
Unconstrained Variable Oracles
for Faster Numeric Static Analyses

Vincenzo Arceri1[0000−0002−5150−0393], Greta Dolcetti1[0000−0002−2983−9251], and
Enea Zaffanella1[0000−0001−6388−2053]

Department of Mathematical, Physical and Computer Sciences
University of Parma, Parma I-43124, Italy

vincenzo.arceri@unipr.it, greta.dolcetti@studenti.unipr.it,
enea.zaffanella@unipr.it

Abstract. In the context of static analysis based on Abstract Inter-
pretation, we propose a lightweight pre-analysis step which is meant to
suggest, at each program point, which program variables are likely to be
unconstrained for a specific class of numeric abstract properties. Using
the outcome of this pre-analysis as an oracle, we simplify the statements
of the program being analyzed by propagating this lack of information,
aiming at fine-tuning the precision/efficiency trade-off of the analysis. A
preliminary experimental evaluation shows that the idea underlying the
approach is promising, as it improves the efficiency of the more costly
analysis while having a limited effect on its precision.

Keywords: Abstract Interpretation · Static Analysis · Unconstrained
Variables · Abstract Compilation.

1 Introduction

Static analyses based on Abstract Interpretation [12] correctly approximate
the collecting semantics of a program by executing it on an abstract domain
modeling the properties of interest. In the classical approach, which follows a
pure program interpretation scheme, the concrete statements of the original
program are abstractly executed step by step, updating the abstract property
describing the current program state: while being correct, this process may
easily incur avoidable inefficiencies and/or precision losses. To mitigate this issue,
static analyzers sometimes apply simple, safe program transformations that are
meant to better tune the trade-off between efficiency and precision. For instance,
when trying to improve efficiency, the evaluation of a complex nonlinear numeric
expression (used either in a conditional statement guard or as the right hand
side expression in an assignment statement) may be abstracted into a purely
nondeterministic choice of a value of the corresponding datatype; in this way, the
overhead incurred to evaluate it in the considered abstract domain is avoided,
possibly with no precision loss, since its result was likely imprecise anyway. On
the other hand, when trying to preserve precision, a limited form of constant
propagation may be enough to transform a nonlinear expression into a linear one,

2 V. Arceri, G. Dolcetti, E. Zaffanella

thereby allowing for a reasonably efficient and precise computation on commonly
used abstract domains tracking relational information. As another example, some
tools apply a limited form of loop unrolling (e.g., unrolling the first iteration of the
loop [8]) to help the abstract domain in clearly separating those control flows that
cannot enter the loop body from those that might enter it; this transformation
may trigger significant precision improvements when the widening operator is
applied to the results of the loop iterations.

Sometimes, the program transformations hinted above are only performed at
the semantic level, without actually modifying the program being analyzed; hence,
the corresponding static analysis tools can still be classified as pure program
interpreters. However, in principle the approach can be directly applied at the
syntactic level, so as to actually translate the original program into a different
one, thereby moving from a pure program interpretation setting to a hybrid
form of (abstract) compilation and interpretation. Note that the term Abstract
Compilation, introduced in [21,31], sometimes has been understood under rather
constrained meanings: for instance, [17] and [1] assume that the compiled abstract
program is expressed in an existing, concrete programming language; [9] and [32]
focus on those inefficiencies that are directly caused by the interpretation step,
without considering more general program transformations. Here we adopt the
slightly broader meaning whereby portions of the approximate computations done
by the static analysis tool are eagerly performed in the compilation (i.e., program
translation) step and hence reflected in the abstract program representation
itself. Clam/Crab [18] and IKOS [10] are examples of tools adopting this hybrid
approach for the analysis of LLVM bitcode, leveraging on specific intermediate
representations designed to accomodate several kinds of abstract statements.
A similar approach is adopted in LiSA [16,27], to obtain a uniform program
intermediate representation when analyzing programs composed by modules
written using different programming languages.

Paper contribution. Adopting the Abstract Compilation approach, we propose
a program transformation that is able to tune the trade-off between precision
and efficiency. The transformation relies on an oracle whose goal is to suggest,
for each program point, which program variables are likely unconstrained for a
target numeric analysis of interest. By systematically propagating the guessed
lack of information, the oracle will guide the program transformation so as to
simplify those statements of the abstract program for which the target analysis
is likely unable to track useful information.

We model our oracles as pre-analyses on the abstract program, considering
two Boolean parameterizations and thus obtaining four possible oracle variants:
we will have non-relational or relational numeric analysis oracles and each of
them can be existential or universal. The proposed program transformation can
be guided by any one of these variants, allowing different degrees of program
simplification, thereby obtaining different trade-offs between the precision and the
efficiency of the target analysis. It is important to highlight that the oracles we are
proposing have no intrinsic correctness requirement; as we will discuss in Section 2,
whatever oracle is adopted to guess the set of unconstrained variables, its use

Unconstrained Variable Oracles for Faster Numeric Static Analyses 3

will always result in a correct program transformation. The (im-)precision of the
oracle guesses can only affect the precision and efficiency of the target numeric
analysis: aggressive oracles, which predict more variables to be unconstrained,
will result in faster but potentially less precise analyses; conservative oracles, by
predicting fewer unconstrained variables, will result in slower analyses, potentially
preserving more precision.

Our proposal will be experimentally evaluated on two benchmark suites: the
first one, distributed with PAGAI [20], is a classical set of benchmarks for WCET
(worst-case execution time) analysis; the second one contains 10 Linux drivers
taken from the SV-COMP repository. We will test the four oracle variants on
these benchmarks, considering as target analyses the classical numeric analyses
using the abstract domains of intervals and convex polyhedra. This experimental
evaluation allows us to measure the trade-off between efficiency and precision of
the proposed variants, showing that it is possible to fine-tune the efficacy of the
oracle and, in turn, of the program transformation.

Paper structure. In Section 2, after introducing the notion of likely unconstrained
variable for a target numeric analysis, we define four different oracles as variants
of a dataflow analysis tracking variable unconstrainedness; we also formalize the
program transformation that, guided by these oracles, simplifies the abstract
program being analyzed. The design and implementation of our experimental
evaluation are described in Section 3, where we also comment the results obtained
on the considered benchmarks. Related work is briefly discussed in Section 4,
while Section 5 concludes, also describing future work.

2 Detecting Likely Unconstrained Variables

In the concrete (resp., abstract) semantics of programming languages, the eval-
uation of an expression is formalized by a suitable set of semantic equations,
which specify the result of the expression by using concrete (resp., abstract)
operators to combine the current values of program variables, as recorded in the
concrete (resp., abstract) environment. The efficiency of the evaluation process
can be improved by propagating known information (e.g., constant values). In
the abstract evaluation case, efficiency improvements may also be obtained by
propagating unknown information. As an example, when evaluating the numeric
expression x+ expr using the abstract domain of intervals [12], if no information
is known about program variable x, then it is likely that no information at all will
be known about the whole expression. Even when considering the more precise
abstract domain of convex polyhedra [14], if x is unconstrained and expr is a
rather involved, non-linear expression, then it is likely that little information
will be known about the whole expression. Hence, in both cases, there is little
incentive in providing an accurate (and maybe expensive) over-approximation
for the subexpression expr .

In this section we propose a heuristic approach to efficiently detect and
propagate this lack of abstract information. We focus on the concept of likely

4 V. Arceri, G. Dolcetti, E. Zaffanella

unconstrained (LU) variables: we say that x ∈ Var is an LU variable (at program
point p) if the considered static analysis is likely unable to provide useful informa-
tion on x. Thus, whenever x is LU, the static analysis can just forget it, since it
brings little knowledge. It is worth stressing that the one we are proposing is an
informal and heuristics-based definition, with no intrinsic correctness requirement:
as we will see, whatever technique is adopted to compute the set of LU variables,
its use will always result in a correct static analysis; the only risk, when forgetting
too many variables, is to suffer a greater precision loss.

2.1 A dataflow analysis for LU variables

We now informally sketch several variants of a forward dataflow analysis for the
computation of LU variables, to be used on a CFG representation of the source
program; if needed, the approach can be easily adapted to work with alternative
program representations.

The transfer function for non-relational analyses. Let Stmt be the set of state-
ments occurring in the CFG basic blocks, which for simplicity we assume to
resemble 3-address code. Then, given the set lu ⊆ Var of variables that are LU
before (abstractly) executing s ∈ Stmt, the transfer function

[[·]] : Stmt× ℘(Var)→ ℘(Var)

computes the set [[s]](lu) of variables that are LU after the execution of s. Clearly,
the definition of [[·]] depends on the target analysis: a more precise abstract domain
will probably expose fewer LU variables. We first consider, as the reference target
analysis, the non-relational abstract domain of intervals [12]. Intuitively, in this
case a variable is LU if the corresponding interval is (likely) unbounded, i.e.,
[−∞,+∞]. Note that, in our definitions, we explicitly disregard those constraints
that can be implicitly derived from the variable datatype; for instance, for a
nondeterministic assignment (x ← ?) ∈ Stmt, even when knowing that x is a
signed integer stored in an 8-bit word, we will ignore the implicit constraints
−128 ≤ x ≤ 127 and flag the variable x as LU. Hence, the transfer function for
nondeterministic assignments is

[[x← ?]](lu) = lu ∪ {x}.

The transfer function for the assignment statement (x← y op z) ∈ Stmt, where
op ∈ {+,−, ∗, /,%} is an arithmetic operator and x, y, z ∈ Var, is

[[x← y op z]](lu) =


lu ∖ {x}, if y /∈ lu and z /∈ lu,

or if op = % and z /∈ lu,
or if op = − and y = z;

lu ∪ {x}, otherwise.

Namely, x is going to be constrained (and hence removed from set lu) when both
y and z are constrained, or when z is constrained and op is the modulus operator,

Unconstrained Variable Oracles for Faster Numeric Static Analyses 5

or when hitting the corner case x← y − y. For the special case when the third
variable z is replaced by a constant argument k ∈ Z, we can define

[[x← y op k]](lu) =


lu ∖ {x}, if y /∈ lu, or if op = %,

or if op = ∗ and k = 0;
lu ∪ {x}, otherwise.

When evaluating Boolean guards, the abstract semantics works in a similar way:
letting (x ▷◁ y) ∈ Stmt, where x, y ∈ Var and ▷◁ ∈ {<,≤,=,≥, >}, we can define

[[(x ▷◁ y)]](lu) =


lu ∖ {x}, if y /∈ lu;
lu ∖ {y}, if x /∈ lu;
lu, otherwise.

Similar definitions can be easily provided for all the other statements of the
language.

As already said above, the transfer function we are proposing is just a way to
heuristically suggest LU variables and hence it is subject to both false positives
and false negatives. A false positive is obtained, for example, when processing
the assignments y ← 0 and x← y ∗ z: since z is LU, the transfer function will
also flag x as LU, even though the interval analysis would compute x ∈ [0, 0].
A false negative is obtained by processing the Boolean guards (y ≥ 0), (z ≤ 0)
and the assignment x← y + z: the transfer function will predict variable x to be
constrained, even though the interval analysis computes x ∈ [−∞,+∞].

The case of relational analyses. If the target static analysis is based on an
abstract domain tracking relational information, such as the domain of convex
polyhedra [14], then the notion of LU variable no longer corresponds to the
notion of unboundedness (as an example, consider the constraint x = y). Hence,
the definition of the transfer function can be refined accordingly. As an example,
when assuming that the domain is able to track linear constraints, a relational
version [[·]]rel : Stmt×℘(Var)→ ℘(Var) of the transfer function for the arithmetic
assignment statements can be defined as follows:

[[x← y op z]]rel(lu) =

{
lu ∖ {x, y, z}, if op ∈ {+,−};
[[x← y op z]](lu) otherwise;

[[x← y op k]]rel(lu) =

{
lu ∖ {x}, if op = %;
lu ∖ {x, y}, otherwise.

Similarly, the relational version for the evaluation of Boolean guards can be
defined as follows:

[[(x ▷◁ y)]]rel(lu) = lu ∖ {x, y}.

Once again, the definition of [[·]]rel for the other kinds of statements poses no
problem.

6 V. Arceri, G. Dolcetti, E. Zaffanella

The propagation of LU information. Starting from the set lupre of variables that
are LU at the start of a basic block, by applying function [[·]] (resp., [[·]]rel) to
each statement in the basic block we can easily compute the set lupost of LU
variables at the end of the basic block. In order to complete the definition of our
dataflow analysis we need to specify how this information is propagated through
the CFG edges. As a first option we can say that a variable x is LU at the start
of a basic block if there exists an edge entering the block along which x is LU;
this corresponds to an analysis defined on the usual powerset lattice

LU∃ ≜ ⟨℘(Var),⊆,∅,Var,∩,∪⟩,

having set inclusion as partial order and set union as join operator. This existential
approach may be adequate when our goal is to obtain an aggressive LU oracle,
which eagerly flags variables as LU, in particular when adopting the non-relational
transfer function.

As an alternative, we can say that a variable x is LU at the start of a basic
block only if x is LU along all the edges entering the block; this corresponds to
an analysis defined on the dual lattice

LU∀ ≜ ⟨℘(Var),⊇,Var,∅,∪,∩⟩,

having set intersection as join operator. When using this universal alternative,
we will obtain a more conservative LU oracle, in particular when adopting the
relational transfer function.

In all cases, the dataflow fixpoint computation is going to converge after a
finite number of iterations, since the two transfer functions are monotone and the
two lattices are finite. In summary, we have obtained four simple LU oracles (LU∃,
LU∀, LU∃

rel, LU
∀
rel) that, to some extent, should be able to guess which variables

can be forgotten with a limited effect on the precision of the analysis; each of
these can be used to guide a program transformation step that simplifies the
target analysis, with the goal of improving its efficiency.

2.2 The program transformation step

Algorithm 1 describes how the information about LU variables computed by any
one of the oracles described before can be exploited to transform the input CFG.
Intuitively, the program transformation should instruct the target static analysis
to forget those variables that are not worth tracking. Hence, for each basic block
bb ∈ N , we retrieve the corresponding set lu = LUpost(bb) of program variables
that, according to the chosen oracle, are LU at the exit of the basic block; then,
each assignment statement x← expr in bb having as target a variable x ∈ lu is
replaced with the nondeterministic assignment x← ?. Note that, for simplicity
and ease of exposition, we are assuming that each program variable is assigned at
most once in each basic block; this is not a significant restriction, since in most
cases the input CFG satisfies much stronger assumptions, such as SSA form.

We now provide an example simulating the LU variable analysis and transfor-
mation steps on a simple portion of code, focusing on the LU∃and LU∀oracles,
i.e., the non-relational case.

Unconstrained Variable Oracles for Faster Numeric Static Analyses 7

Algorithm 1: Program transformation
Input: ⟨N,E⟩ (input CFG), LUpost : N → ℘(Var) (LU variables map)

1 foreach bb ∈ N do
2 let lu = LUpost(bb)
3 foreach s = (x← expr) ∈ bb do
4 if x ∈ lu then
5 replace s with s′ = (x← ?) in bb
6 end
7 end
8 end

x← 0

b0

(y < 0)
x← x+ 1
y ← y + 1

b1
(y ≥ 0)

x← x− 1
y ← z ∗ 2

b2

x← x+ y

b3

(a) Original CFG.

x← 0

b0

(y < 0)
x← x+ 1
y ← y + 1

b1
(y ≥ 0)

x← x− 1
y ← ?

b2

x← ?

b3

(b) LU∃ CFG.

x← 0

b0

(y < 0)
x← x+ 1
y ← y + 1

b1
(y ≥ 0)

x← x− 1
y ← ?

b2

x← x+ y

b3

(c) LU∀ CFG.

Fig. 1: The effect of LU variable propagation on a simple CFG.

Example 1. Consider the simple CFG in Figure 1a, defined on the set of program
variables Var = {x, y, z}. Note that the CFG has no loops at all: this is a
deliberate choice for exposition purposes, since our goal here is to show the
basic steps of the LU analysis, rather than any detail related to the fixpoint
computation (whose convergence poses no problems at all, as explained before).
When considering the LU∃ variant of the analysis, the set of LU variables at the
start of the initial block b0 is initialized as LUpre(b0) = Var, i.e., all variables
are assumed to be initially unconstrained. After processing the assignment in
b0, we have that variable x is constrained, so that LUpost(b0) = {y, z}; this set
is propagated to the start of basic blocks b1 and b2. The abstract execution
of the Boolean guard statement at the start of b1 causes variable y to become
constrained too; the following two assignments keep both x and y constrained, so
that we obtain LUpost(b1) = {z}. Similarly, the Boolean guard statement at the
start of b2 causes variable y to become constrained; however, the last assignment
in b2 reinserts y in the LU set, because variable z is unconstrained; hence we
obtain LUpost(b2) = {y, z}. The LU set at the start of block b3 is computed as

LUpre(b3) = LUpost(b1) ∪ LUpost(b2) = {z} ∪ {y, z} = {y, z}.

8 V. Arceri, G. Dolcetti, E. Zaffanella

Hence, after processing the assignment in b3, we obtain

LUpost(b3) = [[x← x+ y]]({y, z}) = {x, y, z}.

At the end of the LU∃ analysis, the CFG transformation of Algorithm 1 is applied,
producing the CFG shown in Figure 1b: here, two of the assignment statements
have been replaced by nondeterministic assignments (highlighted in red).

When considering the LU∀ heuristic variant, the analysis goes on exactly as
before up to the computation of the LU set at the start of block b3: since in the
universal variant the join operator is implemented as set intersection, we have

LUpre(b3) = LUpost(b1) ∩ LUpost(b2) = {z} ∩ {y, z} = {z}

so that, when processing the assignment in b3, we obtain

LUpost(b3) = [[x← x+ y]]({z}) = {z}.

Therefore, when using the universal variant, the CFG transformation step will not
be able to replace the assignment in block b3, producing the more conservative
CFG shown in Figure 1c.

3 Implementation and Experimental Evaluation

The ideas presented in the previous section have been implemented and experimen-
tally evaluated by adapting the open source static analysis tool Clam/Crab [18].
In the Crab program representation (CrabIR), a nondeterministic assignment to
a program variable var is encoded by the abstract statement havoc(var): the
variable is said to be havocked by the execution of this statement. By adopting the
Crab terminology, we will call havoc analyses the heuristic pre-analyses detecting
LU variables, described in Section 2.1; similarly, we will call havoc transformation
the program transformation described in Section 2.2; and we will call havoc
processing the combination of these two computational steps. In contrast, we will
call target analysis the static analysis phase collecting the invariants that are of
interest for the end-user.

We now describe the steps of the overall analysis process, which are summa-
rized in Figure 2.

Step A The input program under analysis is parsed by Clang/LLVM, producing
the corresponding LLVM bitcode representation which is then fed as input
to clam-pp, the Clam preprocessor component. By default, clam-pp applies
a few program transformations, such as the lowering of switch statements
into chains of conditional branches; more importantly, in our experiments
we systematically enabled the inlining of known function calls, so as to
improve the call context sensitivity of the analysis when performing an intra-
procedural analysis. Note that Clam/Crab also supports inter-procedural
analyses: these are typically faster than full inlining, but quite often produce
less precise results.

Unconstrained Variable Oracles for Faster Numeric Static Analyses 9

C source code A LLVM
bitcode

B

havoc-analysis
invariants C original

CrabIR F
original

target-analysis
invariants

D

havocked
CrabIR E

havocked
target-analysis

invariants
G

precision
report

Fig. 2: Processing steps of the Clam/Crab toolchain, also including the precision
comparison. Legenda: A=Clang/LLVM+clam-pp; B=Clam; C=havoc-analysis;
D=havoc-propagation; E/F=target-analysis; G=clam-diff.

Step B The Clam component translates the LLVM bitcode representation into
CrabIR, which is an intermediate representation specifically designed for
static analysis; in this translation phase a few program constructs that the
analysis is unable to model correctly and precisely, e.g., calls to unknown
external functions, are replaced by (sequences of) havoc statements.

Step C The havoc analysis computes the set of program variables that are likely
unconstrained at the exit of each basic block of the CrabIR representation. As
discussed in Section 2, this step is not subject to a strict safety requirement
and hence, in principle, its implementation could be based on any reasonable
heuristics; in our prototype we decided to model it as a classical static analysis
and we implemented it by using the Crab component itself.

Step D This step performs the havoc transformation, using the results of the
analysis of Step C to rewrite the CrabIR representation produced by Step B;
this is implemented as a simple visitor of the CrabIR CFG, corresponding to
Algorithm 1, replacing assignment statements with havoc statements.

Step E The final processing step is the target static analysis, which reuses the
Crab component to compute an over-approximation of the semantics of the
havocked CrabIR representation produced by Step D, using the target abstract
domain chosen at configuration time. In our experimental evaluation, we
considered the classical abstract domains of intervals and convex polyhedra.
The invariants computed are stored and made available to the post-analysis
processing phases (assertion checks, program annotations, etc.).

Step F In contrast, when the havoc analysis is disabled (i.e., when the analysis
toolchain is used without modification), the target static analysis is com-

10 V. Arceri, G. Dolcetti, E. Zaffanella

puted as described in Step E above, but starting from the original CrabIR
representation produced by Step B.

Step G The loop invariants produced in Steps E and F are systematically
compared for precision using the clam-diff tool.

stmts havocked
non-relational relational

test stmts LU∃ time LU∀ time LU∃
rel time LU∀

rel time
all tests 12294 4578 35 2248 51 264 42 263 65
decompress 4332 2757 13 472 19 185 17 184 22
nsichneu 3582 630 10 630 14 0 12 0 20
cover 779 386 3 386 4 0 3 0 5
adpcm 671 194 2 194 3 25 2 25 4
statemate 562 5 2 5 2 0 2 0 2
ndes 372 103 1 102 2 33 1 33 2
edn 263 122 1 119 1 4 1 4 1
compress 214 30 1 29 1 2 1 2 1

Table 1: WCET benchmarks: number of havocked statements by LU oracles and
time spent in the havoc processing (ms). Note: details are shown only for tests
having more than 200 abstract statements after inlining.

3.1 The impact of the havoc transformation

In our preliminary experimental evaluation, we first considered the C source files
distributed with PAGAI [20], which are variants of benchmarks taken from the
SNU real-time benchmark suite for WCET (worst-case execution time) analysis.
When evaluating the precision of the target analyses we will focus on the invariants
computed at widening points; for this reason, we discarded those few tests having
no widening point at all, leaving us with 34 benchmarks. Table 1 summarizes
the effects, on the CrabIR representation, of the 4 havoc transformation variants:
the number of abstract statements in the original CrabIR is shown in the 2nd
column; in the following 4 pairs of columns, for each variant of the havoc analysis,
we show the number of assignment statements that are havocked when adopting
this variant, as well as the time spent in the havoc processing steps (steps C and
D of Figure 2).

According to Table 1, the overall effect of the havoc transformation varies
significantly depending on the considered test; also, the choice between non-
relational and relational variants of the havoc analysis seems to have a much
greater impact than the choice between existential and universal variants. Some
of the tests are completely unaffected by the transformation (i.e., no statement
at all is havocked): this happens only 8 times for the non-relational variants (only

Unconstrained Variable Oracles for Faster Numeric Static Analyses 11

for the smallest benchmarks), but as many as 25 times for the relational variants
(also including some of the biggest benchmarks). The percentage of havocked
statements on all tests is 37.2% for the most aggressive variant LU∃, while being
2.1% for the most conservative one LU∀

rel. Focusing on the 8 tests reported in
the table, which are those having more than 200 statements after inlining, when
using LU∃ the percentage of havocked statements ranges from 0.9% to 63.6%
(median value 28.3%); in contrast, when using LU∀

rel the percentage ranges from
0% to 8.9% (median value 1.2%).

stmts havocked
non-relational relational

test stmts LU∃ time LU∀ time LU∃
rel time LU∀

rel time
all tests 353544 119509 7014 104509 12653 14591 6771 14411 12533
wl12xx 109101 89543 332 75667 578 942 453 915 726
rtlwifi 53456 5873 1481 5873 3391 5813 1418 5813 3049
w83781d 52909 5452 2933 5450 4366 2605 2645 2605 4706
brocade 37587 4703 308 4495 666 2098 309 2039 614
libfc 31272 3108 1285 2811 2472 66 1263 65 2227
vmxnet3 19598 3983 175 3849 311 496 184 495 327
mdc 17104 2333 154 2168 314 1017 149 981 322
firewire 13196 1902 185 1701 284 800 185 747 282
solos 12465 2302 122 2301 199 732 131 730 210
abituguru 6856 310 39 194 72 22 34 21 70

Table 2: SV-COMP benchmarks: number of havocked statements by LU oracles
and time spent in the havocking process (ms).

Since many of considered benchmarks are synthetic ones, we extended our
experimental evaluation by also considering 10 Linux drivers from the SV-COMP
repository.1 The results for these bigger benchmarks, shown in Table 2, confirm
most of the observations done above, except that now the havoc transformation
affects all the tests. Considering first the most aggressive variant LU∃, the
percentage of havocked statements on all tests is 33.8%, ranging from 4.5% to
82.1% (median value 13.1%); in contrast, when considering the most conservative
variant LU∀

rel, the percentage of havocked statements on all tests is 4.1%, ranging
from 0.2% to 10.9% (median value 5.2%).

In summary, on the considered benchmarks, the transformations based on
the relational variants seem really conservative, whereas the non-relational ones
look rather aggressive, probably leading to significant effects on the precision
and efficiency of the target analysis. Regarding efficiency, it should be stressed
that the current implementation of the havoc analysis and transformation steps
is just a prototype, hence subject to optimizations; this holds in particular for

1 https://github.com/sosy-lab/sv-benchmarks/c/ldv-linux-4.2-rc1

https://github.com/sosy-lab/sv-benchmarks/c/ldv-linux-4.2-rc1

12 V. Arceri, G. Dolcetti, E. Zaffanella

step C (havoc analysis), as only a small percentage of the havoc processing time
is spent in step D (havoc transformation).

3.2 Precision and efficiency of the target analyses

The next step in our experiments is the evaluation of the effect of the considered
program transformation on the precision and efficiency of the target analyses.
To this end, we consider the classical numerical analyses based on the abstract
domains of intervals [12] and convex polyhedra [14]. For the first domain we
adopted the implementation that is built-in in Crab, whereas for the latter we
opted for the domain of convex polyhedra provided by the PPLite library [5,6,7],
which is accessible in Crab via the generic Apron interface [23]. Note that we are
considering the Cartesian factored variant [19,29] of the domain of convex poly-
hedra, which greatly improves the efficiency of the classical polyhedral analysis
by dynamically computing optimal variable packs, thereby incurring no precision
loss; a recent experimental evaluation [2] has shown that the PPLite’s imple-
mentation of this domain is competitive with the one provided by ELINA [29],
which is considered state-of-the-art. We stress that the goal of our oracle-based
program transformation is to obtain further, significant efficiency improvements
and, to this end, a limited precision loss is an acceptable trade-off.

Intervals When considering a non-relational target analysis, it is natural to
also consider a non-relational variant for the havoc analysis step. For the WCET
benchmarks, even when using the most aggressive havoc analysis LU∃, we obtain
the same precision of the original interval analysis for all the 34 C programs of the
benchmark suite; that is, we compute the same invariants on all the 288 widening
points. The differences in precision for the Linux drivers are summarized in
Table 3. The first (resp., second) row shows the results of the overall comparison
in terms of number (resp., percentage) of widening points on which the invariant
computed on the havocked CrabIR is equivalent (EQ), stronger (LT), weaker
(GT) and uncomparable (UN) with respect to the invariant computed on the
original CrabIR. In this case, we record precision losses for 2 tests for the LU∃

havoc analysis and 1 test for the LU∀ havoc analysis, whose details are shown
in the next two rows of the table; the same precision is obtained on the other 8
tests, whose details are omitted. For the LU∃ analysis, the precision loss affects
121 invariants (∼4% of all invariants computed); this number decreases to 97
invariants (∼3%) when using LU∀. Note that, quite often, these precision losses
are due to just one or two interval constraints missing from the weaker invariants:
as a matter of fact, when counting the number of constraints occurring in the
invariants, it can be seen that the havocked analyses are able to compute ∼ 99%
of the constraints computed by the original interval analysis. This is an impressive
result, when considering that it has been obtained by using rather aggressive
program transformations; for instance, we obtain no precision loss on driver
wl12xx even when havocking more than 80% of its 109K statements (see the first
line in Table 2).

Unconstrained Variable Oracles for Faster Numeric Static Analyses 13

LU∃ vs original LU∀ vs original
EQ LT GT UN EQ LT GT UN

INVS 3102 2981 0 121 0 3005 0 97 0
% INVS 100.00 96.10 0 3.90 0 96.87 0 3.13 0
vmxnet3 513 416 0 97 0 416 0 97 0
mdc 112 88 0 24 0 112 0 0 0

Table 3: SV-COMP benchmarks: invariant comparison for the interval domain.
Boldface text highlights the differences between LU∃ and LU∀.

Regarding the impact on the efficiency of the target analysis, our experiments
on the domain of intervals have shown that the havocked analysis pipeline seems
unable to trigger significant efficiency improvements: no matter if considering
the WCET or the SV-COMP benchmarks, the original analysis is as efficient
as (sometimes even more efficient than) the havocked ones. This was somehow
expected, since in our prototype we are only replacing deterministic assignment
statements with nondeterministic ones and, in both cases, the abstract execution
on the interval domain is very efficient; hence, any small efficiency improvement
obtained is likely masked by the overheads of the modified analysis toolchain.
Roughly speaking, in order to obtain a measurable effect on the precision/efficiency
trade-off, we have to consider abstract domains that are computationally more
expensive.

LU∃ vs original LU∀ vs original
EQ LT GT UN EQ LT GT UN

INVS 288 244 0 44 0 249 0 39 0
% INVS 100.00 84.72 0 15.28 0 86.46 0 13.54 0
decompress 79 67 0 12 0 67 0 12 0
adpcm 27 12 0 15 0 12 0 15 0
edn 12 9 0 3 0 9 0 3 0
lms 12 10 0 2 0 10 0 2 0
ndes 12 9 0 3 0 9 0 3 0
qsort-exam 6 1 0 5 0 6 0 0 0
cover 3 0 0 3 0 0 0 3 0
insertsort 2 1 0 1 0 1 0 1 0

Table 4: WCET benchmarks: invariant comparison for the polyhedra domain.
Boldface text highlights the differences between LU∃ and LU∀ analyses.

Convex polyhedra When considering a relational target analysis, it would
seem natural to consider the relational variants, LU∃

rel and LU∀
rel, of the havoc

analysis. Our first experiments, however, have shown that these variants are too
conservative and hence probably unable to obtain the efficiency improvements

14 V. Arceri, G. Dolcetti, E. Zaffanella

we are looking for. Since our end goal is to obtain a practical way to effectively
tune the efficiency/precision trade-off of the target analysis, we keep focusing
on the non-relational variants LU∃ and LU∀, trading the corresponding precision
losses for efficiency.

In Table 4, having the same structure of Table 3, we report the precision
comparison for the WCET benchmarks. In this case, we obtain the same results,
no matter if using LU∃ or LU∀, for 26 of the 34 tests; hence the table shows the
details of the precision regressions for the remaining 8 tests. When comparing
the precision of LU∃ and LU∀ with respect to the classification of the invariants
into the EQ, LT, GT and UN categories, we observe a single difference on the
qsort-exam test, where LU∀ is able to maintain the same precision of the original
analysis on all the 6 widening points. Note that LU∀ obtains other precision
improvements with respect to LU∃ on test decompress, in terms of the number
of constraints computed, but these are not sufficient to influence the invariant
classification (i.e., LU∀ obtains smaller precision losses).

LU∃ vs original LU∀ vs original
EQ LT GT UN EQ LT GT UN

INVS 3102 1389 0 1713 0 1485 0 1617 0 time (secs) speed-up
% INVS 100.00 44.78 0 55.22 0 47.83 0 53.17 0 original LU∀

vmxnet3 513 190 0 323 0 190 0 323 0 134.21 36.39 3.69
brocade 511 154 0 357 0 154 0 357 0 141.10 105.92 1.33
firewire 499 319 0 180 0 319 0 180 0 65.39 20.92 3.13
w83781d 356 95 0 261 0 95 0 261 0 110.76 110.47 1.00
solos 303 104 0 199 0 104 0 199 0 79.56 9.67 8.23
libfc 295 295 0 0 0 295 0 0 0 167.17 104.68 1.60
rtlwifi 208 5 0 203 0 5 0 203 0 79.86 68.64 1.16
abituguru 169 91 0 78 0 168 0 1 0 94.16 54.22 1.74
wl12xx 136 92 0 44 0 92 0 44 0 182.22 22.29 8.17
mdc 112 44 0 68 0 63 0 49 0 107.30 24.31 4.41

Table 5: SV-COMP benchmarks: invariant comparison for the polyhedra domain;
Boldface text highlights the precision differences between LU∃ and LU∀ analyses.
The last 3 columns report the efficiency comparison for LU∀.

The precision comparison for the Linux driver benchmarks is reported in
Table 5: on these bigger tests the havocked target analysis reports precision losses
on all tests with the exception of libfc. The universal variant LU∀ is able to
significantly improve precision with respect to LU∃, increasing the number of EQ
invariants for tests abituguru and mdc; precision improvements are also obtained
by LU∀ on another three drivers (vmxnet3, brocade, wl12xx), but again these
do not affect the invariant classification.

A more detailed analysis of the experimental results shows that, when com-
paring the overall number of constraints that compose the computed invariants,
the havocked target analyses are able to produce approximately 90% of all the

Unconstrained Variable Oracles for Faster Numeric Static Analyses 15

constraints that are obtained when using the original target analysis, with the
LU∀ variant scoring ∼ 1% better than the LU∃ variant.

Our efficiency comparison for the domain of convex polyhedra focuses on the
havoc transformation based on the LU∀ oracle, which as discussed above is able
to obtain slightly better results with respect to the LU∃ oracle. The results for
the SV-COMP benchmarks are reported in the last three columns of Table 5: the
first of these columns shows the baseline for the comparison, i.e., the time spent
when the convex polyhedra analysis works on the original CrabIR; the second
column shows the time spent when the target analysis works on the havocked
CrabIR obtained when using the LU∀ oracle; in the third column we report the
speed-up obtained. We observe a speed-up for all the tests with the exception of
w83781d; the positive speed-ups range from 1.16 (rtlwifi) to 8.23 (solos); the
geometric mean of the speed-ups, computed on all the 10 tests, is 2.61.

We are omitting the details of a corresponding efficiency comparison for the
WCET benchmark, mainly due to the synthetic nature of the tests: in practice,
most of them complete the analysis immediately, making a reliable comparison
almost impossible; the others are characterized by (relatively) much higher
analysis times, so that they could be interpreted as outliers when compared to
the first group. When restricting attention to the few WCET tests whose target
analysis takes more than a second, the speed-up obtained ranges between 1.11
and 2.49 (geometric mean 1.59).

It is worth stressing that the time shown are those spent in the overall analysis
pipeline, only excluding the post-analysis steps that are meant to store and later
compare the loop invariants. Namely, with reference to Figure 2, the time spent
in steps A, B and F by the original analysis is compared to the time spent in steps
A, B, C, D and E by the modified pipeline. The reader interested in factoring
out the time spent during the havoc processing phases (C and D) is referred to
Tables 1 and 2 discussed previously.

4 Related Work

The four variants of LU variable analysis described in Section 2.1 and the abstract
program transformation outlined in Section 2.2, as a whole, can be seen as an
instance of the Abstract Compilation approach [21,31] to Abstract Interpreta-
tion [12]. A few examples[1,9,17,32] of application of Abstract Compilation have
already been briefly recalled in Section 1; other examples have been recently
discussed in [15]. A notable distinction between the current proposal and most
of the approaches in the literature is that we do not require the program trans-
formation to fully preserve the abstract semantics of the program: since our goal
is to tune the efficiency/precision trade-off, we explicitly allow for (hopefully
limited) precision losses in the transformation step. In our opinion, this is one
of the most relevant differences between abstract and concrete (i.e., traditional)
compilation.

It would be tempting to cast our pre-analyses as instances of the A2I frame-
work [13] and, in particular, as examples of offline meta-abstract interpretations.

16 V. Arceri, G. Dolcetti, E. Zaffanella

This would not be fully appropriate: as we already noted, our oracles have no
formal correctness requirement (e.g., they can incur both false positives and false
negatives, without affecting the correctness of the target analysis) and hence
they cannot be seen as proper abstract interpretations. This is also the main
difference between our current proposal and similar approaches that, in contrast,
are firmly based on the theory of Abstract Interpretation. As notable examples
we mention the research work on abstract program slicing (e.g., [22,25]) and more
generally dependency analysis [11]. For instance, abstract program slicing aims
at removing from the program those instructions that are definitely not affecting
the end result of the analysis (possibly modulo a specific slicing criterion); hence,
precision losses are explicitly forbidden, while they are legitimate when using our
havoc transformation.

The idea to use heuristic approaches to tune the precision/efficiency trade-off
of a static analysis is clearly not new to this paper. For the case of numeric
properties, the most known example is probably the variable packing technique
adopted by Astrée [8, Section 7.2.1]: here, a pre-analysis phase based on a syntactic
heuristics, with no formal correctness requirement as in our case, computes for
each portion of the program some relatively small variable packs, which are later
used during the proper analysis phase to enable the precision of a relational
analysis (in that case, the abstract domain of octagons) while keeping under
control its computational cost. Similarly, [28] proposes a pre-analysis phase to
estimate the impact on precision of context-sensitivity for an inter-procedural
program analysis, so as to enable it (and the corresponding computational costs)
only when a precision improvement is likely obtained. The overall approach has
been extended to non-numeric properties: for instance, [30] and [24] propose two
lightweight pre-analyses that can improve the precision of pointer analyses by
driving them to dynamically switch between different levels of (context, object,
type) sensitivity.

5 Conclusion

In this paper we have proposed a program transformation that improves the
efficiency of a classical numeric static analysis by trading some of its precision: this
works by selectively havocking some of the abstract assignments in the program,
so as to forget all information on the assigned variable. The havocking process
is guided by an oracle, whose goal is to predict whether or not the assigned
variable would likely be unconstrained anyway, thereby limiting the precision
loss. A main contribution of this paper is the design and experimental evaluation
of four variants of a lightweight dataflow analysis that implement reasonably
precise oracles. The precision and efficiency of the target static analysis using
the program transformation as a preprocessing step have been evaluated on two
benchmark suites, identifying the universal non-relational oracle as the most
promising one. When the havoc transformation is guided by this oracle, the static
analysis based on the domain of convex polyhedra is able to achieve significant
efficiency improvements, while facing limited precision losses.

Unconstrained Variable Oracles for Faster Numeric Static Analyses 17

Other aspects of the proposed technique will be investigated in future work.
In the first place, the current oracle can be refined by applying other heuristics or
machine learning techniques, so as to further mitigate the precision losses in the
target analysis while maintaining an aggressive transformation leading to efficiency
gains. Secondly, the program transformation itself can be enhanced, by considering
the propagation of unknown information to other kinds of abstract statements and
the interaction of the havocking process with other program transformations, such
as abstract dead code elimination and CFG simplifications. Also, the analysis and
program transformation can be extended to be integrated in source-level program
analysis tools, such as MOPSA [26], so as to investigate its effectiveness when
going beyond 3-address code syntax and considering more general arithmetic
expressions. Finally, it would be interesting to evaluate the applicability of the
approach to non-numerical analyses, such as string analyses [3,4].

Acknowledgements The authors would like to thank the anonymous reviewers
for their useful comments and suggestions. This work was partially supported by
Bando di Ateneo per la ricerca 2022, founded by University of Parma, project
number: MUR_DM737_2022_FIL_PROGETTI_B_ARCERI_COFIN.

References

1. Amato, G., Spoto, F.: Abstract compilation for sharing analysis. In: Kuchen, H.,
Ueda, K. (eds.) Functional and Logic Programming, 5th International Symposium,
FLOPS 2001, Tokyo, Japan, March 7-9, 2001, Proceedings. Lecture Notes in
Computer Science, vol. 2024, pp. 311–325. Springer (2001). https://doi.org/10.
1007/3-540-44716-4_20

2. Arceri, V., Dolcetti, G., Zaffanella, E.: Speeding up static analysis with the split
operator. In: Ferrara, P., Hadarean, L. (eds.) Proceedings of the 12th ACM
SIGPLAN International Workshop on the State Of the Art in Program Anal-
ysis, SOAP 2023, Orlando, FL, USA, 17 June 2023. pp. 14–19. ACM (2023).
https://doi.org/10.1145/3589250.3596141

3. Arceri, V., Mastroeni, I.: Analyzing dynamic code: A sound abstract interpreter for
Evil eval. ACM Trans. Priv. Secur. 24(2), 10:1–10:38 (2021). https://doi.org/10.
1145/3426470

4. Arceri, V., Olliaro, M., Cortesi, A., Ferrara, P.: Relational string abstract domains.
In: Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Abstract
Interpretation - 23rd International Conference, VMCAI 2022, Philadelphia, PA,
USA, January 16-18, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13182, pp. 20–42. Springer (2022). https://doi.org/10.1007/978-3-030-94583-1_2

5. Becchi, A., Zaffanella, E.: A direct encoding for NNC polyhedra. In: Chockler, H.,
Weissenbacher, G. (eds.) Computer Aided Verification - 30th International Confer-
ence, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol.
10981, pp. 230–248. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_13

6. Becchi, A., Zaffanella, E.: An efficient abstract domain for not necessarily closed
polyhedra. In: Podelski, A. (ed.) Static Analysis - 25th International Symposium,
SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings. Lecture Notes in

https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1007/3-540-44716-4_20
https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1145/3589250.3596141
https://doi.org/10.1145/3426470
https://doi.org/10.1145/3426470
https://doi.org/10.1145/3426470
https://doi.org/10.1145/3426470
https://doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1007/978-3-030-94583-1_2
https://doi.org/10.1007/978-3-319-96145-3_13
https://doi.org/10.1007/978-3-319-96145-3_13

18 V. Arceri, G. Dolcetti, E. Zaffanella

Computer Science, vol. 11002, pp. 146–165. Springer (2018). https://doi.org/10.
1007/978-3-319-99725-4_11

7. Becchi, A., Zaffanella, E.: PPLite: Zero-overhead encoding of NNC polyhedra. Inf.
Comput. 275, 104620 (2020). https://doi.org/10.1016/j.ic.2020.104620

8. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Cytron, R.,
Gupta, R. (eds.) Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation 2003, San Diego, California, USA, June
9-11, 2003. pp. 196–207. ACM (2003). https://doi.org/10.1145/781131.781153

9. Boucher, D., Feeley, M.: Abstract compilation: A new implementation paradigm
for static analysis. In: Gyimóthy, T. (ed.) Compiler Construction, 6th International
Conference, CC’96, Linköping, Sweden, April 24-26, 1996, Proceedings. Lecture
Notes in Computer Science, vol. 1060, pp. 192–207. Springer (1996). https://doi.
org/10.1007/3-540-61053-7_62

10. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: A framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) Soft-
ware Engineering and Formal Methods - 12th International Conference, SEFM
2014, Grenoble, France, September 1-5, 2014. Proceedings. Lecture Notes in Com-
puter Science, vol. 8702, pp. 271–277. Springer (2014). https://doi.org/10.1007/
978-3-319-10431-7_20

11. Cousot, P.: Abstract semantic dependency. In: Chang, B.E. (ed.) Static Analysis
- 26th International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11822, pp. 389–410. Springer
(2019). https://doi.org/10.1007/978-3-030-32304-2_19

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA,
January 1977. pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

13. Cousot, P., Giacobazzi, R., Ranzato, F.: A2I: abstract2 interpretation. Proc. ACM
Program. Lang. 3(POPL), 42:1–42:31 (2019). https://doi.org/10.1145/3290355

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Aho, A.V., Zilles, S.N., Szymanski, T.G. (eds.) Conference
Record of the Fifth Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona, USA, January 1978. pp. 84–96. ACM Press (1978).
https://doi.org/10.1145/512760.512770

15. De Angelis, E., Fioravanti, F., Gallagher, J.P., Hermenegildo, M.V., Pettorossi,
A., Proietti, M.: Analysis and transformation of constrained horn clauses for
program verification. Theory Pract. Log. Program. 22(6), 974–1042 (2022). https:
//doi.org/10.1017/S1471068421000211

16. Ferrara, P., Negrini, L., Arceri, V., Cortesi, A.: Static analysis for dummies: ex-
periencing lisa. In: Do, L.N.Q., Urban, C. (eds.) SOAP@PLDI 2021: Proceedings
of the 10th ACM SIGPLAN International Workshop on the State Of the Art in
Program Analysis, Virtual Event, Canada, 22 June, 2021. pp. 1–6. ACM (2021).
https://doi.org/10.1145/3460946.3464316

17. Giacobazzi, R., Debray, S.K., Levi, G.: Generalized semantics and abstract inter-
pretation for constraint logic programs. J. Log. Program. 25(3), 191–247 (1995).
https://doi.org/10.1016/0743-1066(95)00038-0

18. Gurfinkel, A., Navas, J.A.: Abstract interpretation of LLVM with a region-based
memory model. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds.) Soft-
ware Verification - 13th International Conference, VSTTE 2021, New Haven,

https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1007/978-3-319-99725-4_11
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1016/j.ic.2020.104620
https://doi.org/10.1145/781131.781153
https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/3-540-61053-7_62
https://doi.org/10.1007/3-540-61053-7_62
https://doi.org/10.1007/3-540-61053-7_62
https://doi.org/10.1007/3-540-61053-7_62
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-319-10431-7_20
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1007/978-3-030-32304-2_19
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3290355
https://doi.org/10.1145/3290355
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1017/S1471068421000211
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1016/0743-1066(95)00038-0
https://doi.org/10.1016/0743-1066(95)00038-0

Unconstrained Variable Oracles for Faster Numeric Static Analyses 19

CT, USA, October 18-19, 2021, and 14th International Workshop, NSV 2021,
Los Angeles, CA, USA, July 18-19, 2021, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 13124, pp. 122–144. Springer (2021). https:
//doi.org/10.1007/978-3-030-95561-8_8

19. Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce the space dimension
in polyhedra computations. Formal Methods Syst. Des. 29(1), 79–95 (2006). https:
//doi.org/10.1007/s10703-006-0013-2

20. Henry, J., Monniaux, D., Moy, M.: PAGAI: A path sensitive static analyser. In:
Jeannet, B. (ed.) Third Workshop on Tools for Automatic Program Analysis,
TAPAS 2012, Deauville, France, September 14, 2012. Electronic Notes in Theoretical
Computer Science, vol. 289, pp. 15–25. Elsevier (2012). https://doi.org/10.1016/j.
entcs.2012.11.003

21. Hermenegildo, M.V., Warren, R.A., Debray, S.K.: Global flow analysis as a practical
compilation tool. J. Log. Program. 13(4), 349–366 (1992). https://doi.org/10.1016/
0743-1066(92)90053-6

22. Hong, H.S., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program slicing
based on abstract interpretation and model checking. In: 5th IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM 2005), 30 September
- 1 October 2005, Budapest, Hungary. pp. 25–34. IEEE Computer Society (2005).
https://doi.org/10.1109/SCAM.2005.2

23. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5643, pp. 661–667. Springer
(2009). https://doi.org/10.1007/978-3-642-02658-4_52

24. Li, Y., Tan, T., Møller, A., Smaragdakis, Y.: A principled approach to selective
context sensitivity for pointer analysis. ACM Trans. Program. Lang. Syst. 42(2),
10:1–10:40 (2020). https://doi.org/10.1145/3381915

25. Mastroeni, I., Zanardini, D.: Abstract program slicing: An abstract interpretation-
based approach to program slicing. ACM Trans. Comput. Log. 18(1), 7:1–7:58
(2017). https://doi.org/10.1145/3029052

26. Monat, R., Ouadjaout, A., Miné, A.: A multilanguage static analysis of python
programs with native C extensions. In: Dragoi, C., Mukherjee, S., Namjoshi, K.S.
(eds.) Static Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA,
October 17-19, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12913,
pp. 323–345. Springer (2021). https://doi.org/10.1007/978-3-030-88806-0_16

27. Negrini, L., Ferrara, P., Arceri, V., Cortesi, A.: LiSA: A generic framework for mul-
tilanguage static analysis. In: Arceri, V., Cortesi, A., Ferrara, P., Olliaro, M. (eds.)
Challenges of Software Verification, pp. 19–42. Springer Nature Singapore, Singapore
(2023). https://doi.org/10.1007/978-981-19-9601-6_2

28. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective x-sensitive analysis guided
by impact pre-analysis. ACM Trans. Program. Lang. Syst. 38(2), 6:1–6:45 (2016).
https://doi.org/10.1145/2821504

29. Singh, G., Püschel, M., Vechev, M.T.: Fast polyhedra abstract domain. In: Castagna,
G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017. pp. 46–59. ACM (2017). https://doi.org/10.1145/3009837.3009885

30. Tan, T., Li, Y., Xue, J.: Efficient and precise points-to analysis: modeling the heap
by merging equivalent automata. In: Cohen, A., Vechev, M.T. (eds.) Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and

https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1007/s10703-006-0013-2
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/0743-1066(92)90053-6
https://doi.org/10.1016/0743-1066(92)90053-6
https://doi.org/10.1016/0743-1066(92)90053-6
https://doi.org/10.1016/0743-1066(92)90053-6
https://doi.org/10.1109/SCAM.2005.2
https://doi.org/10.1109/SCAM.2005.2
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/3381915
https://doi.org/10.1145/3381915
https://doi.org/10.1145/3029052
https://doi.org/10.1145/3029052
https://doi.org/10.1007/978-3-030-88806-0_16
https://doi.org/10.1007/978-3-030-88806-0_16
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1007/978-981-19-9601-6_2
https://doi.org/10.1145/2821504
https://doi.org/10.1145/2821504
https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3009837.3009885

20 V. Arceri, G. Dolcetti, E. Zaffanella

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. pp. 278–291. ACM
(2017). https://doi.org/10.1145/3062341.3062360

31. Warren, R.A., Hermenegildo, M.V., Debray, S.K.: On the practicality of global
flow analysis of logic programs. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic
Programming, Proceedings of the Fifth International Conference and Symposium,
Seattle, Washington, USA, August 15-19, 1988 (2 Volumes). pp. 684–699. MIT
Press (1988)

32. Wei, G., Chen, Y., Rompf, T.: Staged abstract interpreters: fast and modular whole-
program analysis via meta-programming. Proc. ACM Program. Lang. 3(OOPSLA),
126:1–126:32 (2019). https://doi.org/10.1145/3360552

https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3360552
https://doi.org/10.1145/3360552

	Unconstrained Variable Oracles for Faster Numeric Static Analyses

