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Abstract

We present the rational construction of a generic domain for structural analysis
of CLP languages: Pattern(D]), where the parameter D] is an abstract domain
satisfying certain properties. Our domain builds on the parameterized domain for
the analysis of Prolog programs Pat(<), which is due to Cortesi et al. [6, 7]. How-
ever, the formalization of our CLP abstract domain is independent from specific
implementation techniques: Pat(<) (suitably extended) is one of the possible im-
plementations. Reasoning at a higher level of abstraction we are able to appeal to
familiar notions of unification theory. One advantage is that we can identify an
important parameter (a common anti-instance function, missing in [6]) that gives
some control over the precision and computational cost of the resulting generic
structural domain.

1 Introduction

It is important to make a clear distinction between the language CLP(H, X ), where the
Herbrand component H is completely separated from the domain X , and the language
CLP(HX ), whereH and X are somewhat amalgamated. Of course, CLP(H, X ) languages
are simpler, though still useful. The simplicity come from the fact that interpreted terms
are not allowed to occur as leaves of Herbrand terms. When interpreted terms are allowed
to occur in Herbrand structures more complex programs can be built. For instance, one
can express unbounded lists where interpreted terms occur. Independently of the need
for “unbounded containers”, it is a common CLP idiom to embed interpreted terms into
Herbrand terms.

From the experience gained with the first prototype version of China [2] it was clear
that, in order to attain a significant precision in the analysis of numerical constraints in
CLP(HN ) languages, one must keep at least part of the uninterpreted terms in concrete
form. Note that almost any analysis is much more precise when this kind of structural
information is retained to some extent: in our case the precision loss was just particularly
acute.

Cortesi et al. [6, 7] have a nice proposal in this respect. Using their terminology,
they defined a generic abstract domain Pat(<) that automatically upgrades a domain
< (which must support a certain set of elementary operations) with structural informa-
tion. Their approach is limited to the analysis of logic programs. Most importantly, the
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presentation in [6] has several drawbacks. First of all, the authors define a specific im-
plementation of the generic structural domain. The implementation is forcedly cluttered
with details that make the general principles difficult to understand. Moreover, they de-
scribe an implementation of the pattern component (taking care of representing the terms
in concrete form) that appears to be unnecessarily complicated. Their representation of
terms and subterms, while responsible for some of the intricacies in the description, does
not seem to have any advantage, from the implementation point of view, with respect
to more standard representations of terms (such as those employed in the Warren’s Ab-
stract Machine and its variants [1]). As a consequence, standard notions from unification
theory, such as instance, anti-instance, and (least) common anti-instance [10], are never
mentioned in [6], while being implicitly present.

In this paper we present the rational construction of a generic domain for structural
analysis of CLP(HX ) languages: Pattern(D]HX ), where the parameter D]HX is an abstract
domain satisfying certain properties. The formalization of the structural domain is in-
dependent from specific implementation techniques: Pat(<) (suitably extended) is a
possible implementation of the domain. Reasoning at a higher level of abstraction we
are able to appeal to familiar notions of unification theory. One advantage is that we
can identify an important parameter (a common anti-instance function, missing in [6])
that gives some control over the precision and computational cost of the resulting generic
structural domain.

It must be stressed that the merit of Pat(<) is to define a generic implementation that
works on any domain < providing a certain set of elementary, low-level operations. It is
particularly easy to extend an existing domain in order to support the simple operations
required. However, this simplicity has a high cost in terms of efficiency: the execution of
many isolated small operations over the underlying domain is much more expensive than
performing few macro-operations where global effects can be taken into account. The
operations that the underlying domain must provide are thus more complicated in our
approach. This is not a limitation, if one considers that in the actual implementation
even more complex operations are used. For instance, all the abstract bindings arising
from a bunch of unifications are executed in one shot, instead of one-at-a-time [3].

2 Preliminaries

Let S be a set. We will denote by Sn the set of n-tuples of elements drawn from S,
whereas S∗ denotes

⋃
n∈N S

n. Let Vars be a denumerable set of variable symbols. We
will denote by TVars the set of terms with variables in Vars . We assume that Vars contains
(among others) two infinite, disjoint subsets: z and z′. Since Vars is totally ordered, z

and z′ are as well. Thus we assume z
def
= (Z1, Z2, Z3, . . . and z′

def
= (Z ′1, Z

′
2, Z

′
3, . . .. For any

syntactic object o (a term or a tuple of terms) we will denote by vseq(o) the sequence of
first occurrences of variables which are found on a depth-first, left-to-right traversal1 of

o. For instance, vseq
((
f(g(X), Y ), h(X)

))
= (X, Y ).

In order to avoid the burden of talking “modulo renaming” we will make use of two
strong normal forms for tuples of terms. Specifically, the set of n-tuples in z-form is
given by

Tn
z

def
=
{
t̄ ∈ T nVars

∣∣∣ vseq(t̄ ) =
(
Z1, Z2, . . . , Z|vars(t̄ )|

)}
.

1Any other fixed ordering would be as good for our purposes.



All the tuples in z-form are contained in T?
z. The definitions for Tn

z′ and T?
z′ are obtained

in a similar way, by replacing z with z′.
There is a useful device for toggling between z- and z′-forms. Let t̄ ∈ Tn

z ∪ Tn
z′ and∣∣vars(t̄ )

∣∣ = m. Then

t̄′
def
=

{
t̄[Z ′1/Z1, . . . , Z

′
m/Zm], if t̄ ∈ Tn

z ;
t̄[Z1/Z

′
1, . . . , Zm/Z

′
m], if t̄ ∈ Tn

z′ .
(1)

Notice that t̄′′
def
=
(
t̄′
)′

= t̄.
We will make use of a normalization function η : T ?Vars → T?

z such that, for each
t̄ ∈ T ?Vars , the resulting tuple η(t̄ ) ∈ T?

z is a variant of t̄.
Another renaming we will use is the following: for each s̄ ∈ T ?Vars and each other

syntactic object o such that FV (o) ⊂ z, we write %s̄(o) to denote

o[Zn+i1/Zi1 , . . . , Zn+im/Zim ],

where n =
∣∣vars(s̄)

∣∣ and {Zi1 , . . . , Zim} = vars(o). This device will be useful for con-
catenating normalized term-tuples, still obtaining a normalized term-tuple. In fact, for
each s̄1, s̄2 ∈ T?

z we have s̄1 :: %s̄1(s̄2) ∈ T?
z.

When V̄ ∈ Varsm and t̄ ∈ T mVars we use [t̄/V̄ ] as a shorthand for the substitution[
π1(t̄ )/π1(V̄ ), . . . , πm(t̄ )/πm(V̄ )

]
. A couple of observations are useful for what follows.

If s̄ ∈ T?
z and ū ∈ T

|vars(s̄)|
z then s̄′

[
ū/ vseq(s̄′)

]
∈ T?

z. Moreover

vseq
(
s̄′
[
ū/ vseq(s̄′)

])
= vseq(ū).

3 Factoring Out Structural Information

A quite general picture for the analysis of a CLP(HX ) language is as follows. We want to
describe a (possibly infinite) set of constraint stores over a tuple of variables of interest
V1, . . . , Vk. These variables represent the arguments of some program predicate. Each
constraint store σ can be represented (at some level of abstraction) by a formula of the
kind

∃∆ .
(
{V1 = t1, . . . , Vk = tk} ∧ C

)
, (2)

such that

{V1 = t1, . . . , Vk = tk}, with t1, . . . , tk ∈ TVars , (3)

is a system of Herbrand equations in solved form, C ∈ D[X is a constraint on the domain

X , and ∆
def
= vars(C) ∪ vars(t1) ∪ · · · ∪ vars(tk) is such that ∆ ∩ {V1, . . . , Vk} = ∅.

Roughly speaking, the purpose of C is to limit the values that the (quantified) variables
occurring in t1, . . . , tk can take.

Once variables V1, . . . , Vk have been fixed, the Herbrand part of the constraint store
(2), the system of equations (3), can be represented as a k-tuple of terms. Since we want
to characterize any set of constraint stores, our concrete domain is

D[HX
def
=
⋃
n∈N

℘
(
Tn

z ×D[X
)
. (4)



℘
(
T?

z ×D[X
) α //

Φφ
��

D]HX

T?
z × ℘

(
T?

z ×D[X
)

(id,α)
//

Φ−1
φ

OO

T?
z ×D

]
HX

α′

OO

Figure 1: Upgrading a domain with structural information.

An abstract interpretation of D[HX can be specified by choosing an abstract domain D]HX
and a suitable abstraction function

α : D[HX → D
]
HX . (5)

If D]HX is able to encode enough structural (Herbrand) information from D[HX so as to
achieve the desired precision, fine. If this is not the case, it is possible to improve the
situation by keeping some structural information explicit.

One way of doing that is to perform a change of representation for D[HX , which is the
basis for further abstractions. The new representation is obtained by factoring out some
common Herbrand information. The meaning of ‘some’ is encoded by a function.

Definition 1 (Common anti-instance function.) A function

φ :
⋃
n∈N

℘(Tn
z)→ T?

z′

is called a common anti-instance function if, for each n ∈ N and each T̂ ∈ ℘(Tn
z):

1. φ(T̂ ) ∈ Tn
z′;

2. if φ(T̂ ) = r̄ and
∣∣vars(r̄)

∣∣ = m with m ≥ 0, then

∀t̄ ∈ T̂ : ∃ū ∈ Tm
z . r̄

[
ū/ vseq(r̄)

]
= t̄.

In words, φ(T̂ ) is an anti-instance, in z′-form, of each t̄ ∈ T̂ .
Any choice of φ induces a function

Φφ : D[HX → T?
z × ℘

(
T?

z ×D[X
)
, (6)

which is given, for each Ê[ ∈ D[HX by

Φφ(Ê[)
def
=
(
s̄′,
{

(ū, D[)
∣∣∣ (t̄, D[) ∈ Ê[, s̄

[
ū/vseq(s̄)

]
= t̄
})

, (7)

where s̄
def
= φ

(
π1(Ê[)

)
. The corestriction to the image of Φφ, that is Φφ : D[HX → Φφ

(
D[HX

)
,

is an isomorphism. So far, we have just chosen a different representation for D[HX , that

is Φφ

(
D[HX

)
. The idea behind structural information analysis is to leave the first compo-

nent of the new representation (the pattern component) untouched, while abstracting the
second component by means of α, as illustrated in Figure 1. The dotted arrow indicates



a residual abstraction function α′. As we will see in Section 5.4, such a function is im-
plicitly required in order to define an important operation over the new abstract domain
T?

z ×D
]
HX .2

This approach has several advantages. First of all, factoring out common structural
information improves the analysis precision, since part of the approximated k-tuples of
terms is recorded, in concrete form, into the first component of T?

z×D
]
HX . Secondly, the

above construction is adjustable by means of the parameter φ. The most precise choice
consists in taking φ to be a least common anti-instance (lca) function. For example, the
set

Ŝ
def
=
{〈(

s(0), c(Z1, nil)
)
, C1

〉
,
〈(
s(s(0)), c(Z1, c(Z2, nil))

)
, C2

〉}
,

where C1, C2 ∈ D[X , is mapped by the Φlca function onto

Φlca(Ŝ) =

((
s(Z1), c(Z2, Z3)

)
,
{〈

(0, Z1, nil), C1

〉
,
〈(
s(0), Z1, c(Z2, nil)

)
, C2

〉})
.

At the other side of the spectrum is the possibility of choosing φ so that it returns a
k-tuple of distinct, new variables for each set of k-tuples of terms. This correspond to
a framework where structural information is just discarded. With this choice, Ŝ would
be mapped onto

(
(Z1, Z2), Ŝ

)
. In-between these two extremes there are a number of

possibilities that help managing the complexity/precision tradeoff. The k-tuples returned
by φ can be limited in depth [13, 11], for instance. More useful is to limit them in width,
that is, limiting the number of symbols’ occurrences. This flexibility allows to design the
analysis’ domains without caring about structural information: the problem is always to
approximate elements of ℘

(
Ta

z ×D[X
)
. Whether a is fixed by the arity of a predicate or

a is the number of variables occurring in some pattern does not really matter.

4 Parametric Structural Analysis

In order to specify the abstract domain for the analysis, we need some assumptions
on the concrete X domain D[X , which represents the X -part of consistent constraint
stores. One can think about D[X as made up of first-order sentences [5]. In this view,
the operator ⊗ : D[X × D[X → D[X corresponds to logical conjunction. Moreover, we
assume that it makes sense to talk about the free variables of D[ ∈ D[X , denoted by
FV (D[). Let s̄, t̄, ū ∈ T?

z and D[, E[ ∈ D[X such that FV (D[) ⊆ vars(t̄ ). When we write
(ū, E[) = %s̄

(
(t̄, D[)

)
, we mean that ū = %s̄(t̄ ) and that E[ has been obtained from D[

by applying the same renaming applied to t̄ in order to obtain ū.
Another natural thing to do is projecting a satisfiable store: thus ∃V̄D[, where V̄ is

a tuple (or set) of variables, is assumed to be as defined.
The last thing we need is the ability of adding an equality constraint to a constraint

store. Thus D[[t1 = t2] is the store obtained from D[ by injecting the equation t1 = t2,
provided that the resulting store is consistent, otherwise the operation is undefined. Notice
that we assume D[X and its operations encode both the proper X -solver and the so called
interface between the Herbrand engine and the X -solver [8]. In particular, the interface
is responsible for type-checking of the equations it receives. For example in CLP(R) [9]

2Notice that α′ may or may not make the diagram of Figure 1 commute (although often α′ turns out
to have this property).



the interface is responsible for the fact that X = a cannot be consistently added to a
constraint store where X was previously classified as numeric.

We now turn our attention to the abstract domain which is the parameter of the
generic structural domain. We will denote it simply by D], instead of D]HX . Thus,

assuming that X has been fixed, D[X is indicated just by D[.
Since the aim here is maximum generality, we refer to a very weak abstract interpre-

tation framework.

Definition 2 (Abstract domain.) An abstract domain for HX is a set D] equipped
with a preorder relation v, an order preserving function γ : D] → D[, an upper-bound
operator ⊕ : D] ×D] → D], and a least element ⊥] such that γ(⊥]) = ∅.

Thus, for each D]
1, D

]
2 ∈ D], we have both that D]

1 v D]
2 implies γ(D]

1) ⊆ γ(D]
2) and

γ(D]
1 ⊕D

]
2) ⊇ γ(D]

1) ∪ γ(D]
2).

The structural information construction upgrades any given abstract domain D] as
follows.

Definition 3 (The Pattern(·) construction.) Let D] be an abstract domain. Then

Pattern(D]) def
=
{

(s̄, D]) ∈ T?
z ×D]

∣∣∣ γ(D]) ⊆ T|vars(s̄)|
z ×D[

}
.

The meaning of each element (s̄, D) ∈ Pattern(D]) is given by the concretization function
γ : Pattern(D])→ ℘(T?

z ×D[):

γ
(
(s̄, D])

) def
=
{(

s̄′
[
ū/ vseq(s̄′)

]
, D[

) ∣∣∣ (ū, D[) ∈ γ(D])
}
.

5 Operations for the Analysis

In this section we define the operations over Pattern(D]) that are needed for the analysis
in a bottom-up framework. In order of appearance into the analysis process:

• we need an operation that takes two descriptions and, roughly speaking, juxtaposes
them. This operation, which we call meet with renaming apart, is needed when
“solving” a clause body with respect to the current interpretation.

• Unification, that realizes “parameter passing”. The descriptions that were simply
juxtaposed are thus made to communicate with each other.

• When all the goals in a clause body have been solved, projection is used to restrict
the abstract description to the tuple of arguments of the clause’s head.

• The operation of remapping is used to adapt a description to a different, less pre-
cise, pattern component. It is used in order to realize various join and widening
operations.

• The join operation is parameterized with respect to a common anti-instance func-
tion. It is used to merge descriptions arising from the different sets of computation
paths explored during the analysis.

• The comparison operation is employed by the analyzer in order to check whether
a local (to a program clause or predicate) fixpoint has been reached.

The above operations over Pattern(D]) induce the need for other operations on the
underlying domain D]. The latter are specified in the next sections so that the correctness
of the analysis can be ensured.



5.1 Meet with Renaming Apart

This operation is very simple.

Definition 4 (The rmeet operation.) Let . : D] × D] → D] be such that, for each
D]

1, D
]
2 ∈ D],

γ(D]
1 . D

]
2) =

 (r̄1 :: w̄2, D
[
1 ⊗ E[

2)

∣∣∣∣∣∣∣
(r̄1, D

[
1) ∈ γ(D]

1)

(r̄2, D
[
2) ∈ γ(D]

2)

(w̄2, E
[
2) = %r̄1

(
(r̄2, D

[
2)
)
.

Then, for each (s̄1, D
]
1), (s̄2, D

]
2) ∈ Pattern(D]).

rmeet
(
(s̄1, D

]
1), (s̄2, D

]
2)
) def

=
(
s̄1 :: %s̄1(s̄2), D]

1 . D
]
2

)
.

The following result is a direct consequence of the definition: there is no precision loss in
rmeet.

Theorem 5 For each (s̄1, D
]
1), (s̄2, D

]
2) ∈ Pattern(D]).

γ
(

rmeet
(
(s̄1, D

]
1), (s̄2, D

]
2)
))

=

 (t̄1 :: ū2, D
[
1 ⊗ E[

2)

∣∣∣∣∣∣∣
(t̄1, D

[
1) ∈ γ

(
(s̄1, D

]
1)
)

(t̄2, D
[
2) ∈ γ

(
(s̄2, D

]
2)
)

(ū2, E
[
2) = %t̄1

(
(t̄2, D

[
2)
)
.

5.2 Unification with Occur-Check

In this section we assume that the execution mechanism of the language being analyzed
performs unifications without omitting the occur-check. With this hypothesis (which,
unfortunately, is seldom verified) we can easily complete the unification algorithm given in
[6]. When the occur-check fails in the abstract unification we know that the computation
path being analyzed can be safely pruned, because the concrete unification would have
failed at this point. Notice that, for the purpose of the present discussion, the occur-check
need not be implemented explicitly, that is by making the unification fail in the logic
programming sense. Since our data-flow analyses provide information of the kind

if control gets to this point, then that will hold there,

a more drastic handling of the occur-check is acceptable. If we are guaranteed that the
concrete system enters either an error state or an infinite loop whenever a cyclic binding
is attempted, then the abstract unification procedure presented in this section can safely
be used. See [4] for a discussion about what can be done for those systems where the
occur-check is, by any means, omitted.

We start with a description (s̄, D]) ∈ Pattern(D]) and two terms to be unified, t
and u, such that vars

(
(t, u)

)
⊆ vars(s̄). We then apply the procedure unify, given as

Algorithm 1, to s̄, D], t and u. In the macro-operation bind(s̄, D], u, Zh), s̄ is passed only
in order to maintain the connection between the variables in (u, Zh) and the description
D]. We assume, without loss of generality, that whenever bind(s̄, D], u, Zh) is invoked we
have

∣∣vars(s̄)
∣∣ = m, with m ≥ 0. The result of the operation will be a description D]

1 such

that γ(D]
1) ⊆ Tm−1

z × D[. This is because, after the binding, Zh will not be referenced
anymore. What remains to be described is the operation of reflecting the binding of Zh
to u into D] so to obtain D]

1. We will denote this operation by D][u/Zh], and present its
variants (depending on whether u is a constant or a number or a variable or a compound
term) in the next sections.



procedure unify(s̄, D], t, u)
1: if t 6= u then
2: if t = f(t1, . . . , tn) and u = f(u1, . . . , un) then
3: for all i = 1, . . . , n do
4: unify(s̄, D], ti, ui)
5: else if t = Zh then
6: if Zh does not occur in u then
7: D] := bind(s̄, D], u, Zh) {invokes underlying domain}
8: Zh := u {instantiates all the occurrences of Zh}
9: s̄ := η(s̄) {normalization}

10: else
11: D] := ⊥]
12: else if u = Zk then
13: unify(s̄, D], u, t)
14: else
15: D] := ⊥]

Algorithm 1: Unification for the parametric structural domain.

5.2.1 Binding to a Constant or a Number

The result of D][k/Zh], where k is a symbolic constant or a number and h ∈ {1, . . . ,m}
is any D]

1 ∈ D] such that

γ(D]
1) ⊇

{(
(t1, . . . , th−1, th+1, . . . , tm), D[[th = k]

) ∣∣∣ ((t1, . . . , tm), D[
)
∈ γ(D])

}
.

Notice that vseq
(
s̄[k/Zh]

)
= (Z1, . . . , Zh−1, Zh+1, . . . , Zm). Similar comments apply also

to what follows.

5.2.2 Binding to an Alias

Here we must specify an admissible result, D]
1, for the operation D][Zi/Zh] with i, h ∈

{1, . . . ,m} and i 6= h. In order to reduce the complexity of the definition we need some
special notation for sequences. Let U be a set. Then ℘f(U) denotes the set of all the
finite subsets of U . We define the operation · \ · : U? × ℘f(U)→ U? as follows. For each
sequence L ∈ U? and each set S ∈ ℘f(U), the sequence L\U is obtained by removing from
L all the elements that appear in U . Let us define τ(k) : {1, . . . ,m−1} → {1, . . . ,m} as

τ(k)
def
= πk

(
(1, . . . , h− 1) ::

(
(i) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {i}

))
.

The transformation τ is such that, for each k = 1, . . . , m− 1,

πk

(
vseq

(
s̄[Zi/Zh]

))
= Zτ(k).

Now, D]
1 must satisfy

γ(D]
1) ⊇

{((
πτ(1)(t̄ ), . . . , πτ(m−1)(t̄ )

)
, D[

[
πh(t̄ ) = πi(t̄ )

]) ∣∣∣∣ (t̄, D[) ∈ γ(D])

}
.



5.2.3 Binding to a Compound

Specifying the result of the operation D[u/Zh] is only slightly more complicated. Suppose
that vseq(u) =

(
Zj1 , . . . , Zjl

)
, so that Zh /∈

{
Zj1 , . . . , Zjl

}
and the transformation τ is

given by

τ(k)
def
= πk

(
(1, . . . , h− 1) ::

(
(j1, . . . , jl) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {j1, . . . , jl}

))
. (8)

Then D][u/Zh] is allowed to return any D]
1 such that

γ(D]
1) ⊇


((
πτ(k)(t̄ )

)m−1

k=1
, D[

1

)
∣∣∣∣∣∣∣∣∣∣∣∣

(t̄, D[) ∈ γ(D])

θ =
[
uj1/Zj1 , . . . , ujl/Zjl

]
πh(t̄ ) = uθ

D[
1 = D[

[
πj1(t̄ ) = uj1 ,

. . . , πjl(t̄ ) = ujl
]


.

As observed in [6], the proof of the overall correctness of Algorithm 1 can be obtained
by systematic generalization of the proof given in Musumbu’s PhD thesis [12].

5.3 Projection

This operation consists simply in dropping a suffix of the pattern component, with the
consequent projection on the underlying domain.

Definition 6 (The project operation.) Let ∃∃m : D] → D] be a family of operations
such that, for each D] ∈ D] with γ(D]) ⊆ Tm

z ×D[ and each j < m,

γ
(
∃̄̄∃j D]

)
⊇

 (r̄, E[)

∣∣∣∣∣∣∣∣∣
(ū, D[) ∈ γ(D])

r̄ =
(
π1(ū), . . . , πj(ū)

)
∆ = vars(r̄)

E[ = ∃∆D
[

.
Then, for each (s̄, D]) ∈ Pattern(D]) such that s̄ ∈ Tn

z and each k < n,

projectk
(
(s̄, D])

) def
=
((
π1(s̄), . . . , πk(s̄)

)︸ ︷︷ ︸
t̄

, ∃̄̄∃j D]
)
,

where j
def
=
∣∣vars(t̄ )

∣∣.
It is easy to show that project is indeed correct with respect to the obvious concrete
operation.

5.4 Remapping

Consider a description (s̄, D]
s̄) ∈ Pattern(D]) and a pattern r̄ ∈ T?

z′ such that r̄ is an
anti-instance of s̄. We want to obtain D]

r̄ ∈ D] such that

γ
(
(r̄′, D]

r̄)
)
⊇ γ

(
(s̄, D]

s̄)
)
. (9)

This is what we call remapping (s̄, D]
s̄) to r̄.



Definition 7 (The remap operation.) Let (s̄, D]
s̄) be a description with s̄ ∈ Tk

z and
let r̄ ∈ Tk

z′ be an anti-instance of s̄. Assume
∣∣vars(r̄)

∣∣ = m and let ū ∈ Tm
z be the unique

tuple such that

r̄
[
ū/ vseq(r̄)

]
= s̄. (10)

Then the operation remap(s̄, D]
s̄, r̄) yields D]

r̄ such that

γ(D]
r̄) ⊇

{(
ū′
[
t̄/ vseq(ū′)

]
, D[

) ∣∣∣ (t̄, D[) ∈ γ(D]
s̄)
}
. (11)

Observe that the remap function is closely related to the residual abstraction function
α′ of Figure 1. It can be proven [4] that the specification of remap meets our original
requirement.

Theorem 8 Let (s̄, D]
s̄) be a description with s̄ ∈ Tk

z. Let also r̄ ∈ Tk
z′ be an anti-

instance of s̄. If D]
r̄ = remap(s̄, D]

s̄, r̄) then γ
(
(r̄′, D]

r̄)
)
⊇ γ

(
(s̄, D]

s̄)
)
.

5.5 Join and Widenings

The operation of merging two descriptions turns out to be an easy one, once remapping
has been defined.

Definition 9 (The joinφ operations.) Let φ be any common anti-instance function.
The operation (partial function)

joinφ : ℘f

(
Pattern(D])

)
� Pattern(D])

is defined as follows. For each k ∈ N and each finite family F
def
=
{

(s̄i, D
]
i)
}
i∈I of elements

of Pattern(D]) such that s̄i ∈ Tk
z for each i ∈ I, we have r̄

def
= φ

(
{s̄i}i∈I

)
and

joinφ(F )
def
=

(
r̄′,
⊕
i∈I

remap(s̄i, D
]
i , r̄)

)
.

We note again that φ might be the least common anti-instance function or an approxi-
mation of it: this is one of the degrees of freedom of the framework.

Theorem 10 Let F be as in Definition 9. For each common anti-instance function φ
and each (s̄j, D

]
j) ∈ F we have γ

(
joinφ(F )

)
⊇ γ

(
(s̄j, D

]
j)
)
.

As far as widening operators are concerned, there are several possibilities. First of all,
we might want to distinguish between widening in the pattern component and widening
on the underlying domain. The former can be defined as any join operation joinφ with
φ different from lca. The latter consists in propagating the widening to the underlying
domain. For instance, the following widening operator is the default one applied by
China:

widen
(
(s̄1, D

]
1), (s̄2, D

]
2)
) def

=

{
(s̄2, D

]
2), if s̄1 6= s̄2;

(s̄2, D
]
1 ∇D]

2), if s̄1 = s̄2.
(12)

This operator refrains from widening unless the pattern component is stabilized (see the
next section to see why it works). Other operators can be defined by using joins and
remappings (see [4]).



5.6 Comparing Descriptions

The last operation that is needed in order to put Pattern(D]) at work is for comparing
descriptions.

Definition 11 (Approximation ordering.) The approximation ordering of the do-
main Pattern(D]), denoted by v, is defined as follows, for each (s̄1, D

]
1), (s̄2, D

]
2) ∈

Pattern(D]):

(s̄1, D
]
1) v (s̄2, D

]
2)

def⇐⇒ s̄1 = s̄2 ∧D]
1 v D]

2.

It must be stressed that the above approximation ordering is also “approximate”, since it
does not take into account the peculiarities of D]. More refined orderings can be obtained
in a domain-dependent way, namely, when D] has been fixed.

The following result is a trivial consequence of Definition 2.

Theorem 12 If (s̄1, D
]
1) v (s̄2, D

]
2) then γ

(
(s̄1, D

]
1)
)
⊆
(
(s̄2, D

]
2)
)
. Moreover, v is a

preorder over Pattern(D]).

Observe that the ability of comparing descriptions only when they have the same
pattern is not restrictive in a data-flow analysis setting. The analyzer, in fact, will only
need to compare the descriptions arising from the iteration sequence at two consecutive
steps. Moreover, if we denote by (s̄n, D

]
n) the description at step n, we have

(s̄i+1, D
]
i+1) = widen

(
(s̄i, D

]
i), joinφ

({
(s̄i, D

]
i), . . .

}))
, (13)

where the widening is possibly omitted. Whether or not the widening has been applied,
this implies that s̄′i+1 is an anti-instance of s̄i and

γ
(
(s̄i, D

]
i)
)
⊆ γ

(
(s̄i+1, D

]
i+1)
)
. (14)

If also the reverse inclusion holds in (14) then we have reached a local fixpoint. The
analyzer uses the approximate ordering in order to check for this possibility. Namely, it
asks whether (s̄i+1, D

]
i+1) v (s̄i, D

]
i). The approximate test, of course, can fail even when

equality does hold in (14). But this will be a fault of the pattern component only a finite
number of times, since s̄i+1 is an anti-instance of s̄i and Tk

z, ordered by the anti-instance
relation, has finite height. Thus, there exists ` ∈ N such that, for each i ≥ `, s̄i = s̄`.
After the `-th step the accuracy of the approximate ordering is in the hands of D].

6 Conclusion

We have presented the rational construction of a generic domain for structural analysis
of CLP(HX ) languages: Pattern(D]HX ), where the parameter D]HX is an abstract domain
satisfying certain properties, We build on the parameterized Pat(<) domain of Cortesi et
al. [6, 7], which is restricted to logic programs. However, while Pat(<) is presented as a
specific implementation of a generic structural domain, our formalization is independent
from specific implementation techniques. Reasoning at a higher level of abstraction we
have been able to fully justify the ideas behind the structural domain. In particular,
appealing to familiar notions of unification theory, we have identified an important pa-
rameter (a common anti-instance function, missing in [6]) that gives some control over
the precision and computational cost of the resulting generic structural domain.
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