Precise Widening Operators
for Convex Polyhedra*

Roberto Bagnara!, Patricia M. Hill?, Elisa Ricci', and Enea Zaffanella!

! Department of Mathematics, University of Parma, Italy
{bagnara,ericci,zaffanella}@cs.unipr.it
2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. Convex polyhedra constitute the most used abstract domain
among those capturing numerical relational information. Since the do-
main of convex polyhedra admits infinite ascending chains, it has to be
used in conjunction with appropriate mechanisms for enforcing and ac-
celerating convergence of the fixpoint computation. Widening operators
provide a simple and general characterization for such mechanisms. For
the domain of convex polyhedra, the original widening operator proposed
by Cousot and Halbwachs amply deserves the name of standard widening
since most analysis and verification tools that employ convex polyhedra
also employ that operator. Nonetheless, there is an unfulfilled demand
for more precise widening operators. In this paper, after a formal intro-
duction to the standard widening where we clarify some aspects that
are often overlooked, we embark on the challenging task of improving
on it. We present a framework for the systematic definition of new and
precise widening operators for convex polyhedra. The framework is then
instantiated so as to obtain a new widening operator that combines sev-
eral heuristics and uses the standard widening as a last resort so that it
is never less precise. A preliminary experimental evaluation has yielded
promising results.

1 Introduction

An ability to reason about numerical quantities is crucial for increasing numbers
of applications in the field of automated analysis and verification of complex
systems. Of particular interest are representations that capture relational infor-
mation, that is, information relating different quantities such as, for example,
the length of a buffer and the contents of a program variable, or the number of
agents in different states in the modeling of a distributed protocol.

Convex polyhedra, since the work of Cousot and Halbwachs [19], constitute
the most used abstract domain among those capturing numerical, relational in-
formation. They have been used to solve, by abstract interpretation [16], several

* This work has been partly supported by MURST projects “Aggregate- and number-
reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps” and “Constraint Based Verification of Reactive Systems”.

important data-flow analysis problems such as array bound checking, compile-
time overflow detection, loop invariant computations and loop induction vari-
ables. Convex polyhedra are also used, among many other applications, for the
analysis and verification of synchronous languages [7,24] and of linear hybrid
automata (an extension of finite-state machines that models time requirements)
[25,28], for the computer-aided formal verification of concurrent and reactive
systems based on temporal specifications [30], for inferring argument size rela-
tionships in logic languages [5, 6], for the automatic parallelization of imperative
programs [32], for detecting buffer overflows in C [22], and for the automatic
generation of the ranking functions needed to prove progress properties [11].

Since the domain of convex polyhedra admits infinite ascending chains, it
has to be used in conjunction with appropriate mechanisms for enforcing and
accelerating convergence of the fixpoint computation. Widening operators [15—
18] provide a simple and general characterization for such mechanisms. In its
simplest form, a widening operator on a poset (L,C) is defined as a partial
function V: L x L — L satisfying:

1. for each z,y € L such that £ Vy is defined, we have z C xVy and y C x Vy;
2. for all increasing chains yg C y; £ ---, the increasing chain defined by
g :=yo and x;41 := x; V y;41, for i € N, is not strictly increasing.

It must be observed that a widening operator may serve different purposes, be-
sides forcing the stabilization of approximated iteration sequences after a finite
number of iterations: it may be used to speed up the convergence of iteration
sequences and to ensure the existence of the approximations of concrete ele-
ments when considering abstract domains that are algebraically weak [17]. Thus
a widening does not need to be a total function, the only requirement is that its
domain of definition be compatible with the intended application. The applica-
tion will also affect the required trade-off between precision and efficiency: when
speeding up convergence of an (perhaps intrinsically finite) iteration sequence,
precision is more willingly given away; in other cases, the objective is to ensure
termination without compromising precision too much. As a consequence, it is
meaningful to have two or more widening operators, each one tuned with a dif-
ferent compromise between precision and efficiency. The different widenings can
be used in different applications or even in the same application, with the system
dynamically switching from one to another [13].

For the domain of convex polyhedra, the first widening operator was proposed
by Cousot and Halbwachs in [19] and further refined in [23]. It amply deserves
the name of standard widening since most analysis and verification tools that
employ convex polyhedra also employ that operator.

There are a number of applications of convex polyhedra in the field of sys-
tems analysis and verification that are particularly sensitive to the precision
of the deduced numerical information. The importance of precision in the field
of automated verification has led to the use of extrapolation operators, that is,
binary operators satisfying condition 1 in the definition of widening but not con-
dition 2 (i.e., without convergence guarantees). For instance, in [27], Henzinger
and Ho propose a new extrapolation operator for use in the HYTECH model

checker since “Halbwachs’s widening operator [...] is sometimes too coarse for
[their] purposes” (symbolic model checking of linear hybrid systems). An even
more precise extrapolation operator, also used in the HYTECH system, is pre-
sented in [29]: “This operator is tighter than (and therefore less aggressive than)
both the widening operator of [24] and the extrapolation operator of [27], which
is not monotone in its second argument.” Other extrapolation operators based
on similar approaches have been sketched in [7]. Still in the field of automatic
verification, the need for more precision than warranted by the standard widen-
ing is remarked in both [10] and [20]; and a new extrapolation operator on sets
of convex polyhedra is defined in each of these papers.

If giving up convergence guarantees is acceptable (though not desirable) for
semi-automatic, human-operated verifiers, this is certainly not the case for fully-
automatic program analyzers. In this field, the request for more precision has
been partly satisfied by delaying the application of the widening operator k times
for some fixed parameter k& € N [13]. A study of the effect of alternative values for
k in the automatic determination of linear size relations between the arguments
of logic programs has been conducted in [5,6]. One application of this idea is
in termination inference [31]. In order to achieve reasonable precision, the ¢TI
analyzer runs with & = 3 as a default, but there are simple programs (such as
mergesort) whose termination can only be established with k£ > 3. On the other
hand, setting k = 4 as the default can have a sensible impact on performance of
¢TI [F. Mesnard, personal communication, 2003]. Another technique to improve
upon the results of a widening, while still ensuring termination, is described
in [24,26] and named ‘widening up to’. This is meant to recover from those
extrapolations that go beyond the limits specified by a fized set of constraints,
which are specific of the application domain under consideration or have been
obtained by a previous static analysis step.

In this paper, after a formal introduction to the standard widening where
we clarify some important aspects that are often overlooked, we embark on the
challenging task of improving on it. Elaborating on an idea originally proposed
in [7], we present a framework for the systematic definition of new and precise
widening operators for convex polyhedra, which is based on the definition of a
suitable relation on convex polyhedra satisfying the ascending chain condition.
The framework makes it particularly easy to combine several heuristics and prove
that the resulting operator is indeed a widening. Here we instantiate it with a
selection of extrapolation operators —some of which embody improvements of
heuristics already proposed in the literature— and the standard widening so
that the new widening operator is always at least as precise as the standard one
for a single application. An experimental evaluation of the new widening shows
that, for the analysis problem considered, it captures common growth patterns
and obtains precision improvements in as many as 33% of the benchmarks.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the standard widening, highlighting a few
important aspects of its formal definition that are often overlooked; Section 4
presents a framework for the systematic definition of new widening operators

improving upon the standard widening; Section 5 instantiates this framework
by considering several variants of extrapolations techniques proposed in the lit-
erature, as well as one that is new to this paper; Section 6 summarizes the results
of our experimental evaluation of the new widening. Section 7 concludes. The
proofs of all the stated results can be found in [3].

2 Preliminaries

The cardinality of a set S is denoted by # S. If M and N are finite multisets
over N, #(n, M) denotes the number of occurrences of n € Nin M and M > N
means that there exists j € N such that #(j, M) > #(j, N) and, for each k € N
with k& > j, we have #(k, M) = #(k, N). The relation > satisfies the ascending
chain condition [21]. The set of non-negative reals is denoted by R,.

Any vector v € R” is also regarded as a matrix in R"*! so that it can be
manipulated with the usual matrix operations of addition, multiplication (both
by a scalar and by another matrix), and transposition, which is denoted by v<.
For each ¢ = 1, ... n, the i-th component of the vector v € R" is denoted by
v;. The scalar product of v,w € R", denoted (v, w), is vTw = Y., v;w;. The
vector of R™ having all components equal to zero is denoted by 0.

Let V = {vy,...,vx} C R™ be a finite set of real vectors. For all scalar
constants Ay, ..., A\x € R, the vector v = Zle A;v; 1s said to be a linear
combination of the vectors in V. Such a combination is said to be: (1) positive
(or conic),if \; € R, fori=1,...,k; (2) affine, if Z;C:l Ai = 1; (3) convex, if it is
both positive and affine. Let V' C R"™. The subspace of R™ defined by the set of all
affine combinations of finite subsets of V' is called the affine hull of V' and denoted
by aff hull(V); the orthogonal of V is V= := {w € R" | Vv € V : (v,w) =0 };
the set { —v € R" | v € V' } is denoted by —V.

For each vector a € R™ and scalar b € R, where a # 0, the linear inequality
constraint (a,x) > b defines a topologically closed affine half-space of R™. We
do not distinguish between syntactically different constraints defining the same
affine half-space so that, for example, x > 2 and 2z > 4 are the same constraint.
The set P C R™ is a (closed and convez) polyhedron if and only if either P can
be expressed as the intersection of a finite number of closed affine half-spaces
of R", or n = 0 and P = @. The set of all closed polyhedra on R" is denoted
by CP,,. In this paper, we only consider polyhedra in CPP,, when n > 0. The set
CP,,, when partially ordered by subset inclusion, is a lattice where the binary
meet operation is set-intersection; the binary join operation, denoted W, is called
convez polyhedral hull, poly-hull for short.

We say that P € CP,, has dimension k, and we write dim(P) = k, if k < n
is the dimension of the affine subspace aff.hull(P). If P # &, the characteristic
cone of P is given by the set

char.cone(P) :={weR" |VveP:v+weP}

whereas the lineality space of P is lin.space(P) := char.cone(P)N— char.cone(P).

The linear equality constraint (a,x) = b defines an affine hyperplane of R"
(i.e., the intersection of the affine half-spaces (a,x) > b and (—a, x) > —b). Each
polyhedron P € CP,, can therefore be represented by a finite set of linear equality
and inequality constraints C called a constraint system. We write P = con(C).
The subsets of equality and inequality constraints in system C are denoted by
eq(C) and ineq(C), respectively. When P = con(C) # &, we say that constraint
system C is in minimal form if #eq(C) = n — dim(P) and there does not exist
C' C C such that con(C’) = P. All the constraint systems in minimal form
describing a given polyhedron have the same cardinality.

Let P € CP,. A vector p € P is called a point of P; a vector r € R", where
r # 0, is called a ray of P if P # & and p + Ar € P, for all points p € P and
all A € R.; a vector I € R" is called a line of P if both I and —I are rays of P.
We do not distinguish between rays (resp., lines) differing by a positive (resp.,
non-null) factor so that, for example, (1,3)" and (2,6)" are the same ray.

Given three finite sets of vectors L, R, P C R™ such that L = {l;,...,1s},
R={ry,...,r.}, P={p1,...,pp} and 0 ¢ LUR, then the triple G = (L, R, P)
is called a generator system for the polyhedron

0 T p 0 r p
AeR peR”, weRY,
gen(9) := { Y Nili + > piri+ Y mipi |, "’_1 * ’ }
i=1 i=1 i—1 27;:1 T =

The polyhedron gen(G) is empty if and only if P = @. If P # &, the vectors in L,
R and P are lines, rays and points of gen(G), respectively. We define an ordering
‘<’ on generator systems such that, for any generator systems G; = (L1, Ry, P1)
and g2 == (L27R27P2), g1 j g2 if and Ol’lly if L1 g LQ, Rl g R2 and P1 g PQ;
if, in addition, G; # Go, we write G; < Go. When gen(G) # &, the generator
system G = (L, R, P) is said to be in minimal form if # L = dim (lin.space(P))
and there does not exist a generator system G’ < G such that gen(G’) = gen(G).

Let ¢ = ((a,z) > b) be a linear constraint, where 1 € {>,=}. We say
that a point (resp., a ray or a line) v saturates constraint ¢ if and only if
(a,v) = b (resp., {(a,v) = 0). For each point p and constraint system C,
we define the constraint system sat_con(p,C) := {c¢ € C | p saturates c}; for
each constraint ¢ and generator system G = (L, R, P), we define the genera-
tor system sat_gen(c,G) := (L', R, P’), where L' := {l € L | l saturates c},
R’ :={r € R | r saturates c} and P’ := {p € P | p saturates c }.

A generator system G = (L, R, P) is in orthogonal form if it is in minimal form
and RU P C L*. All generator systems in orthogonal form describing a given
polyhedron have identical sets of rays and points. A generator system in minimal
form can be transformed into an equivalent system in orthogonal form by means
of the well-known Gram-Shmidt method. By duality, orthogonal forms can also
be defined for constraint systems. For each linear constraint ¢ = ((a,z) < b), let
Ca = a. A constraint system C is in orthogonal form if it is in minimal form and
I C E*, where I := {cq € R" | ¢ €ineq(C) } and E := {cq € R" | c € eq(C) }.
All constraint systems in orthogonal form describing a given polyhedron have
identical sets of inequality constraints.

3 The Standard Widening

The first widening on polyhedra was introduced in [19]. Intuitively, if P; is the
polyhedron obtained in the previous step of the upward iteration sequence and
the current step yields polyhedron Ps, then the widening of Ps with respect to
P1 is the polyhedron defined by all the constraints of P; that are satisfied by all
the points of Py. An improvement on the above idea was defined in [23]. This
operator, termed standard widening, has indeed been used almost universally.
The specification in [23] requires that each equality constraint is split into the
two corresponding inequalities; thus, for each constraint system C, we define

reprs (C) = { (—a,z) > —b] ((a,z) =) € c}
U{(a,w> > b‘ ((@,) =ab) € C,a € {2,:}}.

Definition 1. (Standard widening.) [23, Définition 5.3.3, p. 57] For i = 1,
2, let P; € CP,, be such that P; = con(C;) [and let C; be either inconsistent or
in minimal form]. The polyhedron Py V Py € CP,, is defined by Py V Py :=Ps if
Py =@, and P1 V Ps := con(C] UC)) otherwise, where

Cy = {ﬁ € repr>(Cq) ‘ Py C con({ﬁ}) },
Ch = {7 € repr> (Ca) ‘ 3B € repr>(Cy) . Py = COD((TGPYE(Cl) \ {8} u {7}) }

The constraints in C] are those that would have been selected when using
the original proposal of [19], whereas the constraints in Cj are added to ensure
that this widening is a well-defined operator on the domain of polyhedra (i.e., it
does not depend on the particular constraint representations).

The condition in square brackets that Cy, when consistent, should be in min-
imal form, was implicit from the context of [23, Définition 5.3.3, p. 57], though
not explicitly present in the definition itself. Such a requirement has been some-
times neglected in later papers discussing the standard widening (and also in
some implementations), but it is actually needed in order to obtain a correct
definition. In fact, the following two examples show that if a redundant (i.e.,
not minimal) constraint description is taken into account, then not only is the
widening operator not well defined (see Example 1), but also the chain condition
may be violated (see Example 2).

Ezample 1. For i =1, 2, let P; := con(C;) € CPs, where

Cl = {IZO»?JZOvI*yZQ}a
Cy:={x>2,y >0}

Note that the constraint > 0 is redundant in C;. By applying [23, Définition
5.3.3, p. 57] verbatim, without enforcing minimization, we would obtain the
polyhedron con({x >0,y > 0}) In contrast, by applying Definition 1, i.e., by
enforcing minimization, we obtain the polyhedron con({y > 0})

Ezample 2. For each k € N, consider Py, := con(Cy) € CPy, where

k
Ch:=1k0<zx, 2 < ——rU{x <2}
k { = Ly L = L + 1} { = }
Note that no Cj, is in minimal form since the constraint x < 2 is redundant in
all of them. Moreover, the infinite chain constituted by the Py’s, that is, using
an interval notation,

Po =10,0], P, = {0,;], P2 = [0,?}, Py = {O,ﬂ, cee
is strictly increasing. It is simple to observe that, when computing the stan-
dard widening without enforcing minimization, for the infinite chain Qg := Py,
covy Qpy1 = Ok V Piy1, ..., we have Q, = P, for each n € N, so that the
chain condition is violated. This is because, by taking 8 = (z < 2) € Cj, any
constraint v € Cx41 can replace 3 in Cy still obtaining polyhedron Py.

3.1 Implementation of the Standard Widening

The proposition below provides an algorithm for computing the standard widen-
ing of the pair of polyhedra P; and Py when P; C Ps. The idea, which was
proposed in [23] and later reported in [26], is to replace the expensive test in the
specification of C) in Definition 1 with an appropriate saturation condition to
be checked on any generator system for P;. The algorithm here is an improved
version over these proposals since neither the addition of the set of constraints
C} as given in Definition 1 nor the splitting of equality constraints into pairs
of inequalities is required. A similar result, but without the use of saturation
conditions, can be found in [6, Chapter 6].

Proposition 1. Let P; = con(Cy) = gen(G1) € CP,, and Py = con(Cy) € CP,,
where Cy is in minimal form and Py C Py. Then P1 V Py = con(Cs), where

Coi={reC ‘ 38 € C1 . sat_gen(v,G1) = sat_gen(f3,G1) }.

The next example shows that the inclusion hypothesis P; C P, in Proposi-
tion 1, which is only implicitly present in [23,26], is vital in guaranteeing that
the algorithm computes an upper approximation of P; and P,. Note that this
is independent of the two improvements mentioned above.

Ezample 3. Let P; := con(Cy) € CPy and Py := con(Cs) € CPy, where
Ci:={x=0,0<y <2},
CQ = {y Z 2}.

Then Py = gen(G1), where Gy = (@,@, P) and P = {(0,0)",(2,0)”}. Note that
P1 € Ps. By Definition 1, we obtain C; = C) = @, so that P; V Py = R?.
Considering the constraints § = (—y > —2) € C; and v = (y > 2) € Cq, we have

sat_gen((,Gy) = (@,@, {(2,0)T}) = sat_gen(v, G1),

so that v € Cs. Thus, the result of the algorithm is Po, which is different from
P V Py and it is not an upper approximation of P .

To avoid problems such as the one above, in the following we adopt a minor
variant of the classical definition of the widening operator given in Section 1 (see
the footnote in [18, p. 275]).

Definition 2. Let L(C,U) be a join-semi-lattice (i.e., the least upper bound xUy
exists for all x,y € L). The operator V: L X L » L is a widening if

1. x Cy implies y C x V y for each z,y € L;
2. for all increasing chains yo C y1 T ---, the increasing chain defined by
o :=Yo and Tiy1 = x; V Yi+1, for i € N, is not strictly increasing.

It can be proved that, for any continuous operator F: L — L, the upward
iteration sequence with widenings starting at o € L and defined by

Zi, if f(.’L‘Z) E.’L‘Z‘;
Tit1 = .
z; V (mi L f(xi)), otherwise;

converges after a finite number of iterations [18]. Note that the widening is always
applied to arguments x = z; and y = z; U F(x;) satisfying C y and = # y.
Thus, without loss of generality, in the following we will assume that the two
argument polyhedra satisfy the strict inclusion hypothesis P; C Ps.

4 Defining More Precise Widenings

In this section, elaborating on an idea originally proposed in [7], we will present
a framework for the systematic definition of new and precise widening operators
for polyhedra. In particular, we will state the theoretical result that will be used
to ensure that all the instances of the framework are indeed widening operators.
In order to do that, we need the following definition.

Definition 3. (Number of non-null coordinates of a vector.) Let v € R™.
We write k(v) to denote the number of non-null coordinates of v. For each finite
set V.CR™, we define k(V) to be the multiset obtained by applying k to each of
the vectors in V.

We now define the relation ~ C CP, x CP,, incorporating a notion of, so
to speak, “limited growth” or “growth that cannot be indefinite” (graphically, a
descending parabola).

Definition 4. (~ C CP, x CP,.) Let P1,P2 € CP, be two polyhedra. Then
P1 ~ Py if and only if P1 C P2 and either Py = & or at least one of the following

conditions holds, where, fori =1, 2, P; is given by means of a constraint system
C; in minimal form and a generator system G; = (L;, R;, P;) in orthogonal form:

dim(P;) < dim(Ps); (1)
dim (lin.space(P;)) < dim(lin.space(P2)); (2)
#C1 > #Cy; (3)
#CL=#CNH#PL > # Py (4)
H#Cr=H#HCoNH# P, =# Py AN(Ry) > k(Ro). (5)

Note that the ‘~’ relation is well defined, since it does not depend on the partic-
ular constraint and generator representations chosen; in particular, the require-
ment that the G; are in orthogonal form ensures that the computation of x(R;)
is not ambiguous (see Section 2).

The next result incorporates the basic idea behind the overall approach.

Theorem 1. Let Py ~ Py ~ -~ P; ~ -+ be a chain of polyhedra in CP,.
Then the chain is finite.

The ‘~’ relation is a variant of a similar notion of limited growth defined
in [7, Theorem 3]. These two proposals are not formally comparable since neither
relation refines the other. On one hand, in Definition 4, there are convergence
criteria that were not considered in [7], namely conditions (3) and (5); on the
other hand, to ensure that the relation satisfies the ascending chain condition,
condition (4) also requires that the number of constraints is not increasing.

From a more practical point of view, the relation defined in [7] is unsat-
isfactory, since neither the standard widening V, nor the heuristics informally
sketched in [7] ensure that consecutive iterates satisfy the given notion of limited
growth. In summary, the overall approach does not define a widening operator in
the precise sense of Definition 2 [F. Besson, personal communication, 2002]. By
contrast, the introduction of condition (3) ensures that applications of V always
yield polyhedra that are related to previous iterates by the ‘~’ relation.

Theorem 2. Let P; C Py € CP,,. Then Py ~ P1 V Ps.
This result provides a secure foundation for the definition of new widening
operators such as the one proposed here. In fact, the next result, which is an

easy consequence of Theorems 1 and 2, shows how any upper bound operator
can be used as the basis of a new widening that improves on the standard one.

Theorem 3. Let h: (C]P’i — CP,, be an upper bound operator and

h(P1,P2), if Pr ~ h(P1,P2) C Py V Py

7)1 ? PQ = .
P11V Py, otherwise.

Then the V operator is a widening at least as precise as V.

The above scheme is easily extended to any finite set of heuristic techniques that
are upper bound operators, still obtaining a widening operator. In the follow-
ing section we will consider several possible heuristic techniques: the simplest
one, also adopted in [7], was actually suggested in [18]; the second one is based
on an idea informally sketched in [7]; the third one is a minor variant of the
extrapolation operator of [27]; the fourth and last one is new to this paper.

5 Improving the Standard Widening by Heuristics

First Technique: Do Not Widen. The simplest heuristic technique, already
suggested in [18], is the one saying ‘do not widen’: if we are along an iteration
chain having finite length, there is no need to provide further approximations,
so that we can safely return the most precise upper bound Ps (remember that
we assume P; C Ps). In our context, this is the case whenever P; ~ Psy. Con-
sequently, all other techniques considered here will be applied to polyhedra P,
and Pz only if P; /A Ps so that, by the inclusion hypothesis, dim(P;) = dim(Ps)
and dim (lin.space(P;)) = dim(lin.space(P2)).

Second Technique: Combining Constraints. When defining a widening
operator on an abstract domain, a common tactic is to split the current abstract
description into several components and look at each one in isolation so as to
identify what has changed with respect to the previous iteration. Intuitively, the
information provided by stable components should be propagated to the next
iteration, whereas the information of components that have changed should be
extrapolated according to a hypothetical “change pattern”. For instance, in the
case of the widening in [19], each element of a constraint system is regarded as a
separate component and the extrapolation just forgets about the constraints that
have changed. The second heuristics, which is a variant of a similar one sketched
in [7], can be seen as an application of the above approach, where instead of
the constraints we consider the points in the generator system describing the
polyhedron of the previous iteration. When using the standard widening it may
happen that points that are common to the boundaries® of P; and P, (and,
hence, likely to be an invariant feature along the chain of polyhedra) will not lie
on the boundary of the widened polyhedron. This is the case, for instance, for
the two points p and q in Figure 1. For each such point, the technique forces
the presence of an inequality constraint that is saturated by the point, so that
it lies on the boundary of the result.

Definition 5. (Combining constraints.) Let P;, Py € CP,, be two polyhedra
such that Py C Pa, aff hull(P;) = aff hull(Ps) and lin.space(Py) = lin.space(Pz).
Let P = gen(G1), P2 = con(Ca) and P1 V Py = con(Cy), where the constraint

3 In this context, a “boundary point” is any point of P N lin.space(P)* which is not
a relatively interior point for P. Namely, we abstract from both the affine hull and
the lineality space of the polyhedron.

P11V Py

Fig. 1. The heuristics h. improving on the standard widening.

systems Co and Cy and the generator system Gy = (L1, Ry, P1) are in orthogonal
form. Let also

p € P, sat_con(p, ineq(CV)) =g,
Cp = sat_con(p,ineq(Cy)) # @ ’

Ce = {@(Cp)

where the operator & computes a convex combination of a non-empty set of linear
inequality constraints (i.e., of the corresponding coefficients), returning another
linear inequality constraint. Then h.(P1,P2) := con(Cy UCy).

Since the operator h. is only defined for arguments having the same affine hull
and lineality space, by requiring orthogonal forms we ensure that the result does
not depend on the considered representations.

Note that the particular convex combination encoded by function @ is de-
liberately left unspecified so as to allow for a very liberal definition of h. that
still possesses the required properties. For instance, in [7] it was argued that a
good heuristics could be obtained by letting @& compute a normed linear com-
bination (i.e., a sort of average) of the chosen constraints. Another legitimate
choice would be to “bless” one of the constraints in C,, and forget all the others.
In both cases, by keeping just one constraint for each point p, we hopefully re-
duce the cardinality of the constraint system describing the result, so that it is
more likely that condition (3) of Definition 4 will be met. Actually, this attempt
at reducing the number of constraints is the main difference between the tech-
nique presented in Definition 5 and the extrapolation operator proposed in [29,
Section 3.3], which could itself be included in the current framework as a more
refined widening heuristics.

Third Technique: Evolving Points. Our third heuristic technique is a variant
of the extrapolation operator ‘oc’ defined in [27]. The technique examines each
new point py of the polyhedron P, as if it was obtained from each old point p;
of the polyhedron P;: we say that ps is an evolution of p;. The extrapolation is
defined as continuing this evolution toward infinity, therefore generating the ray
having direction ps — p;. The new ray will subsume point po, so that it is likely
that the convergence condition (4) of Definition 4 will be met. Notice that any
ray that violates a constraint of the standard widening is dropped.

Definition 6. (Evolving points.) Let P1, Py € CP,, be such that Py C Py and
lin.space(P;) = lin.space(Ps). For each i = 1, 2, consider a generator system
Gi; = (L;, R;, P;) in orthogonal form such that P; = gen(G;) and let

R:i={p>—pi|preP.peP\ P}
Then we define hy,(Py, P2) := gen((La, R2 U R, P2)) N (P1 V P2).

Since the operator h, is only defined for arguments having the same lineality
space, by requiring orthogonal forms we ensure that the result does not depend
on the particular generator system representations considered.

The difference with respect to the extrapolation operator ‘o<’ is that we do
not require the two points to lie on the same 1-dimensional face of P5; moreover,
the result of ‘o<’ may be less precise than the standard widening. Note that, as
in the ‘combining constraints’ technique, it is possible to add just a single ray
which is a convex combination of the rays in R instead of the complete set R;
yielding a more precise widening technique. However, this technique and the one
defined by the h, operator are incomparable with respect to the ‘~’ relation
and one can fail the ‘~’ convergence criteria when the other succeeds.

Fourth Technique: Evolving Rays. We now introduce a fourth widening
heuristics that tries to extrapolate the way rays have evolved since the last
iteration. The technique examines each new ray ro of the polyhedron P, as if
it was generated by rotation of each old ray r; of the polyhedron P;: we say
that ro is an evolution of ;. The extrapolation is defined as continuing this
evolution until one or more of the non-null coordinates of ray ro become zero.
This way, it is likely that the convergence condition (5) of Definition 4 will be
met. Intuitively, the new ray will reach one of the boundaries of the orthant
where 75 lies, without trespassing it.

Definition 7. (evolve.) The function evolve: R xR™ — R"™ is defined, for each
v,w € R", as evolve(v,w) := v, where
o {O, if3je{l,....n}. (v;-w; —v;-w;) v -v; <O;
! v;, otherwise.

To understand this definition consider a pair of coordinates ¢ and j and
suppose that the vectors v and w are projected onto the two-dimensional plane
defined by 4 (for the first coordinate) and j (for the second coordinate). Then,
we identify the direction of the rotation of the vector (v;,v;)" with respect to
the vector (w;,w;)" by using the well-known cross-product test [12, Chapter 35];
the direction is clockwise if cw := v; - w; — v; - w; > 0 and anti-clockwise when
cw < 0. Moreover, vector (v;,v;)" lies inside the first or third quadrant when
q = v;-v; > 0 and it lies inside the second or fourth quadrant when ¢ < 0. Then,
the condition cw - ¢ < 0 states that the evolution is clockwise and (v;,v;)" is in

the second or fourth quadrant or the evolution is anti-clockwise and (v;,v;)" is
in the first or third quadrant: in all these cases, the evolution is toward the j

\
\
\ P1 M P2 -
\ //
\\ hT(P17P2) 7z
\ - P2
\ < -
- _-
\ 7z -
N ///’//
Z P, .
O

Fig. 2. The heuristics h, improving on the standard widening.

axis. Thus, for a fixed i, if there exists j such that the evolution is toward the
J axis, then we define v] = 0. Otherwise, we let v, = v;. We are now ready to
define our last widening heuristics.

Definition 8. (Evolving rays.) Let P1, Py € CP,, be such that P;1 C Py and
lin.space(P;) = lin.space(Pz). For each i = 1, 2, consider a generator system
Gi; = (L;, R;, P;) in orthogonal form such that P; = gen(G;) and let

R := {evolve(rg,rl) | T ER, T € Ry \ Ry }
Then we define h,.(Py,Ps) := gen((L27 Ry UR, PQ)) N(PLV Py).

Figure 2 shows an example where the ‘evolving rays’ technique is able to
improve on the standard widening. It should be noted that the boundary of
P1 V Py contains the intersection of the boundaries of P; and Ps, so that the
‘combining constraints’ technique is not applicable. Neither the ‘evolving points’
technique can be applied, since P; and Py have the same set of non-redundant
points. Besides having the same affine hull and lineality space, polyhedra Py, Ps
and h,.(P1,P2), are defined by the same number of non-redundant constraints
and points, so that P; ~ h,.(P1, P2) holds by condition (5) of Definition 4.

The New Widening. In order to use the above heuristic techniques in the
general framework we have defined in the previous section, each of them needs
to be an upper bound operator. This is trivial for the first technique. The same
result holds, by construction, for the other three heuristics.

Proposition 2. Let P, P> € CP,,, where P; C Po, aff.hull(P;) = aff.hull(Ps)
and lin.space(P;) = lin.space(Ps). Then, for each technique h € {hc,hp, by},
Py C h(P1,P2) CPLV Po.

The new widening operator tries to apply the four heuristics, stopping as
soon as we obtain a result which ensures convergence and actually improves on
the standard widening. As far as the choice of the particular order of application
is concerned, in principle, the more precise heuristic techniques should be tried
before the others; thus, the ‘do not widen’ technique has to be tried first. A

preliminary experimental evaluation (which is not reported here) has shown
that better results are obtained if the ‘combining constraints’ technique is tried
before the ‘evolving points’ and ‘evolving rays’ techniques, whereas the ordering
of the latter two is almost immaterial.

Definition 9. (The \Y4 widening.) Let Pi, Py € CP,, where Py C Ps. Then

7)2, ifP1 f\vpz,'

hC(P1,P2), prl e hC(P1, 7)2) C P11V Py
P1V Pyi= < hy(P1,P2), if P1 ~ hy(Pi,Pa) C Py V Po;

hr('Pl,’Pg), ifp1th(P1,P2)CP1 VPQ;

P1 V Py, otherwise.

It can be seen that V is an instance of the framework proposed in the previous
section: in particular, when applying the first heuristics, the omission of the ap-
plicability condition Py C P; V P5 is a simple and inconsequential optimization.
Thus the following result is a direct consequence of Theorem 3 and Proposition 2.

Proposition 3. The v operator is a widening at least as precise as V.

Proposition 3 is not strong enough to ensure that the final results of upward
iteration sequences using the new widening are uniformly more precise than
those obtained by using the standard widening. It is well known, in fact, that the
standard widening (and thus the new widening) is not a monotonic operator [19].
However, the experimental evaluation of the next section shows that, in practice,
precision degradations are actually rare.

6 Experimental Evaluation

We have extended the Parma Polyhedra Library (PPL) [2,4], a modern C++
library for the manipulation of convex polyhedra, with a prototype implemen-
tation of the widening of Definition 9. In particular, the operator & used for
‘combining constraints’ is the simple (i.e., non-normed) average: as the library
uses arbitrary precision integers, the computation of norms may generate con-
straints having huge coefficients and it is therefore avoided. The PPL has been
integrated with the CHINA analyzer [1] for the purpose of detecting linear ar-
gument size relations [5]. Our benchmark suite consists of 361 Prolog programs,
ranging from small synthetic benchmarks to real-world applications. They define
23279 predicates whose analysis with CHINA requires the direct use of a widen-
ing and about as many predicates for which no widening is used. In this respect,
it must be noted that CHINA employs a sophisticated chaotic iteration strat-
egy proposed in [8, 9] that, among other benefits, greatly reduces the number of
widenings’ applications.? This is an important point, since it would be quite easy

4 CHINA uses the recursive fixpoint iteration strategy on the weak topological ordering
defined by partitioning of the call graph into strongly-connected subcomponents [9].

to improve on an iteration strategy applying widenings “everywhere or improp-
erly” [8]. Also note that the polyhedra yielded by application of each of the two
widening operators are strengthened by enforcing non-negativity constraints on
all of the vector space dimensions, since the sizes of arguments cannot be nega-
tive: this further improvement is implemented by adopting the ‘widening up to’
technique of [24, 26]. The results of this experimental evaluation are summarized
in Table 1, where each row corresponds to a different choice for the value of the
extrapolation threshold k, controlling the delay before the applications of both
the standard and the new widening operators.

[Precision] [Time]

[# programs J[# predicates J[std Vi H new Vi J

[k (delay)”improve[degﬂincomﬂ [improve[dengincomp” all [top 20” all [top 20]
0 121 0 2 1340, 3 2(|1.00f 0.72{|1.05| 0.77

1 34 0 0 273 0 0{/1.09| 0.79(|1.11| 0.80

2 29] 0 0 2221 0 0{|1.16] 0.83(|1.18| 0.84

3 28] 0 0 160 O 0{|1.23| 0.88(|1.25| 0.89

4 25 0 2 126| 2 0(/1.32| 0.95((1.34| 0.95

10 25| 0 0 124 0 0(/1.82| 1.23(|1.85| 1.24

Table 1. Precision and time comparisons.

The part of the table headed ‘Precision’ shows the obtained precision im-
provements and degradations (in the columns labeled ‘improve’ and ‘degr’, re-
spectively), both in terms of the number of programs and the number of pred-
icates affected; in the columns labeled ‘incomp’ we report those cases where
incomparable results have been obtained. For & = 0, we observe a precision
improvement on one third of the considered programs; not surprisingly, fewer
improvements are obtained for higher values of k, but we still have an improve-
ment on 7% of the benchmarks when considering & = 10. While confirming, as
informally argued in [5], that for this particular analysis there is little incentive
in using values of k greater than 4, our experiments show that the new widening
captures growth patterns that do happen in practice and that for the standard
widening (no matter how delayed) are out of reach. This is important since the
results obtained in practice are, besides correctness, what really matters when
evaluating widening operators. The experimentation also shows that the idea of
delaying the widening [13] maintains its validity: even though the new widening
is less sensitive to the amount of delay applied, delaying still improves some of
the results.

The part of the table headed ‘Time’ shows the sum, over all the benchmarks,
of the fixpoint computation times. This is expressed as a proportion of the time
spent when using the standard widening with k£ = 0. Since smaller benchmarks
may affect the outcome of this summarization, in the columns labeled ‘top 20’

we also show the same values but restricted to the 20 benchmarks whose anal-
ysis takes more time. It can be seen that the new widening has a negative, but
relatively modest impact on efficiency, which anyway is smaller than the cost of
increasing the value of k. When looking at these time results, it should be con-
sidered that we are comparing a prototype implementation of the new widening
with respect to a rather optimized implementation of the standard widening. It
is also important to remark that the good performance degradation observed for
both widenings when increasing the value of k is essentially due to the iteration
strategy employed by CHINA and should not be expected to automatically carry
over to systems using other fixpoint computation techniques.

7 Conclusion

For the domain of convex polyhedra, the convergence of the fixpoint computation
sequence has been typically obtained thanks to the widening operator proposed
by Cousot and Halbwachs. Though remarkably precise, this operator does not
fulfill the requirements of a number of applications in the fields of analysis and
verification that are particularly sensitive to the precision of the deduced numer-
ical information. In this paper, elaborating on an idea proposed in [7], we have
defined a framework for the systematic specification of new widening operators
improving on the precision of the standard widening. The framework allows any
upper bound operator on the domain of convex polyhedra to be transformed
into a proper widening operator, therefore ensuring the termination of the com-
putation. We have instantiated the framework with a selection of extrapolation
operators, some of which embody improvements of heuristics already proposed
in the literature. A first experimental evaluation has yielded promising results.

Acknowledgments. We would like to express our gratitude to Frédéric Besson
for his useful comments and observations on the ideas sketched in [7]; Fred Mes-
nard for the information and the discussions we had with him about the impact
of precision on termination inference for Prolog programs; and the reviewers for
their careful comments that helped us improve the paper.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy, March 1997.
Printed as Report TD-1/97.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. The Parma Polyhedra Library
User’s Manual. Department of Mathematics, University of Parma, Parma, Italy,
release 0.4 edition, July 2002. Available at http://www.cs.unipr.it/ppl/.

3. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. Quaderno 312, Dipartimento di Matematica, Universita di
Parma, Italy, 2003. Available at http://www.cs.unipr.it/Publications/.

10.

11.

12.

13.

14.

15.

16.

17.

R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213-229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

F. Benoy and A. King. Inferring argument size relationships with CLP(R). In J. P.
Gallagher, editor, Logic Program Synthesis and Transformation: Proceedings of the
6th International Workshop, volume 1207 of Lecture Notes in Computer Science,
pages 204223, Stockholm, Sweden, 1997. Springer-Verlag, Berlin.

P. M. Benoy. Polyhedral Domains for Abstract Interpretation in Logic Program-
ming. PhD thesis, Computing Laboratory, University of Kent, Canterbury, Kent,
UK, January 2002.

F. Besson, T. P. Jensen, and J.-P. Talpin. Polyhedral analysis for synchronous
languages. In A. Cortesi and G. Filé, editors, Static Analysis: Proceedings of the
6th International Symposium, volume 1694 of Lecture Notes in Computer Science,
pages 51-68, Venice, Italy, 1999. Springer-Verlag, Berlin.

F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In D. Bjgrner,
M. Broy, and L. V. Pottosin, editors, Proceedings of the International Conference on
“Formal Methods in Programming and Their Applications”, volume 735 of Lecture
Notes in Computer Science, pages 128-141, Academgorodok, Novosibirsk, Russia,
1993. Springer-Verlag, Berlin.

F. Bourdoncle. Sémantiques des langages impératifs d’ordre supérieur et in-
terprétation abstraite. PRL Research Report 22, DEC Paris Research Laboratory,
1993.

T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: Symbolic representations, approximations, and ex-
perimental results. ACM Transactions on Programming Languages and Systems,
21(4):747-789, 1999.

M. A. Colén and H. B. Sipma. Synthesis of linear ranking functions. In T. Margaria
and W. Yi, editors, Tools and Algorithms for Construction and Analysis of Sys-
tems, 7Tth International Conference, TACAS 2001, volume 2031 of Lecture Notes
in Computer Science, pages 67-81, Genova, Italy, 2001. Springer-Verlag, Berlin.
T. H. Cormen, T. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Mass., 1990.

P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303-342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

P. Cousot, editor. Static Analysis: 8th International Symposium, SAS 2001, volume
2126 of Lecture Notes in Computer Science, Paris, France, 2001. Springer-Verlag,
Berlin.

P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106—130. Dunod, Paris, France, 1976.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238-252, New York, 1977. ACM Press.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511-547, 1992.

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269-295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84-96, Tucson, Arizona, 1978.
ACM Press.

G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
Tools and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, volume 1579 of Lecture Notes in Computer Science, pages
223-239, Amsterdam, The Netherlands, 1999. Springer-Verlag, Berlin.

N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465-476, 1979.

N. Dor, M. Rodeh, and S. Sagiv. Cleanness checking of string manipulations in C
programs via integer analysis. In Cousot [14], pages 194-212.

N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. These de 3°™° cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor,
Computer Aided Verification: Proceedings of the 5th International Conference, vol-
ume 697 of Lecture Notes in Computer Science, pages 333-346, Elounda, Greece,
1993. Springer-Verlag, Berlin.

N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Static Analysis:
Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in
Computer Science, pages 223-237, Namur, Belgium, 1994. Springer-Verlag, Berlin.
N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157-185,
1997.

T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies for
hybrid automata. In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors,
Hybrid Systems II, volume 999 of Lecture Notes in Computer Science, pages 252—
264. Springer-Verlag, Berlin, 1995.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(142):110-122, 1997.

T. A. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the HYTECH
experience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887-2892. IEEE Computer Society Press, 2001.

Z. Manna, N. S. Bjgrner, A. Browne, M. Colén, B. Finkbeiner, M. Pichora, H. B.
Sipma, and T. E. Uribe. An update on STeP: Deductive-algorithmic verification
of reactive systems. In R. Berghammer and Y. Lakhnech, editors, Tool Support
for System Specification, Development and Verification, Advances in Computing
Sciences. Springer-Verlag, Berlin, 1999.

F. Mesnard and U. Neumerkel. Applying static analysis techniques for inferring
termination conditions of logic programs. In Cousot [14], pages 93-110.

W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):102-114, 1992.

