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Abstract

In the context of static analysis via abstract interpretation, convex polyhedra con-
stitute the most used abstract domain among those capturing numerical relational
information. Since the domain of convex polyhedra admits infinite ascending chains,
it has to be used in conjunction with appropriate mechanisms for enforcing and ac-
celerating the convergence of fixpoint computations. Widening operators provide a
simple and general characterization for such mechanisms. For the domain of con-
vex polyhedra, the original widening operator proposed by Cousot and Halbwachs
amply deserves the name of standard widening since most analysis and verification
tools that employ convex polyhedra also employ that operator. Nonetheless, there
is an unfulfilled demand for more precise widening operators. In this paper, after
a formal introduction to the standard widening where we clarify some aspects that
are often overlooked, we embark on the challenging task of improving on it. We
present a framework for the systematic definition of new widening operators that
are never less precise than a given widening. The framework is then instantiated
on the domain of convex polyhedra so as to obtain a new widening operator that
improves on the standard widening by combining several heuristics. A preliminary
experimental evaluation has yielded promising results. We also suggest an improve-
ment to the well-known widening delay technique that allows to gain precision while
preserving its overall simplicity.
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1 Introduction

An ability to reason about numerical quantities is crucial for an increasing
number of applications in the field of automated analysis and verification
of complex systems. Of particular interest are representations that capture
relational information, that is, information relating different quantities such
as, for example, the length of a buffer and the contents of a program variable,
or the number of agents in different states in the modeling of a distributed
protocol.

Convex polyhedra, since the work of Cousot and Halbwachs [1], constitute
the most used abstract domain among those capturing numerical, relational
information. They have been used to solve, by abstract interpretation [2],
several important data-flow analysis problems such as array bound check-
ing, compile-time overflow detection, loop invariant computations and loop
induction variables. Convex polyhedra are also used, among many other ap-
plications, for the analysis and verification of synchronous languages [3,4] and
of linear hybrid automata (an extension of finite-state machines that models
time requirements) [5,6], for the computer-aided formal verification of concur-
rent and reactive systems based on temporal specifications [7], for inferring
argument size relationships in logic languages [8,9], for the automatic paral-
lelization of imperative programs [10], for detecting buffer overflows in C [11],
and for the automatic generation of the ranking functions needed to prove
progress properties [12].

Since the domain of convex polyhedra admits infinite ascending chains, it
has to be used in conjunction with appropriate mechanisms for enforcing and
accelerating the convergence of fixpoint computations. Widening operators
[2,13–15] provide a simple and general characterization for such mechanisms.
In its simplest form, a widening operator on a poset 〈P,v〉 is defined as a
partial function ∇ : P × P � P satisfying:

(1) for all x, y ∈ P , if x ∇ y is defined then x v x ∇ y and y v x ∇ y;
(2) for all increasing chains y0 v y1 v · · · , if the increasing chain x0 := y0 and

xi+1 := xi ∇ yi+1 is defined for all i ∈ N, then it is not strictly increasing.

It must be observed that a widening operator may serve different purposes,
besides forcing the stabilization of approximated iteration sequences after a
finite number of iterations: it may be used to speed up the convergence of
iteration sequences and to select among a (possibly infinite) set of approx-
imations of concrete elements when considering abstract domains that are
algebraically weak [14]. Thus a widening does not need to be a total function,
the only requirement is that its domain of definition be compatible with the
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intended application. The application will also affect the required trade-off
between precision and efficiency: when speeding up convergence of an (per-
haps intrinsically finite) iteration sequence, precision is more willingly given
away; in other cases, the objective is to ensure termination without compro-
mising precision too much. As a consequence, it is meaningful to have two or
more widening operators, each one tuned with a different compromise between
precision and efficiency. The different widenings can be used in different appli-
cations or even in the same application, with the system (carefully) switching
from one to another during the analysis [16].

For the domain of convex polyhedra, the first widening operator was proposed
by Cousot and Halbwachs in [1] and further refined in [17]. It amply deserves
the name of standard widening since most analysis and verification tools that
employ convex polyhedra also employ that operator.

There are a number of applications of convex polyhedra in the field of sys-
tem analysis and verification that are particularly sensitive to the precision of
the deduced numerical information. The importance of precision in the field of
automated verification has led to the use of extrapolation operators, that is, bi-
nary operators satisfying condition 1 in the definition of widening but not con-
dition 2 (i.e., without convergence guarantee). For instance, in [18], Henzinger
and Ho propose a new extrapolation operator for use in the HyTech model
checker since “Halbwachs’s widening operator [...] is sometimes too coarse for
[their] purposes” (symbolic model checking of linear hybrid systems). An even
more precise extrapolation operator, also used in the HyTech system, is pre-
sented in [19]: “This operator is tighter than (and therefore less aggressive
than) both the widening operator of [4] and the extrapolation operator of
[18], which is not monotone in its second argument.” Other extrapolation op-
erators based on similar approaches have been sketched in [3]. Still in the field
of automatic verification, the need for more precision than warranted by the
standard widening is remarked in both [20] and [21]; and a new extrapolation
operator on sets of convex polyhedra is defined in each of these papers.

If giving up convergence guarantees is acceptable (though not desirable) for
semi-automatic, human-operated verifiers, this is certainly not the case for
fully-automatic program analyzers. In this field, the request for more precision
has been partly satisfied by delaying the application of the widening operator
k times for some fixed parameter k ∈ N [16]. A study of the effect of alternative
values for k in the automatic determination of linear size relations between
the arguments of logic programs has been conducted in [8,9]. One application
of this idea is in termination inference [22]. In order to achieve reasonable
precision, the cTI analyzer runs with k = 3 as a default, but there are simple
programs (such as mergesort) whose termination can only be established with
k > 3. On the other hand, setting k = 4 as the default can have a sensible
impact on performance of cTI [F. Mesnard, personal communication, 2003].
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Another technique to improve upon the results of the standard widening, while
still ensuring termination, is described in [4,23] and named ‘widening up to’.
The technique checks the stability of a given finite set of constraints (specific to
the application domain under consideration, possibly obtained by a previous
static analysis step) adding any stable constraints to the extrapolated set. This
can therefore recover from those extrapolations that go beyond the specified
limits, provided these limits are never violated by the underlying iterates.

It should not be forgotten that the results obtained by means of an upward
iteration sequence with widening can be improved by means of a downward
iteration, possibly using a narrowing operator [2,13–15]. So, although this
is outside the scope of the present paper, we regard this as an interesting
direction for further research since, to the best of our knowledge, no narrowing
operators for the domain of convex polyhedra have ever been proposed.

In this paper, after a formal introduction to the standard widening where we
clarify some important aspects that are often overlooked, we embark on the
challenging task of improving on it. Elaborating on an idea originally pro-
posed in [3], we present a domain-independent framework for the systematic
definition of new widenings that are never less precise than a given widening
operator. Their specification is based on the definition of a computable pre-
order relation which satisfies the ascending chain condition on the considered
abstract domain and is compatible with the widening we are improving upon.
The framework makes it particularly easy to combine several heuristics and
prove that the resulting operator is indeed a widening at least as precise as the
original widening. Here we instantiate it on the domain of convex polyhedra
so as to obtain a widening operator improving on the standard widening. In
particular, we consider a selection of extrapolation operators, some of which
embody improvements of heuristics already proposed in the literature. An ex-
perimental evaluation of the new widening shows that, for the analysis prob-
lem considered, it captures common growth patterns and obtains precision
improvements in as many as 33% of the benchmarks. We show that, as is the
case for the standard widening, even the precision of the new widening can
be improved by combining it with the ‘widening up to’ technique, while still
ensuring convergence. We also propose a modification of the delay technique
where, for a given parameter k, the analyzer avoids the first k widening appli-
cations that would have caused actual precision losses. That is, when counting
the number of delays, it ignores those steps where widening has no effect on
the outcome.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the standard widening for the domain of
convex polyhedra, highlighting a few important aspects of its formal definition
that are often overlooked; Section 4 presents a domain-independent framework
for the systematic definition of new widening operators improving upon any
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existing widening; Section 5 instantiates this framework to the domain of
convex polyhedra by considering several variants of extrapolation techniques
proposed in the literature, as well as one that is new to this paper; Section 6
summarizes the results of our experimental evaluation of the new widening;
Section 7 discusses the integration of the new widening with several widening
strategies and techniques. Section 8 concludes. This paper is a revised and
extended version of [24].

2 Preliminaries

A preorder ‘�’ over a set S is a binary relation that is reflexive and transitive. A
preorder is an equivalence relation (resp., a partial order) if it is also symmetric
(resp., antisymmetric). A preorder ‘�’ induces an equivalence relation ‘≡’ on
S such that, for each x, y ∈ S, x ≡ y if and only if both x � y and y � x. The
strict version ‘≺’ of a preorder ‘�’ is the relation such that, for each x, y ∈ S,
x ≺ y if and only if x � y and x 6≡ y.

A poset, denoted by 〈P,v〉, is a set P equipped with a partial order ‘v’. A
chain over the poset 〈P,v〉 is a subset C ⊆ P such that ‘v’ is a total order
on C, i.e., for each x, y ∈ C such that x 6= y, either x @ y or y @ x. A poset
satisfies the ascending chain condition if all its strictly increasing chains are
finite. A preorder ‘�’ on a set S induces the poset 〈S/≡,v〉: the set S/≡
is the quotient of S with respect to the equivalence relation ‘≡’ induced by
‘�’; and the partial order ‘v’ is such that [x] v [y] if and only if x � y, for
all equivalence classes [x], [y] ∈ S/≡. In the following, with a minor abuse
of terminology and notation, we will sometimes define preorders on sets and
later state properties that actually hold for the implicitly induced posets. For
instance, a preorder ‘�’ will be said to satisfy the ascending chain condition
on a set S to mean that the induced poset 〈S/≡,v〉 satisfies the ascending
chain condition.

The lexicographic product of the preorders ‘�a’ and ‘�b’ is the preorder ‘�ab’
on S such that, for all x, y ∈ S,

x �ab y
def
⇐⇒ (x ≺a y) ∨ (x ≡a y ∧ x �b y).

If both ‘�a’ and ‘�b’ satisfy the ascending chain condition on S, then ‘�ab’
satisfies the ascending chain condition too. If ‘�’ is a preorder on S and ⊥ /∈ S,
then the ⊥-lifting of ‘�’ is obtained by defining ⊥ ≺ x for all x ∈ S. If ‘�’
satisfies the ascending chain condition on S, then its ⊥-lifting satisfies the
ascending chain condition on {⊥} ∪ S.

Let U be a set and S ⊆ U . If s, t ∈ U and s ∈ S, then we write S[t/s] to denote
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the set
(

S \{s}
)

∪{t}. The cardinality of S is denoted by #S. If M and N are

finite multisets over N, #(n,M) denotes the number of occurrences of n ∈ N
in M and M vms N means that either M = N or there exists j ∈ N such that
#(j,M) > #(j,N) and, for each k ∈ N with k > j, #(k,M) = #(k,N). The
relation ‘vms’ is a partial order satisfying the ascending chain condition [25].

The set of non-negative reals is denoted by R+. Any vector ~v ∈ Rn is also a
matrix in Rn×1 so that it can be manipulated with the usual matrix operations
of addition and multiplication, both by a scalar and by another matrix. For
each i = 1, . . . n, the i-th component of a vector ~v ∈ Rn is denoted by vi. The
transposition of a matrix M is denoted by MT; thus, for all ~v ∈ Rn, we have
~v = (v1, . . . , vn)T. The scalar product of ~v, ~w ∈ Rn is 〈~v, ~w〉 :=

∑n
i=1 viwi. The

vector ~0 ∈ Rn has all components equal to zero. We write ~v = ~w and ~v 6= ~w
to denote the propositions

∧n
i=1(vi = wi) and ¬(~v = ~w), respectively.

Let V = {~v1, . . . , ~vk} ⊆ Rn be a finite set of real vectors. For all scalar con-
stants λ1, . . . , λk ∈ R, the vector ~v =

∑k
i=1 λi~vi is said to be a linear combi-

nation of the vectors in V . Such a combination is said to be

• a positive (or conic) combination, if λi ∈ R+ for i = 1, . . . , k;
• an affine combination, if

∑k
i=1 λi = 1;

• a convex combination, if it is both positive and affine.

The vectors in V are said to be linearly independent if the only solution to
the equation

k
∑

i=1

λi~vi = ~0

is λi = 0, for each i = 1, . . . , k; they are said to be affinely independent if the
only solution of the system of equations



























k
∑

i=1

λi~vi = ~0,

k
∑

i=1

λi = 0

is λi = 0, for each i = 1, . . . , k.

Let V ⊆ Rn. The subspace of Rn defined by the set of all affine combinations
of finite subsets of V is called the affine hull of V and denoted by aff.hull(V );
the orthogonal of V and the opposite of V are given, respectively, by

V ⊥ :=
{

~w ∈ Rn
∣

∣

∣ ∀~v ∈ V : 〈~v, ~w〉 = 0
}

,

−V :=
{

−~v ∈ Rn
∣

∣

∣ ~v ∈ V
}

.
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For each vector ~a ∈ Rn and scalar b ∈ R, where ~a 6= ~0, the linear inequality
constraint 〈~a, ~x〉 ≥ b defines a topologically closed affine half-space of Rn.
We do not distinguish between syntactically different constraints defining the
same affine half-space so that, for example, x ≥ 2 and 2x ≥ 4 are the same
constraint. The set P ⊆ Rn is a (closed and convex ) polyhedron if and only if
either P can be expressed as the intersection of a finite number of closed affine
half-spaces of Rn, or n = 0 and P = ∅. The set of all closed polyhedra on Rn

is denoted by CPn. In this paper, we only consider polyhedra in CPn when
n > 0. The set CPn, when partially ordered by subset inclusion, is a lattice
where the binary meet operation is set-intersection; the binary join operation,
denoted ‘]’, is called convex polyhedral hull, poly-hull for short.

If k ≤ n + 1 is the maximum number of affinely independent points of a
polyhedron P ∈ CPn, then the dimension of P, denoted as dim(P), is k − 1.
If P 6= ∅, the characteristic cone of P is defined as

char.cone(P) := { ~w ∈ Rn | ∀~v ∈ P : ~v + ~w ∈ P },

whereas the lineality space of P is

lin.space(P) := char.cone(P) ∩ − char.cone(P).

The linear equality constraint 〈~a, ~x〉 = b defines an affine hyperplane of Rn, i.e.,
the intersection of the affine half-spaces 〈~a, ~x〉 ≥ b and 〈−~a, ~x〉 ≥ −b. Each
polyhedron P ∈ CPn can therefore be represented by a finite set of linear
equality and inequality constraints C called a constraint system. We write
P = con(C). The subsets of equality and inequality constraints in system C
are denoted by eq(C) and ineq(C), respectively. When P = con(C) 6= ∅, we say
that the constraint system C is in minimal form if # eq(C) = n− dim(P) and
there does not exist C ′ ⊂ C such that con(C ′) = P. All the constraint systems
in minimal form describing a given polyhedron have the same cardinality.
When the constraint system C is not in minimal form, a constraint γ ∈ C is
said to be redundant in C if con

(

C \ {γ}
)

= con(C).

Let P ∈ CPn. A vector ~p ∈ P is called a point of P; a vector ~r ∈ Rn, where
~r 6= ~0, is called a ray of P if P 6= ∅ and ~p + ρ~r ∈ P, for all points ~p ∈ P and
all ρ ∈ R+; a vector ~l ∈ Rn is called a line of P if both ~l and −~l are rays of P.
We do not distinguish between rays (resp., lines) differing by a positive (resp.,
non-null) factor so that, for example, (1, 3)T and (2, 6)T are the same ray.

Given three finite sets of vectors L,R, P ⊆ Rn such that L = {~l1, . . . ,~l`},
R = {~r1, . . . , ~rr}, P = {~p1, . . . , ~pp} and ~0 /∈ L∪R, then the triple G = (L,R, P )
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is called a generator system for the polyhedron

gen(G) :=







∑̀

i=1

λi
~li +

r
∑

i=1

ρi~ri +
p
∑

i=1

πi~pi

∣

∣

∣

∣

∣

∣

~λ ∈ R`, ~ρ ∈ Rr
+
, ~π ∈ Rp

+
,

∑p
i=1 πi = 1







.

The polyhedron gen(G) is empty if and only if P = ∅. If P 6= ∅, the vectors
in L, R and P are lines, rays and points of gen(G), respectively. We define
an ordering ‘vG’ on generator systems such that, for any generator systems
G1 = (L1, R1, P1) and G2 = (L2, R2, P2), G1 vG G2 if and only if L1 ⊆ L2,
R1 ⊆ R2 and P1 ⊆ P2; if, in addition, G1 6= G2, we write G1 @G G2. When
gen(G) 6= ∅, the generator system G = (L,R, P ) is said to be in minimal

form if #L = dim
(

lin.space(P)
)

and there does not exist a generator system

G ′
@G G such that gen(G ′) = gen(G). All the generator systems in minimal

form describing a given polyhedron have the same cardinalities for the line,
ray and point components.

The possibility of representing a convex polyhedron by means of both con-
straint and generator systems is the basis of the double description method [26],
which exploits the duality principle to compute each representation starting
from the other one, possibly minimizing both descriptions. Clever implemen-
tations of this conversion procedure, such as those based on the extension by
Le Verge [27] of Chernikova’s algorithms [28–30], are the starting point for the
development of software libraries based on the double description method. 1

Let β =
(

〈~a, ~x〉 ./ b
)

be a linear constraint, where ./ ∈ {≥, =}. We say that a

point (resp., a ray or a line) ~v saturates the constraint β if and only if 〈~a,~v〉 = b
(resp., 〈~a,~v〉 = 0). For each point ~p and constraint system C, we define the
constraint system

sat con(~p, C) := { β ∈ C | ~p saturates β };

for each constraint β and generator system G = (L,R, P ), we define the gen-
erator system sat gen(β,G) := (L′, R′, P ′), where

L′ := {~l ∈ L | ~l saturates β },

R′ := {~r ∈ R | ~r saturates β },

P ′ := { ~p ∈ P | ~p saturates β }.

A generator system G = (L,R, P ) is in orthogonal form if it is in minimal
form and R ∪ P ⊆ L⊥. All generator systems in orthogonal form describing a

1 These libraries include: Polylib, designed and written by H. Le Verge and
D. K. Wilde [27,31]; PolyLib, the successor of the library by Le Verge and Wilde [32];
New Polka, by B. Jeannet [33]; the polyhedra library that comes with the HyTech

tool [6]; the Parma Polyhedra Library [34,35].
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given polyhedron have identical sets of rays and points. A generator system in
minimal form can be transformed into an equivalent system in orthogonal form
by means of the well-known Gram-Shmidt method. By duality, orthogonal
forms can also be defined for constraint systems. For each linear constraint
β =

(

〈~a, ~x〉 ./ b
)

, where ./ ∈ {≥, =}, let slope(β) := ~a. A constraint system C

is in orthogonal form if it is in minimal form and we have I ⊆ E⊥, where

I :=
{

slope(β)
∣

∣

∣ β ∈ ineq(C)
}

,

E :=
{

slope(β)
∣

∣

∣ β ∈ eq(C)
}

.

All constraint systems in orthogonal form describing a given polyhedron have
identical sets of inequality constraints.

3 The Standard Widening

The first widening on convex polyhedra was introduced in [1]. Intuitively, if
P1 is the polyhedron obtained in the previous step of the upward iteration
sequence and the current step yields polyhedron P2, then the widening of P2

with respect to P1 is the polyhedron defined by all the constraints of P1 that
are satisfied by all the points of P2. An improvement on the above idea was
defined in [17]. This operator, termed standard widening, has indeed been used
almost universally.

The formal specification of the standard widening requires that each equality
constraint is split into the two corresponding linear inequalities; thus, for each
constraint system C, we define

repr≥(C) :=
{

〈−~a, ~x〉 ≥ −b
∣

∣

∣

∣

(

〈~a, ~x〉 = b
)

∈ C
}

∪
{

〈~a, ~x〉 ≥ b
∣

∣

∣

∣

(

〈~a, ~x〉 ./ b
)

∈ C, ./ ∈ {≥, =}
}

.

Definition 1 (Standard widening on CPn.) [17, Définition 5.3.3, p. 57]
For i = 1, 2, let Pi ∈ CPn be such that Pi = con(Ci) and Ii = repr≥(Ci)
[and let C1 be either inconsistent or in minimal form]. Then the polyhedron
P1 ∇S P2 ∈ CPn is defined as

P1 ∇S P2 :=







P2, if P1 = ∅;

con(I ′
1 ∪ I ′

2), otherwise;
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where

I ′
1 :=

{

β ∈ I1

∣

∣

∣

∣

P2 ⊆ con
(

{β}
)

}

,

I ′
2 :=

{

γ ∈ I2

∣

∣

∣

∣

∃β ∈ I1 . P1 = con
(

I1[γ/β]
)

}

.

The constraints in I ′
1 are those that would have been selected when using the

original proposal of [1], whereas the constraints in I ′
2 are added to ensure that

this widening is a well-defined operator on the domain of polyhedra (i.e., it
does not depend on the particular constraint representation).

Note that, in Definition 1, the condition in square brackets was implicit from
the context of [17, Définition 5.3.3, p. 57], though not explicitly present in
the definition itself. Such a requirement has been sometimes neglected in later
papers discussing the standard widening (and also in some implementations),
but it is actually needed in order to obtain a correct definition. In fact the
following two examples show that, if a non-minimal constraint description is
taken into account, then not only is the widening operator not well defined
(see Example 2) but also the chain condition may be violated (see Example 3).

Example 2 For i = 1, 2, let Pi = con(Ci) ∈ CP2, where

C1 = {x ≥ 0, y ≥ 0, x − y ≥ 2},

C2 = {x ≥ 2, y ≥ 0}.

Note that the constraint x ≥ 0 is redundant in C1. By applying Definition 1
without enforcing minimization, we would obtain the polyhedron

P = con
(

{x ≥ 0, y ≥ 0}
)

.

In contrast, when correctly enforcing minimization, we obtain the polyhedron

P ′ = con
(

{y ≥ 0}
)

.

Example 3 Consider, for each k ∈ N, the polyhedron Pk := con(Ck) ∈ CP1,
where

Ck :=

{

0 ≤ x, x ≤
k

k + 1

}

∪ {x ≤ 2},

and note that no Ck is minimal since the constraint x ≤ 2 is redundant in all
of them. Moreover, the infinite chain constituted by the Pk’s, that is, using an
interval notation,

P0 = [0, 0], P1 =

[

0,
1

2

]

, P2 =

[

0,
2

3

]

, P3 =

[

0,
3

4

]

, . . . ,
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is strictly increasing. We will now show that, if we do not enforce minimization
in the computation of the standard widening ‘∇S’, then for the infinite chain
Q0 = P0, . . . , Qk+1 = Qk ∇S Pk+1, . . . we have Qn = Pn for each n ∈ N, so
that the chain condition is violated.

For each n ∈ N we have Qn = con(Dn), where D0 := C0 and

Dk+1 :=
{

β ∈ Dk

∣

∣

∣

∣

Pk+1 ⊆ con
(

{β}
)

}

∪
{

γ ∈ Ck+1

∣

∣

∣

∣

∃β ∈ Dk . Qk = con
(

Dk[γ/β]
)

}

.

We will show by induction that Dn = Cn for each n ∈ N. First we note that
{0 ≤ x, x ≤ 2} ⊆ D0 = C0 and thus {0 ≤ x, x ≤ 2} ⊆ Dk for each k ∈ N,

since Pk+1 ⊆ con
(

{0 ≤ x}
)

and Pk+1 ⊆ con
(

{x ≤ 2}
)

. Now assume Dk = Ck

and take β = (x ≤ 2) ∈ Dk and γ =
(

x ≤ k+1
k+2

)

∈ Ck+1, so that

con
(

Dk[γ/β]
)

= con

({

0 ≤ x, x ≤
k

k + 1
, x ≤

k + 1

k + 2

})

= con

({

0 ≤ x, x ≤
k

k + 1

})

= con(Dk).

We thus have Dk+1 =
{

0 ≤ x, x ≤ k+1
k+2

, x ≤ 2
}

= Ck+1.

3.1 Implementation of the Standard Widening

The proposition below provides an algorithm for computing the standard
widening of the pair of polyhedra P1 and P2 when P1 ⊆ P2. The idea, which
was proposed in [17] and later reported in [23], is to replace the expensive
test in the specification of I ′

2 in Definition 1 with an appropriate saturation
condition to be checked on any generator system for P1. This is worthwhile in
all implementations based on the double description method. The algorithm
here is an improved version over these proposals since neither the addition of
the set of constraints I ′

1 as given in Definition 1 nor the splitting of equality
constraints into pairs of inequalities is required. A similar result, but without
the use of saturation conditions, can be found in [9, Chapter 6].

Proposition 4 Let P1 = con(C1) = gen(G1) ∈ CPn and P2 = con(C2) ∈ CPn,
where P1 ⊆ P2 and C1 is either inconsistent or in minimal form. Then

P1 ∇S P2 =







P2, if P1 = ∅;

con(CS), otherwise;

11



where CS :=
{

γ ∈ C2

∣

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

PROOF. The result holds trivially when P1 = ∅. Therefore, we assume
that P1 6= ∅, so that by hypothesis C1 is in minimal form, and prove that
P1 ∇S P2 = con(CS) by considering the two inclusions separately.

Assume the notation introduced in Definition 1 for the constraint systems I1,
I2 and I ′

1, I
′
2, so that P1 ∇S P2 = con(I ′

1 ∪ I ′
2). Let also IS = repr≥(CS), so

that con(CS) = con(IS) and

IS :=
{

γ ∈ I2

∣

∣

∣ ∃β ∈ I1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

First we prove P1∇S P2 ⊆ con(CS) by showing that IS ⊆ I ′
2. Suppose, for some

~a ∈ Rn and b ∈ R, γ :=
(

〈~a, ~x〉 ≥ b
)

∈ IS. By definition of CS, we have γ ∈ I2.
We will show that there exists β ∈ I1 such that

P1 = con
(

I1[γ/β]
)

(1)

so that, by Definition 1, γ ∈ I ′
2 as required. First note that, as γ ∈ IS, by the

hypothesis, we can assume that there exists β ′ ∈ C1 such that

sat gen(γ,G1) = sat gen(β ′,G1). (2)

We consider the two subcases β ′ ∈ eq(C1) and β′ ∈ ineq(C1) separately. Sup-
pose first that β ′ ∈ eq(C1). Then sat gen(β ′,G1) = G1 so that, by (2), we have

sat gen(γ,G1) = G1. Let γ ′ :=
(

〈~a, ~x〉 = b
)

be the equality constraint corre-

sponding to the inequality γ, so that we obtain sat gen(γ ′,G1) = G1. Thus, γ ′

is a valid equality for polyhedron P1. By hypothesis, C1 is in minimal form, so
that γ ′ (and hence, also γ) can be expressed as a linear combination of some
of the constraints in eq(C1). Namely, there exist k > 0 equality constraints
{γ1, . . . , γk} ⊆ eq(C1) such that both ~a =

∑k
i=1 λi~ai and b =

∑k
i=1 λibi hold

where, for 1 ≤ i ≤ k, λi ∈ R \ {0} and γi :=
(

〈~ai, ~x〉 = bi

)

. Thus

λ1~a1 = ~a −
k
∑

i=2

λi~ai; λ1b1 = b −
k
∑

i=2

λibi. (3)

For 1 ≤ i ≤ k, let γ+
i :=

(

〈~ai, ~x〉 ≥ bi

)

and γ−
i :=

(

〈−~ai, ~x〉 ≥ −bi

)

; moreover,
take

β1 :=







γ+
1 , if λ1 > 0;

γ−
1 , if λ1 < 0;

and, for 2 ≤ i ≤ k, let

βi :=







γ+
i , if λi < 0;

γ−
i , if λi > 0.

12



Note that, by definition of ‘repr≥’, we have {β1, β2, . . . , βk} ⊆ I1. Then, the
two equations (3) show that the inequality constraint β1 ∈ I1 can be computed
as a positive combination of the inequality constraint γ ∈ I ′

2 and the inequality
constraints {β2, . . . , βk} ⊆ I1. Therefore, (1) holds by letting β = β1.

For the second subcase, suppose β ′ ∈ ineq(C1), so that β ′ ∈ I1. As C1 is in
minimal form, sat gen(β ′,G1) 6= G1. Informally, β ′ can be seen as identifying
one of the facets of P1. Since (2) holds, the constraint γ identifies the same

facet of P1; since P1 ⊆ P2 ⊆ con
(

{γ}
)

, it is also a valid constraint for P1, so

that P1 = con
(

I1[γ/β′]
)

. Therefore, (1) holds by letting β = β ′.

Secondly we prove con(CS) ⊆ P1 ∇S P2; as P1 ∇S P2 = con(I ′
1 ∪ I ′

2), we have
to prove

con(CS) ⊆ con(I ′
1), (4)

con(CS) ⊆ con(I ′
2). (5)

To prove (4), we first show

con(CS) ⊆ aff.hull(P2) ⊆ aff.hull
(

con(I ′
1)
)

. (6)

Suppose γ ∈ C2 is a constraint defining the affine hull of P2, so that it is
saturated by all the points of P2. Since P1 ⊆ P2, γ is also saturated by all
the points of P1. Hence, there exists β ∈ C1 such that sat gen(β,G1) = G1 =
sat gen(γ,G1). Thus, by definition of CS, we have γ ∈ CS. As this holds for all

the constraints defining the affine hull of P2, aff.hull
(

con(CS)
)

⊆ aff.hull(P2).

Since P2 ⊆ P1 ∇S P2 ⊆ con(I ′
1), we have aff.hull(P2) ⊆ aff.hull

(

con(I ′
1)
)

and

hence, as con(CS) ⊆ aff.hull
(

con(CS)
)

, (6) holds.

We next show that, if β is any constraint in I ′
1, then con(CS) ⊆ con

(

{β}
)

. If

β is a constraint defining the affine hull of con(I ′
1), then this follows from (6).

Suppose next that β is not a constraint defining the affine hull of con(I ′
1). By

Definition 1, I ′
1 ⊆ I1; so that, as β ∈ I ′

1 and C1 is in minimal form, β defines
a facet of con(I ′

1) and β ∈ I1. By hypothesis, P1 ⊆ P2 and, by Definition 1,

P2 ⊆ con
(

{β}
)

; therefore there exists a constraint γ ∈ I2 that is saturated by

the same points in P2 that saturate β. Hence sat gen(β,G1) = sat gen(γ,G1)

so that γ ∈ IS and con(CS) = con(IS) ⊆ con
(

{γ}
)

; moreover, we also obtain

con
(

{γ}
)

∩ aff.hull(P2) = con
(

{β}
)

∩ aff.hull(P2) ⊆ con
(

{β}
)

so that, by (6), we have con(CS) = con
(

{γ}
)

∩ con(CS) ⊆ con
(

{β}
)

. Therefore

con(CS) ⊆ con
(

{β}
)

for all β ∈ I ′
1; hence (4) holds.

13



We now show that (5) holds. Suppose γ ∈ I ′
2 so that, by Definition 1, γ ∈ I2

and there exists β ∈ I1 such that P1 = con
(

I1[γ/β]
)

. As C1 is in minimal form,

sat gen(γ,G1) = sat gen(β,G1) so that γ ∈ IS; and hence con(CS) ⊆ con
(

{γ}
)

.

As the choice of γ ∈ I ′
2 was arbitrary, (5) holds. 2

The next example shows that the inclusion hypothesis P1 ⊆ P2 in Proposi-
tion 4, which is implicitly present in [17,23], is vital in guaranteeing that the
algorithm computes an upper approximation of P1 and P2. Note that this is
independent from the two improvements mentioned above.

Example 5 Let P1 := con(C1) ∈ CP2 and P2 := con(C2) ∈ CP2, where

C1 := {x = 0, 0 ≤ y ≤ 2},

C2 := {y ≥ 2}.

Then P1 = gen(G1), where G1 = (∅, ∅, P ) and P =
{

(0, 0)T, (2, 0)T

}

. Note

that P1 * P2. By Definition 1, we obtain I ′
1 = I ′

2 = ∅, so that P1 ∇S P2 = R2.
Considering the constraints β = (−y ≥ −2) ∈ C1 and γ = (y ≥ 2) ∈ C2, we
have

sat gen(β,G1) =
(

∅, ∅,
{

(2, 0)T

}

)

= sat gen(γ,G1),

so that γ ∈ CS. Thus, the result of the algorithm specified by Proposition 4
would be P2, which is different from P1 ∇S P2 and, moreover, is not an upper
approximation of P1.

As far as the implementation of the standard widening is concerned, it is worth
noting the following result, which provides the justification for an alternative
algorithm based on the original proposal in [1]. A similar result has also been
proved in [9, Chapter 6].

Proposition 6 Let P1,P2 ∈ CPn, where P1 ⊆ P2 and dim(P1) = dim(P2).
Let also P1 = con(C1), where the constraint system C1 is either inconsistent
or in minimal form. Then

P1 ∇S P2 =







P2, if P1 = ∅;

con(Cd), otherwise,

where Cd :=
{

β ∈ C1

∣

∣

∣ P2 ⊆ con
(

{β}
) }

.

PROOF. The result trivially holds if C1 is inconsistent. Thus, in the rest of
the proof, we assume that C1 is consistent and in minimal form.
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Let I1 = repr≥(C1) and Id = repr≥(Cd); let also I ′
1 be as given in Definition 1.

Since Id ⊆ I ′
1, we have P1 ∇S P2 ⊆ con(Id) = con(Cd). Thus, to prove that

P1 ∇S P2 = con(Cd), we show that con(Cd) ⊆ P1 ∇S P2.

As dim(P1) = dim(P2) and P1 ⊆ P2, we also have aff.hull(P1) = aff.hull(P2).
Thus, there exists a constraint system C2 which is in minimal form and such
that P2 = con(C2) and eq(C1) = eq(C2).

Let P1 = gen(G1) for some generator system G1 and

CS :=
{

γ ∈ C2

∣

∣

∣ ∃β ∈ C1 . sat gen(γ,G1) = sat gen(β,G1)
}

.

By Proposition 4, P1 ∇S P2 = con(CS). Therefore, it remains for us to show
that con(Cd) ⊆ con(CS). Suppose γ ∈ CS. Then, by definition of CS, there exists
β ∈ C1 such that

con
(

{β}
)

∩ aff.hull(P1) = con
(

{γ}
)

∩ aff.hull(P1). (7)

As P2 ⊆ con
(

{γ}
)

and P2 ⊆ aff.hull(P1), we obtain P2 ⊆ con
(

{β}
)

, so that

we also have β ∈ Cd. For any β ′ ∈ eq(C1), aff.hull(P1) ⊆ con
(

{β′}
)

so that,

since aff.hull(P1) = aff.hull(P2), P2 ⊆ con
(

{β′}
)

; and hence, by definition

of Cd, β′ ∈ Cd so that aff.hull(P1) = aff.hull
(

con(Cd)
)

. Therefore it follows

from (7) that con(Cd) ⊆ con
(

{γ}
)

. As this holds for all γ ∈ CS, we obtain

con(Cd) ⊆ con(CS). 2

The interesting fact about an algorithm based on Proposition 6 is that, in
most cases, the computation of a constraint system for the polyhedron P2 can
be avoided, because any generator system for P2 can be used to efficiently
check if dim(P1) = dim(P2) and, if so, to select the constraints from C1; only
if dim(P1) 6= dim(P2) do we have to fall back to an implementation based
on Proposition 4. Note that it is almost always the case that polyhedron P2

has been obtained as the result of a poly-hull operation so that, in a “lazy”
implementation based on the double description method, the polyhedron will
be described by a generator system only (since, in such implementations, the
poly-hull is computed by taking the union of the generator systems of the
arguments).

4 A Framework for Improving Upon a Widening

In this section, generalising an idea originally proposed in [3], we present a
framework for the systematic definition of new and precise widening operators
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improving upon an existing widening.

Since a generic widening operator is a partial function, our framework has to
make some assumptions about its domain of definition, so as to ensure that
any call to this operator is well defined. For this reason, in the following we
adopt a minor variation of the classical definition of the widening operator
given in Section 1 (see the footnote in [15, p. 275]).

Definition 7 (Widening.) Let 〈L,⊥,v,t〉 be a join-semi-lattice (i.e., the
least upper bound x t y exists for all x, y ∈ L). The operator ∇ : L × L � L
is a widening if

(1) for all x, y ∈ L, x v y implies that x ∇ y is defined and y v x ∇ y;
(2) for all increasing chains y0 v y1 v · · · , the increasing chain defined by

x0 := y0 and xi+1 := xi ∇ (xi t yi+1), for i ∈ N, is not strictly increasing.

It can be proved that, for any monotonic operator F : L → L, the upward
iteration sequence with widenings starting at the bottom element x0 := ⊥
and defined by

xi+1 :=







xi, if F(xi) v xi;

xi ∇
(

xi t F(xi)
)

, otherwise;

converges to a post-fixpoint of ‘F ’ after a finite number of iterations [15]. Note
that the widening is always applied to arguments x = xi and y = xi t F(xi)
satisfying x @ y. Therefore, problems such as the one outlined in Example 5
will be automatically avoided.

The framework is based on a class of preorders formalizing a notion of, so to
speak, “guaranteed limited growth.”

Definition 8 (∇-compatible limited growth ordering.) Let ‘∇’ be a
widening operator on the join-semi-lattice 〈L,⊥,v,t〉. A limited growth or-
dering ( lgo, for short) is the strict version of any finitely computable pre-
order on L that satisfies the ascending chain condition. A ∇-compatible lgo
y ⊆ L × L is a limited growth ordering such that

∀x, y ∈ L : x @ y =⇒ x y x ∇ y.

The computability requirement is important because we will directly use the
lgo relation to provide an executable specification of the new widenings. The
∇-compatibility requirement ensures that, in the definition of the new widen-
ing, we can use the widening ‘∇’ as a last resort operator without compromis-
ing the convergence guarantee. As a matter of fact, even the finite convergence
guarantee for the widening ‘∇’ is a direct consequence of the ∇-compatibility
requirement for the lgo relation.
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The next result shows how a ∇-compatible lgo simplifies the definition of a
new widening that improves on ‘∇’.

Theorem 9 Let ‘∇’ be a widening on the join-semi-lattice 〈L,⊥,v,t〉. Sup-
pose that y ⊆ L × L is a ∇-compatible lgo and h : L × L → L is an upper
bound operator. For all x, y ∈ L such that x v y, let

x ∇̃ y :=







h(x, y), if x y h(x, y) @ x ∇ y;

x ∇ y, otherwise.

Then the ‘ ∇̃’ operator is a widening at least as precise as ‘∇’.

PROOF. By hypothesis, ‘h’ is an upper bound operator and, by Definition 7,
the same holds for the widening ‘∇’. Thus, in all cases we have y v x ∇̃ y, so
that the first condition in Definition 7 holds. Note that, in both the cases of
the definition of ‘∇̃’, we have x y x ∇̃ y: in the first case, this property holds
by construction, whereas in the second case it holds by hypothesis, since the
limited growth ordering ‘y’ is ∇-compatible. By Definition 8, ‘y’ satisfies
the ascending chain condition, so that the second condition in Definition 7
also holds. Hence the ‘∇̃’ operator is a widening. Finally, the fact that ‘∇̃’ is
at least as precise as ‘∇’ follows directly from the definition of ‘∇̃’. 2

The above schema is easily extended to a framework for combining any finite
set of upper bound operators with an existing widening to form a new widening
operator with improved precision.

It should be stressed that Theorem 9 is not strong enough to ensure that the
final results of upward iteration sequences computed by using the improved
widening operator ‘∇̃’ are uniformly more precise than those obtained by using
the existing widening operator ‘∇’. This property would hold if both widen-
ings were monotonic on both of their arguments. However, such a stronger
requirement is rarely satisfied when considering accurate widening operators
on abstract domains having infinite ascending chains.

5 An Improvement Upon the Standard Widening

In this section, we instantiate the framework presented in Theorem 9 to a new
widening on the domain of convex polyhedra. In particular, we will define a
widening that improves upon the precision of the standard widening ‘∇S’. To
do this, we need to define both a specific ∇S-compatible lgo on CPn as well as
a set of upper bound operators for this domain.
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5.1 A ∇S-Compatible Limited Growth Ordering

The ∇S-compatible lgo we use for the new widening is defined as a combination
of several simpler lgo relations on the domain of convex polyhedra; for one of
these, we need the following ancilliary definition.

Definition 10 (Number of non-null coordinates of a vector.) For each
~v ∈ Rn, we write κ(~v) to denote the number of non-null coordinates of ~v. For
each finite set V ⊆ Rn, we define κ(V ) to be the multiset obtained by applying
‘κ’ to each of the vectors in V .

We now define a specific lgo relation as (the strict version of) the lexicographic
product of five preorders on CPn.

Definition 11 (‘yN ⊆ CPn × CPn’.) For i = 1, 2, let Pi = con(Ci) =
gen(Gi) ∈ CPn be a non-empty polyhedron, where the constraint system Ci is in
minimal form and the generator system Gi = (Li, Ri, Pi) is in orthogonal form.
Then the preorders �d,�`,�c,�p,�r ⊆ CPn × CPn are defined, respectively,
as the ∅-liftings of the following relations:

P1 �d P2
def
⇐⇒ # eq(C1) ≥ #eq(C2); (8)

P1 �` P2
def
⇐⇒ # L1 ≤ # L2; (9)

P1 �c P2
def
⇐⇒ # C1 ≥ # C2; (10)

P1 �p P2
def
⇐⇒ # P1 ≥ # P2; (11)

P1 �r P2
def
⇐⇒ κ(R1) vms κ(R2). (12)

The relation yN ⊆ CPn×CPn is the strict version of the lexicographic product
�n := �d`cpr ⊆ CPn×CPn of the five relations ‘�d’, ‘� ’̀, ‘�c’, ‘�p’, and ‘�r’,
taken in this order.

Note that the relation ‘yN ’ is well defined, since it does not depend on the
particular constraint and generator representations chosen. In particular, the
minimality conditions for the constraint (resp., generator) systems ensure that
the relations ‘�d’ and ‘�c’ (resp., ‘�`’ and ‘�p’) are well defined; moreover, the
orthogonality condition for the generator systems ensures that the computa-
tion of the multisets κ(Ri) is not ambiguous, so that ‘�r’ is also well-defined.

The next result shows that ‘yN ’ satisfies the hypotheses of the framework and
can be used to improve upon the standard widening.

Theorem 12 The ‘ yN’ relation is a ∇S-compatible lgo on CPn.
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PROOF. It follows directly from Definition 11 that all the five preorders
‘�d’, ‘�`’, ‘�c’, ‘�p’, and ‘�r’ are finitely computable. We show that all the
preorders satisfy the ascending chain condition.

To see this, consider their restriction to the set S = CPn \ {∅} of all the
non-empty polyhedra and assume the notation introduced in Definition 11.
As the constraint systems Ci and the generator systems Gi are in minimal
form, then we have n − # eq(Ci) = dim(Pi) and # Li = dim

(

lin.space(Pi)
)

.

As these dimensions can only have values in the finite set {0, . . . , n}, the
preorders ‘�d’ and ‘�`’ both satisfy the ascending chain condition on S. As
the cardinalities of the constraint systems Ci and of the sets of points Pi are
finite, the preorders ‘�c’ and ‘�p’ both satisfy the ascending chain condition
on S. As the cardinalities of the sets of rays Ri are finite, the multisets κ(Ri)
are also finite, so that the preorder ‘�r’ inherits the ascending chain condition
(on S) from the multiset partial order ‘vms’. The extension of all the preorders
on CPn does not pose problems because, as noted in Section 2, the ∅-lifting
preserves the ascending chain condition.

Since ‘�n’ is defined as the lexicographic product of these five relations, it is
still finitely computable and it satisfies the ascending chain condition so that,
by Definition 8, its strict version ‘yN ’ is a limited growth ordering on CPn. To
complete the proof, we show that ‘yN ’ is ∇S-compatible. Namely, assuming
that P1 ⊂ P2, we prove that P1 yN P1 ∇S P2.

If P1 = ∅, then P1 ∇S P2 = P2 and, since P1 ⊂ P2, by Definition 11 we
obtain P1 yN P2. Now suppose P1 6= ∅, so that also P2 6= ∅, and assume the
notation introduced in Definition 11.

Let P1 ∇S P2 = P and consider the constraint systems I ′
1 and I ′

2 as specified

in Definition 1. Then, P2 ⊆ con(I ′
1) since P2 ⊆ con

(

{β}
)

for all β ∈ I ′
1; and

also P2 ⊆ con(I ′
2) since I ′

2 ⊆ repr≥(C2). Thus,

P2 ⊆ con(I ′
1) ∩ con(I ′

2) = con(I ′
1 ∪ I ′

2) = P.

Since P1 ⊂ P2, we also obtain P1 ⊂ P so that dim(P1) ≤ dim(P) and

dim
(

lin.space(P1)
)

≤ dim
(

lin.space(P)
)

. Let P = con(C) = gen(G), where
the constraint system C is in minimal form and the generator system G =
(L,R, P ) is in orthogonal form. From the previous dimensionality properties,
it follows that # eq(C1) ≥ # eq(C) and # L1 ≤ # L so that, by Definition 11,
P1 �d P and P1 �` P.

If P1 ≺d P or P1 ≺` P, then we obtain P1 yN P. Otherwise, let P1 ≡d P and
P1 ≡` P. As P1 ⊂ P2 ⊆ P, from P1 ≡d P we also obtain P1 ≡d P2, so that
dim(P1) = dim(P2). Thus, Proposition 6 applies and we obtain P = con(Cd),

19



where

Cd =
{

β ∈ C1

∣

∣

∣

∣

P2 ⊆ con
(

{β}
)

}

.

As C1 is in minimal form and Cd ⊆ C1, Cd is also in minimal form. Moreover,
P1 ⊂ P2 ⊆ P implies Cd 6= C1, so that # C1 > # Cd. Thus we obtain P1 ≡d P,
P1 ≡` P and P1 ≺c P, which together imply P1 yN P. 2

The ‘yN ’ relation is a variant of a similar notion of limited growth defined
in [3, Theorem 3]. These two proposals are not formally comparable since
neither of the relations refines the other. On one hand, in Definition 11 we
consider preorders that were not considered in [3], namely ‘�c’ and ‘�r’; on the
other hand, due to the specific lexicographic product computed, the preorder
‘�p’ comes into play only when the iteration is stable with respect to ‘�c’.
Moreover, the relation defined in [3] is not ∇S-compatible: neither the standard
widening ‘∇S’, nor the heuristics informally sketched in [3] can ensure that
consecutive iterates satisfy the given notion of limited growth. In summary,
the overall approach in [3] does not define a widening operator in the precise
sense of Definition 7 [F. Besson, personal communication, 2002].

5.2 The Heuristic Techniques

We now present the four different heuristic techniques, later shown to be upper
bound operators, that we will use for constructing the new widening.

5.2.1 First Technique: Do Not Widen

The simplest heuristics, already suggested in [15] and adopted in [3], is the
one saying “do not widen”: if we are along an iteration chain having finite
length, there is no need to provide further approximations, so that we can
safely return the most precise upper bound P2 (remember that we assume
P1 ⊂ P2). In our context, this is the case whenever P1 yN P2.

Figure 1 shows two examples where the “do not widen” technique is able
to improve on the standard widening. In the left hand diagram, the result
of the application of the standard widening to the line segment P1 and the
rectangle P2 is P1 ∇S P2 = R2. Since dim(P1) = 1 < 2 = dim(P2), we have
P1 ≺d P2, which implies P1 yN P2. In the right hand diagram, the result of
the application of the standard widening to the half stripe polyhedron P1 and
the full stripe polyhedron P2 is again R2. Since dim(P1) = dim(P2) = 2 and

dim
(

lin.space(P1)
)

= 0 < 1 = dim
(

lin.space(P2)
)

, we obtain P1 ≡d P2 and
P1 ≺` P2, which again imply P1 yN P2. Thus, in both cases, the “do not
widen” heuristics will return the most precise upper bound P2.
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P1 ∇S P2

Fig. 1. The “do not widen” heuristics improving on the standard widening.

As this heuristic technique, when applicable, returns the most precise result,
it has to be tried first. As a consequence, all the other widening techniques
considered here including the standard widening, are only applied to a pair
of polyhedra P1 and P2 such that P1 6y

N
P2: by Definition 11, this implies

both dim(P1) ≥ dim(P2) and dim
(

lin.space(P1)
)

≥ dim
(

lin.space(P2)
)

so

that, by the hypothesis P1 ⊂ P2, we also obtain aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2), respectively. For these other techniques,
since we cannot return the most precise upper bound P2, we have to select
what information will be lost. Informally, we will try to preserve the informa-
tion provided by stable components, whereas the information of components
that have changed will be extrapolated according to a hypothetical “change
pattern.” For instance, in the case of the widening in [1], each element of a
constraint system is regarded as a separate component and the extrapolation
just forgets about the constraints that have changed.

5.2.2 Second Technique: Combining Constraints

The second heuristics, which is a variant of a similar one sketched in [3], can be
seen as an application of the above approach, where instead of the constraints
we consider the points in the generator system describing the polyhedron of
the previous iteration. When using the standard widening it may happen that
points that are common to the boundaries of P1 and P2 (and, hence, likely
to be an invariant feature along the chain of polyhedra) will not lie on the
boundary of the widened polyhedron. This is the case, for instance, for the
points ~p and ~q in Figure 2. For such a point, the technique forces the presence
of an inequality constraint that is saturated by the point, so that they will lie
on the boundary of the result.

Definition 13 (Combining Constraints.) Let P1,P2 ∈ CPn be such that
P1 ⊂ P2, aff.hull(P1) = aff.hull(P2) and lin.space(P1) = lin.space(P2). Let
P1 = gen(G1), P2 = con(C2) and P1 ∇S P2 = con(CS), where the constraint
systems C2, CS and the generator system G1 = (L1, R1, P1) are in orthogonal
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Fig. 2. The heuristics ‘hc’ improving on the standard widening.

form. Let also

C⊕ :=







⊕(C~p)

∣

∣

∣

∣

∣

∣

~p ∈ P1, sat con
(

~p, ineq(CS)
)

= ∅,

C~p = sat con
(

~p, ineq(C2)
)

6= ∅







,

where the operator ‘⊕’ computes a convex combination of a non-empty set of
linear inequality constraints (i.e., of the corresponding coefficients), returning
another linear inequality constraint. Then hc(P1,P2) := con(CS ∪ C⊕).

Since the operator ‘hc’ is only defined for arguments having the same affine
hull and lineality space, by requiring orthogonal forms we ensure that the
result does not depend on the particular representations considered.

Note that the particular convex combination encoded by function ‘⊕’ is de-
liberately left unspecified so as to allow for a very liberal definition of ‘hc’
that still possesses the required properties. For instance, in [3] it was argued
that a good heuristics could be obtained by letting ‘⊕’ compute a normed
linear combination (i.e., a sort of average) of the chosen constraints. Another
legitimate choice would be to “bless” one of the constraints in C~p and forget
all the others. In both cases, by keeping just one constraint for each point ~p,
we hopefully reduce the cardinality of the constraint system describing the
result, so that it is more likely that a strict increase on the preorder ‘�c’
will be obtained. Actually, this attempt at reducing the number of constraints
is the main difference between the technique presented in Definition 13 and
the extrapolation operator proposed in [19, Section 3.3], which could itself be
included in the current framework as a more refined widening heuristics.

5.2.3 Third Technique: Evolving Points

Our third heuristic technique is a variant of the extrapolation operator ‘∝’
defined in [18]. The technique examines each new point ~p2 of the polyhedron
P2 as if it was obtained from each old point ~p1 of the polyhedron P1: we
say that ~p2 is an evolution of ~p1. The extrapolation is defined as continuing
this evolution towards infinity, therefore generating the ray having direction
~p2−~p1. To ensure the resulting polyhedron is at least as precise as the standard
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Fig. 3. The heuristics ‘hp’ improving on the standard widening.

widening, any new rays that violate a constraint of the standard widening are
dropped. Note that any remaining new rays will subsume the point ~p2, so that
it is likely that a strict increase in the preorder ‘�p’ will be obtained.

Definition 14 (Evolving Points.) Let P1,P2 ∈ CPn be such that P1 ⊂ P2

and lin.space(P1) = lin.space(P2). For each i = 1, 2, consider a generator
system Gi = (Li, Ri, Pi) in orthogonal form such that Pi = gen(Gi) and let

R :=
{

~p2 − ~p1

∣

∣

∣ ~p1 ∈ P1, ~p2 ∈ P2 \ P1

}

.

Then we define hp(P1,P2) = gen
(

(L2, R2 ∪ R,P2)
)

∩ (P1 ∇S P2).

Since the operator ‘hp’ is only defined for arguments having the same lineality
space, by requiring orthogonal forms we ensure that the result does not depend
on the particular generator system representations considered.

Figure 3 shows an example where the “evolving points” technique is able to
improve on the standard widening. Note that the boundary of P1∇SP2 contains
the intersection of the boundaries of P1 and P2, so that the “combining con-
straints” technique is not applicable. Besides having the same affine hull and
lineality space, polyhedra P1, P2 and hp(P1,P2) are defined by constraint sys-
tems in minimal form having the same cardinality, so that P1 yN hr(P1,P2)
holds because we have a strict increase in the preorder ‘�p’.

The difference with respect to the extrapolation operator ‘∝’ is that we do not
require the two points to lie on the same 1-dimensional face of P2; moreover,
the result of ‘∝’ may be less precise than the standard widening. Note that,
as in the “combining constraints” technique, it is possible to add just a single
ray which is a convex combination of the rays in R instead of the complete
set R, yielding a more precise widening technique. However, this technique
and the one defined by the ‘hp’ operator are incomparable with respect to the
‘yN ’ relation and one can fail the ‘yN ’ convergence criterion when the other
succeeds.
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5.2.4 Fourth Technique: Evolving Rays

In the fourth heuristic technique (which is new), we try to extrapolate the
rays that have evolved since the last iteration. The technique examines each
new ray ~r2 of the polyhedron P2 as if it was generated by rotation of each
old ray ~r1 of the polyhedron P1: we say that ~r2 is an evolution of ~r1. The
extrapolation is defined as continuing this evolution until one or more of the
non-null coordinates of ray ~r2 become zero. This way, it is likely that a strict
increase in the preorder ‘�r’ will be obtained. Intuitively, the new ray will
reach one of the boundaries of the orthant 2 where ~r2 lies, without trespassing
it. As for the previous heuristics, to ensure the resulting polyhedron is at least
as precise as the standard widening, any new ray that violates a constraint of
the standard widening is dropped.

Definition 15 (‘evolve’.) The function evolve: Rn×Rn → Rn is defined, for
each ~u,~v ∈ Rn, as evolve(~u,~v) := ~w, where

wi :=







0, if ∃j ∈ {1, . . . , n} . (uivj − ujvi)uiuj < 0,

ui, otherwise.

To understand this definition consider a pair of coordinates i and j and suppose
that the vectors ~u and ~v are projected onto the two-dimensional plane defined
by i (for the first coordinate) and j (for the second coordinate). Then, we
identify the direction of the rotation of the vector (ui, uj)

T with respect to the
vector (vi, vj)

T by using the well-known cross-product test [36, Chapter 35];
the direction is clockwise if c := uivj − ujvi > 0 and anti-clockwise when
c < 0. Moreover, vector (ui, uj)

T lies inside the first or third quadrant when
q = uiuj > 0 and it lies inside the second or fourth quadrant when q < 0.
Then, the condition cq < 0 states that the evolution is clockwise and (ui, uj)

T

is in the second or fourth quadrant or the evolution is anti-clockwise and
(ui, uj)

T is in the first or third quadrant: in all these cases, the evolution is
towards the j axis. Thus, for a fixed i, if there exists j such that the evolution
is towards the j axis, then we define wi = 0. Otherwise, we let wi = ui. We
are now ready to define our last widening heuristics.

Definition 16 (Evolving Rays.) Let P1,P2 ∈ CPn be such that P1 ⊂ P2

and lin.space(P1) = lin.space(P2). For each i = 1, 2, consider a generator
system Gi = (Li, Ri, Pi) in orthogonal form such that Pi = gen(Gi) and let

R :=
{

evolve(~r2, ~r1)
∣

∣

∣ ~r1 ∈ R1, ~r2 ∈ R2 \ R1

}

.

Then we define hr(P1,P2) := gen
(

(L2, R2 ∪ R,P2)
)

∩ (P1 ∇S P2).

2 An orthant is one of the 2n regions of Rn defined by the 2n possible combinations
of signs for x1, . . . xn.
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Fig. 4. The heuristics ‘hr’ improving on the standard widening.

Figure 4 shows an example where the “evolving rays” technique is able to
improve on the standard widening. It should be noted that the boundary of
P1 ∇S P2 contains the intersection of the boundaries of P1 and P2, so that the
“combining constraints” technique is not applicable. Neither can the “evolving
points” technique be applied, since P1 and P2 are defined by generator systems
in orthogonal form having the same set of points. Besides having the same
affine hull and lineality space, polyhedra P1, P2 and hr(P1,P2), are defined by
constraint and generator systems in minimal form having the same number
of constraints and points, so that P1 yN hr(P1,P2) holds because we have a
strict increase in the preorder ‘�r’.

5.3 The New Widening

In order to use these heuristic techniques in the general framework of Theo-
rem 9, we must show that each of them is an upper bound operator. The first
technique is by definition an upper bound operator. We now show that the
other three techniques are also upper bound operators.

Proposition 17 Let P1,P2 ∈ CPn, where P1 ⊂ P2, aff.hull(P1) = aff.hull(P2)
and lin.space(P1) = lin.space(P2). Then, for each technique h ∈ {hc, hp, hr},
P2 ⊆ h(P1,P2) ⊆ P1 ∇S P2.

PROOF. Let Pt = h(P1,P2). Consider first the case when h = hc and assume
the notation introduced in Definition 13. The proof for Pt ⊆ P1 ∇S P2 is
immediate, since Pt is defined by a constraint system CS ∪ C⊕ including all
of the constraints defining P1 ∇S P2. To prove that P2 ⊆ Pt we show that
P2 ⊆ con

(

{β}
)

, for each constraint β ∈ CS ∪ C⊕ defining Pt. Clearly, if β ∈ CS

then the inclusion holds by the fact that the standard widening is an upper
bound operator. If otherwise β ∈ C⊕, then, for some C~p ⊆ ineq(C2), we have

β = ⊕(C~p), so that P2 ⊆ con(C~p) ⊆ con
(

{β}
)

.

Next, consider the cases when h ∈ {hp, hr} and assume the notation intro-
duced in Definitions 14 and 16. Let G ′ = (L2, R2 ∪ R,P2) and P ′ = gen(G ′);
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then Pt = P ′ ∩ (P1 ∇S P2). Thus Pt ⊆ P1 ∇S P2. As G2 vG G ′, we obtain
P2 ⊆ P ′. Moreover, since the standard widening is an upper bound operator,
we also have P2 ⊆ P1∇SP2. Therefore, by the monotonicity of set intersection,
we conclude P2 ⊆ Pt. 2

We now present our new widening operator.

Definition 18 (The ‘∇N ’ widening.) Let P1,P2 ∈ CPn, where P1 ⊂ P2.
Then

P1 ∇N P2 :=







































P2, if P1 yN P2;

hc(P1,P2), if P1 yN hc(P1,P2) ⊂ P1 ∇S P2;

hp(P1,P2), if P1 yN hp(P1,P2) ⊂ P1 ∇S P2;

hr(P1,P2), if P1 yN hr(P1,P2) ⊂ P1 ∇S P2;

P1 ∇S P2, otherwise.

It can be seen that ‘∇N ’ is an instance of the framework given in Theorem 9:
in particular, when applying the first heuristics, the omission of the applica-
bility condition P2 ⊂ P1 ∇S P2 is a simple and inconsequential optimization.
Thus, the following result is a direct consequence of Theorems 9 and 12 and
Proposition 17.

Proposition 19 The ‘∇N’ operator is a widening at least as precise as ‘∇S’.

PROOF. Suppose that P1,P2 ∈ CPn, where P1 ⊂ P2, so that Definition 18
applies. If P2 = P1 ∇S P2, then P1 ∇N P2 = P1 ∇S P2. By Theorem 12, ‘yN ’ is
a ∇S-compatible lgo on CPn. Moreover, when P2 ⊂ P1 ∇S P2, all the heuristic
techniques used in Definition 18 are upper bound operators since the first
technique returns the least upper bound P2 while, for the other techniques,
this is a consequence of Proposition 17. Therefore we can apply Theorem 9 to
obtain the thesis. 2

As already explained at the end of the previous section, Proposition 19 cannot
ensure that a static analysis that is using the new widening will never be
less precise than the same analysis but using the standard widening. The
reasons are illustrated in the next example, where we show that the standard
widening is not monotonic on its first argument [1] and the new widening is
not monotonic on both arguments.
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Example 20 Consider the polyhedral domain CP2 and let

P1 = con
(

{2 ≤ x ≤ 3, 2 ≤ y ≤ 3}
)

,

P ′
1 = con

(

{0 ≤ x ≤ 5, 0 ≤ y ≤ 5, 2 ≤ x + y ≤ 8,−3 ≤ x − y ≤ 3}
)

,

P2 = con
(

{0 ≤ x ≤ 5, 0 ≤ y ≤ 5, 1 ≤ x + y ≤ 9,−4 ≤ x − y ≤ 4}
)

,

so that P1 ⊂ P ′
1 ⊂ P2. By Definitions 1 and 18, noting that both P1 6y

N
P2

and P ′
1 6yN

P2, we obtain

P1 ∇S P2 = P1 ∇N P2 = R2,

P ′
1 ∇S P2 = P ′

1 ∇N P2 = con
(

{0 ≤ x ≤ 5, 0 ≤ y ≤ 5}
)

.

Thus, we have P1 ∇S P2 * P ′
1 ∇S P2 and P1 ∇N P2 * P ′

1 ∇N P2, showing that
neither the standard widening nor the new widening are monotonic on the first
argument. Consider now

Q1 = con
(

{1 ≤ x ≤ 2, 1 ≤ y ≤ 2}
)

,

Q2 = con
(

{0 ≤ x ≤ 3, 0 ≤ y ≤ 3}
)

,

Q′
2 = con

(

{x ≥ 0, y ≥ 0, x + y ≤ 6}
)

,

so that Q1 ⊂ Q2 ⊂ Q′
2. By Definition 18, as Q1 6yN

Q2 but Q1 yN Q′
2,

Q1 ∇N Q2 = Q1 ∇S Q2 = R2,

Q1 ∇N Q′
2 = Q′

2.

Thus, we obtain Q1 ∇N Q2 * Q1 ∇N Q′
2, showing that the new widening is not

monotonic on its second argument either.

Note that in spite of this lack of monotonicity the experimental evaluation re-
ported in the next section shows that, for the considered application, precision
degradations are very rare.

6 Experimental Evaluation

We have extended the Parma Polyhedra Library (PPL) [34,35], a modern C++

library for the manipulation of convex polyhedra, with a prototype implemen-
tation of the widening of Definition 18. The PPL has been integrated with the
China analyzer [37] for the purpose of detecting linear argument size relations
[8]. Our benchmark suite consists of 361 Prolog programs, ranging from small
synthetic benchmarks to real-world applications. They define 23279 predicates
whose analysis with China requires the direct use of a widening and about
as many predicates for which no widening is used. In this respect, it must be
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# programs # predicates

k (delay) improve degr incomp improve degr incomp

0 121 0 2 1340 3 2

1 34 0 0 273 0 0

2 29 0 0 222 0 0

3 28 0 0 160 0 0

4 25 0 2 126 2 0

10 25 0 0 124 0 0

Table 1
Precision comparisons.

noted that China employs a sophisticate chaotic iteration strategy proposed
in [38,39] that, among other benefits, allows to greatly reduce the number of
widenings’ applications. 3 This is an important point, since it would be quite
easy to improve on an iteration strategy applying widenings “everywhere or
improperly” [38]. The results of this experimental evaluation are summarized
in Tables 1 and 2, where each row corresponds to a different choice for the value
of the extrapolation threshold k, controlling the delay before the applications
of both the standard and the new widening operators.

Table 1 shows the obtained precision improvements (in the columns labeled
‘improve’) and degradations (in the columns labeled ‘degr’), both in terms of
the number of programs and the number of predicates affected; in the columns
labeled ‘incomp’ we report those cases where incomparable results have been
obtained. For k = 0, we observe a precision improvement on one third of the
considered programs; not surprisingly, fewer improvements are obtained for
higher values of k, but we still have an improvement on 7% of the benchmarks
when considering k = 10. While confirming, as informally argued in [8], that
for this particular analysis there is little incentive in using values of k greater
than 4, our experiments show that the new widening captures growth patterns
that do happen in practice and that for the standard widening (no matter
how delayed) are out of reach. This is important since the results obtained in
practice are, besides correctness, what really matters when evaluating widen-
ing operators. The experimentation also shows that the idea of delaying the
widening [16] maintains its validity: even though the new widening is less sen-
sible to the amount of delay applied, the results are still sensibly improved by
delaying.

3 China uses the recursive fixpoint iteration strategy on the weak topological or-
dering defined by partitioning of the call graph into strongly-connected subcompo-
nents [39].
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k

∇S

k

∇N

k (delay) all top 20 all top 20

0 1.00 0.72 1.05 0.77

1 1.09 0.79 1.11 0.80

2 1.16 0.83 1.18 0.84

3 1.23 0.88 1.25 0.89

4 1.32 0.95 1.34 0.95

10 1.82 1.23 1.85 1.24

Table 2
Time comparisons.

Table 2 shows the sum, over all the benchmarks, of the fixpoint computation
times. This is expressed as a proportion of the time spent when using the stan-
dard widening with k = 0. Since smaller benchmarks may affect the outcome
of this summarization, in the columns labeled ‘top 20’ we also show the same
values but restricted to the 20 benchmarks whose analysis takes more time.
It can be seen that the new widening has a negative, but relatively modest
impact on efficiency, which anyway is smaller than the cost of increasing the
value of k. When looking at these time results, it should be considered that we
are comparing a prototype implementation of the new widening with respect
to a rather optimized implementation of the standard widening. It is also im-
portant to remark that the good performance degradation observed for both
widenings when increasing the value of k is essentially due to the iteration
strategy employed by China and should not be expected to automatically
carry over to systems using other fixpoint computation techniques.

7 Improved Widening Strategies

The technique of employing an extrapolation threshold k has been tradition-
ally implemented (and our experimental evaluation makes no exception) in a
“simple way” [15], as a blind delay in the application of the widening. Namely,

for each widening operator ‘∇’, the widening operator ‘
k

∇’ is formalized as fol-
lows, where each abstract value is a pair recording, in its second component,
the iterations in which it has been computed:

〈x, i〉
k

∇ 〈y, i + 1〉 :=















〈x, i + 1〉, if y v x;

〈x t y, i + 1〉, if i < k;

〈x ∇ y, i + 1〉, otherwise.
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Thus, no matter what abstract value would have been computed by the widen-
ing, the widening is never applied in the first k iteration steps and it is always
applied in all the following iteration steps.

In our opinion, a better approximation strategy can be obtained by interpret-
ing the value k as the maximum number of iterations for which the computa-
tion of the widening can be safely avoided. Thus, an abstract value is a pair
carrying a number of “tokens” t, each of them allowing for the replacement of
one widening application by the exact upper bound. Aiming at an improve-
ment in the final result, each widening operator should be left free to choose
when to use the available tokens. For instance, tokens should not be wasted
when the widening is precise, that is, when it simply computes the least upper

bound of its arguments. The following definition of ‘
◦

∇’ (widening with tokens)
formalizes this idea:

〈x, t〉
◦

∇ 〈y, ·〉 :=



























〈x, t〉, if y v x;

〈x ∇ y, t〉, if x ∇ y = x t y;

〈x t y, t − 1〉, if t > 0;

〈x ∇ y, 0〉, otherwise.

The iteration sequence will begin with abstract values of the form 〈x0, k〉, that
is, with k tokens where k is a parameter of the analysis; the number of tokens
will decrease along the iteration chain and, when there are no tokens left, the
widening will always be applied. Notice that, when instantiating the above
construction with our new widening operator ‘∇N ’ (and assuming the inclusion

hypothesis), the conditional guard for the second case of the definition of ‘
◦

∇’
becomes P1 ∇N P2 = P2, which can be easily implemented by performing the
test P1 yN P2.

Also note that more general definitions for ‘
◦

∇’ are possible: for instance, when
x∇ y 6= xt y and t > 0 (i.e., the widening does not compute the exact upper
bound and there still are tokens available), we may nonetheless choose to
apply the widening operator, provided the corresponding approximation is
good enough. This way, we may preserve the tokens and use them to avoid
some later approximations, which could be much coarser than the current
one. Clearly, such an approach depends on the particular formalization of the
notion of “good enough”, which is, along with the value of k, intrinsically
application dependent.

More clever delay strategies have been proposed in the literature. As an ex-
ample, in [4,23] it is suggested that, in order to mitigate the precision losses
caused by irregularities in the control flow of the analyzed system, the early
extrapolations can be undone and recomputed when more information is avail-
able. This happens, for instance, when a polyhedron associated to a widening

30



point depends on another polyhedron which becomes non-empty only after
the computation of some iterates. In most cases, these enhanced widening
strategies are independent of the specific widening operator and abstract do-
main considered, so that they can be applied to the widenings obtained by
instantiating the framework presented here.

As mentioned in the introduction, for the domain of polyhedra, another way
to improve the precision of the standard widening is to apply the ‘widening up
to’ technique [4,23]: namely, for any fixed and finite set of constraints C, the
standard widening “up to C” is defined as the intersection of the polyhedron
P1 ∇S P2 with all the constraints in C that are satisfied by both arguments P1

and P2. However, as the technique may add constraints, it appears that its
application might interfere with the cardinality-based convergence criterion of
the standard widening. Observe though that, by Definition 1, a constraint in
a minimal constraint system describing P1 will be dropped only if it is vio-
lated by P2. Hence, once a constraint in C has been dropped by the standard
widening, the ‘widening up to’ technique will never restate it back. As a con-
sequence, in an iteration sequence with the widening “up to C” applied, the
number of times this technique can actually improve on the standard widen-
ing may not exceed the cardinality of C. As C is finite, any iteration sequence
using this technique will always converge.

The ‘widening up to’ technique can also be combined with the new widening:
being at least as precise as the standard widening, the operator ‘∇N ’ still sat-
isfies the above observation, so that the convergence of the iteration sequence
is preserved. In fact, in the experimental evaluation of the previous section,
the ‘widening up to’ technique has been applied to both widenings so as to
enforce the non-negativity constraints for the numeric variables representing
the argument sizes. It should though be stressed that, in the general case,
the combination of the ‘widening up to’ technique with an arbitrary widening
operator may cause divergence.

8 Conclusion and Related Work

For the domain of convex polyhedra, the convergence guarantee of the fixpoint
computation sequence has been traditionally obtained thanks to the widening
operator proposed by Cousot and Halbwachs. Though remarkably precise, this
operator does not fulfill the requirements of a number of systems’ analysis and
verification applications that are particularly sensitive to the precision of the
deduced numerical information. In this paper, elaborating on an idea proposed
in [3], we have defined a framework for the systematic specification of new
widening operators improving on the precision of an existing widening. The
framework allows any upper bound operator on the abstract domain to be
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used as a heuristic technique for improving precision, while still ensuring the
termination of the abstract computation. We have instantiated the framework
on the domain of convex polyhedra with a selection of extrapolation operators,
some of which embody improvements of heuristics already proposed in the
literature. A first experimental evaluation has yielded promising results. The
experimental work has also suggested that the well-known widening delay
technique can be improved, yet retaining its overall simplicity. Our proposal is
to delay the widening application only when this prevents actual (as opposed
to potential) precision losses. The resulting widening would thus adapt, to
some extent, to the abstract description chain being traversed.

It is worth noticing that the framework presented in this paper is indeed quite
general. It is based on the specification of a computational ordering [14] that
satisfies the ascending chain condition. Then a preexisting widening and any
finite set of extrapolation heuristics are combined so as to ensure that the
combination turns every ascending chain (with respect to the approximation
ordering) into a chain for the computational ordering. We have shown that this
is sufficient to ensure that the combination defines a widening. Moreover, we
have also shown that the new widening so obtained is never less precise than
the preexisting widening: this is an important feature for those cases, such as
the one of convex polyhedra, where the preexisting widening has proved its
adequacy on a number of different applications. This general idea is exploited
in [40] to obtain widenings for finite powerset domains (i.e., particular refine-
ments of an abstract domain that allow for the exact representation of finite
disjunctions), and we expect it can be successfully adopted for any abstract
domain.
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