
Appli
ations of Polyhedral Computationsto the Analysis and Veri�
ationof Hardware and Software Systems✩

Roberto Bagnaraa, Patri
ia M. Hillb, Enea Za�anellaaaDepartment of Mathemati
s, University of Parma, ItalybS
hool of Computing, University of Leeds, UK
Abstra
tConvex polyhedra are the basis for several abstra
tions used in stati
 analy-sis and
omputer-aided veri�
ation of
omplex and sometimes mission
riti
alsystems. For su
h appli
ations, the identi�
ation of an appropriate
omplexity-pre
ision trade-o� is a parti
ularly a
ute problem, so that the availability of awide spe
trum of alternative solutions is mandatory. We survey the range ofappli
ations of polyhedral
omputations in this area; give an overview of thedi�erent
lasses of polyhedra that may be adopted; outline the main polyhe-dral operations required by automati
 analyzers and veri�ers; and look at somepossible
ombinations of polyhedra with other numeri
al abstra
tions that havethe potential to improve the pre
ision of the analysis. Areas where furthertheoreti
al investigations
an result in important
ontributions are highlighted.Key words: Stati
 analysis,
omputer-aided veri�
ation, abstra
tinterpretation.
1. Introdu
tionThe appli
ation of polyhedral
omputations to the analysis and veri�
ationof
omputer programs has its origin in a groundbreaking paper by Cousot andHalbwa
hs [31℄. There, the authors applied the theory of abstra
t interpretation[28, 29℄ to the stati
 determination of linear equality and inequality relationsamong program variables. In essen
e, the idea
onsists in interpreting a pro-gram (as will be explained in more detail in Se
tions 2.1 and 3) on a domain of
onvex polyhedra instead of the
on
rete domain of (sets of ve
tors of) ma
hinenumbers. Ea
h program operation is
orre
tly approximated by a
orresponding

✩This work has been partly supported by PRIN proje
t �AIDA: Abstra
t InterpretationDesign and Appli
ations.�Email addresses: bagnara�
s.unipr.it (Roberto Bagnara), hill�
omp.leeds.a
.uk(Patri
ia M. Hill), zaffanella�
s.unipr.it (Enea Za�anella)
Preprint submitted to Elsevier January 10, 2010

operation on polyhedra and measures are taken to ensure that the approximate
omputation always terminates. At the end of this pro
ess, the obtained poly-hedra en
ode provably
orre
t linear invariants of the analyzed program (i.e.,linear equalities and inequalities that are guaranteed to hold for ea
h programexe
ution and for ea
h program input).As we show in this paper, relational information
on
erning the data obje
tsmanipulated by programs or other devi
es is
ru
ial for a broad range of appli-
ations in the �eld of automati
 or semi-automati
 program manipulation: it
an be used to prove the absen
e of
ertain kinds of errors; it
an verify that
ertain pro
esses always terminate or stabilize; it
an pinpoint the position oferrors in the system; and it
an enable the appli
ation of optimizations. Despitethis, due to the la
k of e�
ient, robust and publi
ly available implementationsof
onvex polyhedra and of the required operations, the line of work begun byCousot and Halbwa
hs did not see mu
h development until the beginning ofthe 1990s. Sin
e then, this approa
h has been in
reasingly adopted and today
onvex polyhedra are the basis for several abstra
tions used in stati
 analy-sis and
omputer-aided veri�
ation of
omplex and sometimes mission
riti
alsystems. For su
h appli
ations, the identi�
ation of an appropriate
omplexity-pre
ision trade-o� is a parti
ularly a
ute problem: on the one hand, relationalinformation provided by general polyhedra is extremely valuable; on the otherhand, its high
omputational
ost makes it a fairly s
ar
e resour
e that must bemanaged with
are. This implies, among other things, that general polyhedramust be
ombined with simpler polyhedra in order to a
hieve s
alability. Asthe
omplexity-pre
ision trade-o� varies
onsiderably between di�erent appli
a-tions, the availability of a wide spe
trum of alternative solutions is mandatory.In this paper, we survey the range of appli
ations of polyhedral
omputationsin the area of the analysis and veri�
ation of hardware and software systems: wedes
ribe in detail one important �and histori
ally, �rst� appli
ation of poly-hedral
omputations in the �eld of formal methods, the linear invariant analysisfor imperative programs; we provide an a

ount of linear hybrid systems that isbased dire
tly on polyhedra; and we explain with an example how polyhedralapproximations
an be applied to analog systems. The paper also provides anoverview of the main polyhedral operations required by these appli
ations, briefdes
riptions of some of the di�erent
lasses of polyhedra that may be adopted,depending on the parti
ular
ontext, and a look at some possible
ombinations ofpolyhedra with other numeri
al abstra
tions that have the potential to improvethe pre
ision of the analysis. Areas where further theoreti
al investigations
anresult in important
ontributions are highlighted. Some bibliographi
 referen
esand a few examples have been omitted from this paper for spa
e reasons; theinterested reader
an �nd them in the te
hni
al report version [13℄.The plan of the paper is as follows. Se
tion 2 introdu
es the required notionsand notations. Se
tion 3 demonstrates the use of polyhedral
omputations inthe spe
i�
ation of a linear invariant analysis for a simple imperative language.Se
tion 4 is devoted to polyhedral approximation te
hniques for hybrid systems,whi
h, as shown in Se
tion 5
an also be applied to purely analog systems.Se
tion 6 presents several families of polyhedral approximations. The most2

important operations that su
h approximations must provide are illustrated inSe
tion 7. Se
tion 8
on
ludes.2. PreliminariesWe assume some basi
 knowledge about latti
e theory [20℄. Let (S,⊑) and
(T,�) be two partially ordered sets; the fun
tion f : S → T is monotoni
 if,for all x0, x1 ∈ S, x0 ⊑ x1 implies f(x0) � f(x1). If (S,⊑) ≡ (T,�), sothat f : S → S, an element x ∈ S su
h that x = f(x) is a �xpoint of f .If (S,⊑,⊥,⊤,⊔,⊓) is a
omplete latti
e, then f is
ontinuous if it preservesthe least upper bound of all in
reasing
hains, i.e., for all x0 ⊑ x1 ⊑ · · · in
S, it satis�es f(

⊔

xi

)

=
⊔

f(xi); in su
h a
ase, the least �xpoint of f withrespe
t to the partial order `⊑', denoted lfp f ,
an be obtained by iterating theappli
ation of f starting from the bottom element ⊥, thereby
omputing theupward iteration sequen
e ⊥ = f0(⊥) ⊑ f1(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ f i(⊥) ⊑ · · ·,up to the �rst non-zero limit ordinal ω; namely, lfp f = fω(⊥)
def
=

⊔

i<ω f
i(⊥).For ea
h f0 : S0 → T0 and f1 : S1 → T1, the fun
tion f0[f1] : (S0 ∪ S1) →

(T0 ∪ T1) is de�ned, for ea
h x ∈ S0 ∪ S1, so that f0[f1](x) = f1(x), if x ∈ S1,and f0[f1](x) = f0(x), otherwise.For n > 0, we denote by v = (v0, . . . , vn−1) ∈ Rn an n-tuple (ve
tor) of realnumbers; R+ is the set of non-negative real numbers; 〈v,w〉 denotes the s
alarprodu
t of ve
tors v,w ∈ R
n; the ve
tor 0 ∈ R

n has all
omponents equal tozero. We write v ::w to denote the tuple
on
atenation of v ∈ Rn and w ∈ Rm,so that v ::w ∈ Rn+m.Let x be an n-tuple of distin
t variables. Then β =
(

〈a,x〉 ⊲⊳ b
) denotes alinear inequality
onstraint, for ea
h ve
tor a ∈ R

n, where a 6= 0, ea
h s
alar
b ∈ R, and ⊲⊳ ∈ {≥, >}. A linear inequality
onstraint β de�nes a (topologi
ally
losed or open) a�ne half-spa
e of Rn, denoted by con

(

{β}
).A set P ⊆ Rn is a (
onvex) polyhedron if and only if P
an be expressedas the interse
tion of a �nite number of a�ne half-spa
es of R

n, i.e., as thesolution P = con(C) of a �nite set of linear inequality
onstraints C (
alled a
onstraint system). The set of all polyhedra on the ve
tor spa
e Rn is denotedas Pn. When partially ordered by set-in
lusion,
onvex polyhedra form a lat-ti
e (Pn,⊆, ∅,R
n,⊎,∩) having the empty set and R

n as the bottom and topelements, respe
tively; the binary meet operation, returning the greatest poly-hedron smaller than or equal to the two arguments, is easily seen to
orrespondto set-interse
tion; the binary join operation, returning the least polyhedrongreater than or equal to the two arguments, is denoted `⊎' and
alled
onvexpolyhedral hull (poly-hull, for short). In general, the poly-hull of two polyhedrais di�erent from their
onvex hull [76℄.A relation ψ ⊆ Rn × Rn (of dimension n) is said to be a�ne if there exists
ℓ ∈ N and ai, ci ∈ R

n, bi ∈ R and ⊲⊳i ∈ {≥, >}, for ea
h i = 1, . . . , ℓ, su
h that
∀v,w ∈ R

n : (v,w) ∈ ψ ⇐⇒
ℓ

∧

i=1

(

〈ci,w〉 ⊲⊳i 〈ai,v〉 + bi
)

.

3

Any a�ne relation of dimension n
an thus be en
oded by ℓ linear inequalities ona 2n-tuple of distin
t variables x ::x′ (playing the role of v and w, respe
tively),therefore de�ning a polyhedron in P2n. The set of polyhedra Pn is
losed underthe (dire
t or inverse) appli
ation of a�ne relations: i.e., for ea
h P ∈ Pn andea
h a�ne relation ψ ⊆ Rn ×Rn, the image ψ(P) and the preimage ψ−1(P) arein Pn.2.1. Abstra
t InterpretationThe semanti
s of a hardware or software system is a mathemati
al des
rip-tion of all its possible run-time behaviors. Di�erent semanti
s
an be de�nedfor the same system, depending on the details being re
orded. Abstra
t inter-pretation [28, 29℄ is a formal method for relating these semanti
s a

ording totheir level of abstra
tion, so that questions about the behavior of a system
anbe provided with sound, possibly approximate answers.The
on
rete semanti
s c ∈ C of a program is usually formalized as theleast �xpoint of a
ontinuous semanti
 fun
tion F : C → C, where the
on
retedomain (C,⊑,⊥,⊤,⊔,⊓) is a
omplete latti
e of semanti
 properties; in manyinteresting
ases, the
omputational order `⊑'
orresponds to the approximationrelation, so that c1 ⊑ c2 holds if c1 is a stronger property than c2 (i.e., c2
orre
tly approximates c1).For instan
e, the run-time behavior of a program may be de�ned in termsof a transition system 〈Σ, t, ι〉, where Σ is a set of states, ι ⊆ Σ is the subset ofinitial states, and t ∈ ℘(Σ × Σ) is a binary transition relation mapping a stateto its possible su

essor states. Letting Σ⋆ denote the set of all �nite sequen
esof elements in Σ, the initial history of a forward
omputation
an be re
ordedas a partial exe
ution tra
e τ = σ0 · · ·σm ∈ Σ⋆ starting from an initial state
σ0 ∈ ι and su
h that any two
onse
utive states σi and σi+1 are related bythe transition relation, i.e., (σi, σi+1) ∈ t. In su
h a
ontext, an element of the
on
rete domain (

℘(Σ⋆),⊆, ∅,Σ⋆,∪,∩
) is a set of partial exe
ution tra
es andthe
on
rete semanti
s is lfp(F), where the semanti
 fun
tion is de�ned by

F = λX ∈ ℘(Σ⋆) . X ∪ { τ ∈ Σ⋆ | τ = σ0 ∈ ι }

∪
{

τσi+1 ∈ Σ⋆
∣

∣ τ = σ0 · · ·σi ∈ X, (σi, σi+1) ∈ t
}

.An abstra
t domain1 (D♯,⊑,⊥,⊔)
an be often modeled as a bounded join-semilatti
e, so that it has a bottom element ⊥ and the least upper bound d♯
1⊔d

♯
2exists for all d♯

1, d
♯
2 ∈ D♯. This domain is related to the
on
rete domain by amonotoni
 and inje
tive
on
retization fun
tion γ : D♯ → C. Monotoni
ity andinje
tivity mean that the abstra
t partial order is equivalent to the approxima-tion relation indu
ed on D♯ by the
on
retization fun
tion γ. Conversely, the
on
rete domain is related to the abstra
t one by a partial abstra
tion fun
tion

α : C ֌ D♯ su
h that, for ea
h c ∈ C, if α(c) is de�ned then c ⊑ γ
(

α(c)
). In

1To avoid notational burden, we will freely overload the latti
e-theoreti
 symbols `⊑', `⊥',`⊔', et
., exploiting
ontext to disambiguate their meaning.4

parti
ular, we assume that α(⊥) = ⊥ is always de�ned; when needed or useful,we will require a few additional properties.For example, a �rst abstra
tion of the semanti
s above, typi
ally adopted forthe inferen
e of invarian
e properties of programs [28, 29℄, approximates a set oftra
es by the set of states o

urring in any one of the tra
es. The rea
hable statesare thus
hara
terized by elements of the
omplete latti
e (

℘(Σ),⊆, ∅,Σ,∪,∩
),whi
h plays here the role of the abstra
t domain. The
on
retization fun
-tion relating D♯ = ℘(Σ) to C = ℘(Σ⋆) is de�ned, for ea
h d♯ ∈ ℘(Σ), by

γ(d♯)
def
= { τ ∈ Σ⋆ | τ = σ0 · · ·σm, ∀i = 0, . . . ,m : σi ∈ d♯ }. The
on
rete seman-ti
 fun
tion F : ℘(Σ⋆) → ℘(Σ⋆)
an thus be approximated by the monotoni
abstra
t semanti
 fun
tion A : ℘(Σ) → ℘(Σ) de�ned by

A = λd♯ ∈ ℘(Σ) . d♯ ∪ ι ∪
{

σ′ ∈ Σ
∣

∣ ∃σ ∈ d♯ . (σ, σ′) ∈ t
}

.This abstra
t semanti
 fun
tion is sound with respe
t to the
on
rete semanti
fun
tion in that it satis�es the lo
al
orre
tness requirement
∀c ∈ C : ∀d♯ ∈ D♯ : c ⊑ γ(d♯) =⇒ F(c) ⊑ γ

(

A(d♯)
)

,ensuring that ea
h iteration F i(⊥) in the
on
rete �xpoint
omputation is ap-proximated by
omputing the
orresponding abstra
t iteration Ai
(

α(⊥)
). Inparti
ular, the least �xpoint of F is approximated by any post-�xpoint of A[29℄, i.e., any abstra
t element d♯ ∈ D♯ su
h that A(d♯) ⊑ d♯.A
tually, the abstra
tion de�ned above satis�es an even stronger property,in that the abstra
t semanti
 fun
tion A is the most pre
ise of all the soundapproximations of F that
ould be de�ned on the
onsidered abstra
t domain.This happens be
ause the two domains are related by a Galois
onne
tion [28℄,i.e., there exists a total abstra
tion fun
tion α : C → D♯ satisfying

∀c ∈ C : ∀d♯ ∈ D♯ : α(c) ⊑ d♯ ⇐⇒ c ⊑ γ(d♯).Namely, α(c)
def
=

{

σi ∈ Σ
∣

∣ τ = σ0 · · ·σm ∈ c, i ∈ {0, . . . ,m}
}.For Galois
onne
tions it
an be shown that α(c) is the best possible ap-proximation in D♯ for the
on
rete element c ∈ C; similarly, α ◦ F ◦ γ (i.e.,the fun
tion A de�ned above) is the best possible approximation for F [28℄.Su
h a result is provided with a quite intuitive reading; in order to approxi-mate the
on
rete fun
tion F on an abstra
t element d♯ ∈ D♯: we �rst applythe
on
retization fun
tion γ so as to obtain the meaning of d♯; then we applythe
on
rete fun
tion F ; �nally, we abstra
t the result so as to obtain ba
k anelement of D♯.Abstra
t interpretation theory
an thus be used to spe
ify (semi-) automati
program analysis tools that are
orre
t by design. Of
ourse �due to well-known unde
idability results� any fully automati
 tool
an only provide partial,though safe answers.2.2. Abstra
t Domains for Numeri
 and Boolean ValuesThe rea
hable state abstra
tion des
ribed above is just one of the possi-ble semanti
 approximations that
an be adopted when spe
ifying an abstra
t5

semanti
s. A further, typi
al approximation
on
erns the des
ription of thestates of the transition system. Ea
h state σ ∈ Σ may be de
omposed into, e.g.,a set of numeri
al or Boolean variables that are of interest for the appli
ationat hand; new abstra
t domains
an be de�ned (and
omposed [28℄) so as tosoundly des
ribe the possible values of these variables.As an expository example, assume that part of a state is
hara
terized bythe value of an integer variable. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
)
anbe abstra
ted to the
on
rete domain of integers (

℘(Int),⊆, ∅, Int,∪,∩
). Thisdomain is further approximated by an abstra
t domain (

Int♯,⊑,⊥,⊔
), via the
on
retization fun
tion γI : Int♯ → ℘(Int). Elements of Int♯ are denoted by

m♯, possibly subs
ripted. We assume that the partial abstra
tion fun
tion
αI : ℘(Int) ֌ Int♯ is de�ned on all singletons {m} ∈ ℘(Int) and on the wholeset Int. We also assume that there are abstra
t binary operations `�', `�' and`�' on Int♯ that are sound with respe
t to the
orresponding operations on
℘(Int) whi
h, in turn, are the obvious pointwise extensions of addition, sub-tra
tion and multipli
ation over the integers. More formally, for `�' we require
γI(m

♯
0 �m♯

1) ⊇
{

m0 +m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

} for ea
h m♯
0,m

♯
1 ∈ Int♯,i.e., soundness with respe
t to addition. Similar requirements are imposed on`�' and `�'. Even though the de�nition of Int♯ is
ompletely general, familiesof integer intervals
ome naturally to mind for this role.Suppose now that some other part of the state is
hara
terized by the value ofa Boolean expression. Then, the domain (

℘(Σ),⊆, ∅,Σ,∪,∩
)
an be abstra
tedto the �nite domain (

℘(Bool),⊆, ∅,Bool,∪,∩
), where Bool = {ff, tt} is the setof Boolean values. In general, su
h a �nite domain may be further approximatedby an abstra
t domain (Bool♯,⊑,⊥,⊤,⊔,⊓), related to the
on
rete domain bya Galois
onne
tion. Elements of Bool♯ are denoted by t♯, possibly subs
ripted,and we
an de�ne abstra
t operations `�', `6' and `7' on Bool♯ that are soundwith respe
t to the pointwise extensions of Boolean negation, disjun
tion and
onjun
tion over ℘(Bool). For instan
e, for the operation `6' to be sound withrespe
t to disjun
tion on ℘(Bool), it is required that

γB(t♯0 6 t♯1) ⊇
{

t0 ∨ t1
∣

∣ t0 ∈ γB(t♯0), t1 ∈ γB(t♯1)
}

for ea
h t♯0 and t♯1 in Bool♯. Likewise for `7'. For `�' the
orre
tness require-ment is that, for ea
h t♯ in Bool♯, γB(� t♯) ⊇
{

¬t
∣

∣ t ∈ γB(t♯)
}. Abstra
t
omparison operations �,4 : Int♯ × Int♯ → Bool♯
an then be de�ned to
or-re
tly approximate the equal-to and less-than tests: for ea
h m♯

0,m
♯
1 ∈ Int♯,

γB(m♯
0 � m♯

1) ⊇
{

m0 = m1

∣

∣ m0 ∈ γI(m
♯
0),m1 ∈ γI(m

♯
1)

}; likewise for `4'.Simple abstra
t domains su
h as the ones above
an be
ombined in di�erentways so as to obtain quite a

urate approximations [28℄. In some
ases, however,the required pre
ision level may only be obtained by a suitable initial
hoi
e ofthe abstra
t domain. As a notable example, suppose that some part of the state
σ ∈ Σ is
hara
terized by n (integer or real valued) numeri
 variables and theappli
ation at hand needs some relational information about these variables. Insu
h a
ontext, an approximation based on a simple
onjun
tive
ombination of

6

n
opies of the domain Int♯ des
ribed above will be almost useless. Rather, anew approximation s
heme
an be devised by modeling states using the domain
(

℘(Rn),⊆, ∅,Rn,∪,∩
), where ea
h ve
tor v ∈ R

n is meant to des
ribe a possiblevaluation for the n variables. A further abstra
tion should map this domain soas to retain some of the relations holding between the values of the n variables.If a �nite set of linear inequalities provides a good enough approximation, thenthe natural
hoi
e is to abstra
t this domain into the abstra
t domain of
onvexpolyhedra (Pn,⊆, ∅,R
n,⊎,∩) [31℄. In this
ase, the
on
rete and abstra
t do-mains are not related by a Galois
onne
tion and, hen
e, a best approximationmight not exist.2 Nonetheless, the
onvex polyhedral hull (partial) abstra
tionfun
tion ⊎ : ℘(Rn)֌ Pn is de�ned in most of the
ases of interest and providesthe best possible approximation. Most of the arithmeti
 operations seen before
an be en
oded (or approximated) by
omputing images of a�ne relations.2.3. Widening OperatorsIt should be stressed that, in general, the abstra
t semanti
s just des
ribedis not �nitely
omputable. For instan
e, both the domain of
onvex polyhedraand the domain of integer intervals have in�nite as
ending
hains, so that thelimit of a
onverging �xpoint
omputation
annot generally be rea
hed in a�nite number of iterations.A �nite
omputation
an be enfor
ed by further approximations resultingin a Noetherian abstra
t domain, i.e., a domain where all as
ending
hainsare �nite. Alternatively, and more generally, it is possible to keep an abstra
tdomain with in�nite
hains, while enfor
ing that these
hains are traversed in a�nite number of iteration steps. In both
ases, termination is usually a
hieved tothe detriment of pre
ision, so that an appropriate trade-o� should be pursued.Widening operators [27, 29℄ provide a simple and general
hara
terization forthe se
ond option.De�nition2.1. The partial operator ∇ : D♯ ×D♯

֌ D♯ is a widening if:1. for all d♯, e♯ ∈ D♯, d♯ ⊑ e♯ implies that d♯ ∇ e♯ is de�ned and e♯ ⊑ d♯ ∇ e♯;2. for all in
reasing
hains e♯
0 ⊑ e♯

1 ⊑ · · · , the in
reasing
hain de�ned by
d♯
0

def
= e♯

0 and d♯
i+1

def
= d♯

i ∇ (d♯
i ⊔ e

♯
i+1), for i ∈ N, is not stri
tly in
reasing.It
an be proved that, for any monotoni
 operator A : D♯ → D♯, the upwarditeration sequen
e with widenings starting at the bottom element d♯

0
def
= ⊥ andde�ned by

d♯
i+1

def
=

{

d♯
i , if A(d♯

i) ⊑ d♯
i ,

d♯
i ∇

(

d♯
i ⊔ A(d♯

i)
)

, otherwise,
onverges to a post-�xpoint of A after a �nite number of iterations. Clearly,the
hoi
e of the widening has a deep impa
t on the pre
ision of the results2This happens, for instan
e, when approximating an n-dimensional ball with a
onvexpolyhedron. 7

m ∈ Int
def
= Z t ∈ Bool

def
= {tt,ff} x ∈ Var

def
= {x0, x1, x2, . . .}

Aexp ∋ a ::= m | x | a0 + a1 | a0 − a1 | a0 ∗ a1

Bexp ∋ b ::= t | a0 = a1 | a0 < a1

Stmt ∋ s ::= skip | x := a | s0; s1 | if b then s0 else s1 | while bdo sFigure 1: Abstra
t syntax of the simple imperative language
obtained. Designing a widening whi
h is appropriate for a given appli
ation istherefore a di�
ult (but possibly rewarding) a
tivity.3. Analysis and Veri�
ation of Computer ProgramsIn this se
tion we begin a review of the appli
ations of polyhedral
omputa-tions to analysis and veri�
ation problems starting with the the work of Cousotand Halbwa
hs [31℄. This seminal paper on the automati
 inferen
e of linearinvariants for imperative programs
onstituted a major leap forward for at leasttwo reasons. First, the polyhedral domain proposed by Cousot and Halbwa
hswas
onsiderably more powerful than all the data-�ow analyses known at thattime, in
luding the rather sophisti
ated one by Karr whi
h was limited to linearequalities [55℄. Se
ondly, the use of
onvex polyhedra as an abstra
t domainestablished abstra
t interpretation as the right methodology for the de�nitionof
omplex and
orre
t program analyzers.We illustrate the basi
 ideas by partially spe
ifying the analysis of linearinvariants for a very simple imperative language. The simpli
ity of the languagewe have
hosen for expository purposes should not mislead the reader: theapproa
h is generalizable to any imperative (and, for that matter, fun
tionaland logi
) language [9℄. The abstra
t syntax of the language is presented inFigure 1. The basi
 synta
ti

ategories,
orresponding to the sets Int, Bool and
Var, are de�ned dire
tly. From these, the
ategories of arithmeti
 and Booleanexpressions and of statements are de�ned by means of BNF rules. Noti
e theuse of synta
ti
 meta-variables: for instan
e, to save typing we will
onsistentlydenote by s, possibly subs
ripted or supers
ripted, any element of Stmt.The
on
rete semanti
s of programs is formally de�ned using the naturalsemanti
s approa
h [54℄. This, in turn, is a �big-step� operational semanti
sde�ned by stru
tural indu
tion on program stru
tures in the style of Plotkin[66℄. First we de�ne the notion of store, whi
h is any mapping between a �niteset of variables and elements of Int. Formally, a store is an element of theset Store

def
= {σ : V → Int | V ⊆ Var, V �nite } and denoted by the letter σ,possibly subs
ripted or supers
ripted. The store obtained from σ ∈ Store bythe assignment of m ∈ Int to x ∈ dom(σ), denoted by σ[m/x], is de�ned sothat, for ea
h x′ ∈ dom(σ), σ[m/x](x′) = m, if x′ = x, and σ[m/x](x′) = σ(x′),otherwise.

8

〈m,σ〉
a
→ m 〈x, σ〉

a
→ σ(x)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 + a1, σ〉
a
→ m0 +m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 − a1, σ〉
a
→ m0 −m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 ∗ a1, σ〉
a
→ m0 ·m1

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 = a1, σ〉
b
→ (m0 = m1)

〈a0, σ〉
a
→ m0 〈a1, σ〉

a
→ m1

〈a0 < a1, σ〉
b
→ (m0 < m1)

〈skip, σ〉 s
→ σ

〈a, σ〉
a
→ m

〈x := a, σ〉
s
→ σ[m/x]

〈s0, σ〉
s
→ σ′′ 〈s1, σ

′′〉
s
→ σ′

〈s0; s1, σ〉
s
→ σ′

〈b, σ〉
b
→ tt 〈s0, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff 〈s1, σ〉

s
→ σ′

〈if b then s0 else s1, σ〉 s
→ σ′

〈b, σ〉
b
→ ff

〈while bdo c, σ〉 s
→ σ

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′′ 〈while bdo c, σ′′〉

s
→ σ′

〈while bdo c, σ〉 s
→ σ′

Figure 2: Con
rete semanti
s rule s
hemata for the �nite
omputations of the simple imper-ative language
The
on
rete evaluation relations that
omplete the de�nition of the
on
retesemanti
s for our simple language are de�ned by stru
tural indu
tion from aset of rule s
hemata. The evaluation relations for terminating
omputations are

a
→ ⊆ (Aexp×Store)×Int, for arithmeti
 expressions, b

→ ⊆ (Bexp×Store)×Bool,for Boolean expressions, and s
→ ⊆ (Stmt × Store) × Store, for statements. Thejudgment 〈a, σ〉

a
→ m means that when expression a is exe
uted in store σit results in the integer m. The judgment 〈b, σ〉

b
→ t is similar. Note thatexpressions do not have, in our simple language, side e�e
ts. The judgment

〈s, σ〉
s
→ σ′ means that the statement s, exe
uted in store σ, results in a (possiblymodi�ed) store σ′. The rule s
hemata, in the form premise
on
lusion , that de�ne theserelations are given in Figure 2. Rule instan
es
an be
omposed in the obviousway to form �nite tree stru
tures, representing �nite
omputations.The possibly in�nite set of all �nite trees is obtained by means of a least�xpoint
omputation,
orresponding to the
lassi
al indu
tive interpretation ofthe rules in Figure 2. The rule s
hemata in Figure 3
an be used to dire
tlymodel non-terminating
omputations and need to be interpreted
oindu
tively[30℄. The judgment 〈s, σ〉

∞
→ means that the statement s diverges when exe-
uted in store σ. By a suitable adaptation of the
omputational ordering, bothsets of �nite and in�nite trees
an be jointly
omputed in a single least �xpoint

9

〈s0, σ〉
∞
→

〈s0; s1, σ〉
∞
→

〈s0, σ〉
s
→ σ′ 〈s1, σ

′〉
∞
→

〈s0; s1, σ〉
∞
→

〈b, σ〉
b
→ tt 〈s0, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ ff 〈s1, σ〉

∞
→

〈if b then s0 else s1, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

∞
→

〈while bdo c, σ〉 ∞
→

〈b, σ〉
b
→ tt 〈c, σ〉

s
→ σ′ 〈while bdo c, σ′〉

∞
→

〈while bdo c, σ〉 ∞
→Figure 3: Additional
on
rete semanti
s rule s
hemata for the in�nite
omputations of thesimple imperative language
omputation [30℄. While these semanti
s
hara
terizations
ontain all the infor-mation we need to perform a wide range of program reasoning tasks, they aregenerally not
omputable: we have thus to resort to approximation.Following the abstra
t interpretation approa
h, as instantiated in [70℄, the
on
rete rule s
hemata are paired with abstra
t rule s
hemata that
orre
tlyapproximate them. Before doing that, we need to formalize abstra
t domainsfor ea
h
on
rete domain used by the
on
rete semanti
s.For simple approximations of integers and Boolean expressions, we
onsiderthe abstra
t domains Int♯ and Bool♯ introdu
ed in Se
tion 2.2. The last (andmost interesting) abstra
tion we need is one that approximates sets of stores.We thus require an abstra
t domain (

Store♯,⊑,⊥,⊔
) that is related, by meansof a
on
retization fun
tion γS su
h that γS(⊥) = ∅, to the
on
rete domain

(

℘(Store),⊆, ∅, Store,∪,∩
). Elements of Store♯ are denoted by σ♯, possiblysubs
ripted. The abstra
t store evaluation and update operators
·[·] : (Store♯ × Aexp) → Int♯,

·[· := ·] :
(

Store♯ × Var × Aexp
)

→ Store♯,

·[·/·] :
(

Store♯ × Var × Int♯
)

→ Store♯are assumed to be sound with respe
t to their
on
rete
ounterparts, i.e., su
hthat, for ea
h σ♯ ∈ Store♯, a ∈ Aexp, x ∈ Var and m♯ ∈ Int♯:
γI

(

σ♯[a]
)

⊇
{

m ∈ Int
∣

∣ σ ∈ γS(σ♯), 〈a, σ〉
a
→ m

}

,

γS

(

σ♯
[

x := a]
)

⊇
{

σ′ ∈ Store
∣

∣ σ ∈ γS(σ♯), 〈x := a, σ〉
s
→ σ′

}

,

γS

(

σ♯
[

m♯/x]
)

⊇
{

σ[m/x] ∈ Store
∣

∣ σ ∈ γS(σ♯),m ∈ γI(m
♯)

}

.We also need
omputable �Boolean �lters� to re�ne the information
ontainedin abstra
t stores, i.e., two fun
tions φtt, φff : Store♯ ×Bexp → Store♯ su
h that,for ea
h t ∈ Bool, σ♯ ∈ Store♯ and b ∈ Bexp:
γS

(

φt(σ
♯, b)

)

⊇
{

σ ∈ γS(σ♯)
∣

∣ 〈b, σ〉
b
→ t

}

.10

We are now in a position to present, in Figure 4, a possible set of domain-independent abstra
t rule s
hemata. These s
hemata allow for the free approx-imation of the ` ' right-hand sides in the
on
lusions. This means that if, e.g.,premise
〈s,σ〉

s
 σ

♯
1

is an instan
e of some rule, then premise
〈s,σ〉

s
 σ

♯
2

is also an instan
e of thesame rule for ea
h σ♯
2 su
h that σ♯

1 ⊑ σ♯
2. Hen
e the s
hemata in Figure 4 ensure
orre
tness yet leaving
omplete freedom about pre
ision. The ability to giveup some pre
ision, as we will see, is
ru
ial in order to ensure the (reasonablyqui
k) termination of the analysis.It is possible to prove that, for ea
h (possibly in�nite)
on
rete tree T builtusing the s
hemata of Figures 2 and 3, for ea
h (possibly in�nite) abstra
t tree

T ♯ built using the s
hemata of Figure 4, if the
on
rete tree root is of the form
〈s, σ〉

s
→ σ1 (when the tree is �nite) or 〈s, σ〉

∞
→ (when the tree is in�nite)and the abstra
t tree root is of the form 〈s, σ♯〉
s
 σ♯

1 with σ ∈ γS(σ♯), then T ♯
orre
tly approximates T . This means not only that σ1 ∈ γS(σ♯
1) (when T is�nite), but also that ea
h node in T is
orre
tly approximated by at least onenode in T ♯. In other words, the abstra
t tree
orre
tly approximates the entire
on
rete
omputation (see [9℄ for the details).It is worth stressing the observation by S
hmidt that, even when disregardingthe non-terminating
on
rete
omputations, the abstra
t rules still have to beinterpreted
oindu
tively be
ause most of the �nite
on
rete trees
an only beapproximated by in�nite abstra
t trees; for instan
e, all abstra
t trees
ontain-ing a while loop are in�nite. Sin
e, in general, we
annot e�e
tively
omputein�nite abstra
t trees, we still do not have a viable analysis te
hnique. Thesolution is to restri
t ourselves to the
lass of rational trees, i.e., trees with only�nitely many subtrees and that,
onsequently, admit a �nite representation.The analysis algorithm is sket
hed in [70℄. For expository purposes, wedes
ribe here a simpli�ed version that, however, is enough to handle the
on-sidered programming language features. The algorithm works by re
ursively
onstru
ting a �nite approximation for the (possibly in�nite) abstra
t subtreerooted in the
urrent node (initially, the root of the whole tree). The
urrentnode n =

(

〈p, σ♯
n〉 rn

), where rn is a pla
eholder for the �yet to be
omputed�
on
lusion, is pro
essed a

ording to the following alternatives:1. If no an
estor of n has p in the label, the node has to be expanded usingan appli
able abstra
t rule instan
e. Namely, des
endants of the premisesof the rule are (re
ursively) pro
essed, one at a time and from left to right.When the expansion of all the premises has been
ompleted, in
luding the
ase when the rule has no premise at all, the marker rn is repla
ed by anabstra
t value
omputed a

ording to the
on
lusion of the rule.2. If there exists an an
estor node m = 〈p, σ♯
m〉 rm of n labeled by the samesyntax p and su
h that σ♯

n ⊑ σ♯
m, i.e., if node n is subsumed by node m,then the node is not expanded further and the pla
eholder rn is repla
ed bythe least �xpoint of the equation rn = fm(rn), where fm is the expression
orresponding to the
on
lusion of the abstra
t rule that was used for the
11

〈m,σ♯〉
a
 αI

(

{m}
)

〈x, σ♯〉
a
 σ♯[x]

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 + a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 − a1, σ
♯〉

a
 m♯

0 �m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 ∗ a1, σ
♯〉

a
 m♯

0 �m♯
1

〈t, σ♯〉
b
 αB

(

{t}
)

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 = a1, σ
♯〉

b
 m♯

0 � m♯
1

〈a0, σ
♯〉

a
 m♯

0 〈a1, σ
♯〉

a
 m♯

1

〈a0 < a1, σ
♯〉

b
 m♯

0 4 m♯
1

〈skip, σ♯〉
s
 σ♯

〈a, σ♯〉
a
 m♯ (i)

〈x := a, σ♯〉
s
 σ♯[x := a]

〈a, σ♯〉
a
 m♯ (ii)

〈x := a, σ♯〉
s
 σ♯[m♯/x]

〈s0, σ
♯
0〉

s
 σ♯

1 〈s1, σ
♯
1〉

s
 σ♯

2

〈s0; s1, σ
♯
0〉

s
 σ♯

2

〈b, σ♯〉
b
 t♯

〈

s0, φtt(σ
♯, b)

〉 s
 σ♯

0

〈

s1, φff(σ♯, b)
〉 s
 σ♯

1

〈if b then s0 else s1, σ♯〉
s
 σ♯

0 ⊔ σ
♯
1

〈b, σ♯〉
b
 t♯

〈

c, φtt(σ
♯, b)

〉 s
 σ♯

1 〈while bdo c, σ♯
1〉

s
 σ♯

2

〈while bdo c, σ♯〉
s
 φff(σ♯, b) ⊔ σ♯

2Notes:(i) This rule is used if the domain Store
♯
an
apture the assignment pre
isely(e.g., when Store

♯ is a domain of
onvex polyhedra and a is an a�neexpression). Noti
e that the premise is intentionally not used: its presen
eis required in order to ensure that the abstra
t tree approximates the
on
rete tree in its entirety.(ii) This rule is used when (i) is not appli
able.Figure 4: Abstra
t semanti
s rule s
hemata for the simple imperative language

12

expansion of node m.33. Otherwise, there must be an an
estor node m = 〈p, σ♯
m〉 rm of n labeledby the same syntax p, but the subsumption
ondition σ♯

n ⊑ σ♯
m does nothold. Then there are two options:(a) if the abstra
t domain Store♯ is �nite, we pro
eed as in
ase (1);(b) if the abstra
t domain Store♯ is in�nite, to ensure
onvergen
e, a widen-ing `∇' over Store♯
an be employed and store σ♯

n in node n is repla
edby σ♯
m ∇ (σ♯

m ⊔ σ♯
n). Then, we pro
eed again as in
ase (1).The abstra
t semanti
s of Figure 4 and the given algorithm for
omputing arational abstra
t tree are fully generi
 in that any
hoi
e for the abstra
t domains

Int♯, Bool♯ and Store♯ will result into a provably
orre
t analysis algorithm.Fo
using on numeri
al domains, the role of Int♯
an be played by any domainof intervals, so that the operations `�', `�' and `�' are the standard ones ofinterval arithmeti
 [1℄; for instan
e, [ml
0,m

u
0]� [ml

1,m
u
1]

def
= [ml

0 +ml
1,m

u
0 +mu

1].More sophisti
ated domains, su
h as modulo intervals [64℄, are able to en
odemore pre
ise information about the set of integer values ea
h variable
an take.For Store♯, a
ommon
hoi
e is to abstra
t from the integrality of variables and
onsider a domain of
onvex polyhedra whi
h, in ex
hange, allows the tra
kingof relational information. With referen
e to Figure 4, rule (i)
an be applieddire
tly when the arithmeti
 expression a = 〈a,x〉+b is a�ne; the
orrespondingpolyhedral operation is the
omputation of the image of a polyhedron by aspe
ial
ase of a�ne relation ψ ⊆ Rn ×Rn,
alled single-update a�ne fun
tion:
(v,w) ∈ ψ ⇐⇒ wk = 〈a,v〉 + b ∧

∧

0≤i<n
i 6=k

wi = vi.

Another spe
ial
ase, slightly more general than the one above and
alled single-update bounded a�ne relation, allows among other things to approximate non-linear assignments and to realize rule (ii). For �xed ve
tors a, c ∈ R
n and s
alars

b, d ∈ R:
(v,w) ∈ ψ ⇐⇒ 〈a,v〉 + b ≤ wk ≤ 〈c,v〉 + d ∧

∧

0≤i<n
i 6=k

wi = vi.

Both the rules for the if-then-else and the while
onstru
ts require the Boolean�lters and least upper bound operations: these are realized by means of inter-se
tions (or the addition of individual
onstraints) and poly-hulls, respe
tively.These, together with the
ontainment test used to dete
t the rea
hing of post-�xpoints and the widening (see Se
tion 7) used to ensure termination of theanalysis algorithm, are all the operations required for the analysis of our sim-ple imperative language. More
omplex languages require other operations: for3As explained in [70℄, the
omputation of su
h a least �xpoint (in the
ontext of a
oin-du
tive interpretation of the abstra
t rules) is justi�ed by the fa
t that here we only need toapproximate the
on
lusions produ
ed by the terminating
on
rete
omputations.13

instan
e, the analysis of languages with
ommand blo
ks needs to have thepossibility of embedding polyhedra into a spa
e of higher dimension, reorga-nizing the dimensions, and proje
ting polyhedra on spa
es of lower dimension.Other operations are needed to a

ommodate di�erent semanti

onstru
tions(e.g., a�ne preimages for ba
kward semanti
s), to allow for the e�
ient mod-eling of data obje
ts (e.g., summarized dimensions to approximate the valuesof unbounded
olle
tions [41℄), and to help s
alability (e.g., simpli�
ations ofpolyhedra [38℄).Based on suitable variations of the simple linear invariant analysis outlined inthis se
tion (possibly
ombined with other analyses), many di�erent appli
ationshave been proposed in the literature. Examples in
lude the absen
e of
ommonrun-time arithmeti
 errors, su
h as �oating-point ex
eptions, over�ows and di-visions by zero [21℄; the absen
e of out-of-bounds array indexing [31, 78℄, as wellas other bu�er overruns
aused by in
orre
t string manipulations [35, 37℄; theanalysis of programs manipulating (possibly unbounded) heap-allo
ated datastru
tures, so as to prove the absen
e of several kinds of pointer errors (e.g.,memory leaks) [41, 72℄; the
omputation of input/output argument size rela-tions in logi
 programs [18℄; the dete
tion of potential se
urity vulnerabilities inx86 binaries that allow to bypass intrusion dete
tion systems [57℄; the inferen
eof temporal s
hedulability
onstraints that a partially spe
i�ed set of real-timetasks has to satisfy [34℄. All of the above are examples of safety properties,whereby a
omputer program is proved to be free from some undesired behav-ior. However, the
omputation of invariant linear relations is also an important,often indispensable step when aiming at proving progress properties, su
h as ter-mination [26, 61, 74℄. It should be also stressed that the same approa
h, aftersome minor adaptations,
an be applied to the analysis of alternative
omputa-tion paradigms su
h as, e.g., gated data dependen
e graphs [53℄ (an intermediaterepresentation for
ompilers) and bat
h work�ow networks [77℄ (a form of Petrinet used in work�ow management).4. Analysis and Veri�
ation of Hybrid SystemsHybrid systems (that is, dynami
al systems with both
ontinuous and dis-
rete
omponents) are
ommonly modeled by hybrid automata [2, 38, 49℄.These, often highly
omplex, systems are usually nonlinear (making them
om-putationally intra
table as they are). However, linear approximations, whi
h al-low the use of polyhedral
omputations for the model
he
king operations, havebeen used su

essfully for the veri�
ation of useful safety properties [36, 38, 75℄.De�nition4.1. (Linear hybrid automaton.) A linear hybrid automaton(of dimension n) is a tuple (Loc, Init,Act, Inv,Lab,Trans) where the �rst
om-ponent Loc is a �nite set of lo
ations. The three fun
tions Init : Loc → Pn,
Act: Loc → Pn and Inv : Loc → Pn de�ne polyhedra. In parti
ular, for ea
h lo-
ation ℓ ∈ Loc: Init(ℓ) spe
i�es the set of possible initial values the n variables
an take if the automaton starts at ℓ; Act(ℓ) spe
i�es the possible derivativevalues of the n variables, so that, if the automaton rea
hes ℓ with values given14

by the ve
tor v, then after staying there for a delay of t ∈ R+, the values willbe given by a ve
tor v + tw, where w ∈ Act(ℓ); Inv(ℓ) spe
i�es the valuesthat an n-ve
tor v may have at ℓ. The �fth and sixth
omponents provide aset of syn
hronization labels Lab and a labeled set of a�ne transition relations
Trans ⊆ Loc× Lab× P2n × Loc, required to hold when moving from the sour
elo
ation (the �rst argument) to the target lo
ation (the fourth argument).Observe that the only di�eren
es between this de�nition of a linear hybrid au-tomaton and those in, for example [47, 49℄, are presentational; in parti
ular, aswe have used polyhedra to represent the linear
onstraints, there is no need toprovide, as is the
ase in these other de�nitions, an expli
it
omponent of thesystem
onsisting of the set of n variables.The syn
hronization labels Lab are required for spe
ifying large systems.Ea
h part of the system is spe
i�ed by a separate automaton, and then parallel
omposition is employed to
ombine the
omponents into an automaton for the
omplete system. This ensures that
ommuni
ation between the automata o
-
urs, via sele
ted input/output variables, between transitions that have the samelabel. Example 4.3 provides a very simple illustration of parallel
omposition;formal de�nitions are available in [2, 49℄.A linear hybrid automaton
an be represented by a dire
ted graph whosenodes are the lo
ations and edges are the transitions from the sour
e to thetarget lo
ations. Ea
h node ℓ is labeled by two sets of
onstraints de�ning thepolyhedra Inv(ℓ) and Act(ℓ). To distinguish these
onstraints, if, for example
x is a variable used for the
onstraints de�ning Inv(ℓ), ẋ will be used in the
onstraints de�ning Act(ℓ).4 In the examples, the initial polyhedron Init(ℓ) isassumed to be empty unless there is an arrow to ℓ (with no sour
e node) labeledby the
onstraint system de�ning Init(ℓ). Ea
h edge τ =

(

ℓ, a,P, ℓ′) ∈ Trans,is labeled by a
onstraint system C de�ning P and, optionally, by a whi
h isonly in
luded where it is used for the parallel
omposition of automata. Sin
e
P ∈ P2n, we spe
ify C by using two n-tuples of variables x and x

′, whi
hare interpreted as usual to denote the variables in the sour
e ℓ and target ℓ′lo
ations, respe
tively. We also adopt some helpful shorthand notation: x++and x−− denote x′ = x + 1 and x′ = x − 1, respe
tively; also,
onstraints ofthe form x′ = x are omitted. The following examples, taken (with some minormodi�
ations) from [2, 47℄, illustrate the automata.Example4.2. A graphi
al view of a water-level monitor automaton is givenin Figure 5. This models a system des
ribing how the water level in a tankis
ontrolled by a monitor that senses the water level w and operates a pump.When the pump is o�, w falls by 2
m per se
ond; when the pump is on, w risesby 1
m per se
ond. However, there is a delay of 2 se
onds from the momentthe monitor signals the pump to
hange from on to o� or vi
e versa before theswit
h is a
tually operated. Initially the automaton is at ℓ0 with w = 1 and4The dot notation re�e
ts the fa
t that these variables denote the derivatives of the statevariables. 15

it is required that 1 ≤ w ≤ 12 at all times. Thus the monitor must signal thepump to turn on when w = 5 and signal it to turn o� when w = 10.The automaton illustrated in Figure 5 has 2 dimensions with variables wand x, where x denotes the time (in se
onds) sin
e the previous, most re
ent,signal from the monitor. There are four lo
ations ℓi where i = 0, 1, 2, 3. At
ℓ0 and ℓ1 the pump is on, while at ℓ2 and ℓ3 the pump is o�. At ℓ1 and ℓ3 themonitor has signaled a
hange to the pump swit
h, but this has not yet beenoperated. Thus we have:

Init(ℓ0) = con
(

{w = 1}
)

, Init(ℓ1) = Init(ℓ2) = Init(ℓ3) = ∅,

Inv(ℓ0) = con
(

{w < 10}
)

, Inv(ℓ1) = Inv(ℓ3) = con
(

{x < 2}
)

,

Inv(ℓ2) = con
(

{w > 5}
)

, Act(ℓ0) = Act(ℓ1) = con
(

{ẋ = ẇ = 1}
)

,

Act(ℓ2) = Act(ℓ3) = con
(

{ẋ = 1, ẇ = −2}
)

.There are four transitions τij = (ℓi, ai,Pi, ℓj) ∈ Trans, where i ∈ {0, 1, 2, 3} and
j = i+ 1 (mod 4); the a�ne relations are

P0 = con
(

{w = w′ = 10, x′ = 0}
)

, P1 = con
(

{x = x′ = 2, w′ = w}
)

,

P2 = con
(

{w = w′ = 5, x′ = 0}
)

, P3 = P1.Example4.3. A representation of an automaton for a simple task s
heduler isgiven in Figure 6. This models a s
heduler with two
lasses of tasks A1 and A2,a
tivated by interrupts I1 and I2. Interrupt I1 (resp., I2) o

urs at most on
eevery 10 (resp., 20) se
onds and a
tivates a task in
lass A1 (resp., A2), whi
htakes 4 (resp., 8) se
onds to
omplete. Tasks in A2 have priority and preempttasks in A1. It is required that tasks in A2 never wait.The S
heduler automaton given in Figure 6 is the parallel
omposition oftwo
omponent automata: Interrupt whi
h models the assumptions about theinterrupt frequen
ies; and Task, whi
h models the exe
ution of the tasks. TheInterrupt automaton, whi
h has a single lo
ation `Intpt', has variables c1 and
c2; ci (i = 1, 2) measures the time elapsed sin
e interrupt Ii o

urred. The Taskautomaton has three lo
ations: `Idle' when no tasks are running; and `Task1'and `Task2' when tasks in
lasses A1 (resp., A2) are a
tive. It has, for ea
h
i = 1, 2, variables xi, whi
h measures the exe
ution time of task i, and ki,whi
h
ounts the number of pending tasks in
lass task i.The
ombined S
heduler automaton has variables x1, x2, k1, k2, c1 and c2and lo
ations whi
h are elements of the Cartesian produ
t of the sets of lo
a-tions for Interrupt and Task. As Interrupt has just one lo
ation, ea
h Tasklo
ation ℓ is used to denote the
orresponding S
heduler lo
ation; here, the ini-tial Init(ℓ), derivative Act(ℓ) and invariant Inv(ℓ) polyhedra for the S
hedulerare the
on
atenation of the
orresponding
omponent polyhedra for the Taskand Interrupt automata (informally, a
on
atenation of polyhedra P ∈ Pm and
Q ∈ Pn
an be obtained by �rst embedding P into a ve
tor spa
e of dimen-sion n + m and then add a suitably renamed-apart version of the
onstraintsde�ning Q). Ea
h transition (ℓ, a,P, ℓ′) in the Task automaton not triggered

16

w = 1

ℓ0

w < 10

ẋ = 1

ẇ = 1

w = 10, x′ = 0signal pump o�
ℓ1

x < 2

ẋ = 1

ẇ = 1

swit
h o� x = 2

ℓ2

w > 5

ẋ = 1

ẇ = −2

w = 5, x′ = 0signal pump on
ℓ3

x < 2

ẋ = 1

ẇ = −2

x = 2 swit
h on

Figure 5: Water-level monitor
Interrupt

c1 ≥ 0, c2 ≥ 0 Intpttrue

ċ1 = 1

ċ2 = 1

I1; c1 ≥ 10, c′1 = 0 I2; c2 ≥ 20, c′2 = 0

Task
x1 = x2 = k1 = k2 = 0 Idletrue

ẋ1 = 0

ẋ2 = 1x1 = 4, k1 ≤ 1,

k1−−, x′

1 = 0

I1; k′

1 = 1

x2 = 8, k2 ≤ 1, k1 = 0,

k2−−, x′

2 = 0

I2; k′

2 = 1

Task1
x1 ≤ 4

ẋ1 = 1

ẋ2 = 0 Task2
x2 ≤ 8

ẋ1 = 0

ẋ2 = 1

I2; k′

2 = 1

x2 = 8, k2 ≤ 1, k1 ≥ 1,

k2−−, x′

2 = 0

I1; k1++

x1 = 4, k1 ≥ 2, k1−−, x′

1 = 0

I2; k2++

I1; k1++

x2 = 8, k2 ≥ 1, k2−−, x′

2 = 0

Figure 6: S
heduler
17

by interrupts I1 and I2 has a transition (ℓ, a,Q, ℓ′) in the produ
t automatonwhere Q ∈ P6 is obtained by embedding P into a ve
tor spa
e of dimension
6. Letting i = 1, 2, for transitions (ℓ, Ii,P, ℓ

′) and (Intpt, Ii,P
′, Intpt) in theTask and Interrupt automata, respe
tively, there is a transition (ℓ, Ii,Q, ℓ

′) inthe produ
t automaton where Q ∈ P6 is obtained by
on
atenating P and P ′.Given a linear hybrid automaton, the aim of an analyzer is to
he
k, or even�nd su�
ient
onditions that ensure, that a valid run of the system
annot rea
ha lo
ation and ve
tor of values that violate some requirement of the system.For instan
e, in Example 4.2, we need to show that the water level always liesbetween 1
m and 12
m; in Example 4.3, we need to show that no task in A2will ever wait. To show how polyhedral
omputations
an be used to prove su
hproperties, we �rst de�ne more formally su
h a run and how rea
hable sets maybe
omputed. Note that these de�nitions follow, with only minor
hanges, theapproa
h in [47℄.Letting H = (Loc, Init,Act, Inv,Lab,Trans) be a linear hybrid automatonin n dimensions, a state s of H
onsists of a pair (ℓ,v), where ℓ ∈ Loc and
v ∈ Inv(ℓ). Given states s = (ℓ,v) and s′ = (ℓ′,v′), a time delay t ∈ R+ anda ve
tor w ∈ Act(ℓ), s →t

w
s′ is a step of H provided that, for all t′ ∈ [0, t),

v + t′w ∈ Inv(ℓ) and, for some (ℓ, a,P, ℓ′) ∈ Trans, (v + tw) ::v′ ∈ P. A runof H is a sequen
e (�nite or in�nite) of steps s0 →t0
w0

s1 →t1
w1

s2 · · ·, where theinitial state s0 = (ℓ0,v0) satis�es the
ondition v0 ∈ Init(ℓ0). An in�nite rundiverges if the sum ∑

i≥0 ti diverges. For ea
h divergent run where, for i ≥ 0,
si = (ℓi,vi), we asso
iate a (state) behavior β whi
h is a total fun
tion fromtime to states: that is, β(0) = s0 and, for ea
h t > 0, β(t)

def
= (ℓi,v), where

i = min
{

k ∈ N
∣

∣

∑k
j=0 tj > t

} and v = vi + wi

(

t −
∑

j<i tj
). A state s isrea
hable if there exists a divergent run with behavior β and time t ∈ R+ su
hthat β(t) = s. The set of all rea
hable values Rℓ for a lo
ation ℓ is de�ned as:

Rℓ
def
=

{

v ∈ R
n

∣

∣ ∃t ∈ R+ . β(t) = (ℓ,v)
}

.The set of rea
hable values Rℓ at a lo
ation ℓ
an be
hara
terized by a systemof �xpoint equations that are de�ned in terms of sets of rea
hable values Rℓ′at lo
ations ℓ′ where (

ℓ′, a,P, ℓ
)

∈ Trans. These equations use the followingoperations on sets of ve
tors in R
n. Let P,Q ∈ P2n and S ⊆ R

n. Then
ψP(S)

def
= {v

′ ∈ R
n | v ∈ S,v ::v′ ∈ P };

S ր Q
def
= {v + tw ∈ R

n | v ∈ S,w ∈ Q, t ∈ R+ }.Note that, if S ∈ Pn, then also ψP(S) ∈ Pn and S ր Q ∈ Pn. The `ր' operator,
alled the time elapse operator, was �rst proposed in [47℄. We
an now providethe �xpoint equation for Rℓ:
Rℓ =

(

(

Init(ℓ) ∪
⋃

(ℓ′,a,P,ℓ)∈Trans

ψP(Rℓ′) ∩ Inv(ℓ)
)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.1)
18

Informally, the �xpoint equation for Rℓ says that the rea
hable values at thelo
ation ℓ are obtained by letting the time elapse either from an initial value for
ℓ or from a value obtained from an in
oming transition. However, the �xpointEquation (4.1)
annot handle stri
t
onstraints
orre
tly and needs modifying;this is illustrated in the following example.Example4.4. Consider again Example 4.2. Then, just applying Equation (4.1)(as proposed in [47℄), the sets of rea
hable values at lo
ations ℓ1, ℓ2, ℓ3 are empty.The reason for this is that, for example, at lo
ation ℓ0, the stri
t
onstraint
w < 10 must hold, while in the transition from ℓ0 to ℓ1, the transition
ondition
w = 10 has to hold. On the other hand, it follows from the de�nition of a step,that sin
e one of the derivative
onstraints at ℓ0 is ẇ = 1; the water level wmay
ontinue to in
rease up to the topologi
al
losure of Rℓ0 whi
h is
onsistentwith w = 10.To resolve this problem, in Equation (4.1) de�ning the
on
rete
omputation,
Rℓ′ needs to be repla
ed by c(Rℓ′) ∩

(

Rℓ′ ր Act(ℓ′)
), where c(R′

ℓ) denotes thetopologi
al
losure of R′
ℓ ⊆ Rn.Observe that, although the linear hybrid automata are spe
i�ed by means ofpolyhedra, the rea
hable set Rℓ for a linear hybrid automaton and lo
ation ℓmaynot be a
onvex polyhedron sin
e Equation (4.1) uses the set union operation.Therefore, to verify that some states of an automaton are unrea
hable usingstandard polyhedral
omputations, set union has to be repla
ed by the poly-hull operation ⊎ des
ribed in Se
tion 2. Thus the following �xpoint equation
omputes an approximation R♯

ℓ to the rea
hability set Rℓ.
R♯

ℓ =

(

(

Init(ℓ) ⊎
⊎

(ℓ′,a,P,ℓ)∈Trans

ψP(R♯
ℓ′) ∩ Inv(ℓ)

)

ր Act(ℓ)

)

∩ Inv(ℓ). (4.2)
As for the
on
rete �xpoint equation, to
orre
tly handle the stri
t
onstraintsin Equation (4.2) we need to repla
e R♯

ℓ′ with c(R♯
ℓ′) ∩

(

R♯
ℓ′ ր Act(ℓ′)

).If we let R
♯ denote the tuple {R♯

ℓ | ℓ ∈ Loc } we
an write Equation (4.2)as R♯
ℓ = Fℓ(R

♯). For all ℓ ∈ Loc, we write R
♯(0)
ℓ = ∅ and, for all k ≥ 1,

R
♯(k+1)
ℓ = Fℓ(R

♯(k)
ℓ). Then R

♯
an be
omputed iteratively provided the se-quen
e R
♯(0),R♯(1), . . . does not diverge. To handle diverging sequen
es, weapply a widening (see Se
tion 7.2); note that this only needs to be applied atsu�
ient lo
ations so that ea
h
y
li
 path in the graph of the hybrid automatonhas at least one widening point.Example4.5. Consider again Example 4.2. As there is a single loop passingthrough ℓ0, it is su�
ient to de�ne the set of widening lo
ations as {ℓ0}.With the modi�ed form of Equation (4.2) and the polyhedra widening of [31℄,the
omputation requires three iterations resulting in polyhedra de�ned by
on-straint systems Ci for 0 ≤ i ≤ 3 where:

C0 = {1 ≤ w < 10}, C1 = {w − x = 10, 10 ≤ w < 12},

C2 = {w + 2x = 16, 5 < w ≤ 12}, C3 = {w + 2x = 5, 1 < w ≤ 5}.

19

Example4.6. Consider again Example 4.3. By applying the above mentionedpolyhedra widening at lo
ation `Task2' only, the analysis for the produ
t au-tomaton terminates in four iterations. After proje
ting onto variables k1 and
k2, the rea
hable values are given by polyhedra de�ned by
onstraint systems
Ct0, Ct1, and Ct2 for lo
ations `Idle', `Task1' and `Task2', respe
tively, where:

Ct0 = {k1 = k2 = 0}, Ct1 = {k2 = 0, k1 = 1}, Ct2 = {k2 = 1}.Therefore, sin
e at all lo
ations k2 ≤ 1, no task in
lass A2 will ever have towait. However, as noted in [47℄, be
ause of the
onvex hull approximation, withthe polyhedral domain the analyzer fails to show that k1 ≤ 2. We thereforeredid the analysis using a domain of powersets of polyhedra (see Se
tion 6.2)and, after taking the poly-hull of the �nal sets and proje
ting onto variables k1and k2, we obtained the polyhedra de�ned by
onstraint systems C′
t0, C′

t1 and
C′

t2 for lo
ations `Idle', `Task1' and `Task2', respe
tively, where:
C′

t0 = {k1 = k2 = 0}, C′
t1 = {k2 = 0, k1 = 1}, C′

t2 = {k1 ≤ 2, k2 = 1}.Hybrid systems with a�ne or nonlinear dynami
s do not �t the above spe
-i�
ation of a linear system so that the veri�
ation te
hniques des
ribed here arenot dire
tly appli
able. Nonetheless, by partitioning the
ontinuous state spa
eand over-approximating the dynami
s in ea
h of the partitions, the same te
h-niques used to verify linear hybrid automata
an be used in these more general
ases [36, 38, 51℄. Su
h an approa
h has also been su

essfully applied in theveri�
ation of analog
ir
uits, as dis
ussed in the following se
tion.5. Analysis and Veri�
ation of Analog SystemsThe idea of applying formal methods, that originated in the digital world,to analog systems was put forward in [48℄. This is an important step forwardwith respe
t to more traditional methods for the validation of analog
ir
uitdesigns. A formal veri�
ation tool
an, for example, ensure that a design satis�es
ertain properties for entire sets of initial states and
ontinuous ranges of
ir
uitparameters, something that
annot be done with simulation.To illustrate the approa
h, we des
ribe a simple example of veri�
ation of anos
illator
ir
uit, taken from [39℄. To verify properties of the (
y
li
) behaviorof su
h
ir
uits,
y
li
 invariants have to be determined. To establish a
y
li
invariant for a given set of initial states and ranges for the
ir
uit parameters,one has to show that the
ir
uit returns to a subset of those initial states, whi
himplies the system will keep traversing the same states inde�nitely.Consider the tunnel-diode os
illator s
hematized in Figure 7(a). The stateof the system at a given instant of time is
ompletely
hara
terized by the valuesof the indu
tor
urrent IL and the diode voltage drop Vd. With these as thestate variables, the system is des
ribed by the se
ond-order state equations
V̇d = 1/C

(

−Id(Vd) + IL
)

, (5.1)
İL = 1/L(−Vd −RIL + Vin). (5.2)

20

Vin

R LIL

Id
Vd C

(a) Cir
uit s
hemati

Id

Vd(b) Tunnel diode
hara
teristi

I L

[m
A

]

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Vd[V]
(Pi
ture

ourtesy
ofGoran
Frehse.)

(
) Rea
hable states (dashed)Figure 7: Tunnel-diode os
illator
ir
uit
In [39℄ it is shown how a
y
li
 invariant
an be obtained for this
ir
uit usingthe PHAVer system. First, a pie
ewise a�ne envelope is
onstru
ted for thetunnel diode
hara
teristi
 Id(Vd) depi
ted in Figure 7(b): for the parti
ularexample analyzed in [39℄, su�
ient pre
ision is obtained by subdividing therange Vd ∈ [−0.1 V, 0.6 V] into 64 intervals, resulting in a pie
ewise a�ne modelof (5.1). Forward rea
hability
omputation with PHAVer
an obtain the set ofstates depi
ted in Figure 7(
). These are the states rea
hable from the set ofinitial states
orresponding to Vd ∈ [0.42 V, 0.52 V] and IL = 0.6 mA (the baseof the downward-fa
ing triangular shape in Figure 7(
)). As the loop shape
onstituted by the rea
hable states is traversed
lo
kwise, it
an be seen thatthe indu
tor
urrent IL returns to the initial value of 0.6 mA with a diode voltagedrop that is well within the initial range [0.42 V, 0.52 V]. The set of rea
hablestates so obtained is thus an invariant of the
ir
uit.In [39℄ it is shown that, due to over-approximation, forward rea
hability
an fail to determine invariants of more
omplex
ir
uits. A new te
hnique
ombining forward and ba
kward rea
hability with iterative re�nement of thepartitions is thus proposed and shown to be more powerful and e�
ient.6. Families of Polyhedral ApproximationsFor several appli
ations of stati
 analysis and veri�
ation, an approximationbased on the domain of
onvex polyhedra
an be regarded as the most appro-priate
hoi
e. In this se
tion we dis
uss alternative options (simpli�
ations,generalizations, and
ombinations with other numeri
al domains) that might be

21

onsidered when trying either to redu
e the
ost of the analysis, or to in
reasethe pre
ision of the
omputed results.6.1. Simpli�
ations of PolyhedraThere are
ontexts where approximations based on general
onvex polyhedra,no matter whi
h implementation is adopted, in
ur an una

eptable
omputa-tional
ost. In su
h
ases, the stati
 analysis may resort to further simpli�
ationsso as to obtain useful results within reasonable time and spa
e bounds.A �rst, almost traditional approa
h is based on the identi�
ation of suitablesynta
ti
 sub
lasses of polyhedra. The abstra
t domain of bounding boxes (orintervals [27℄) is based on polyhedra that
an be represented as �nite
onjun
-tions of
onstraints of the form ±xi ≤ d or ±xi < d, leading to the spe
i�
ationof operations whose worst-
ase
omplexity is linear in the number of spa
e di-mensions. As a more pre
ise alternative, the
lass of potential
onstraints [16℄,also known as bounded di�eren
es [6, 32℄, allows for
onstraints of the form
xi − xj ≤ d or ±xi ≤ d; the abstra
t domain of o
tagons [62℄ also admits
on-straints of the form xi + xj ≤ d. In these last two
ases, the operators are
hara
terized by a worst-
ase time
omplexity whi
h is
ubi
 in the number ofspa
e dimensions. For all of the approximations mentioned above, improvede�
ien
y also follows from the fa
t that the
orresponding
omputations aresimple enough to allow for the adoption of �oating-point data types: in
on-trast, the spe
i�
ation of safe and e�
ient �oating-point operations for generalpolyhedra is an open problem, so that polyhedra libraries have to be based onunbounded pre
ision data types.Several alternative (synta
ti
 and/or semanti
) simpli�
ation s
hemes havebeen put forward in the re
ent literature. The Two Variables per Linear In-equality abstra
t domain is proposed in [73℄, where
onstraints take the synta
ti
form axi + bxj ≤ d. In [69℄, an arbitrary family of polyhedra is
hosen beforestarting the analysis by �xing the slopes of a �nite number of linear inequali-ties, whi
h are
alled the template
onstraints ; linear programming te
hniquesare then used to
ompute pre
ise approximations in the
onsidered
lass ofshapes. In
ontrast, in [68℄, general polyhedra are allowed, but the
orrespond-ing operations (in parti
ular, the poly-hull and the image of a�ne relations) areapproximated by less pre
ise variants so as to ensure a polynomial worst-
ase
omplexity in the size of the inputs. An even more �exible approa
h is pro-posed in [38℄, where arbitrary polyhedra are approximated, when they be
ometoo
omplex, by limiting the number of
onstraints in their des
ription and/orthe magnitude of the
oe�
ients o

urring in the
onstraints. These more dy-nami
 approximation s
hemes are promising, in parti
ular for those appli
ationswhere nothing is known in advan
e about the synta
ti
 form of the
onstraintsthat will be
omputed during the analysis.An important observation to be made is that there is no a
tual need to prefera priori (and therefore
ommit to) a spe
i�
 abstra
t domain: the analysis toolmay be based on several abstra
tions, safely swit
hing from more pre
ise, pos-sibly
ostly domains to more e�
ient, possibly impre
ise ones, and vi
e versa,depending on the
ontext. When repla
ing a generi
 polyhedron by a simpler22

one, the problem of the identi�
ation of a good over-approximation has to besolved. Depending on the
ontext, the approa
hes may vary signi�
antly. At oneextreme, when e�
ien
y is really
riti
al, the adoption of synta
ti
 te
hniquesshould be pursued: for an interesting example, we refer the reader to one ofthe simpli�
ation heuristi
s used in [38℄, where the e�
ient sele
tion of a smallnumber of linear inequalities out of a
onstraint system is driven by a simple,yet e�e
tive reasoning on the measure of the angles formed by the
orrespond-ing half-spa
es. At the other extreme, linear programming (LP) optimizationte
hniques may be used so as to obtain the best mat
h in the
onsidered
lass ofgeometri
 shapes. For instan
e, the pre
ise approximation of a polyhedron by abounding box (resp., a bounded di�eren
e or o
tagon)
an be implemented bya linear (resp., quadrati
) number of optimizations of a
lass of LP problems,where the obje
tive fun
tion varies while the feasible region is invariant andde�ned by the
onstraints of the polyhedron. Note that, if
orre
tness has tobe preserved, it is essential that no rounding error is made on the wrong side,so that
lassi
al �oating-point implementations of LP solvers have to be
on-sidered unsafe, unless the
omputed results
an be
erti�ed by some other tool.Alternatively, it is possible to
onsider LP implementations based on unboundedpre
ision data types.When the number of spa
e dimensions to be modeled is beyond a giventhreshold, the whole analysis spa
e
an be split into a �nite number of smaller,more manageable
omponents, thereby realizing a further simpli�
ation s
hemethat
an be
ombined with those des
ribed above. The splitting strategy varies
onsiderably. In [46℄, Cartesian fa
toring te
hniques are used so as to dynami-
ally partition the spa
e dimensions of a polyhedron into independent subsets;the orthogonal fa
tors are then approximated by lower dimensional polyhedrawith no pre
ision penalty. In an alternative approa
h des
ribed in [21℄, many(possibly overlapping) small subsets of spa
e dimensions,
alled variable pa
ks,are identi�ed before the start of the analysis by means of synta
ti

onditions;the relations holding between the variables in ea
h pa
k are then approximatedby using an o
tagonal abstra
tion. A variation of this is des
ribed in [78℄,where non-overlapping variable pa
ks are dynami
ally
omputed (and possiblymerged) during the analysis, whereas the relations between the variables in apa
k are approximated by means of potential
onstraints. In [78℄ it is also ob-served that, sin
e the average size of variables pa
ks is small (5 variables), morepre
ise approximations based on general polyhedra should be feasible.6.2. Generalizations of PolyhedraThere are appli
ations where the restri
tion to the domain of
onvex polyhe-dra is intrinsi
ally inadequate. This may happen, not only when the veri�
ationproperty of interest is itself non-
onvex, but also when the adopted
omputa-tion strategy requires that a
onvex property is proved by passing through anon-
onvex intermediate approximation. This was the
ase in Example 4.6 ofSe
tion 4, where the upper bound (k1 ≤ 2) on the number of waiting pro
essesfor
lass A1 was obtained by swit
hing from the domain of
onvex polyhedra tothe domain of �nite sets of polyhedra.23

The �nite powerset domain
onstru
tion [7℄ is a spe
ial
ase of disjun
tive
ompletion [28℄, a systemati
 te
hnique to derive an enhan
ed abstra
t domainstarting from an existing one. A �nite powerset domain implements disjun
-tions by maintaining an expli
it (hen
e �nite) and non-redundant
olle
tion ofelements of the base-level domain: non-redundan
y means that a
olle
tion ismade of maximal elements with respe
t to the approximation ordering, so thatno element subsumes another element in the
olle
tion.For a better understanding of the
on
epts, whi
h are des
ribed in
ompletelygeneral terms in [12℄, let us
onsider the appli
ation of the �nite powerset
on-stru
tion to the domain of
onvex polyhedra. This instantiation (whi
h is theone also adopted for the examples developed in [12℄)
an be used to model non-linear systems as des
ribed, e.g., in Se
tion 5. Then, an element of the abstra
tdomain is a �nite set of maximal
onvex polyhedra, so that no polyhedron inthe set is
ontained in another polyhedron in the set. The powerset domainis a latti
e: the bottom and top elements are ∅ and {Rn}, respe
tively; themeet is obtained by removing redundan
ies from the set of all possible binaryinterse
tions of an element in the �rst powerset with an element in the se
ondpowerset; while the binary join is the non-redundant subset of the union ofthe two arguments. Most of the other abstra
t operations needed for a stati
analysis using the �nite powerset domain are easily obtained by �lifting� the
orresponding operations de�ned on the base-level domain, and then reinfor
-ing non-redundan
y. For instan
e, the
omputation of the image of a �nitepowerset under an a�ne relation is obtained by
omputing the image of ea
hpolyhedron in the
olle
tion. However, the
onstru
tion of a provably
orre
twidening operator has only re
ently been addressed in [12℄ (see Se
tion 7.2).The generi
 spe
i�
ation of the abstra
t operators of the �nite powerset domainin terms of abstra
t operations on the (arbitrary) base-level domain allows forthe development of a single implementation whi
h is shared by all the possibleinstan
es of the domain
onstru
tion.An alternative abstra
tion s
heme has been proposed in [15℄ for the
ase of �-nite
onjun
tions of polynomial inequalities. Intuitively, a polynomial
onstraint
an be approximated by means of a linear
onstraint in a higher dimension ve
-tor spa
e, so that the di�erent terms of the polynomial (e.g., x0, x0x1, x2
0) aremapped to di�erent and independent spa
e dimensions; these linear
onstraintsare then used to perform an almost
lassi
al linear relation analysis based on
onvex polyhedra. Due to the linearization step, most of the pre
ision of thepolynomial
onstraints is initially lost; however, some of the relations hold-ing between the di�erent terms of the original polynomial
an be re
overed byadding further
onstraints that are redundant when interpreted in the polyno-mial world, but do
ontribute to pre
ision in the linearized spa
e. In parti
ular,in [15℄ the polynomial
onstraints are mapped into �nitely generated polynomial
ones and a degree-bounded produ
t
losure operator is systemati
ally appliedso as to improve a

ura
y. As a trivial example, let the polynomial terms x0, x1and x0x1 be mapped to the spa
e dimensions y0, y1 and y2, respe
tively. Then,the linearization of the polynomial
onstraints x0 ≥ 0 and x1 ≥ 0 will produ
ea polyhedron that, while satisfying y0 ≥ 0 and y1 ≥ 0, leaves variable y2 totally24

un
onstrained. By applying the produ
t
losure operator we also obtain thelinear
onstraint y2 ≥ 0, thereby re
overing the non-negativity of term x0x1.6.3. Combinations with other Numeri
al Abstra
tionsThere are two basi
 kinds of numeri
al abstra
tions for approximating thevalues of the program variables: outer limits (or bounds within whi
h the val-ues must lie) and the pattern of distribution of these values. The �rst
an beapproximated by (
onstru
tions based on)
onvex polyhedra, while the se
ond
an be approximated by sets of
ongruen
es de�ning latti
es of points we
allgrids [8, 43℄. Before
onsidering how these and similar domains may be
om-bined, we give a brief overview of the domain of grids.Any ve
tor that satis�es 〈a,v〉 = b + µf , for some µ ∈ Z, is said to satisfythe
ongruen
e relation 〈a,v〉 ≡f b. A
ongruen
e system K is a �nite set of
ongruen
e relations in Rn. A grid is the set of all ve
tors in Rn that satisfy the
ongruen
es in K. The domain of grids Gn is the set of all grids in R
n orderedby the set in
lusion relation, so that the empty set and Rn are the bottomand top elements of Gn respe
tively and the interse
tion of two grids is itself agrid. Thus, as for the domain of polyhedra, the domain of grids forms a latti
e

(Gn,⊆, ∅,R
n,⊎,∩) where ⊎ denotes the join operation returning the least gridgreater than or equal to the two arguments. For more details
on
erning allaspe
ts of the domain of grids, see [8℄.The distribution information
aptured by grids has a number of appli
a-tions in its own right: for instan
e, to ensure that external memory a

essesobey the alignment restri
tion imposed by the host ar
hite
ture, and to enableseveral transformations for e�
ient parallel exe
ution as well as optimizationsthat enhan
e
a
he behavior. However, here we are primarily
on
erned withappli
ations that
an bene�t from the
ombination of the domain of grids withthat of
onvex polyhedra. For instan
e, knowing the frequen
y (and position)of the points in a grid, we
an shrink the polyhedra so that the bounding hyper-planes pass through the grid values; if this leads to a polyhedron with redu
eddimension (su
h as a single point) or one that is empty, it
an lead, not onlyto improved pre
ision, but also a more e�
ient use of resour
es by the ana-lyzer [3, 65, 67℄.Generi

onstru
tions, su
h as dire
t and redu
ed produ
t,
an be used toprovide a formal basis for the
ombination of the grid and polyhedral domains[28℄ although the exa
t
hoi
e of produ
t
onstru
tion used to build the grid-polyhedral domain needs further study. Both the dire
t and redu
ed produ
tshave problems: the dire
t produ
t has no provision for
ommuni
ation betweenthe
omponent domains, thereby losing pre
ision; while the redu
ed produ
t,whi
h is the most pre
ise re�nement of the dire
t produ
t, has exponential
omplexity. It is expe
ted that, for grid-polyhedra, the most useful produ
t
onstru
tion will lie between these extremes. For instan
e, as equalities are
ommon entities for both
onstraint and
ongruen
e systems, if an equalityis found to hold in one
omponent, it is safe to just add this to the other
omponent. In addition, in an element of the grid-polyhedral domain, anyhyperplane that bounds the polyhedron
omponent
ould be moved inwards25

until it interse
ts with points of the grid with only linear
ost on the number ofdimensions. Of
ourse, this redu
tion on its own is not optimal sin
e the gridpoints in the interse
tion may not lie in the polyhedron itself. For optimalityor, more generally, so as to gain additional pre
ision, we need to experimentwith various forms of the bran
h-and-bound and
utting-plane algorithms [56℄already well-resear
hed for integer linear programming. What is needed is arange of options for the produ
t
onstru
tion allowing the user to de
ide on the
omplexity/pre
ision trade-o�. Further work on this is needed, in
luding aninvestigation of other proposals for generi
 produ
ts that lie between the dire
tand redu
ed produ
t, su
h as the lo
al de
reasing iteration method [42℄ and theopen produ
t
onstru
tion [25℄.7. Polyhedral Computations Pe
uliar to Analysis and Veri�
ationAs observed in the previous se
tions, the analysis of the run-time behaviorof a system
an be broken down into a set of basi
 operations on the
hosenabstra
t domains. This means that ea
h abstra
t domain should provide ad-equate
omputational support for su
h a set and, where appropriate, furtheroperations that might be useful for tuning the
ost/pre
ision ratio. In this se
-tion, we dis
uss several key issues relevant to the design and implementation ofan abstra
t domain of, or based on,
onvex polyhedra. Before going into furtherdetail, it should be stressed that the parti
ular
ontext of the appli
ation playsa signi�
ant and non-trivial role here. For instan
e, in many
omputational
omplexity studies, it is assumed that a small number of operations (often, justa single one)
an have arbitrarily large operands; also, it is typi
ally requiredthat exa
t results have to be
omputed. These assumptions taken togethermay be inappropriate in the
ontext of stati
 analysis: it is quite often the
ase that a large number of operations will have only small or medium sizedoperands; also, whenever fa
ing an e�
ien
y issue, the exa
tness requirement
an be dropped (provided soundness is maintained). As a
onsequen
e, the eval-uation of alternative algorithmi
 strategies should be largely based on pra
ti
alexperimentation.7.1. The Double Des
ription MethodConvex polyhedra are typi
ally spe
i�ed by a �nite system of linear inequal-ity
onstraints and for this representation there are known algorithms (e.g.,based on Fourier-Motzkin elimination [58, 71℄) for most of the operations al-ready mentioned.An alternative approa
h is based on the double des
ription method due toMotzkin et al. [63℄. This method was originally de�ned on the set of topolog-i
ally
losed
onvex polyhedra, a sub-latti
e (CPn,⊆, ∅,R
n,⊎,∪) of the latti
eof (not ne
essarily
losed, or NNC) polyhedra Pn. In the double des
riptionmethod, a
losed polyhedron may be des
ribed by using a system of non-stri
tlinear inequalities or by using a generator system that re
ords its key geomet-ri
 features. The following is the main theoreti
al result, whi
h is a simple
onsequen
e of well-known theorems by Minkowski and Weyl [76℄.26

Theorem 7.1. The set P ⊆ Rn is a topologi
ally
losed
onvex polyhedron ifand only if there exist �nite sets R,P ⊆ Rn of
ardinality r and p, respe
tively,su
h that 0 /∈ R and P
an be generated from (R,P) as follows:
P = {Rρ+ Pπ ∈ R

n | ρ ∈ R
r
+
, π ∈ R

p
+
,
∑p

i=1 πi = 1 }.Intuitively, a point of a polyhedron P is obtained by adding a
onvex
ombina-tion of the ve
tors in P (the generating points) to a
oni

ombination of theve
tors in R (the generating rays).It turns out that
onstraint and generator des
riptions are duals: ea
h repre-sentation
an be
omputed starting from the other one. Clever implementationsof this
onversion pro
edure, improving on the Chernikova's algorithm [23℄, arethe starting point for the development of software libraries that, while being
hara
terized by a worst
ase
omputational
ost whi
h is exponential in thesize of the input, turn out to be pra
ti
ally useful. A
ommon
hara
teristi
 ofthese implementations is the exploitation of in
rementality, whereby most of the
omputational work done for an operation is reused to e�
iently
ompute smallvariations of the
orresponding result. Further
omputational enhan
ementsare obtained by the adoption of suitable heuristi
s, ranging from the e�
ienthandling of adja
en
y information [59℄, to a
areful
hoi
e of ordering strategiesfor the
omputation of intermediate results [4, 5, 40℄; the overall
onstru
tiontypi
ally relies on a tight integration of the basi
 algorithms with a
arefully
hosen set of data stru
tures [14℄.An important motivation for the adoption of an implementation based on thedouble des
ription method is that the ability to swit
h from a
onstraint des
rip-tion to a generator des
ription, or vi
e versa,
an be usefully exploited to providesimple implementations for the basi
 operations on polyhedra. For instan
e, setinterse
tion is easily implemented by taking the union of the
onstraint systemsrepresenting the two arguments, whereas the poly-hull is implemented by joiningthe generator systems representing the two arguments; and the test for empti-ness
an be implemented by
he
king that the generator system has no points.Moreover, a test for subset in
lusion P ⊆ Q
an be implemented by
he
king ifea
h point and ea
h ray in a generator system des
ribing P satis�es all linearinequalities in a
onstraint system des
ribing Q. As a further example, the timeelapse operation spe
i�ed in Se
tion 4,
an be implemented using the generatorsystems for the argument polyhedra [47℄. That is a generator system for thepolyhedron P ր Q
an be obtained by adopting the same set of generatingpoints as P and by de�ning its set of rays as the union of the set of generatingrays for P with the set of all the generators (both points and rays) for Q.As seen in Se
tion 3, in the
ontext of the analysis of imperative languagesone of the most frequent statements is variable assignment, where the expressionassigned is safely approximated by an a�ne relation ψ ⊆ Rn × Rn. The (dire
tor inverse) image of an a�ne relation
an be naively
omputed by embedding theinput polyhedron P ⊆ R
n into the spa
e R

2n, interse
ting it with the
onstraintsde�ning ψ and �nally proje
ting the result ba
k on Rn. However, due to themoves to/from a higher dimensional spa
e, this approa
h su�ers from signi�
ant
27

overheads. Quite often, the expression assigned is a simple a�ne fun
tion ofthe variables' values and
an thus be exa
tly modeled by
omputing the imageof a single-update a�ne fun
tion. With the double des
ription method, theimages of a�ne fun
tions are mu
h more e�
iently
omputed by applying themdire
tly to the generators of the argument polyhedron. A dual approa
h, usingthe
onstraint des
ription of the polyhedron, allows for the
omputation of thepreimages of a�ne fun
tions, whi
h
an be of interest for a ba
kward semanti

onstru
tion, where the initial values of program variables are approximatedstarting from their �nal values. Similar e�
ien
y arguments motivate the studyof spe
i�
 implementations for single-update bounded a�ne relations and otherspe
ial sub
lasses of a�ne relations.7.2. Widening and NarrowingThe �rst widening operator for the domain of
onvex polyhedra, the so-
alled standard widening proposed in [31℄,
an be informally des
ribed as follows:suppose that in the post-�xpoint iteration sequen
e we
ompute as su

essiveiterates the polyhedra Pi and Pi+1; then, the widening keeps all and only the
onstraints de�ning Pi that are also satis�ed by Pi+1. This simple idea, whi
his basi
ally borrowed from the widening operator de�ned on the domain ofintervals [27℄, is quite e�e
tive in ensuring the termination of the analysis (thenumber of
onstraints de
reases at ea
h iteration); by avoiding the appli
ationof the widening in the �rst few iterations of the analysis and/or by applying the�widening up-to� te
hnique of [45℄, it also provides, in the main, an adequatelevel of pre
ision.Some appli
ation �elds, however, are parti
ularly sensitive to the pre
isionof the dedu
ed numeri
al information, to the point that some authors proposeto give up the termination guarantee and use so-
alled extrapolation operators:examples in
lude the operators de�ned in [50℄ and [52℄, as well as the proposalsin [22℄ and [33℄ for sets of polyhedra and the heuristi
s sket
hed in [19℄.In [10℄ this pre
ision problem is re
onsidered in a more general
ontext anda framework is proposed that is able to improve upon the pre
ision of a givenwidening while keeping the termination guarantee. The approa
h, whi
h buildson theoreti
al results put forward in work on termination analysis,
ombinesan existing widening operator, whose termination guarantee should be formally
erti�able, with an arbitrary number of pre
ision improving heuristi
s. Its feasi-bility was demonstrated by instantiating the framework so as to produ
e a newwidening on polyhedra improving upon the pre
ision of the standard wideningin a signi�
ant per
entage of ben
hmarks.For the more
hallenging
ase of an abstra
t domain obtained by the �nitepowerset domain
onstru
tion, several generi
 s
hemes of widenings have beenproposed in [12℄ that are able to �lift� a widening de�ned on the base-leveldomain without
ompromising its termination guarantee. The instantiation ofsu
h a generi
 approa
h led to the de�nition of the �rst non-trivial and provably
orre
t widenings on a domain of �nite sets of
onvex polyhedra. Being highlyparametri
, the widening s
hemes proposed in [12℄
an be instantiated a

ordingto the needs of the spe
i�
 appli
ation, as done in [44℄. One of the heuristi
28

approa
hes adopted in [12℄ to
ontrol the pre
ision/
omplexity trade-o� of thewidenings, originally proposed in [22℄, attempts at redu
ing the
ardinality of apolyhedral
olle
tion by merging two of its elements whenever their set unionhappens to be a
onvex polyhedron. The implementation of su
h a heuristi

ould signi�
antly bene�t from the results and algorithms presented in [17℄.It is also worth mentioning that, on
e a post-�xpoint approximation hasbeen obtained by means of an upward iteration sequen
e with widening, itspre
ision
an be improved by means of a downward iteration, possibly using anarrowing operator [27, 29℄. To the best of our knowledge, no narrowing hasever been de�ned on the domain of
onvex polyhedra: appli
ations simply stopthe downward
omputation after a small number of iterations.7.3. Not Ne
essarily Closed Convex PolyhedraMost stati
 analysis appli
ations
omputing linear inequality relations be-tween program variables
onsider the domain CPn of topologi
ally
losed polyhe-dra. One of the underlying motivations is that sometimes (e.g., when workingwith integer valued variables only) stri
t inequalities
an be �ltered away bysuitable synta
ti
 manipulations; even when this is not the
ase, the topologi
al
losure approximation may be interpreted as a qui
k and pra
ti
al workaroundto the fa
t that some software libraries do not fully support
omputations onNNC polyhedra. However, there are appli
ations [2, 24, 47℄ where the ability ofen
oding and propagating stri
t inequalities might be
ru
ial for the usefulnessof the �nal results.The �rst proposal for a systemati
 implementation of stri
t inequalities in asoftware library based on the double des
ription method was put forward in [47℄:a synta
ti
 translation embeds an n-dimensional NNC polyhedron P ∈ Pn intoan (n+ 1)-dimensional
losed polyhedron R ∈ CPn+1, by adding a single sla
kvariable ǫ, satisfying the additional side
onstraints 0 ≤ ǫ ≤ 1. Namely, anystri
t inequality
onstraint 〈a,x〉 > b is translated into the non-stri
t inequality
onstraint 〈a,x〉 − ǫ ≥ b. The
omputation is thus performed on the
losedrepresentation R ∈ CPn+1, with only minor adaptations to the basi
 algorithmsso as to take into a

ount the impli
it stri
t
onstraint ǫ > 0.While this idea is quite e�e
tive, the resulting software library no longer en-joys all of the properties of the underlying double des
ription implementation:NNC polyhedra
annot be suitably des
ribed using generator systems, and thegeometri
 intuitions are lost under the �implementation details.� These prob-lems motivated the studies in [11℄, where a proper generalization of the doubledes
ription method to NNC polyhedra was proposed. The main improvementwas the identi�
ation of the
losure point as a new kind of generator for NNCpolyhedra, leading to the following result generalizing Theorem 7.1:Theorem 7.2. The set P ⊆ Rn is an NNC polyhedron if and only if there exist�nite sets R,P,C ⊆ Rn of
ardinality r, p and c su
h that 0 /∈ R and
P =

{

Rρ+ Pπ + Cγ
∣

∣ ρ ∈ R
r
+
, π ∈ R

p
+
\ {0}, γ ∈ R

c
+
,
∑p

i=1πi +
∑c

i=1γi = 1
}

.

29

The new
ondition π 6= 0 ensures that at least one of the points of P playsan a
tive role in any
onvex
ombination of the ve
tors of P and C. As a
onsequen
e, the ve
tors of C are
losure points of P, i.e., points that belong tothe topologi
al
losure of P, but may not belong to P itself.Thanks to the introdu
tion of (stri
t inequalities and)
losure points, mostof the pros of the double des
ription method now also apply to the domainof NNC polyhedra [11℄: simpler, higher-level implementations of operations onNNC polyhedra
an be spe
i�ed, reasoned about and justi�ed in terms of anyone of the two dual des
riptions; important implementation issues (su
h as theneed to identify and remove all kinds of redundan
ies in the des
riptions)
anbe provided with proper solutions; di�erent lower-level en
odings (e.g., an alter-native management of the sla
k variable)
an be investigated and experimentedwith, without a�e
ting the user of the software library. It would be interesting,from both a theoreti
al and pra
ti
al point of view, to provide a more dire
ten
oding of NNC polyhedra, i.e., one that is not based on the use of sla
k vari-ables; this requires the spe
i�
ation and the
orresponding proof of
orre
tnessof a dire
t NNC
onversion algorithm, potentially a
hieving a major e�
ien
yimprovement.8. Con
lusionIn the �eld of automati
 analysis and veri�
ation of software and hardwaresystems, approximate reasoning on numeri
al quantities is
ru
ial. As �rstre
ognized in 1978 [31℄, polyhedral
omputation algorithms
an be used for theautomati
 inferen
e of numeri
al assertions that
orre
tly (though usually not
ompletely)
hara
terize the behavior of a system at some level of abstra
tion.Until the end of the 1990's these te
hniques were not in widespread use,mainly due to the unavailability of robust and e�
ient implementations of
on-vex polyhedra. As far as we know, the �rst published libraries of polyhedralalgorithms suitable for analysis and veri�
ation purposes have been Polylib, re-leased in 1995, written by Wilde at IRISA [79℄ and based on earlier work byLe Verge [59℄, and the polyhedra library of POLINE (POLyhedra INtegratedEnvironment) written by Halbwa
hs and Proy at Verimag and also released in1995. Both libraries used ma
hine integers to represent the
oe�
ients of linearequalities and inequalities, something that
ould easily result into (undete
ted)over�ows. While Polylib provided only a fra
tion of the fun
tionalities o�eredby POLINE's library (whi
h o�ered, among other things, support for NNC poly-hedra), it was available in sour
e format. The POLINE's library, instead, wasdistributed only in binary form for the Sun-4 platform (freely, until about theyear 1996; under rather restri
tive
onditions afterward). POLINE in
ludedalso a system
alled POLKA (POLyhedra desK
Al
ulator) and an analyzerfor linear hybrid automata. A variation of a subset of POLINE's library wasin
orporated into the HyTe
h tool [51℄.The work of Wilde and Le Verge, whi
h was extended by Loe
hner [60℄, ledto the
reation of PolyLib. The New Polka library by Jeannet, �rst releasedin 2000 and originally based on both IRISA's Polylib and POLINE's library,30

in
orporates the idea �suggested by Fukuda and Prodon [40℄� of lexi
ograph-i
ally sorting the matri
es representing
onstraints and generators. New Polka,whi
h supports both
losed and NNC polyhedra, together with Miné's O
tagonAbstra
t Domain Library [62℄ and an interval library
alled ITV, is now in-
luded in the APRON library. Finally, the Parma Polyhedra Library (PPL),initially inspired by New Polka and �rst released in 2001, is developed and main-tained by the authors of this paper. The PPL supports both
losed and NNCpolyhedra, bounding boxes, bounded di�eren
e and o
tagonal shapes, grids and
ombinations of the above in
luding the �nite powerset
onstru
tion [14℄.The above libraries have all been designed spe
i�
ally for appli
ations ofanalysis and veri�
ation su
h as those des
ribed in this paper. However, twolibraries that were designed for solving vertex enumeration/
onvex hull problemshave su

essfully been used in stati
 analysis and
omputer-aided veri�
ationtools: Fukuda's
ddlib, an implementation of the double des
ription method[63℄; and lrslib, the implementation by Avis of the reverse sear
h algorithm [4℄.All the libraries mentioned in the last two paragraphs are distributed un-der free software li
enses and support the use of unbounded numeri

oe�
ients.This, together with the ever in
reasing available
omputing power and the grow-ing interest in ensuring the
orre
tness of
riti
al systems, has
aused, in the2000's, the
ontinuous emergen
e of new tools and appli
ations of polyhedral
omputations in the area of formal methods. As a
onsequen
e, this is mu
hmore of a new beginning than an end to resear
h in this area. As explained inSe
tions 6 and 7, several open issues remain. Most of them have to do with theneed for e�e
tively managing the
omplexity-pre
ision trade-o�: the en
ourag-ing results obtained with today's tools are pushing us to apply them to more
omplex systems for a possibly more pre
ise analysis and/or veri�
ation of more
omplex properties.A
knowledgments We thank Goran Frehse for the dis
ussion we had onpolyhedra simpli�
ations and for the PostS
ript
ode for Figure 7(
).Referen
es[1℄ G. Alefeld, J. Herzberger, Introdu
tion to Interval Computation, A
ademi
Press, New York, 1983.[2℄ R. Alur, C. Cour
oubetis, T. A. Henzinger, P.-H. Ho, Hybrid automata: Analgorithmi
 approa
h to the spe
i�
ation and veri�
ation of hybrid systems,in: Hybrid Systems I, vol. 736 of Le
ture Notes in Computer S
ien
e, 1993.[3℄ C. An
ourt, Génération automatique de
odes de transfert pour multipro-
esseurs à mémoires lo
ales, Ph.D. thesis, Université de Paris VI, Paris,Fran
e (Mar. 1991).[4℄ D. Avis, lrs: A revised implementation of the reverse sear
h vertex enumer-ation algorithm, in: G. Kalai, G. M. Ziegler (eds.), Polytopes � Combi-natori
s and Computation, vol. 29 of Oberwolfa
h Seminars, Birkhäuser-Verlag, 2000, pp. 177�198. 31

[5℄ D. Avis, D. Bremner, How good are
onvex hull algorithms?, in: Pro-
eedings of the Eleventh Annual Symposium on Computational Geometry,ACM Press, Van
ouver, B.C., Canada, 1995.[6℄ R. Bagnara, Data-�ow analysis for
onstraint logi
-based languages, Ph.D.thesis, Dipartimento di Informati
a, Università di Pisa, Pisa, Italy, printedas Report TD-1/97 (Mar. 1997).[7℄ R. Bagnara, A hierar
hy of
onstraint systems for data-�ow analysis of
onstraint logi
-based languages, S
ien
e of Computer Programming 30 (1�2) (1998) 119�155.[8℄ R. Bagnara, K. Dobson, P. M. Hill, M. Mundell, E. Za�anella, Grids: A do-main for analyzing the distribution of numeri
al values, in: G. Puebla (ed.),Logi
-based Program Synthesis and Transformation, 16th InternationalSymposium, vol. 4407 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, Veni
e, Italy, 2007.[9℄ R. Bagnara, P. M. Hill, A. Pes
etti, E. Za�anella, On the designof generi
 stati
 analyzers for modern imperative languages, Te
h.Rep. arXiv:
s.PL/0703116, Dipartimento di Matemati
a, Università diParma, Italy, available from http://arxiv.org/ (2007).[10℄ R. Bagnara, P. M. Hill, E. Ri

i, E. Za�anella, Pre
ise widening operatorsfor
onvex polyhedra, S
ien
e of Computer Programming 58 (1�2) (2005)28�56.[11℄ R. Bagnara, P. M. Hill, E. Za�anella, Not ne
essarily
losed
onvex poly-hedra and the double des
ription method, Formal Aspe
ts of Computing17 (2) (2005) 222�257.[12℄ R. Bagnara, P. M. Hill, E. Za�anella, Widening operators for powersetdomains, Software Tools for Te
hnology Transfer 8 (4/5) (2006) 449�466.(As the �gures in the journal version of this paper have been improperlyprinted �rendering them useless�, we re
ommend that interested readersdownload an ele
troni

opy from the PPL's web site at http://www.
s.unipr.it/ppl/.)[13℄ R. Bagnara, P. M. Hill, E. Za�anella, Appli
ations of polyhedral
ompu-tations to the analysis and veri�
ation of hardware and software systems,arXiv:
s.CG/0701122, available from http://arxiv.org/. (2007).[14℄ R. Bagnara, P. M. Hill, E. Za�anella, The Parma Polyhedra Library: To-ward a
omplete set of numeri
al abstra
tions for the analysis and veri�
a-tion of hardware and software systems, S
ien
e of Computer Programming72 (1�2) (2008) 3�21.[15℄ R. Bagnara, E. Rodríguez-Carbonell, E. Za�anella, Generation of basi
semi-algebrai
 invariants using
onvex polyhedra, in: C. Hankin, I. Siveroni
32

(eds.), Stati
 Analysis: Pro
eedings of the 12th International Symposium,vol. 3672 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin,London, UK, 2005.[16℄ R. Bellman, Dynami
 Programming, Prin
eton University Press, 1957.[17℄ A. Bemporad, K. Fukuda, F. D. Torrisi, Convexity re
ognition of the unionof polyhedra, Computational Geometry: Theory and Appli
ations 18 (3)(2001) 141�154.[18℄ F. Benoy, A. King, Inferring argument size relationships with CLP(R),in: J. P. Gallagher (ed.), Logi
 Program Synthesis and Transformation:Pro
eedings of the 6th International Workshop, vol. 1207 of Le
ture Notesin Computer S
ien
e, Springer-Verlag, Berlin, Sto
kholm, Sweden, 1997.[19℄ F. Besson, T. P. Jensen, J.-P. Talpin, Polyhedral analysis for syn
hronouslanguages, in: A. Cortesi, G. Filé (eds.), Stati
 Analysis: Pro
eedings ofthe 6th International Symposium, vol. 1694 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, Berlin, Veni
e, Italy, 1999.[20℄ G. Birkho�, Latti
e Theory, vol. XXV of Colloquium Publi
ations, 3rd ed.,Ameri
an Mathemati
al So
iety, Providen
e, Rhode Island, USA, 1967.[21℄ B. Blan
het, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,D. Monniaux, X. Rival, A stati
 analyzer for large safety-
riti
al software,in: Pro
eedings of the ACM SIGPLAN 2003 Conferen
e on ProgrammingLanguage Design and Implementation (PLDI'03), ACM Press, San Diego,California, USA, 2003.[22℄ T. Bultan, R. Gerber, W. Pugh, Model-
he
king
on
urrent systems withunbounded integer variables: Symboli
 representations, approximations,and experimental results, ACM Transa
tions on Programming Languagesand Systems 21 (4) (1999) 747�789.[23℄ N. V. Chernikova, Algorithm for dis
overing the set of all solutions of alinear programming problem, U.S.S.R. Computational Mathemati
s andMathemati
al Physi
s 8 (6) (1968) 282�293.[24℄ M. A. Colón, H. B. Sipma, Synthesis of linear ranking fun
tions, in: T. Mar-garia, W. Yi (eds.), Tools and Algorithms for Constru
tion and Analysis ofSystems, 7th International Conferen
e, TACAS 2001, vol. 2031 of Le
tureNotes in Computer S
ien
e, Springer-Verlag, Berlin, Genova, Italy, 2001.[25℄ A. Cortesi, B. Le Charlier, P. Van Hentenry
k, Combinations of abstra
tdomains for logi
 programming: Open produ
t and generi
 pattern
on-stru
tion, S
ien
e of Computer Programming 38 (1�3) (2000) 27�71.[26℄ P. Cousot, Proving program invarian
e and termination by paramet-ri
 abstra
tion, lagrangian relaxation and semide�nite programming, in:
33

R. Cousot (ed.), Veri�
ation, Model Che
king and Abstra
t Interpreta-tion: Pro
eedings of the 6th International Conferen
e (VMCAI 2005), vol.3385 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, Paris,Fran
e, 2005.[27℄ P. Cousot, R. Cousot, Stati
 determination of dynami
 properties of pro-grams, in: B. Robinet (ed.), Pro
eedings of the Se
ond International Sym-posium on Programming, Dunod, Paris, Fran
e, Paris, Fran
e, 1976.[28℄ P. Cousot, R. Cousot, Systemati
 design of program analysis frameworks,in: Pro
eedings of the Sixth Annual ACM Symposium on Prin
iples ofProgramming Languages, ACM Press, New York, 1979.[29℄ P. Cousot, R. Cousot, Abstra
t interpretation frameworks, Journal of Logi
and Computation 2 (4) (1992) 511�547.[30℄ P. Cousot, R. Cousot, Indu
tive de�nitions, semanti
s and abstra
t in-terpretation, in: Pro
eedings of the Nineteenth Annual ACM Symposiumon Prin
iples of Programming Languages, ACM Press, Albuquerque, NewMexi
o, USA, 1992.[31℄ P. Cousot, N. Halbwa
hs, Automati
 dis
overy of linear restraints amongvariables of a program, in: Conferen
e Re
ord of the Fifth Annual ACMSymposium on Prin
iples of Programming Languages, ACM Press, Tu
son,Arizona, 1978.[32℄ E. Davis, Constraint propagation with interval labels, Arti�
ial Intelligen
e32 (3) (1987) 281�331.[33℄ G. Delzanno, A. Podelski, Model
he
king in CLP, in: R. Cleaveland (ed.),Tools and Algorithms for Constru
tion and Analysis of Systems, 5th Inter-national Conferen
e, TACAS '99, vol. 1579 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, Berlin, Amsterdam, The Netherlands, 1999.[34℄ D. Doose, Z. Mammeri, Polyhedra-based approa
h for in
remental valida-tion of real-time systems, in: L. T. Yang, M. Amamiya, Z. Liu, M. Guo,F. J. Rammig (eds.), Pro
eedings of the International Conferen
e on Em-bedded and Ubiquitous Computing (EUC 2005), vol. 3824 of Le
ture Notesin Computer S
ien
e, Springer-Verlag, Berlin, Nagasaki, Japan, 2005.[35℄ N. Dor, M. Rodeh, S. Sagiv, Cleanness
he
king of string manipulationsin C programs via integer analysis, in: P. Cousot (ed.), Stati
 Analysis:8th International Symposium, SAS 2001, vol. 2126 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, Berlin, Paris, Fran
e, 2001.[36℄ L. Doyen, T. A. Henzinger, J.-F. Raskin, Automati
 re
tangular re�ne-ment of a�ne hybrid systems, in: P. Pettersson, W. Yi (eds.), Pro
eedingsof the 3rd International Conferen
e on Formal Modeling and Analysis ofTimed Systems (FORMATS 2005), vol. 3829 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, Berlin, Uppsala, Sweden, 2005.34

[37℄ R. Ellenbogen, Fully automati
 veri�
ation of absen
e of errors via inter-pro
edural integer analysis, Master's thesis, S
hool of Computer S
ien
e,Tel-Aviv University, Tel-Aviv, Israel (De
. 2004).[38℄ G. Frehse, PHAVer: Algorithmi
 veri�
ation of hybrid systems pastHyTe
h, in: M. Morari, L. Thiele (eds.), Hybrid Systems: Computationand Control: Pro
eedings of the 8th International Workshop (HSCC 2005),vol. 3414 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin,Züri
h, Switzerland, 2005.[39℄ G. Frehse, B. H. Krogh, R. A. Rutenbar, Verifying analog os
illator
ir
uitsusing forward/ba
kward re�nement, in: Pro
eedings of the 9th Conferen
eon Design, Automation and Test in Europe (DATE 06), ACM SIGDA,Muni
h, Germany, 2006, CD-ROM publi
ation.[40℄ K. Fukuda, A. Prodon, Double des
ription method revisited, in: M. Deza,R. Euler, Y. Manoussakis (eds.), Combinatori
s and Computer S
ien
e, 8thFran
o-Japanese and 4th Fran
o-Chinese Conferen
e, Brest, Fran
e, July3-5, 1995, Sele
ted Papers, vol. 1120 of Le
ture Notes in Computer S
ien
e,Springer-Verlag, Berlin, 1996.[41℄ D. Gopan, T. W. Reps, M. Sagiv, A framework for numeri
 analysis ofarray operations, in: Pro
eedings of the 32nd ACM SIGPLAN-SIGACTSymposium on Prin
iples of Programming Languages, Long Bea
h, Cali-fornia, USA, 2005.[42℄ P. Granger, Improving the results of stati
 analyses programs by lo
al de-
reasing iteration, in: R. K. Shyamasundar (ed.), Pro
eedings of the 12thConferen
e on Foundations of Software Te
hnology and Theoreti
al Com-puter S
ien
e, vol. 652 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, New Delhi, India, 1992.[43℄ P. Granger, Stati
 analyses of
ongruen
e properties on rational numbers(extended abstra
t), in: P. Van Hentenry
k (ed.), Stati
 Analysis: Pro-
eedings of the 4th International Symposium, vol. 1302 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, Berlin, Paris, Fran
e, 1997.[44℄ B. S. Gulavani, S. K. Rajamani, Counterexample driven re�nement for ab-stra
t interpretation, in: H. Hermanns, J. Palsberg (eds.), Pro
eedings ofthe 12th International Conferen
e on Tools and Algorithms for the Con-stru
tion and Analysis of Systems (TACAS 2006), vol. 3920 of Le
tureNotes in Computer S
ien
e, Springer-Verlag, Berlin, Vienna, Austria, 2006.[45℄ N. Halbwa
hs, Delay analysis in syn
hronous programs, in: C. Cour
ou-betis (ed.), Computer Aided Veri�
ation: Pro
eedings of the 5th Interna-tional Conferen
e, vol. 697 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, Elounda, Gree
e, 1993.
35

[46℄ N. Halbwa
hs, D. Mer
hat, L. Gonnord, Some ways to redu
e the spa
edimension in polyhedra
omputations, Formal Methods in System Design29 (1) (2006) 79�95.[47℄ N. Halbwa
hs, Y.-E. Proy, P. Roumano�, Veri�
ation of real-time systemsusing linear relation analysis, Formal Methods in System Design 11 (2)(1997) 157�185.[48℄ W. Hartong, L. Hedri
h, E. Barke, On dis
rete modeling and model
he
k-ing for nonlinear analog systems, in: E. Brinksma, K. G. Larsen (eds.),Computer Aided Veri�
ation: Pro
eedings of the 14th International Con-feren
e, vol. 2404 of Le
ture Notes in Computer S
ien
e, Springer-Verlag,Berlin, Copenhagen, Denmark, 2002.[49℄ T. A. Henzinger, The theory of hybrid automata, in: Pro
eedings of the11th Annual Symposium on Logi
 in Computer S
ien
e (LICS), IEEE Com-puter So
iety Press, 1996.[50℄ T. A. Henzinger, P.-H. Ho, A note on abstra
t interpretation strategiesfor hybrid automata, in: P. J. Antsaklis, W. Kohn, A. Nerode, S. Sastry(eds.), Hybrid Systems II, vol. 999 of Le
ture Notes in Computer S
ien
e,Springer-Verlag, Berlin, 1995.[51℄ T. A. Henzinger, P.-H. Ho, H. Wong-Toi, HyTe
h: A model
he
ker forhybrid systems, Software Tools for Te
hnology Transfer 1 (1+2) (1997)110�122.[52℄ T. A. Henzinger, J. Preussig, H. Wong-Toi, Some lessons from the hyte
hexperien
e, in: Pro
eedings of the 40th Annual Conferen
e on De
ision andControl, IEEE Computer So
iety Press, 2001.[53℄ C. Hymans, E. Upton, Stati
 analysis of gated data dependen
e graphs, in:R. Gia
obazzi (ed.), Stati
 Analysis: Pro
eedings of the 11th InternationalSymposium, vol. 3148 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, Berlin, Verona, Italy, 2004.[54℄ G. Kahn, Natural semanti
s, in: F.-J. Brandenburg, G. Vidal-Naquet,M. Wirsing (eds.), Pro
eedings of the 4th Annual Symposium on Theoret-i
al Aspe
ts of Computer S
ien
e, vol. 247 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, Berlin, Passau, Germany, 1987.[55℄ M. Karr, A�ne relationships among variables of a program, A
ta Infor-mati
a 6 (1976) 133�151.[56℄ K. Krishnan, J. Mit
hell, A unifying framework for several
utting planemethods for semide�nite programming, Optimization Methods and Soft-ware 21 (1) (2006) 57�74.
36

[57℄ C. Kruegel, E. Kirda, D. Mutz, W. Robertson, G. Vigna, Automatingmimi
ry atta
ks using stati
 binary analysis, in: Pro
eedings of Se
u-rity '05, the 14th USENIX Se
urity Symposium, Baltimore, MD, USA,2005.[58℄ J.-L. Lassez, M. J. Maher, On Fourier's algorithm for linear arithmeti

onstraints, J. Autom. Reasoning 9 (3) (1992) 373�379.[59℄ H. Le Verge, A note on Chernikova's algorithm, Publi
ation interne 635,IRISA, Campus de Beaulieu, Rennes, Fran
e (1992).[60℄ V. Loe
hner, PolyLib: A library for manipulating parameterized polyhedra,Available at http://i
ps.u-strasbg.fr/~loe
hner/polylib/, de
laresitself to be a
ontinuation of [79℄ (Mar. 1999).[61℄ F. Mesnard, R. Bagnara,
TI: A
onstraint-based termination inferen
etool for ISO-Prolog, Theory and Pra
ti
e of Logi
 Programming 5 (1&2)(2005) 243�257.[62℄ A. Miné, Weakly relational numeri
al abstra
t domains, Ph.D. thesis, É
olePolyte
hnique, Paris, Fran
e (Mar. 2005).[63℄ T. S. Motzkin, H. Rai�a, G. L. Thompson, R. M. Thrall, The doubledes
ription method, in: H. W. Kuhn, A. W. Tu
ker (eds.), Contributionsto the Theory of Games � Volume II, No. 28 in Annals of Mathemati
sStudies, Prin
eton University Press, Prin
eton, New Jersey, 1953, pp. 51�73.[64℄ T. Nakanishi, K. Joe, C. D. Poly
hronopoulos, A. Fukuda, The modulointerval: A simple and pra
ti
al representation for program analysis, in:Pro
eedings of the 1999 International Conferen
e on Parallel Ar
hite
turesand Compilation Te
hniques, IEEE Computer So
iety, Newport Bea
h,California, USA, 1999.[65℄ S. P. K. Nookala, T. Risset, A library for Z-polyhedral operations, Publi-
ation interne 1330, IRISA, Campus de Beaulieu, Rennes, Fran
e (2000).[66℄ G. Plotkin, A stru
tural approa
h to operational semanti
s, Te
h. Rep.DAIMI FN-19, Computer S
ien
e Department, University of Aarhus, Den-mark (1981).[67℄ P. Quinton, S. Rajopadhye, T. Risset, On manipulating Z-polyhedra, Te
h.Rep. 1016, IRISA, Campus Universitaire de Bealieu, Rennes, Fran
e (Jul.1996).[68℄ S. Sankaranarayanan, M. Colón, H. B. Sipma, Z. Manna, E�
ient stronglyrelational polyhedral analysis, in: E. A. Emerson, K. S. Namjoshi (eds.),Veri�
ation, Model Che
king and Abstra
t Interpretation: Pro
eedings ofthe 7th International Conferen
e (VMCAI 2006), vol. 3855 of Le
ture Notesin Computer S
ien
e, Springer-Verlag, Berlin, Charleston, SC, USA, 2006.37

[69℄ S. Sankaranarayanan, H. B. Sipma, Z. Manna, S
alable analysis of linearsystems using mathemati
al programming, in: R. Cousot (ed.), Veri�
a-tion, Model Che
king and Abstra
t Interpretation: Pro
eedings of the 6thInternational Conferen
e (VMCAI 2005), vol. 3385 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, Berlin, Paris, Fran
e, 2005.[70℄ D. A. S
hmidt, Natural-semanti
s-based abstra
t interpretation (prelimi-nary version), in: A. My
roft (ed.), Stati
 Analysis: Pro
eedings of the 2ndInternational Symposium, vol. 983 of Le
ture Notes in Computer S
ien
e,Springer-Verlag, Berlin, Glasgow, UK, 1995.[71℄ A. S
hrijver, Theory of Linear and Integer Programming, Wiley Inter-s
ien
e Series in Dis
rete Mathemati
s and Optimization, John Wiley &Sons, 1999.[72℄ R. Shaham, E. K. Kolodner, S. Sagiv, Automati
 removal of array memoryleaks in Java, in: D. A. Watt (ed.), Pro
eedings of the 9th InternationalConferen
e on Compiler Constru
tion (CC 2000), vol. 1781 of Le
ture Notesin Computer S
ien
e, Springer-Verlag, Berlin, Berlin, Germany, 2000.[73℄ A. Simon, A. King, J. M. Howe, Two variables per linear inequality as anabstra
t domain, in: M. Leus
hel (ed.), Logi
 Based Program Synthesis andTranformation, 12th International Workshop, vol. 2664 of Le
ture Notes inComputer S
ien
e, Springer-Verlag, Berlin, Madrid, Spain, 2002.[74℄ K. Sohn, A. Van Gelder, Termination dete
tion in logi
 programs usingargument sizes (extended abstra
t), in: Pro
eedings of the Tenth ACMSIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Sys-tems, ACM, Asso
iation for Computing Ma
hinery, Denver, Colorado,United States, 1991.[75℄ H. Song, K. J. Compton, W. C. Rounds, SPHIN: a model
he
ker for re
on-�gurable hybrid systems based on SPIN, in: R. Lazi
, R. Nagarajan (eds.),Pro
eedings of the 5th International Workshop on Automated Veri�
ationof Criti
al Systems, vol. 145 of Ele
troni
 Notes in Theoreti
al ComputerS
ien
e, University of Warwi
k, UK, 2006.[76℄ J. Stoer, C. Witzgall, Convexity and Optimization in Finite Dimensions I,Springer-Verlag, Berlin, 1970.[77℄ K. van Hee, O. Oanea, N. Sidorova, M. Voorhoeve, Verifying generalizedsoundness for work�ow nets, in: I. Virbitskaite, A. Voronkov (eds.), Per-spe
tives of System Informati
s: Pro
eedings of the Sixth InternationalAndrei Ershov Memorial Conferen
e, vol. 4378 of Le
ture Notes in Com-puter S
ien
e, Springer-Verlag, Berlin, Akademgorodok, Novosibirsk, Rus-sia, 2006.
38

[78℄ A. Venet, G. Brat, Pre
ise and e�
ient stati
 array bound
he
king for largeembedded C programs, in: Pro
eedings of the ACM SIGPLAN 2004 Con-feren
e on Programming Language Design and Implementation (PLDI'04),ACM Press, Washington, DC, USA, 2004.[79℄ D. K. Wilde, A library for doing polyhedral operations, Master's thesis,Oregon State University, Corvallis, Oregon, also published as IRISA Pub-li
ation interne 785, Rennes, Fran
e, 1993 (De
. 1993).

39

