the other abstrat operations needed for a statianalysis using the �nite powerset domain are easily obtained by �lifting� theorresponding operations de�ned on the base-level domain, and then reinfor-ing non-redundany. For instane, the omputation of the image of a �nitepowerset under an a�ne relation is obtained by omputing the image of eahpolyhedron in the olletion. However, the onstrution of a provably orretwidening operator has only reently been addressed in [12℄ (see Setion 7.2).The generi spei�ation of the abstrat operators of the �nite powerset domainin terms of abstrat operations on the (arbitrary) base-level domain allows forthe development of a single implementation whih is shared by all the possibleinstanes of the domain onstrution.An alternative abstration sheme has been proposed in [15℄ for the ase of �-nite onjuntions of polynomial inequalities. Intuitively, a polynomial onstraintan be approximated by means of a linear onstraint in a higher dimension ve-tor spae, so that the di�erent terms of the polynomial (e.g., x0, x0x1, x2
0) aremapped to di�erent and independent spae dimensions; these linear onstraintsare then used to perform an almost lassial linear relation analysis based ononvex polyhedra. Due to the linearization step, most of the preision of thepolynomial onstraints is initially lost; however, some of the relations hold-ing between the di�erent terms of the original polynomial an be reovered byadding further onstraints that are redundant when interpreted in the polyno-mial world, but do ontribute to preision in the linearized spae. In partiular,in [15℄ the polynomial onstraints are mapped into �nitely generated polynomialones and a degree-bounded produt losure operator is systematially appliedso as to improve auray. As a trivial example, let the polynomial terms x0, x1and x0x1 be mapped to the spae dimensions y0, y1 and y2, respetively. Then,the linearization of the polynomial onstraints x0 ≥ 0 and x1 ≥ 0 will produea polyhedron that, while satisfying y0 ≥ 0 and y1 ≥ 0, leaves variable y2 totally24



unonstrained. By applying the produt losure operator we also obtain thelinear onstraint y2 ≥ 0, thereby reovering the non-negativity of term x0x1.6.3. Combinations with other Numerial AbstrationsThere are two basi kinds of numerial abstrations for approximating thevalues of the program variables: outer limits (or bounds within whih the val-ues must lie) and the pattern of distribution of these values. The �rst an beapproximated by (onstrutions based on) onvex polyhedra, while the seondan be approximated by sets of ongruenes de�ning latties of points we allgrids [8, 43℄. Before onsidering how these and similar domains may be om-bined, we give a brief overview of the domain of grids.Any vetor that satis�es 〈a,v〉 = b + µf , for some µ ∈ Z, is said to satisfythe ongruene relation 〈a,v〉 ≡f b. A ongruene system K is a �nite set ofongruene relations in Rn. A grid is the set of all vetors in Rn that satisfy theongruenes in K. The domain of grids Gn is the set of all grids in R
n orderedby the set inlusion relation, so that the empty set and Rn are the bottomand top elements of Gn respetively and the intersetion of two grids is itself agrid. Thus, as for the domain of polyhedra, the domain of grids forms a lattie

(Gn,⊆, ∅,R
n,⊎,∩) where ⊎ denotes the join operation returning the least gridgreater than or equal to the two arguments. For more details onerning allaspets of the domain of grids, see [8℄.The distribution information aptured by grids has a number of applia-tions in its own right: for instane, to ensure that external memory aessesobey the alignment restrition imposed by the host arhiteture, and to enableseveral transformations for e�ient parallel exeution as well as optimizationsthat enhane ahe behavior. However, here we are primarily onerned withappliations that an bene�t from the ombination of the domain of grids withthat of onvex polyhedra. For instane, knowing the frequeny (and position)of the points in a grid, we an shrink the polyhedra so that the bounding hyper-planes pass through the grid values; if this leads to a polyhedron with redueddimension (suh as a single point) or one that is empty, it an lead, not onlyto improved preision, but also a more e�ient use of resoures by the ana-lyzer [3, 65, 67℄.Generi onstrutions, suh as diret and redued produt, an be used toprovide a formal basis for the ombination of the grid and polyhedral domains[28℄ although the exat hoie of produt onstrution used to build the grid-polyhedral domain needs further study. Both the diret and redued produtshave problems: the diret produt has no provision for ommuniation betweenthe omponent domains, thereby losing preision; while the redued produt,whih is the most preise re�nement of the diret produt, has exponentialomplexity. It is expeted that, for grid-polyhedra, the most useful produtonstrution will lie between these extremes. For instane, as equalities areommon entities for both onstraint and ongruene systems, if an equalityis found to hold in one omponent, it is safe to just add this to the otheromponent. In addition, in an element of the grid-polyhedral domain, anyhyperplane that bounds the polyhedron omponent ould be moved inwards25



until it intersets with points of the grid with only linear ost on the number ofdimensions. Of ourse, this redution on its own is not optimal sine the gridpoints in the intersetion may not lie in the polyhedron itself. For optimalityor, more generally, so as to gain additional preision, we need to experimentwith various forms of the branh-and-bound and utting-plane algorithms [56℄already well-researhed for integer linear programming. What is needed is arange of options for the produt onstrution allowing the user to deide on theomplexity/preision trade-o�. Further work on this is needed, inluding aninvestigation of other proposals for generi produts that lie between the diretand redued produt, suh as the loal dereasing iteration method [42℄ and theopen produt onstrution [25℄.7. Polyhedral Computations Peuliar to Analysis and Veri�ationAs observed in the previous setions, the analysis of the run-time behaviorof a system an be broken down into a set of basi operations on the hosenabstrat domains. This means that eah abstrat domain should provide ad-equate omputational support for suh a set and, where appropriate, furtheroperations that might be useful for tuning the ost/preision ratio. In this se-tion, we disuss several key issues relevant to the design and implementation ofan abstrat domain of, or based on, onvex polyhedra. Before going into furtherdetail, it should be stressed that the partiular ontext of the appliation playsa signi�ant and non-trivial role here. For instane, in many omputationalomplexity studies, it is assumed that a small number of operations (often, justa single one) an have arbitrarily large operands; also, it is typially requiredthat exat results have to be omputed. These assumptions taken togethermay be inappropriate in the ontext of stati analysis: it is quite often thease that a large number of operations will have only small or medium sizedoperands; also, whenever faing an e�ieny issue, the exatness requirementan be dropped (provided soundness is maintained). As a onsequene, the eval-uation of alternative algorithmi strategies should be largely based on pratialexperimentation.7.1. The Double Desription MethodConvex polyhedra are typially spei�ed by a �nite system of linear inequal-ity onstraints and for this representation there are known algorithms (e.g.,based on Fourier-Motzkin elimination [58, 71℄) for most of the operations al-ready mentioned.An alternative approah is based on the double desription method due toMotzkin et al. [63℄. This method was originally de�ned on the set of topolog-ially losed onvex polyhedra, a sub-lattie (CPn,⊆, ∅,R
n,⊎,∪) of the lattieof (not neessarily losed, or NNC) polyhedra Pn. In the double desriptionmethod, a losed polyhedron may be desribed by using a system of non-stritlinear inequalities or by using a generator system that reords its key geomet-ri features. The following is the main theoretial result, whih is a simpleonsequene of well-known theorems by Minkowski and Weyl [76℄.26



Theorem 7.1. The set P ⊆ Rn is a topologially losed onvex polyhedron ifand only if there exist �nite sets R,P ⊆ Rn of ardinality r and p, respetively,suh that 0 /∈ R and P an be generated from (R,P ) as follows:
P = {Rρ+ Pπ ∈ R

n | ρ ∈ R
r
+
, π ∈ R

p
+
,
∑p

i=1 πi = 1 }.Intuitively, a point of a polyhedron P is obtained by adding a onvex ombina-tion of the vetors in P (the generating points) to a oni ombination of thevetors in R (the generating rays).It turns out that onstraint and generator desriptions are duals: eah repre-sentation an be omputed starting from the other one. Clever implementationsof this onversion proedure, improving on the Chernikova's algorithm [23℄, arethe starting point for the development of software libraries that, while beingharaterized by a worst ase omputational ost whih is exponential in thesize of the input, turn out to be pratially useful. A ommon harateristi ofthese implementations is the exploitation of inrementality, whereby most of theomputational work done for an operation is reused to e�iently ompute smallvariations of the orresponding result. Further omputational enhanementsare obtained by the adoption of suitable heuristis, ranging from the e�ienthandling of adjaeny information [59℄, to a areful hoie of ordering strategiesfor the omputation of intermediate results [4, 5, 40℄; the overall onstrutiontypially relies on a tight integration of the basi algorithms with a arefullyhosen set of data strutures [14℄.An important motivation for the adoption of an implementation based on thedouble desription method is that the ability to swith from a onstraint desrip-tion to a generator desription, or vie versa, an be usefully exploited to providesimple implementations for the basi operations on polyhedra. For instane, setintersetion is easily implemented by taking the union of the onstraint systemsrepresenting the two arguments, whereas the poly-hull is implemented by joiningthe generator systems representing the two arguments; and the test for empti-ness an be implemented by heking that the generator system has no points.Moreover, a test for subset inlusion P ⊆ Q an be implemented by heking ifeah point and eah ray in a generator system desribing P satis�es all linearinequalities in a onstraint system desribing Q. As a further example, the timeelapse operation spei�ed in Setion 4, an be implemented using the generatorsystems for the argument polyhedra [47℄. That is a generator system for thepolyhedron P ր Q an be obtained by adopting the same set of generatingpoints as P and by de�ning its set of rays as the union of the set of generatingrays for P with the set of all the generators (both points and rays) for Q.As seen in Setion 3, in the ontext of the analysis of imperative languagesone of the most frequent statements is variable assignment, where the expressionassigned is safely approximated by an a�ne relation ψ ⊆ Rn × Rn. The (diretor inverse) image of an a�ne relation an be naively omputed by embedding theinput polyhedron P ⊆ R
n into the spae R

2n, interseting it with the onstraintsde�ning ψ and �nally projeting the result bak on Rn. However, due to themoves to/from a higher dimensional spae, this approah su�ers from signi�ant
27



overheads. Quite often, the expression assigned is a simple a�ne funtion ofthe variables' values and an thus be exatly modeled by omputing the imageof a single-update a�ne funtion. With the double desription method, theimages of a�ne funtions are muh more e�iently omputed by applying themdiretly to the generators of the argument polyhedron. A dual approah, usingthe onstraint desription of the polyhedron, allows for the omputation of thepreimages of a�ne funtions, whih an be of interest for a bakward semantionstrution, where the initial values of program variables are approximatedstarting from their �nal values. Similar e�ieny arguments motivate the studyof spei� implementations for single-update bounded a�ne relations and otherspeial sublasses of a�ne relations.7.2. Widening and NarrowingThe �rst widening operator for the domain of onvex polyhedra, the so-alled standard widening proposed in [31℄, an be informally desribed as follows:suppose that in the post-�xpoint iteration sequene we ompute as suessiveiterates the polyhedra Pi and Pi+1; then, the widening keeps all and only theonstraints de�ning Pi that are also satis�ed by Pi+1. This simple idea, whihis basially borrowed from the widening operator de�ned on the domain ofintervals [27℄, is quite e�etive in ensuring the termination of the analysis (thenumber of onstraints dereases at eah iteration); by avoiding the appliationof the widening in the �rst few iterations of the analysis and/or by applying the�widening up-to� tehnique of [45℄, it also provides, in the main, an adequatelevel of preision.Some appliation �elds, however, are partiularly sensitive to the preisionof the dedued numerial information, to the point that some authors proposeto give up the termination guarantee and use so-alled extrapolation operators:examples inlude the operators de�ned in [50℄ and [52℄, as well as the proposalsin [22℄ and [33℄ for sets of polyhedra and the heuristis skethed in [19℄.In [10℄ this preision problem is reonsidered in a more general ontext anda framework is proposed that is able to improve upon the preision of a givenwidening while keeping the termination guarantee. The approah, whih buildson theoretial results put forward in work on termination analysis, ombinesan existing widening operator, whose termination guarantee should be formallyerti�able, with an arbitrary number of preision improving heuristis. Its feasi-bility was demonstrated by instantiating the framework so as to produe a newwidening on polyhedra improving upon the preision of the standard wideningin a signi�ant perentage of benhmarks.For the more hallenging ase of an abstrat domain obtained by the �nitepowerset domain onstrution, several generi shemes of widenings have beenproposed in [12℄ that are able to �lift� a widening de�ned on the base-leveldomain without ompromising its termination guarantee. The instantiation ofsuh a generi approah led to the de�nition of the �rst non-trivial and provablyorret widenings on a domain of �nite sets of onvex polyhedra. Being highlyparametri, the widening shemes proposed in [12℄ an be instantiated aordingto the needs of the spei� appliation, as done in [44℄. One of the heuristi28



approahes adopted in [12℄ to ontrol the preision/omplexity trade-o� of thewidenings, originally proposed in [22℄, attempts at reduing the ardinality of apolyhedral olletion by merging two of its elements whenever their set unionhappens to be a onvex polyhedron. The implementation of suh a heuristiould signi�antly bene�t from the results and algorithms presented in [17℄.It is also worth mentioning that, one a post-�xpoint approximation hasbeen obtained by means of an upward iteration sequene with widening, itspreision an be improved by means of a downward iteration, possibly using anarrowing operator [27, 29℄. To the best of our knowledge, no narrowing hasever been de�ned on the domain of onvex polyhedra: appliations simply stopthe downward omputation after a small number of iterations.7.3. Not Neessarily Closed Convex PolyhedraMost stati analysis appliations omputing linear inequality relations be-tween program variables onsider the domain CPn of topologially losed polyhe-dra. One of the underlying motivations is that sometimes (e.g., when workingwith integer valued variables only) strit inequalities an be �ltered away bysuitable syntati manipulations; even when this is not the ase, the topologiallosure approximation may be interpreted as a quik and pratial workaroundto the fat that some software libraries do not fully support omputations onNNC polyhedra. However, there are appliations [2, 24, 47℄ where the ability ofenoding and propagating strit inequalities might be ruial for the usefulnessof the �nal results.The �rst proposal for a systemati implementation of strit inequalities in asoftware library based on the double desription method was put forward in [47℄:a syntati translation embeds an n-dimensional NNC polyhedron P ∈ Pn intoan (n+ 1)-dimensional losed polyhedron R ∈ CPn+1, by adding a single slakvariable ǫ, satisfying the additional side onstraints 0 ≤ ǫ ≤ 1. Namely, anystrit inequality onstraint 〈a,x〉 > b is translated into the non-strit inequalityonstraint 〈a,x〉 − ǫ ≥ b. The omputation is thus performed on the losedrepresentation R ∈ CPn+1, with only minor adaptations to the basi algorithmsso as to take into aount the impliit strit onstraint ǫ > 0.While this idea is quite e�etive, the resulting software library no longer en-joys all of the properties of the underlying double desription implementation:NNC polyhedra annot be suitably desribed using generator systems, and thegeometri intuitions are lost under the �implementation details.� These prob-lems motivated the studies in [11℄, where a proper generalization of the doubledesription method to NNC polyhedra was proposed. The main improvementwas the identi�ation of the losure point as a new kind of generator for NNCpolyhedra, leading to the following result generalizing Theorem 7.1:Theorem 7.2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist�nite sets R,P,C ⊆ Rn of ardinality r, p and c suh that 0 /∈ R and
P =

{
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∣
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The new ondition π 6= 0 ensures that at least one of the points of P playsan ative role in any onvex ombination of the vetors of P and C. As aonsequene, the vetors of C are losure points of P, i.e., points that belong tothe topologial losure of P, but may not belong to P itself.Thanks to the introdution of (strit inequalities and) losure points, mostof the pros of the double desription method now also apply to the domainof NNC polyhedra [11℄: simpler, higher-level implementations of operations onNNC polyhedra an be spei�ed, reasoned about and justi�ed in terms of anyone of the two dual desriptions; important implementation issues (suh as theneed to identify and remove all kinds of redundanies in the desriptions) anbe provided with proper solutions; di�erent lower-level enodings (e.g., an alter-native management of the slak variable) an be investigated and experimentedwith, without a�eting the user of the software library. It would be interesting,from both a theoretial and pratial point of view, to provide a more diretenoding of NNC polyhedra, i.e., one that is not based on the use of slak vari-ables; this requires the spei�ation and the orresponding proof of orretnessof a diret NNC onversion algorithm, potentially ahieving a major e�ienyimprovement.8. ConlusionIn the �eld of automati analysis and veri�ation of software and hardwaresystems, approximate reasoning on numerial quantities is ruial. As �rstreognized in 1978 [31℄, polyhedral omputation algorithms an be used for theautomati inferene of numerial assertions that orretly (though usually notompletely) haraterize the behavior of a system at some level of abstration.Until the end of the 1990's these tehniques were not in widespread use,mainly due to the unavailability of robust and e�ient implementations of on-vex polyhedra. As far as we know, the �rst published libraries of polyhedralalgorithms suitable for analysis and veri�ation purposes have been Polylib, re-leased in 1995, written by Wilde at IRISA [79℄ and based on earlier work byLe Verge [59℄, and the polyhedra library of POLINE (POLyhedra INtegratedEnvironment) written by Halbwahs and Proy at Verimag and also released in1995. Both libraries used mahine integers to represent the oe�ients of linearequalities and inequalities, something that ould easily result into (undeteted)over�ows. While Polylib provided only a fration of the funtionalities o�eredby POLINE's library (whih o�ered, among other things, support for NNC poly-hedra), it was available in soure format. The POLINE's library, instead, wasdistributed only in binary form for the Sun-4 platform (freely, until about theyear 1996; under rather restritive onditions afterward). POLINE inludedalso a system alled POLKA (POLyhedra desK Alulator) and an analyzerfor linear hybrid automata. A variation of a subset of POLINE's library wasinorporated into the HyTeh tool [51℄.The work of Wilde and Le Verge, whih was extended by Loehner [60℄, ledto the reation of PolyLib. The New Polka library by Jeannet, �rst releasedin 2000 and originally based on both IRISA's Polylib and POLINE's library,30



inorporates the idea �suggested by Fukuda and Prodon [40℄� of lexiograph-ially sorting the matries representing onstraints and generators. New Polka,whih supports both losed and NNC polyhedra, together with Miné's OtagonAbstrat Domain Library [62℄ and an interval library alled ITV, is now in-luded in the APRON library. Finally, the Parma Polyhedra Library (PPL),initially inspired by New Polka and �rst released in 2001, is developed and main-tained by the authors of this paper. The PPL supports both losed and NNCpolyhedra, bounding boxes, bounded di�erene and otagonal shapes, grids andombinations of the above inluding the �nite powerset onstrution [14℄.The above libraries have all been designed spei�ally for appliations ofanalysis and veri�ation suh as those desribed in this paper. However, twolibraries that were designed for solving vertex enumeration/onvex hull problemshave suessfully been used in stati analysis and omputer-aided veri�ationtools: Fukuda's ddlib, an implementation of the double desription method[63℄; and lrslib, the implementation by Avis of the reverse searh algorithm [4℄.All the libraries mentioned in the last two paragraphs are distributed un-der free software lienses and support the use of unbounded numeri oe�ients.This, together with the ever inreasing available omputing power and the grow-ing interest in ensuring the orretness of ritial systems, has aused, in the2000's, the ontinuous emergene of new tools and appliations of polyhedralomputations in the area of formal methods. As a onsequene, this is muhmore of a new beginning than an end to researh in this area. As explained inSetions 6 and 7, several open issues remain. Most of them have to do with theneed for e�etively managing the omplexity-preision trade-o�: the enourag-ing results obtained with today's tools are pushing us to apply them to moreomplex systems for a possibly more preise analysis and/or veri�ation of moreomplex properties.Aknowledgments We thank Goran Frehse for the disussion we had onpolyhedra simpli�ations and for the PostSript ode for Figure 7().Referenes[1℄ G. Alefeld, J. Herzberger, Introdution to Interval Computation, AademiPress, New York, 1983.[2℄ R. Alur, C. Couroubetis, T. A. Henzinger, P.-H. Ho, Hybrid automata: Analgorithmi approah to the spei�ation and veri�ation of hybrid systems,in: Hybrid Systems I, vol. 736 of Leture Notes in Computer Siene, 1993.[3℄ C. Anourt, Génération automatique de odes de transfert pour multipro-esseurs à mémoires loales, Ph.D. thesis, Université de Paris VI, Paris,Frane (Mar. 1991).[4℄ D. Avis, lrs: A revised implementation of the reverse searh vertex enumer-ation algorithm, in: G. Kalai, G. M. Ziegler (eds.), Polytopes � Combi-natoris and Computation, vol. 29 of Oberwolfah Seminars, Birkhäuser-Verlag, 2000, pp. 177�198. 31
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