
University of Leeds

SCHOOL OF COMPUTING

RESEARCH REPORT SERIES

Report 2005.06

A Linear Domain for Analyzing the Distribution

of Numerical Values1

by

Roberto Bagnara2 & Katy Dobson3 & Patricia M. Hill3

& Matthew Mundell3 & Enea Zaffanella2

December 2005

1 This work has been partly supported by EPSRC project EP/C520726/1 “Numerical
Domains for Software Analysis”, by MIUR project “AIDA — Abstract Interpreta-
tion: Design and Applications,” and by a Royal Society (UK) International Joint
Project (ESEP) award.

2 Department of Mathematics, University of Parma, Italy
{bagnara,zaffanella}@cs.unipr.it

3 School of Computing, University of Leeds, UK
{katyd,hill,mattm}@comp.leeds.ac.uk

Abstract. This paper explores the abstract domain of grids, a domain
that is able to represent sets of equally spaced points and hyperplanes
over an n-dimensional vector space. Such a domain is useful for the static
analysis of the patterns of distribution of the values program variables
can take. Besides the bare abstract domain, we present a complete set
of operations on grids that includes all that is necessary to define the
abstract semantics and the widening operators required to compute it in
a finite number of steps. The definition of the domain and its operations
exploit well-known techniques from linear algebra as well as a dual rep-
resentation that allows, among other things, for a concise and efficient
implementation.

1 Introduction

The static analysis of numerical information about the values program variables
can take is a challenging problem that has led to considerable research in both
the theory and its practical realization. We distinguish between two kinds of
numerical information: outer limits (or bounds within which the values must
lie) and the pattern of distribution of these values. Both kinds of information
have important applications. For example, in the field of automatic program
verification, limit information is crucial to ensure that array accesses are within
bounds, while distribution information is what is required to ensure that the
external memory accesses obey the alignment restriction imposed by the host
architecture. In the field of program optimization, limit information can be used
to compile out various kinds of run-time tests, whereas distribution informa-
tion enables several transformations for efficient parallel execution as well as
optimizations that enhance cache behavior.

Both limit and distribution information often come in a relational form;
for instance, the outer limits or the pattern of possible values of one variable
may depend on the values of one or more other variables. Domains that can
capture relational information are generally much more complex than domains
that do not have this capability; in exchange they usually offer significantly
more precision, often important for the overall performance of the client appli-
cation. Relational limit information can be captured, among other possibilities,
by means of polyhedral domains, that is, domains that represent regions of some
n-dimensional vector space bounded by a finite set of hyperplanes [11]. While
several polyhedral domains have been proposed and that of convex polyhedra,
the most popular relational polyhedral domain, has been thoroughly researched
and widely used, relational domains for representing the (linear) distribution
of numerical values have been less well researched. For instance, previous in-
vestigations have hardly touched on the issue of widening operators; ignored
the domain difference operation; and have failed to provide any support for a
non-relational approximation. In addition, proposed algorithms are unnecessar-
ily complex and standard mathematical procedures have not been utilized to
their best advantage. Moreover, as far as we know and at the time of writing,
there is no available implementation providing all the basic operations needed

1

-4

-2

4

2

-2-4 642

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

� �

�

(a) The grid L

-4

-2

4

2

-2 42

���

(b) The grid L′

Fig. 1. Two grids in R2

by a relational abstract domain for distribution information. This is in spite of
the fact that previous research has shown that a knowledge about the (discrete)
distribution of numerical information, especially when combined with that of the
limit information, can significantly improve the quality of the analysis results [1].
The purpose of this paper is to fill this gap: we will present a complete relational
domain of grids that captures numerical distribution information and briefly
describe its implementation within the Parma Polyhedra Library (PPL) [5, 6].

1.1 Grids in a Nutshell

The diagrams in Figure 1 illustrate alternative approaches to the description of
any grid; either by means of a finite set of congruence relations that all the grid
points must satisfy (given by the dashed lines) or by means of a finite set of
generating vectors used for constructing the grid points and lines (given by the
filled squares and the arrow).

Consider first Figure 1(a). The set of points marked by squares at the inter-
section of the dashed lines represent the grid L. This denotes the distribution of
possible values of integer variables x and y resulting from the execution of the
following program fragment (based on an example in [11]) for any value of m:

x := 2; y := 0;

for i := 1 to m

if ... then

x := x + 4

else

x := x + 2; y := y + 1

endif

endfor

2

Note that the vertical dashed lines represent the set of points satisfying the
congruence relation x = 0 (mod 2) while the sloping lines represent the set of
points satisfying x+ 2y = 2 (mod 4). The set

C =
{

x = 0 (mod 2), x+ 2y = 2 (mod 4)
}

is called a congruence system and said to describe L. The filled squares in Fig-
ure 1(a) represent the points

p1 =

(

2
0

)

, p2 =

(

6
0

)

and p3 =

(

4
1

)

while all the squares (both filled and unfilled) in the diagram mark position
vectors v = π1p1 +π2p2 +π3p3, where π1, π2, π3 ∈ Z and π1 +π2 +π3 = 1. The
set of points P = {p1,p2,p3} is said to generate L. Some of these generating
points can be replaced by parameters that give the direction and spacing for the
neighbouring points. Specifically, by subtracting the point p1 from each of the
other two generating points p2,p3 we obtain

q2 =

(

4
0

)

and q3 =

(

2
1

)

.

It follows that each point v ∈ L can be written as v = p1 + π2q2 + π3q3 for
some π2, π3 ∈ Z; the set Q = {q2, q3} is called a parameter set for L.

Consider next the grid L′ illustrated by the dashed line in Figure 1(b) which
is all the points that satisfy the equality x = y+1. This denotes the distribution
of values of the real variables x and y after an assignment x := y + 1, assuming
that nothing is known about the value of y. In this case, as we regard equalities
as congruences modulo 0, we say that the congruence system

C′ = {x− y = 1}

describes L′. Observe also that the grid L′ consists of all points that can be
obtained as λ` + p′, for any λ ∈ R, where

` =

(

1
1

)

and p′ =

(

1
0

)

;

the vector ` defines the direction of the line and the vector p′ its position (illus-
trated in Figure 1(b) by the arrow and the filled square, respectively).

From what we have just seen, any grid can be represented both by a congru-
ence system and by a generator system. The latter may consist of three compo-
nents: a set of lines, a set of parameters and a set of points. For instance, the
triples G1 =

(

∅,∅, P
)

and G2 =
(

∅, Q, {p1}
)

are both generator systems for L

while the triple G′ =
(

{`},∅, {p′}
)

is a generator system for L′.

3

1.2 Implementing Grids

The congruence and generator systems for representing elements of the domain
of rational grids can be seen to have close parallels with the constraint and gen-
erator systems for describing convex polyhedra. In this paper, we develop and
exploit this analogy. First, as for the systems representing convex polyhedra, by
adding an extra dimension, the representations can be made homogeneous [27,
29]. Secondly, as a direct result of [35, Section 4.4], the homogenized congruence
and generator systems are dual and, hence, equivalent representations for the
domain of rational grids. Thus the congruence and generator systems for repre-
senting grids form the two components of a double description method for the
grid domain that is very similar to that of the double description method for
convex polyhedra [25].

Just as for the domain of convex polyhedra, for a double description method
for grids to be viable, we require algorithms that can convert between a rational
grid’s generator and congruence systems. In fact, for this domain, the standard
techniques for matrix inversion can be used as the basis for the conversion al-
gorithms. Moreover, since a congruence or generator system may contain some
redundancies, or, even when there are no explicit redundancies, there may ex-
ists smaller a set of congruences or generators that generates or describes the
same grid, we require algorithms for minimizing the representations. As before,
there are standard matrix algorithms (for instance, the Hermite normal form
algorithm [28, 35]) that can be used as a basis for minimization algorithms. Note
that the minimal representations are needed not just to economize on memory
space and subsequent computation time, but also for the conversion algorithms
mentioned above.

1.3 Related Work

As far as we know, Granger provided the first account of an analysis for con-
gruence information; in [14] it is shown how a simple integral and non-relational
grid domain could be used in a static analyzer. In this domain, an element
is characterized as the set of all integers that are congruent to c modulo m
where c and m are integers; that is, the set of all integers x where, for some
k ∈ Z, x = c + km; which does, in fact, immediately provide an equivalent
one-dimensional generator system consisting of a point (c) and parameter (m).
One particularly useful aspect of this work is that it indicates some practical
applications of the domain that carry over to the more complex domain consid-
ered here. For instance, it is shown how an analysis using the grid domain can
obtain more precise information than an analysis using a constant propagation
domain or a sign domain. It is then indicated how the results may be applied for
automatic vectorization. Independently, Larsen et al. [22] have also developed a
static analyzer over a non-relational grid domain; this analyzer is specifically de-
signed to detect when the dynamic memory addresses are congruent with respect
to a given modulus (the actual modulus being dependent on the application).
It is shown how this information may be used to construct a comprehensive

4

set of program transformations that can lead to energy savings on low-power
architectures and performance improvements on multimedia processors.

Note that, prior to the current stream of work on congruence relations,
Karr [21] had pioneered the consideration of a linear relational equality do-
main for program analysis. More recently, Granger, building on his previous
work for non-relational congruences [14], generalized Karr’s work to linear con-
gruence relations [16] (see also [15]). This paper focuses on an integral domain,
but as indicated in the subsequent paper by the same author [17], this work
easily generalizes to the domain of rational grids. Two representations for the
domain are described, sets of congruences and sets of generators. In [16], it is
shown how standard matrix algorithms [36] can be used to convert from a gener-
ator system to a congruence system; a more complex algorithm is also provided
for conversion from a congruence system to a generator system. Operators for
comparing grids and computing the greatest lower and least upper bounds are
also described in [16].

Most previous work (such as that in [16, 17]) as well as the work in this paper
assumes fully relational congruence systems for representing grids. In contrast,
by applying a generic technique, Miné [24] shows how to construct a weakly rela-
tional zone-congruence domain (that is, a domain that only allows congruences
that have the form x − y = a (mod b) where a and b are rationals) from the
non-relational congruence domain described in [14].

Müller-Olm and Seidl [27] have recently improved on the work of Granger [16,
17]; one aspect of the improvement is obtained by recognizing, as we do here, that
the inhomogeneous representations may be transformed to homogeneous ones by
adding an extra dimension. However, we note that [27] is focused, not on the def-
inition of the domain itself, but on the definition of an abstract interpretation
of a constraint system that can characterize the concrete program semantics,
particularly in the case when there are procedural calls. Thus the main contri-
butions of [27] are largely orthogonal to the contributions here. Note also that
as stated in [27], the framework described there subsumes analysis described
in previous work by the same authors; in particular, it subsumes the analysis
described in [26] designed specifically for analyzing certain integer arithmetic
computations that are modulo 2w where, for example, w is 32 or 64.

Following a completely independent stream of research and publications, An-
court [1] considered a domain of grids (i.e., lattices) combined with the domain
of convex polyhedra; that is the domain of Z-polyhedra defined as “the inter-
sections of polyhedra and integral lattices”. We are primarily interested here
in the “integral lattices” component which may be seen as a subdomain of the
domain of rational grids where the grid points are all integral vectors and is full-
dimensional. In all the papers concerning the Z-polyhedral domain [1, 29, 31, 32],
the representation of these integral lattices is similar to that of the generator rep-
resentation given in Section 3. All the operations on Z-polyhedra (and therefore
the lattices) require canonic representations; hence Quinton et al. [31, 32] defines
a canonical form for these lattices with a method for its computation. We note
that the algorithm for computing the canonic form has complexity O

(

n4
)

, where

5

n is the number of dimensions of the vector space. Other operations provided
for lattices are those of intersection, affine image and affine preimage. As there
is no congruence representation, the intersection of two lattices is computed di-
rectly from the generator representations [1]; a refined version of this method
is provided in [31] which we note that, as for computing the canonic form, it
has complexity O

(

n4
)

. On the other hand, the operations of grid join ‘⊕’ and
grid difference ‘	’ (as defined in Section 4) are not considered. Instead the union
operator takes two lattices L1 and L2 and returns the set {L1,L2} of the two
unless one (say L1) is contained in the other, in which case they will return
the larger L2. Moreover, the difference operation is also exact and, in general,
returns a set of lattices.

The domain of integral lattices and operations on them has been implemented
in PolyLib[23] following the methodology described in [31, 32]. Thus several of the
main operations on lattices, such as union, return sets of lattices while others are
concerned with manipulating and simplifying these sets. We note in particular
that, as explained by Nookala and Risset [29], all the operations are implemented
using a homogeneous representation. This is obtained, as we do here, by adding
an extra dimension to the inhomogeneous representation that is input to the
system via the user interface.

1.4 Contributions

The paper provides a full account of the relational domain of grids including
its alternative representations, operations required for static analysis, and key
algorithms needed for its implementation. Although some of this is already in
the literature, it is widely dispersed and has never before been assembled into a
single description. There are also several specific contributions.

– Although the Gaussian elimination and Hermite normal form algorithms
form the basis of the proposed conversion and minimization algorithms for
grids, we have had to extend them so as to apply to any grid and its rep-
resentations as well as adapt them so as to be suitable for a real, efficient
implementation. Therefore we outline the actual algorithms we use in our
implementation; some of which are shown to have complexities strictly better
than that of previous proposals [16, 27].

– By taking the union of the generator systems (resp., congruence systems)
representing two grids we can compute their least upper bound (resp., the
greatest lower bound); therefore, since we have reduced the complexity of
the algorithms for minimizing and converting between representations, our
implementations for these operations also have smaller complexity than that
of previous proposals [16].

– We provide an algorithm for computing the smallest grid containing the
difference of two grids. Observe that there are no previous proposals for this
operator. The only papers that considers the computation of the difference of
two grids are those concerning the Z-polyhedral domain [1, 29, 31, 32]; here,
as mentioned above, the difference operation returns the exact difference of
the grids which has to be represented by a set of grids.

6

– One major difference between the domains of rational and integral grids
is that the rational grid domain Gn does not satisfy the ascending chain
condition. In [17], a widening is proposed for non-relational rational grids
and it is briefly stated that it might be generalized to the case of rational
grids but without any further details; how this might be done is unclear.
Here we provide a practical widening operator for rational grids that, when
restricted to the non-relational grid, does correspond to that proposed in [17].

– In order to dynamically manage the complexity/precision tradeoff of pro-
gram analysis, the analyzer should be able to dynamically switch (in re-
sponse to timeouts or driven by heuristics) to a simpler analysis domain.
We provide a non-relational approximation for an arbitrary grid that can be
implemented by means of an interval domain together with algorithms for
conversion from a grid to the approximation and vice-versa.

1.5 Plan of the Paper

The rest of the paper is structured as follows. The required notations and pre-
liminary concepts are given in Section 2. Section 3 introduces a grid together
with its congruence and generator representations; Section 4 describes the basic
operators on grids needed for program analysis; Section 5 provides the main
algorithms needed to support the double description; Section 6 introduces the
grid widening operation and its implementation; Section 7 gives some examples
of grids applications. We conclude the main body of the paper in Section 8.
Appendix A contains the proofs of all the stated results.

2 Preliminaries

The cardinality of a set S is denoted by #S. The set of integers is denoted by
Z, rationals by Q and reals by R. For any a, b ∈ R where a 6= 0, we say a divides

b, denoted by a|b, if, for some m ∈ Z, am = b. The complexities we give for the
different algorithms assume a unit cost for every arithmetic operation; we take
the computation of the greatest common divisor of a pair of numbers a, b ∈ R to
be a single operation. Given sets X,Y and any relation R ⊆ X × Y , the image

for R on a subset A of X is
{

y ∈ Y
∣

∣ ∃x ∈ A . (x, y) ∈ R
}

, and the preimage

for R on a subset B of Y is
{

x ∈ X
∣

∣ ∃y ∈ B . (x, y) ∈ R
}

.

2.1 Vectors and Matrices

For each i ∈ {1, . . . , n}, vi denotes the i-th component of the (column) vector
v ∈ Rn. The empty vector (in R0) is denoted by ε; a vector that has all its
elements equal to zero is denoted by 0; and, for 1 ≤ i ≤ n, the notation ei denotes
the vector in Rn with 1 in the i-th position and zeroes in every other position.
For v ∈ Rn, piv<(v) denotes the maximum index i such that vi 6= 0; if v = 0, we
define piv<(v) := 0. Similarly, piv>(v) denotes the minimum index i such that
vi 6= 0; if v = 0, we define piv>(v) := n+1. Any vector v ∈ Rn is also a matrix in

7

Rn×1 so that it can be manipulated with the usual matrix operations of addition
and multiplication, both by a scalar and by another matrix. On the other hand,
it is often convenient to consider a matrix H = (h1, . . . ,hm) ∈ Rn×m as a finite
set of vectors {h1, . . . ,hm} ⊆ Rn. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},
the ij-th component of a matrix H ∈ Rn×m is denoted by Hij and the i-th row
by Hi. The transposition of a matrix H is denoted by HT. The scalar product

of v,w ∈ Rn, denoted 〈v,w〉, is the real number vTw =
∑n

i=1
viwi.

Vectors v1, . . . ,vm ∈ Rn are said to be affinely independent if, for all λ ∈ Rm,
λ = 0 is the only solution of the set of equations

{
∑m

i=1
λivi = 0,

∑m

i=1
λi = 0

}

.

2.2 Integer Combinations

Let S = {v1, . . . ,vk} ⊆ Rn be a set of k vectors. For all scalars λ1, . . . , λk ∈ R,

the vector v =
∑k

j=1
λjvj is said to be a linear combination of the vectors in S.

Such a combination is said to be

– an affine combination, if
∑k

j=1
λj = 1;

– an integral combination, if λ1, . . . , λk ∈ Z;
– an integral affine combination, if it is both integral and affine.

We denote by affine.hull(S) (resp., int.hull(S), int.affine.hull(S)) the set of all
the affine (resp., integer, integer affine) combinations of the vectors in S.

2.3 Congruences and Congruence Relations

For any a, b, f ∈ R, a ≡f b denotes the congruence ∃µ ∈ Z . a − b = µf . In
the case that f = 0, the congruence denotes the equality a = b. Let S be either
Q or R. For each vector a ∈ Sn and scalars b, f ∈ S, the notation 〈a,x〉 ≡f b
stands for the linear congruence relation in Sn defined by the set of vectors
{

v ∈ Rn
∣

∣ ∃µ ∈ Z . 〈a,v〉 = b + µf
}

; f is called the frequency and b the
base value of the relation; when f = 0, the congruence relation denotes the
equality 〈a,x〉 = b; when f 6= 0, the congruence relation is said to be proper.
Thus, provided a 6= 0, the congruence relation 〈a,x〉 ≡f b defines the set of affine
hyperplanes

{ (

〈a,x〉 = b+µf
)

∣

∣ µ ∈ Z
}

. The congruence 〈0,x〉 ≡f b defines the
universe Rn if b ≡f 0, and the emptyset, otherwise. We will assume that in such
a congruence (when a = 0) we have b 6= 0. Any vector that satisfies one of the
equalities 〈a,x〉 = b+µf for any µ ∈ Z is said to satisfy the congruence relation
〈a,x〉 ≡f b. We do not distinguish between syntactically different congruences
defining the same set of vectors in Sn so that, e.g., x ≡1 2 and 2x ≡2 4 are
considered to be the same congruence.

We extend the pivot notation to congruences as follows. If β =
(

〈a,x〉 ≡f a0

)

and piv<(a) = k, then piv<(β) := k. We say that congruence β is pivot equivalent

to γ =
(

〈c,x〉 ≡g c0
)

, and write β ⇑ γ, if piv<(γ) = piv<(β) = k and gak = fck.
Observe that, as ak, ck 6= 0, this means that β and γ are either both equalities
or both proper congruences.

8

3 Rational Grids

In this section we introduce rational grids and their representation. Note that
previously the terminology ‘lattice’ instead of ‘grid’ has been used for elements of
domains similar to the grids domain described here. However, to avoid any con-
fusion with the use of ‘lattice’ in its set-theoretic context (which is particularly
relevant when working in the framework of abstract interpretation), we prefer
the terminology ‘grid’ for sets of vectors that can represent discrete and linearly
repetitive information. Moreover, as G is used to denote a generator system, we
use L to denote a rational grid.

3.1 The Grid Domain and the Congruence Representation

A congruence system in Qn is a finite set of congruence relations C in Qn. As we
do not distinguish between syntactically different congruences defining the same
set of vectors, we can assume that all proper congruences in C have modulus 1.

Definition 1. The set of vectors L is a rational grid in Rn described by a

congruence system C in Qn if and only if L is the set of points in Rn that satisfy

all the congruences in C. We also say that C is a congruence system for L and

write L = gcon(C).

If gcon(C) = ∅, then we say that C is inconsistent. For example, the congruence
systems

{

〈0,x〉 ≡0 1
}

and
{

〈a,x〉 ≡2 0, 〈a,x〉 ≡2 1
}

, for any a ∈ Qn, both
describe the empty grid in Rn. In fact, the first congruence system requires that
0 = 1, while the second one requires that the value of an expression is both even
and odd, so that they are both inconsistent.

The grid domain Gn is the set of all rational grids in Rn. When ordering
grids by the set inclusion relation, the empty set ∅ and the vector space Rn

(which is described by the empty set of congruence relations) are, respectively,
the smallest and the biggest elements of Gn. The vector space Rn is also called
the universe grid. In set theoretical terms, Gn is a lattice under set inclusion.

The space dimension of a grid L ∈ Gn is the dimension n ∈ N of the corre-
sponding vector space Rn. If the maximum number of affinely independent points
in L is k + 1, then dim(L) = k denotes the affine dimension of L. The affine
dimension of an empty grid is defined to be 0. Thus we have 0 ≤ dim(L) ≤ n.

Let C be a congruence system and L = gcon(C). Suppose also that the con-
gruence relation β =

(

〈a,x〉 ≡f b
)

is such that Lβ = gcon
(

{β}
)

. We say that

– L is disjoint from β if L∩Lβ = ∅; that is, adding β to C gives us the empty
grid.

– L strictly intersects β if L∩Lβ 6= ∅ and L∩Lβ ⊂ L; that is, adding β to C
gives us a non-empty grid strictly smaller than L.

– L is included in β if L ⊆ Lβ ; that is, adding β to C leaves L unchanged.

Many algorithms used in the implementation require the congruence systems
to have a minimal number of elements.

9

Definition 2. Suppose C is a congruence system in Qn. Then we say that C is

in minimal form if either C = {〈0,x〉 ≡0 1} or C is consistent and, for each

congruence β =
(

〈a,x〉 ≡f b
)

∈ C, the following hold:

1. if piv<(β) = k, then k > 0 and ak > 0;
2. for all β′ ∈ C \ {β}, piv<(β′) 6= piv<(β).

Proposition 1. Let C be a congruence system in Qn. Then there exists an algo-

rithm for finding a congruence system C ′ in minimal form such that gcon(C) =
gcon(C′). Letting m = # C, the complexity of the algorithm is O

(

n2m
)

.

The pivot equivalence relation between congruences can be extended to con-
gruence systems. That is, we say that congruence systems C1 and C2 are pivot

equivalent if, for each β ∈ C1, there exists γ ∈ C2 such that β ⇑ γ and, for each
γ ∈ C2, there exists β ∈ C1 such that γ ⇑ β. This equivalence relation provides
an easy syntactic check to establish if two grids are equal, given that it is known
that one is a subset of the other.

Proposition 2. Let L1 = gcon(C1) and L2 = gcon(C2) be non-empty grids in

Gn such that L1 ⊆ L2. If C1 and C2 are pivot equivalent congruence systems in

minimal form, then L1 = L2.

3.2 The Generator Representation

Let L be a grid in Gn. Then

– a vector p ∈ L is called a point of L;
– a vector q ∈ Rn, where q 6= 0, is called a parameter of L if L 6= ∅ and

p + µq ∈ L, for all points p ∈ L and all µ ∈ Z;
– a vector l ∈ Rn, where l 6= 0, is called a line of L if L 6= ∅ and p + λl ∈ L,

for all points p ∈ L and all λ ∈ R.

We can generate any rational grid in Gn from a finite subset of its points,
parameters and lines; each point in a grid is obtained by adding a linear com-
bination of its generating lines to an integral combination of its parameters and
an integral affine combination of its generating points.

If L, Q and P are each finite subsets of Qn and

L := linear.hull(L) + int.hull(Q) + int.affine.hull(P) (1)

where the symbol ‘+’ denotes the Minkowski’s sum,2 then L ∈ Gn is a rational
grid [15, Theorem 48]. The 3-tuple (L,Q, P) is said to be a generator system for
L and we write L = ggen(L,Q, P). L is said to subsume a generator g if adding
g to any generator system representing L does not change L.

Note that the grid L = ggen(L,Q, P) = ∅ if and only if the set of points
P = ∅. If P 6= ∅, then L = ggen(L,∅, Qp ∪ P) where, for some p ∈ P ,
Qp = {p + q ∈ Rn | q ∈ Q }.

As for congruence systems, for many procedures in the implementation, it is
useful if the generator systems have a minimal number of elements.

2 This is defined, for each S, T ⊆ Rn, by S + T := { s + t ∈ Rn | s ∈ S, t ∈ T }.

10

Definition 3. Suppose G = (L,Q, P) is a generator system in Qn. Then we say

that G is in minimal form if either L = Q = P = ∅ or #P = 1 and, for each

generator v ∈ L ∪Q, the following hold:

1. if piv>(v) = k, then vk > 0;
2. for all v′ ∈ (L ∪Q) \ {v}, piv>(v′) 6= piv>(v).

Proposition 3. Let G = (L,Q, P) be a generator system in Qn. Then there

exists an algorithm for finding a generator system G ′ in minimal form such that

ggen(G′) = ggen(G). Letting m = #L+ #Q, the complexity of the algorithm is

O
(

n2m
)

.

3.3 Double Description

We have shown that any grid L can be described by using a congruence system
C and also generated by a generator system G. For the same reasons as for the
polyhedral domain, it is useful to represent the grid L by the double description

(C,G). In order to maintain and exploit such a view of a grid, we will use a double

description method for grids which is a collection of results very similar to those
for convex polyhedra showing that, given one kind of representation, there are
algorithms for computing a representation of the other kind and for minimizing
both representations. As for convex polyhedra, having easy access to both the
representations is assumed in the implementation of many operators such as, for
example, intersection and grid join described in Section 4.

Suppose we have a double description
(

C,G
)

of a grid L ∈ Gn, where both C
and G are in minimal form. Then, it follows from the definition of minimal form
that # C ≤ n+ 1 and #L+ #Q ≤ n. In fact, we have a stronger result.

Proposition 4. Let (C,G) be a double description where both C and G are in

minimal form. Letting C = E ∪F where E and F are sets of equalities and proper

congruences, respectively, and G = (L,Q, P), then

#F = #Q = n− #L− # E .

Example 1. Consider the grids L and L′ in Figure 1. The congruence systems
C and C′ are in minimal form and the generator systems G2 and G′ are also in
minimal form; however, G1 is not in minimal form as it contains more than one
point. Furthermore, for i = 1, 2, the pairs (C,Gi) are double descriptions for L
while (C′,G′) is a double description for L′.

4 Operations on Rational Grids

In this section we describe some operations on rational grids that are analogous
to ones that are already provided for the domain of convex polyhedra and used
in program analyzers.

11

8

10

12

4

2

6

12108642
L, L′, L ∩ L′

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

����

����

����

��

��

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

	

(a) Grid L1 ∩ L2

8

10

12

4

2

6

12108642
L, L′, L ⊕ L′

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

�

�

�

�

�

�

�

�

�

� �

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b) Grid L1 ⊕ L2

Fig. 2. Grid intersection and join

4.1 Grid Intersection and Grid Join

For any pair of grids L1,L2 ∈ Gn, the intersection of L1 and L2, defined as the
set intersection L1∩L2, is the largest grid included in both L1 and L2; similarly,
the grid join of L1 and L2, denoted by L1 ⊕ L2, is the smallest grid that includes
both L1 and L2.

In theoretical terms, the intersection and grid join operators defined above
are the binary meet and the binary join operators on the lattice Gn.

Example 2. Consider the G2 grids L = gcon(C) and L′ = gcon(C′) where

C := {x ≡2 0, −x+ y ≡3 0} and C′ := {x ≡4 0, −x+ 2y ≡6 0}.

The grids L and L′ are illustrated by the squares and circles in Figure 2(a),
respectively. The grid-intersection L ∩ L′ = gcon(C ∪ C′) is illustrated by the
filled circles in the same diagram. Observe that, if

C′′ := {x ≡12 0, y ≡3 0}

then C′′ is a reduced form of C ∪ C ′ so that we also have L ∩ L′ = gcon(C′′).

Example 3. Consider the grids L = ggen
(

(∅,∅, P)
)

and L′ = ggen
(

(∅,∅, P ′)
)

in G2 such that

P :=

(

2 0 0
2 3 0

)

and P ′ :=

(

4 0 0
2 3 0

)

.

The grids L and L′ are illustrated by the squares and filled circles in Figure 2(b),
respectively. The grid-join L ⊕ L′ = ggen

(

(∅,∅, P ∪ P ′)
)

is illustrated by all
(open and filled) circles in the same diagram. Observe that, if

Q′′ :=

(

2 0
0 1

)

and P ′′ :=

(

0
0

)

,

12

4

5

6

2

1

3

654321
L1, L2, L1 	 L2

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

(a) Grid L1 	 L2

4

5

6

2

1

3

654321
L1, L3, L1 	 L3

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

		

(b) Grid L1 	 L3

Fig. 3. Grid difference

then (∅, Q′′, P ′′) is minimal form of (∅,∅, P ∪ P ′) so that we also have L ⊕
L′ = ggen

(

(∅, Q′′, P ′′)
)

. Note that, in this example, L ⊕ L′ 6= L ∪ L′.

4.2 Grid Difference

For any pair of grids L1,L2 ∈ Gn, the grid difference of L1 and L2, denoted by
L1 	 L2, is defined as the smallest grid containing the set-theoretic difference
of L1 and L2.

Example 4. Consider grids

L1 := gcon
(

{x ≡1 0, y ≡1 0}
)

L2 := gcon
(

{x ≡1 0, x+ y ≡2 0}
)

L3 := gcon
(

{x ≡1 0, x+ y ≡4 0}
)

.

The grids L1 and L2 are illustrated by all the circles (open and solid) and squares,
respectively, in Figure 3(a); the grid difference

L1 	 L2 = gcon
(

{x ≡1 0, x+ y ≡2 1}
)

.

is illustrated by the filled circles. The grids L1 and L3 are illustrated by the
circles and squares, respectively, in Figure 3(b); in this case, the grid difference
is L1 	 L3 = L1.

13

Algorithm 1: The grid difference algorithm
Input: Two grids L1 = gcon(C1) and L2 = gcon(C1) in Gn.
Output: A grid in Gn.
(1) if L1 = ∅ ∨ L2 = ∅
(2) return L1

(3) if L1 ⊆ L2

(4) return ∅
(5) L′ := the empty grid in Gn

(6) while ∃β = (e ≡f 0) ∈ C2

(7) C2 := C2 \ {β}
(8) if L1 * gcon

`

{β}
´

(9) if L1 ⊆ gcon
`

{2e ≡f 0}
´

(10) Lβ := gcon
`

C1 ∪ {2e − f ≡2f 0}
´

(11) L′ := L′ ⊕ Lβ

(12) else

(13) return L1

(14) return L′

Algorithm 1 provides an implementation for grid difference.

Proposition 5. Let L1,L2 ∈ Gn and suppose that L is the grid returned by

Algorithm 1. Then L = L1 	 L2.

4.3 Affine Images and Preimages

Given a grid L ∈ Gn, a variable xk and linear expression e = 〈a,x〉 + b with
coefficients in Q, the affine image operator φ(L, xk , e) maps the grid L to

{

(

p1, . . . , pk−1, 〈a,p〉 + b, pk+1, . . . , pn

)T
∈ Rn

∣

∣

∣ p ∈ L
}

.

Conversely, the affine preimage operator φ−1(L, xk , e) maps the grid L to

{

p ∈ Rn
∣

∣

∣

(

p1, . . . , pk−1, 〈a,p〉 + b, pk+1, . . . , pn

)T
∈ L

}

.

Observe that the affine image φ(L, xk , e) and preimage φ−1(L, xk , e) are invert-
ible if and only if the coefficient ak in the vector a is non-zero.

Example 5. Suppose L = ggen
(

(∅,∅, P)
)

∈ G2, where P = (0 0 3
0 3 0). Then

L1 = φ(L, x, 3x + 2y + 1) = ggen
(

(∅,∅, P1)
)

= gcon(C1)

where P1 = (1 7 10
0 3 0) and C1 =

{

(x ≡3 1), (x+ y ≡9 1)
}

. On the other hand,

L2 = φ(L, x, y) = ggen
(

(∅,∅, P2)
)

= gcon(C2)

where P2 = (0 3
0 3) and C2 =

{

(x ≡3 0), (y ≡3 0), (x − y = 0)
}

; that is, the grid
containing all the points whose coordinates are integral multiples of 3 and lie on
line x = y.

14

Note that the affine preimage of L1 using the same variable x and linear
expression 3x + 2y + 1 is the original grid L. Moreover, the affine preimage of
L2 using variable x and linear expression y is the grid ggen

(

(L3, Q3, P3)
)

where

L3 =

(

0
1

)

, Q3 =

(

0
3

)

and P3 =

(

0
0

)

,

that is, all the points in R2 where the y coordinate is an integral multiple of 3.

The generalized affine image and generalized affine preimage are extensions
of the affine image and affine preimage operators defined above. Given a grid
L ∈ Gn, linear expressions e′ = 〈a′,x〉 + b′, e = 〈a,x〉 + b with coefficients in
Q and f ∈ Q, the generalized affine image operator ψ(L, e′, f, e) will transform
the grid L to the grid











w ∈ Rn

∣

∣

∣

∣

∣

∣

∣

v ∈ L
(

i ∈ {1, . . . , n} ∧ a′i = 0
)

=⇒ wi = vi

〈a′,w〉 + b′ ≡f 〈a,v〉 + b











.

Note that, when e′ = xk and f = 0, then the transformation is equivalent to
the standard affine transformation on L with respect to the variable xk and the
affine expression e; that is

ψ(L, xk , 0, e) = φ(L, xk , e).

Example 6. Let L and L1 be as defined in Example 5. Then

ψ(L, x, 0, 3x+ 2y + 1) = φ(L, x, 3x+ 2y + 1) = L1.

On the other hand,

ψ(L, x, 3, 3x+ 2y + 1) = ggen
(

(∅,∅, P ′

1)
)

= gcon(C′

1)

where P ′

1 = (1 4 1
0 0 3) and C′

1 =
{

(x ≡3 1), (y ≡3 0)
}

.

4.4 Rectilinear Grids and Covering Boxes

We show how we can reuse the standard interval domain [7] to represent a
rectilinear grid, which is a grid that can be defined by a set of non-relational
congruences (i.e., congruences where at most one coefficient is non-zero). We
also show how such grids can provide safe approximations for any rational grid.

A non-empty n-dimensional rational box B is a sequence (I1,In) of ratio-

nal intervals. A rational interval is a pair (µi, νi) ∈
(

Q∪{∞}
)2

of bounds, called
lower and upper, respectively. The lower bound is always less than or equal to
the upper bound, where q <∞ for each q ∈ Q. If both the bounds are in Q, the
interval is said to be bounded.

15

4

5

6

2

1

3

654321
L1

��

��

��

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

(a) Grid L1

4

5

6

2

1

3

654321
L2, L′

2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b) Grids L2 and L′

2

Fig. 4. Covering boxes for a grid

The essential idea we use here exploits the fact that the shape and size of
an n-dimensional box B defines a rectangular “tile” that may be used to cover
an n-dimensional vector space. It therefore follows that the box B determines a
covering (i.e., tiling) of the n-dimensional vector space, where the given box B
provides the position for one of the tiles. By defining a grid to be the vertices
of the tiles in such a tiling, we obtain a rational rectilinear grid L and call B a
covering box for L.

Let B = (I1,In) be a non-empty box. For each i = 1, . . . , n, let Ii =
(µi, νi); then, if µi 6= νi, let

βi :=

{

(

〈ei,x〉 ≡νi−µi
µi

)

, if Ii is bounded;
(

〈ei,x〉 = µi

)

, if Ii is not bounded.

Then we say that the box B represents the grid L := gcon(C), where

C := {βi

∣

∣ 1 ≤ i ≤ n, µi 6= νi }. (2)

Note that the congruence system C is in minimal form. Observe also that, when
µi = νi for some 1 ≤ i ≤ n, there is no corresponding congruence in C for (µi, νi);
this is because, in this case, the tiling will cover every value in this dimension
and hence there will be a line ei in the generator representation of L.

Consider now any non-empty rational grid L. A covering box for L is a
rational box representing the smallest rectilinear grid that contains L.

Example 7. Consider grid L1 = gcon
(

{x ≡3 0, y ≡2 1}
)

illustrated by all the

circles in Figure 4(a); then L1 is rectilinear and and box B1 =
{

(0, 3), (1, 3)
}

is a

covering box representing L1. Consider the grid L2 = gcon
(

{x ≡1 0, x+y ≡3 2}
)

16

illustrated by all the filled circles in Figure 4(b); then L2 is not rectilinear and
box B2 =

{

(1, 2), (1, 2)
}

, is a covering box for L2. Thus B2 represents the grid

L′

2 = gcon
(

{x ≡1 1, y ≡1 1}
)

which is illustrated by all the circles in Figure 4(b).

We now provide a procedure for computing the covering box of a grid.

Proposition 6. Let L = ggen(G) where G =
(

L,Q, {p}
)

. Let q = #Q and

Q = {q1, . . . , qq}. Let B = (I1, . . . , In) such that, for each i ∈ {1, . . . , n}:

1. if, for some ` ∈ L, `i 6= 0, then let Ii := (0, 0);
2. if, for all ` ∈ L, `i = 0, and q1i = · · · = qqi = 0, let Ii := (pi,∞);
3. otherwise, let Ii :=

(

pi, pi + |g|
)

where g = gcd
(

{q1i, . . . , qqi}
)

.

Then B is a covering box for L.

The complexity of computing the covering box for a grid in Gn using the proce-
dure given in Proposition 6, is O

(

n2
)

.
It should be stressed that a grid L ∈ Gn does not have, in general, a unique

covering box. For instance, if B = (I1, . . . , Ii, . . . , In) is a covering box for L, and
the interval Ii = (µi, νi) is bounded, then the box B′ = (I1, . . . , I

′

i , . . . , In) is also
a covering box for L if, for some m ∈ Z, I ′i = (µi +m(νi − µi), νi +m(νi − µi)).

4.5 Other Grid Operators

There are many operations that a practical domain of grids must provide for
applications in program analysis and verification. For instance, the concatenation

of two grids L1 ∈ Gn and L2 ∈ Gm (taken in this order) is the grid in Gn+m

defined as
{

(x1, . . . , xn, y1, . . . , ym)T ∈ Rn+m

∣

∣

∣

∣

∣

(x1, . . . , xn)T ∈ L1

(y1, . . . , ym)T ∈ L2

}

.

Other operators are required that add, remove, rename and map the space
dimensions, or expand and fold them along the lines of [13]. Even though all these
operations have been specified and implemented, space considerations make their
discussion here inadvisable: the interested reader is referred to the web site of
the Parma Polyhedra Library, http://www.cs.unipr.it/ppl/, where all the
code and documentation is publicly available.

5 Implementation

In this section, we first describe convenient internal representations of the con-
gruence and generator systems in terms of arrays (i.e., matrices). Then we show
how matrix inversion provides a basis for converting between the (possibly singu-
lar) matrix representations of the congruence and generator systems in minimal
form.

17

5.1 Homogeneous Representations

A congruence system C is homogeneous if, for all
(

〈a,x〉 ≡f b
)

∈ C, we have
b = 0. Similarly, a generator system (L,Q, P) is homogeneous if 0 ∈ P . For
the implementation, it is convenient to work with a homogeneous system. Thus
we first convert any congruence or generator systems in Qn to a homogeneous
representation in Qn+1. The extra dimension is denoted with a 0 subscript and
x̂ denotes the vector (x0, . . . , xn)T; we also let e0 denote the vector (1,0T)T.

Consider the congruence system C = F∪E in Qn where E is a set of equalities
and F is a set of proper congruences. Then the homogeneous form for C is the
congruence system Ĉ = F̂ ∪ Ê in Qn+1 defined by:

F̂ :=
{

〈

f−1(−b,aT)T, x̂
〉

≡1 0
∣

∣

∣

(

〈a,x〉 ≡f b
)

∈ F
}

∪
{

〈e0, x̂〉 ≡1 0
}

, (3)

Ê :=
{

〈

(−b,aT)T, x̂
〉

= 0
∣

∣

∣

(

〈a,x〉 = b
)

∈ E
}

. (4)

The congruence 〈e0, x̂〉 ≡1 0, expressing the fact that 1 ≡1 0, is called the
integrality congruence. By writing F̂ = (FTx ≡1 0) and Ê = (ETx = 0) where
F,E ⊆ Qn+1, it can be seen that the pair (F,E), called the matrix form of the
homogeneous system Ĉ, is sufficient to determine C. Observe also that we can
recover the original grid gcon(C) from gcon(Ĉ) since:

gcon(C) =
{

v ∈ Rn
∣

∣ (1,vT)T ∈ gcon(Ĉ)
}

.

Consider next a generator system G = (L,Q, P) in Qn. Then the homoge-

neous form for G is the generator system Ĝ :=
(

L̂, Q̂ ∪ P̂ , {0}
)

∈ Qn+1 where

L̂ :=
{

(0, `T)T
∣

∣ ` ∈ L
}

, Q̂ :=
{

(0, qT)T
∣

∣ q ∈ Q
}

, P̂ :=
{

(1,pT)T
∣

∣ p ∈ P
}

.
(5)

We can recover the original grid ggen(G) from ggen(Ĝ) since:

ggen(G) =
{

v ∈ Rn
∣

∣ (1,vT)T ∈ ggen(Ĝ)
}

.

Suppose that C is a congruence (resp., G is a generator) system in Qn+1;
then we say that C (resp., G) is in homogeneous form if there exists a congru-
ence system Č (resp., generator system Ǧ) in Qn such that C (resp., G) is the
homogeneous form of Č (resp., Ǧ). Note that, if (C,G) is a double description for
a grid and Ĉ and Ĝ are homogeneous forms for C and G, then (Ĉ, Ĝ) is also a
double description.

5.2 Converting Representations

In this subsection, we outline the conversion algorithms (that is, algorithms for
converting from the congruence to the generator minimized representations of a
nonempty grid and vice versa).

18

By considering the matrix forms of the (homogeneous forms of the) repre-
sentations, we can build the conversion algorithms on top of standard tech-
niques for matrix inversion. For an informal explanation why this is appro-
priate, suppose that the generator system G =

(

∅, Q, {0}
)

in Qn is in mini-
mal form and that #Q = n. Then Q is a non-singular square matrix. Letting
L = ggen(G) = {Qπ | π ∈ Zn }, then we also have L = {v ∈ Rn | Q−1v ≡1 0 },
so that (Q−1,∅) is the matrix form of a congruence system for the same grid
L. Similarly we can use matrix inversion to convert the matrix form of a homo-
geneous congruence system in minimal form consisting of n proper congruences
for a grid L to a generator system for L.

Proposition 7. Let C be a congruence system in Qn in minimal form. Let

(F,E) be the matrix form of the homogeneous form for C. Let N be a matrix in

Zn+1 whose vectors are of the form ei, i ∈ {0, . . . , n}, and such that (N, F̂ , Ê)
is square and nonsingular. Let

(L̂, Q̂,M) :=
(

(N, F̂ , Ê)−1
)T

where # L̂ = #N , # Q̂ = # F̂ and #M = # Ê. Then Ĝ =
(

L̂, Q̂, {0}
)

is the

homogeneous form for a generator system G in minimal form and ggen(G) =
gcon(C).

As matrix inversion and transposition are both computable and invertible,
the conversion from generator to congruence system is similar.

Proposition 8. Let G be a generator system in Qn in minimal form and Ĝ =
(

L̂, Q̂, {0}
)

be the homogeneous form for G. Let M be a matrix in Zn+1 whose

vectors are of the form ei, i ∈ {0, . . . , n}, and such that (L̂, Q̂,M) is square and

nonsingular. Let

(N, F̂ , Ê) :=
(

(L̂, Q̂,M)−1
)T

where #N = # L̂, # F̂ = # Q̂ and # Ê = #M . Then (F̂ , Ê) is the matrix

form of the homogeneous form for a congruence system C in minimal form and

gcon(C) = ggen(G).

Both conversion algorithms just perform matrix inversion so that the com-
plexity is that of matrix inversion, namely O

(

n3
)

.

6 Grid Widening

In this section we describe a widening for the domain of grids, and compare our
proposal with an operator based on the standard widening for the domain of
convex polyhedra.

A simple and general characterization of a widening for enforcing and ac-
celerating convergence of an upward iteration sequence is given in [7–10]. We
assume here a minor variation of this classical definition (see footnote 6 in [10,
p. 275]).

19

Definition 4. (Widening.) Let 〈D,`,0,⊕〉 be a join-semilattice. The partial

operator ∇ : D ×D � D is a widening if

1. for each d1, d2 ∈ D, d1 ` d2 implies that d1 ∇ d2 is defined and d2 ` d1 ∇ d2;

2. for each increasing chain d0 ` d1 ` · · · , the increasing chain defined by

d′0 := d0 and d′i+1 := d′i ∇ (d′i ⊕ di+1), for i ∈ N, is not strictly increasing.

In addition to the formal requirements in Definition 4, it is also important to have
a widening that has an efficient implementation, preferably, one that depends on
a simple syntactic mapping of the representations. At the same time, so that the
widening is well-defined, the result of this operation should be independent of
the actual representation used. For this reason, the widening we propose requires
the concept of strong minimal form for the congruence systems.

Definition 5. A congruence system C in Qn is in strong minimal form if C is

in minimal form and, for each pair of distinct proper congruences

β =
(

〈a,x〉 ≡1 b
)

, γ =
(

〈c,x〉 ≡1 d
)

∈ C,

if piv<(γ) = k > 0, then −ck < 2ak ≤ ck.

A congruence system in minimal form can always be reduced to a congruence
system in strong minimal form that describes the same grid.

Proposition 9. Let C be a congruence system in Qn in minimal form. Then

there exists an algorithm with complexity O
(

n3
)

for converting C to a congru-

ence system C′ in strong minimal form such that C is pivot equivalent to C ′ and

gcon(C) = gcon(C ′).

We also have that, relative to the affine hull of a grid, the strong minimal form
of any congruence system that describes that grid is canonical.

Proposition 10. Let C1 and C2 be congruence systems in strong minimal form

in Qn such that L = gcon(C1) = gcon(C2). Then, for all β ∈ C1, there exists

γ ∈ C2 such that

gcon
(

{β}
)

∩ affine.hull(L) = gcon
(

{γ}
)

∩ affine.hull(L).

We now define a widening for grids.

Definition 6. Let L1 = gcon(C1) and L2 = gcon(C2) be two grids in Gn such

that L1 ⊆ L2, C1 is in minimal form and C2 is in strong minimal form. Then

the grid widening L1 ∇L2 is defined by

L1 ∇ L2 :=

{

L2, if L1 = ∅ or dim(L1) < dim(L2);

gcon(CS), otherwise,

where

CS := { γ ∈ C2 | ∃β ∈ C1 . β ⇑ γ }. (6)

20

Proposition 11. The operator ‘∇’ is a widening on Gn.

Assuming that the two congruence systems are already available and in strong
minimal form, the complexity of this widening is O

(

n2
)

.
By Proposition 10, for a fixed variable ordering, the operator ‘∇’ is well-

defined. The next example illustrates that ‘∇’ depends on the variable ordering.

Example 8. Consider the grids L1 := gcon(C1) and L2 := gcon(C2) in G2, where

C1 := {5x+ y ≡1 0, 22x ≡1 0}, C2 := {5x+ y ≡1 0, 44x ≡1 0}.

Assume that variables are ordered so that x precedes y, as in the vector (x, y)T;
then, the congruence systems C1 and C2 are in strong normal form and, according
to Definition 6, we obtain L1 ∇ L2 = gcon

(

{5x+ y ≡1 0}
)

. On the other hand,
the same grids as before are also described by the congruence systems

C′

1 := {9y + x ≡1 0, 22y ≡1 0}, C′

2 := {9y + x ≡1 0, 44y ≡1 0},

respectively, which are in strong normal form when considering the variable order
where y precedes x. In this case, by Definition 6, L1∇L2 = gcon

(

{9y+x ≡1 0}
)

.

In Definition 6, we require that the second congruence systems C2 is in strong
minimal form. The following example shows that this is necessary for the oper-
ator ‘∇’ to be well-defined,

Example 9. Consider the congruence systems

C1 := {x ≡2 0, y ≡2 0},

C2 := {x ≡1 0, x+ y ≡2 0},

C3 := {x ≡1 0, 3x+ y ≡2 0},

and let L1 := gcon(C1), L2 := gcon(C2) and L3 := gcon(C3); then L2 = L3. Note
that only C1 and C2 are in strong minimal form. Therefore, assuming CS (resp.,
CS

′) is defined as in (6) using C1 and C2 (resp., C1 and C3), we have

CS = {x+ y ≡2 0}, CS

′ = {3x+ y ≡2 0}.

Thus L1 ∇ L2 = gcon(CS) 6= gcon(CS

′).

The grid widening ‘∇’ defined above is a fully functional widening operator
and, as such, can be used for the development of more refined widenings (or
extrapolation operators) by following well-known techniques and, in particular,
the frameworks proposed in [2, 4].

For instance, when instantiating the finite powerset construction [4] with
the domain of grids, a widening for the powerset of grids can be obtained by
designing a finite convergence certificate for the grid widening. In formal terms,
this certificate is a triple (O,�, µ) where (O,�) is a well-founded ordered set and
µ : Gn → O, which is called level mapping, is such that, for all L1 ⊂ L2 ∈ Gn,

21

µ(L1) � µ(L1 ∇ L2). One such certificate can be easily defined by taking O
equal to {0, . . . , n} × {0, . . . , n}, � the lexicographic ordering on O and, for all
L ∈ Gn, letting µ(L) := (# E ,# C) where L = gcon(C), C is in minimal form, and
E ⊆ C is the set of equalities in C. By Definition 6 and Proposition 2, if follows
that L1 6= L2 implies µ(L1) � µ(L1 ∇ L2); hence we have a finite convergence
certificate for ‘∇’.

The grid widening ‘∇’ can be enhanced with additional delay constructs
such as the with token option previously described for widenings on convex
polyhedra [3]. Often in analysis or verification, the convergence guarantee that
comes with a widening operator is not essential and in such cases, all that is
required are extrapolation operators. These differ from widenings in that their
use along an upper iteration sequence does not ensure convergence in a finite
number of steps. In particular, following the widening “up to” technique as
described in [20] for convex polyhedra, we define a limited extrapolation operator
to be an operator that takes a congruence system as an additional parameter
and uses it to improve the approximation yielded by the grid widening. We can
also exploit the covering boxes, defined in Subsection 4.4, to provide a covered

extrapolation operator that improves the approximation yielded by the widening
operator by ensuring that the result cannot be worse than the covering box for
the grid in the second argument of the widening.

6.1 Discussion

To motivate further our choice of ‘∇’ for the grid widening, consider the following
grid counterpart of the standard widening for convex polyhedra as specified in
the PhD thesis of N. Halbwachs [18], also described in [20].

Let L1 = gcon(C1) and L2 = gcon(C2) ∈ Gn where L1 ⊆ L2 and C1 and C2

are congruence systems in Rn in strong minimal form. Then h(L1,L2) ∈ Gn is
defined to be L2, if L1 = ∅, and gcon(C′

1 ∪ C′

2), if L1 6= ∅, where

C′

1 :=
{

β ∈ C1

∣

∣

∣
L2 ⊆ gcon

(

{β}
)

}

, (7)

C′

2 :=
{

γ ∈ C2

∣

∣

∣
∃β ∈ C1 . L1 = gcon

(

C1[γ/β]
)

}

. (8)

One difference here with the standard widening for convex polyhedra is in
the handling of equalities. This is because, whereas an equality is equivalent to
two inequalities, there is no finite set of proper congruences that is semantically
equivalent to an equality, so the above definition has ignored any distinction
between equalities and proper congruences.

A second difference is that to ensure that the operator ‘h’ is well-defined,
we require that both the congruence systems C1 and C2 are in strong minimal
form whereas the standard widening just requires that the constraint system
describing the smaller polyhedron is minimized.

Example 10. Consider again the grids and congruence systems in Example 9.
Then, assuming definition (7) for C ′

1 and (8) for C′

2 and C′

3, we have C′

1 = ∅,

22

C′

2 = {x + y ≡2 0} and C′

3 = {3x + y ≡2 0} so that h(L1,L2) = C′

1 ∪ C′

2 =
gcon

(

{x+ y ≡2 0}
)

although C′

1 ∪ C′

3 = {3x+ y ≡2 0}.

Observe that the computation of the congruence system C ′

2 should be care-
fully tuned, since any naive implementation is going to be rather expensive.
On the other hand, Example 10 illustrates that, simply ignoring the C ′

2 com-
ponent (as done in some implementations of the standard widening for convex
polyhedra) can lose precision, even when the affine hull of both the grids is the
universe.

7 Applications

In this section we discuss applications for the domain of rational grids in program
analysis and verification.

Many program properties are quantitative or depend on quantitative infor-
mation. While such information may depend directly on the values of numerical
data objects, it could instead reflect some numerical measures of the structure
of the program and its data. We first discuss applications where the values of
numeric variables are abstracted. In this case, any collection of numerical data
objects (such as the numerical variables of some procedure) is a candidate for a
non-trivial approximation via the grid domain.

Example 11. Consider again the example program given in Section 1 but anno-
tated with program points Pj, for j = 1, . . . , 5:

x := 2; y := 0; (P1)

for i := 1 to m (P2)

if ... then

x := x + 4 (P3)

else

x := x + 2; y := y + 1 (P4)

endif (P5)

endfor

We show here that with the grid domain, we can derive the invariant set of
congruences C = {x+ 2y ≡4 2, x ≡2 0} that hold at point P2 and hence at end
of the program, when the loop terminates. LetGi

j ∈ G2 denote the grid computed

at the i-th iteration executed by the point Pj. Initially, G0
j = ∅ = gcon

(

{1 = 0}
)

,
for j = 1, . . . , 5. After the first iteration of the analysis, we have:

G1
1 = gcon

(

{x = 2, y = 0}
)

,

G1
2 = gcon

(

{x = 2, y = 0}
)

,

G1
3 = gcon

(

{x = 6, y = 0}
)

,

G1
4 = gcon

(

{x = 4, y = 1}
)

,

G1
5 = gcon

(

{x = 4, y = 1}
)

⊕ gcon
(

{x = 6, y = 0}
)

= gcon
(

{x+ 2y = 6, x ≡2 0}
)

.

23

8

6

4

2

2 4 6 8 10 x

y

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(a) Example 12: Lr and Lw

8

6

4

2

2 4 6 8 10

j

i

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

(b) Example 13: L, P and P ′

Fig. 5. Examples 12 and 13

Then we have

G2
2 = gcon

(

{x = 2, y = 0}
)

⊕ gcon
(

{x+ 2y = 6, x ≡2 0}
)

= gcon
(

{x+ 2y ≡4 2, x ≡2 0}
)

and subsequent steps in the computation show that we have already computed
an invariant for P2 since we have G2

3 = G1
3, G

2
4 = G1

4, G
2
5 = G1

5 so that G2
3 = G2

2.

Example 11 shows that, even for a very simple piece of code, using the grids
domain, we can find non-trivial relational congruence properties that cannot be
found using the polyhedra domain [11], constraint-based analysis [34] or poly-
nomial invariants [33].

Data dependence analysis for arrays —deciding if two elements of an array
can refer to the same element and, if so, under what conditions— is required for
advanced optimizing compilers [30].

Example 12. Consider the following program (adapted from a simple example
given in [30]):

for i := 0 to 100

for j := 2i to 100

A[i, 2j + 1] := A[i, 2j]

endfor

endfor

Then, the program reads from array elements (0, 0), (0, 2), (1, 4), . . . and writes
to array elements (0, 1), (0, 3), (1, 5), The two sets of points generate, respec-
tively, the two grids Lr and Lw in R2: Lr = ggen

{

(0, 0), (0, 2), (1, 4)
}

includes

24

all the array elements that are read from, while Lw = ggen
{

(0, 1), (0, 3), (1, 5)
}

includes all the array elements that are written to. Notice that, by computing
the intersection Lr∩Lw we can deduce that no location is both read and written.

Figure 5(a) illustrates the grids Lr and Lw where squares denote the points
of the grid Lr and circles denote the points of the grid Lw.

As mentioned in Section 1, most of the previous work on domains for nu-
merical information concerns the representation of bounds on the values of the
data objects. When one of these bounds is strict, an implementation normally
has to use a different and, usually, less efficient representation compared with
that for domain elements that are known to be topologically closed (and there-
fore defined entirely by non-strict constraints). However, if the data objects can
only take discrete values and we have information about the frequency of their
distribution, we can convert all the inequalities into non-strict ones, allowing for
a more efficient implementation as well as possibly improving the precision.

Example 13. Consider the following program fragment:

for i := 1 to 10

j := 0

while j < i

A[j] := A[j + 2];

j := j + 2

endwhile

endfor

Then the linear constraints representing the values of i and j at the start of
each iteration of the while loop will lead to a convex polyhedron bounded by
constraints {1 ≤ i ≤ 10, 0 ≤ j < i}. If we add the information that i, j must be
integers, we obtain a polyhedron P bounded by constraints {1 ≤ i ≤ 10, 0 ≤
j ≤ i − 1}; so that it may be deduced that at most 9 elements of the vector
A are changed. However, using a grid domain we can represent the distribution
of the possible values of i and j by a grid L described by the congruences
{i ≡1 0, j ≡2 0}; so that, by combining this information with that represented
by P , we can see that the values of i and j must lie in the polyhedron P ′ bounded
by constraints {1 ≤ i ≤ 10, 0 ≤ j ≤ i − 1, j ≤ 8} and deduce that at most 8
elements of the vector A are changed since the value of A[9] is unaltered.

Figure 5(b) illustrates L, P , and P ′ indicated, respectively, by the squares,
the shaded area, and the region enclosed by the dashed lines.

Example 14. This example is taken from [19] and concerns a water tank monitor.
Let t be the time in seconds and w the water level in the tank in meters. Let
p denote the pump switch position (on or off). When the pump is running the
water fills the tank at 1 meter a second. When the pump is off, the water empties
from the tank at 2 meters a second. At the start when t = 0, the water level
w = 1 and the pump position p = on. By changing the position of the pump
switch, the monitor ensures that the water level never reaches 12 meters and

25

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9 10 t

w

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Fig. 6. Water tank monitor example

that there is always 2 meters of water in the tank. It checks the water level every
half second. The procedure is described by the following program where T is a
constant denoting the maximum time:

t = 0; w = 1; p = on;

while t < T

t = t + 0.5;

if p = on then

w := w + 0.5;

if w >= 11.5

p := off

else

w := w - 1;

if w <= 2

p := on

endif

endif

endwhile

This will result in a grid of points relating the time t elapsed and the level of
the water w. As the monitor checks every half second, we just have the discrete
points at half second intervals. The grid is therefore generated by the set of
points

{

(0, 1), (1, 2), (10.5, 11.5), (11, 10.5)
}

. This is also described by the set of

congruences {2t ≡1 0, 2t− 2w ≡3 1}; the grid gcon
(

{2t ≡1 0, 2t− 2w ≡3 1}
)

is
illustrated in Figure 6.

8 Conclusion

We have presented the abstract domain of grids, a domain that allows to repre-
sent and manipulate sets of regular spaced points and hyperplanes over Rn. Two

26

alternative grid representations in Qn are described: one, a set of congruences,
where the congruences can be either equalities or proper congruences; and the
other, a set of generators, which can be lines, parameters or points.

We have provided algorithms for minimizing and converting the grid repre-
sentations. Assuming the systems in Qn consist of m congruences or generators,
the minimization algorithms have complexity O

(

n2m
)

. Note that other, previ-
ously proposed algorithms for minimization, which only consider the addition
of one generator at a time, have complexity, at best, O

(

n3
)

[27]. This is com-

parable with ours since, in this case, m = O
(

n
)

. We have shown that existing
algorithms for matrix inversion can be used for converting between generators
and congruence systems so that these conversion procedures have complexity
O

(

n3
)

(for congruence to generator conversion this is an improvement over the

previous proposals, which have complexity no better than O
(

n4
)

[17]).

We have observed that the grid meet (resp., join) operations can be easily
implemented if we have the congruence (resp. generator) representations for the
grids as we then just need to take the union of the systems; hence both the
operators have complexity O

(

n3
)

. In contrast, in [16] the grid join operation has

complexity O
(

n4 log2 n
)

since the generators of one of the grids are added, one at
a time, to the generators of the other grid, reducing the new set at each stage to a
linearly independent set. Moreover, because of the complexity of the conversion
algorithm which is needed to convert the representation to a congruence system,
the complexity of the grid meet operation in [16] is also O

(

n4
)

.

An algorithm for computing the grid difference, the best approximation by a
grid for the difference of two grids, has been proposed and proved to be correct
(see Section 4). We have proposed a grid widening operator for rational grids
that is straightforward to implement. To ensure it is well-defined, the congruence
system representing the grid has to be in a strong minimal form; that is, one in
minimal form for which the non-diagonal elements of the matrix of coefficients of
the proper congruences have to have a minimal absolute value. We also discuss
how the proposed widening compares with the grid counterpart of the standard
widening for convex polyhedra [20]. We have based the widening on the congru-
ence representations of the grids. However, we anticipate that a dual form of the
widening could also be defined that uses the generator representations instead;
further investigation of this is future work.

Apart from a widening, we also show how the polyhedral domain of intervals
may be used to represent a non-relational grid. We have also provided algo-
rithms for finding the best approximation of an arbitrary relational grid as a
non-relational grid. We observe that this idea of using a polyhedral domain to
represent the “holes” in a grid could easily be generalized from that of represent-
ing a rectangular grid using covering boxes to the representation of any relational
grid using n-dimensional parallelograms.

The grid domain is being implemented in the PPL [5, 6] following the ap-
proach and algorithms described in this paper. The current code is already pub-
licly available in the grids branch of the PPL’s CVS repository (see the PPL
web site at http://www.cs.unipr.it/ppl/ for more information). As the grid

27

domain is implemented in a library providing several polyhedral domains, it can
be combined with any of these domains to give not only the Z-polyhedra domain
but also many variations such as grid-polyhedra, grid-octagons, grid-bounded-
differences and grid-intervals. Moreover, as the PPL provides full support for
lifting any domain to the powerset of that domain, a user of the PPL will be
able to experiment with powersets of grids (and of grid-polyhedra combinations)
and the extra precision this provides.

References

1. C. Ancourt. Génération Automatique de Codes de Transfert pour Multiprocesseurs
à Mémoires Locales. PhD thesis, Université de Paris VI, March 1991.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the
10th International Symposium, volume 2694 of Lecture Notes in Computer Science,
pages 337–354, San Diego, California, USA, 2003. Springer-Verlag, Berlin.

3. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 58(1–2):28–56, 2005.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. In B. Steffen and G. Levi, editors, Verification, Model Checking and Abstract
Interpretation: Proceedings of the 5th International Conference (VMCAI 2004),
volume 2937 of Lecture Notes in Computer Science, pages 135–148, Venice, Italy,
2003. Springer-Verlag, Berlin.

5. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, Parma, Italy, release
0.8 edition, January 2005. Available at http://www.cs.unipr.it/ppl/.

6. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex poly-
hedra and the Parma Polyhedra Library. In M. V. Hermenegildo and G. Puebla,
editors, Static Analysis: Proceedings of the 9th International Symposium, volume
2477 of Lecture Notes in Computer Science, pages 213–229, Madrid, Spain, 2002.
Springer-Verlag, Berlin.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106–130, Paris, France, 1976. Dunod, Paris, France.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

10. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium

28

on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

12. R. Giacobazzi, editor. Static Analysis: Proceedings of the 11th International Sym-
posium, volume 3148 of Lecture Notes in Computer Science, Verona, Italy, 2004.
Springer-Verlag, Berlin.

13. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In K. Jensen and A. Podelski, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, 10th International Con-
ference, TACAS 2004, volume 2988 of Lecture Notes in Computer Science, pages
512–529. Springer-Verlag, Berlin, 2004.

14. P. Granger. Static analysis of arithmetical congruences. International Journal of
Computer Mathematics, 30:165–190, 1989.

15. P. Granger. Analyses Sémantiques de Congruence. PhD thesis, École Polytech-
nique, 921128 Palaiseau, France, July 1991.

16. P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91:
Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development, Volume 1: Colloquium on Trees in Algebra and Programming
(CAAP’91), volume 493 of Lecture Notes in Computer Science, pages 169–192,
Brighton, UK, 1991. Springer-Verlag, Berlin.

17. P. Granger. Static analyses of congruence properties on rational numbers (ex-
tended abstract). In P. Van Hentenryck, editor, Static Analysis: Proceedings of the
4th International Symposium, volume 1302 of Lecture Notes in Computer Science,
pages 278–292, Paris, France, 1997. Springer-Verlag, Berlin.

18. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

19. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Static Analysis:
Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in
Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-Verlag, Berlin.

20. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

21. M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

22. S. Larsen, E. Witchel, and S. P. Amarasinghe. Increasing and detecting mem-
ory address congruence. In Proceedings of the 2002 International Conference on
Parallel Architectures and Compilation Techniques (PACT’02), pages 18–29, Char-
lottesville, VA, USA, 2002. IEEE Computer Society Press.

23. V. Loechner. PolyLib: A library for manipulating parameterized polyhedra. Avail-
able at http://icps.u-strasbg.fr/∼loechner/polylib/, March 1999. Declares
itself to be a continuation of [37].

24. A. Miné. A few graph-based relational numerical abstract domains. In M. V.
Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th In-
ternational Symposium, volume 2477 of Lecture Notes in Computer Science, pages
117–132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

25. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double de-
scription method. In H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games – Volume II, number 28 in Annals of Mathematics Studies,
pages 51–73. Princeton University Press, Princeton, New Jersey, 1953.

29

26. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In Mooly Sagiv,
editor, Programming Languages and Systems (Proceedings of the 14th Symposium,
ESOP 2005), number 3444 in Lecture Notes in Computer Science, pages 46–60,
2005.

27. M. Müller-Olm and H. Seidl. A generic framework for interprocedural analysis
of numerical properties. In C. Hankin, editor, Proceedings of SAS 2005 (Static
Analysis Symposium), Lecture Notes in Computer Science, 2005. to appear.

28. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
Wiley Interscience Series in Discrete Mathematics and Optimization. John Wiley
& Sons, 1988.

29. S. P. K. Nookala and T. Risset. A library for Z-polyhedral operations. Publication
interne 1330, IRISA, Campus de Beaulieu, Rennes, France, 2000.

30. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-
cations of the ACM, 35(8):102–114, 1992.

31. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra. Technical
Report 1016, IRISA, Campus Universitaire de Bealieu, Rennes, France, July 1996.

32. P. Quinton, S. Rajopadhye, and T. Risset. On manipulating Z-polyhedra using a
canonic representation. Parallel Processing Letters, 7(2):181–194, 1997.

33. E. Rodŕıguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In Giacobazzi [12], pages 280–295.

34. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations
analysis. In Giacobazzi [12], pages 53–68.

35. A. Schrijver. Theory of Linear and Integer Programming. Wiley Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, 1999.

36. G. Stewart. Introduction to matrix Computations. Academic Press, 1973.
37. D. K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon

State University, Corvallis, Oregon, December 1993. Also published as IRISA
Publication interne 785, Rennes, France, 1993.

30

Appendix

A Proofs

Here we prove those results stated but not proved in the main part of the paper.
In the following two proofs, we require an extended version of the Euclidean

algorithm. Suppose v, v′ ∈ Z. Let r ∈ Z be the greatest common divisor of v, v′

and s, s′ ∈ Z be relatively prime such that sv + s′v′ = r. Then we write

gcd(v, v′) := r, gcdext(v, v′) :=
(

r, (s, s′)
)

.

Proof (of Proposition 1). To prove the result, we first define the key trans-
formation step in the algorithm and show that the resulting congruence system
describes the same grid. Suppose there exist distinct congruences

β1 =
(

〈a1,x〉 ≡f1
b1

)

, β2 =
(

〈a2,x〉 ≡f2
b2

)

(9)

in C such that piv<(β1) = piv<(β2) = i > 0. We will define a congruence system
C′′ such that either C′′ = C \ {β1, β2} ∪ {β′′

1 , β
′′

2 } or C′′ = C \ {β1, β2} ∪ {β′′

1 } and
show that gcon(C) = gcon(C ′′). Letting

β′′

1 =
(

〈a′′

1 ,x〉 ≡f1
b′′1

)

, β′′

2 =
(

〈a′′

2 ,x〉 ≡f2
b′′2

)

,

we show that piv<(a′′

1) = i and, if β′′

2 is defined, then piv<(a′′

2) < i. There are
two cases.

1. Either β1 or β2 is an equality; without loss of generality, we assume that β1

is an equality so that f1 = 0. Then, we let β′′

1 = β1 and, using Gaussian
elimination,

a′′

2 = a2 − (a2i/a1i)a1, b′′2 = b2 − (a2i/a1i)b1.

2. Both β1, β2 are proper congruences; so that we can assume that f1 = f2 = 1.
Let gcdext(a1i, a2i) =

(

r, (s, t)
)

Let

a′′

1 = sa1 + ta2, b′′1 = sb1 + tb2

a′′

2 = (−a2i/r)a1 + (a1i/r)a2, b′′2 = (−a2i/r)b1 + (a1i/r)b2.

In both cases, let C′′ = C \ {β1, β2} ∪ {β′′

1 , β
′′

2 } if a′′

2 6= 0 or b′′2 6= 0, and let
C′′ = C \ {β1, β2} ∪ {β′′

1 }, otherwise. Then gcon(C) = gcon(C ′′). Note that these
transformations require a computation for each coefficient of the considered con-
gruences so that their complexity is O

(

n
)

.
The proof of the result is by induction on i; where 0 ≤ i ≤ n is the maximum

value for which there exist distinct congruences β1, β2 ∈ C defined as in (9) such
that piv<(β1) = piv<(β2) = i.

The base case is when i = 0 so that a1 = a2 = 0. In this case, if there exists
(

〈0,x〉 ≡f b
)

∈ C and b ≡f 0 is inconsistent, let C′ =
{

〈0,x〉 ≡0 1
}

; otherwise,

let C′ =
{

β ∈ C
∣

∣ piv<(β) 6= 0
}

.

31

For the step case, we keep applying the transformation (1) if either f1 = 0
or f2 = 0, and (2) otherwise until no more transformations are applicable for
this index; that is when we obtain a congruence system Cj for which j < i
is the maximum index such that there exist distinct congruences β1, β2 ∈ Cj

where piv<(β1) = piv<(β2) = j. We note that we will have to perform these
transformations at most m times for each step, where # C = m, so that the
complexity of each step is O

(

nm
)

. By the inductive hypothesis, we can compute
C′ in minimal form such that gcon(C ′) = gcon(Cj). Therefore gcon(C ′) = gcon(C).
As we iterate at most n times over the step case, it can be seen that the algorithm
has complexity O

(

n2m
)

. ut

Proof (of Proposition 3). If P = ∅, then ggen(G) = ∅; in this case, let
G′ = (∅,∅,∅). Suppose now that there exists a point p ∈ P . Let Qp =

{

p′′ −

p
∣

∣ p′′ ∈ P \ {p}
}

∪ Q and let Gp =
(

L,Qp, {p}
)

. Then, by equation (1),
ggen(Gp) = ggen(G).

To prove the result, we first define the key transformation step in the al-
gorithm and show that the resulting generator system describes the same grid.
Suppose there exist distinct generators v1,v2 ∈ L ∪ Qp such that piv>(v1) =
piv>(v2) = i ≤ n. We will define a generator system G ′′ =

(

L′′, Q′′

p
, {p}

)

in Qn

where L′′ ∪ Q′′

p
= L ∪ Qp \ {v1,v2} ∪

(

{v′′

1 ,v
′′

2} \ {0}
)

, ggen(G′′) = ggen(Gp),
piv>(v′′

1) = i and, if v′′

2 6= 0, piv>(v′′

2) > i. There are two cases.

1. Either v1 or v2 is in L; without loss of generality, we assume that v1 ∈ L.
Then, using Gaussian elimination, let v′′

1 = v1 and

v′′

2 = v2 − (v2i/v1i)v1.

Let L′′ = L\{v2}∪
(

{v′′

2}\{0}
)

, if v2 ∈ L, and Q′′

p
= Qp\{v2}∪

(

{v′′

2}\{0}
)

,
if v2 ∈ Qp.

2. Both v1,v2 are in Qp. Let gcdext(v1i, v2i) =
(

r, (s, t)
)

,

v′′

1 = sv1 + tv2, v′′

2 = (−v2i/r)v1 + (v1i/r)v2,

L′′ = L, Q′′

p
= Qp \ {v1,v2} ∪

(

{v′′

1 ,v
′′

2} \ {0}
)

.

In both cases, ggen(G ′′) = ggen(Gp). Note that these transformations require
a computation for each coefficient of the considered generators so that their
complexity is O

(

n
)

.
The proof of the result is by induction on n+ 1− i where i is the least value

such that, if there exists a pair of distinct generators v1,v2 ∈ L ∪ Qp, then
i = piv>(v1) = piv>(v2) and i = n+ 1, otherwise.

The base case is when i = n+1, in which case Gp is already in minimal form
so let G′ = Gp.

For the step case, we apply the transformations (1) and (2) until no more
transformations are applicable with index i; that is when we obtain a generator
system Gj = (Lj , Qj , {p}) for which j > i is the least value such that, if there ex-
ists a pair of distinct generators v1, v2 ∈ Lj ∪Qj , then j = piv>(v1) = piv>(v2)

32

and j = n+ 1, otherwise. We note that we will have to perform these transfor-
mations at most m times for each step, where #L+#Qp = m, so that the com-
plexity of each step is O

(

nm
)

. By the inductive hypothesis, we can compute G ′

in minimal form such that ggen(G ′) = ggen(Gj). Therefore ggen(G ′) = ggen(G).
As we iterate at most n times over the step case, the algorithm has complexity
O

(

n2m
)

. ut

Proof (of Proposition 5). If L1 = ∅ or L2 = ∅, then L1 	 L2 = L1\L2 = L1

and, by lines (1-2), the algorithm returns L = L1. Similarly, if L1 ⊆ L2, then
L1 	 L2 = L1 \ L2 = ∅ and, by lines (3-4), the algorithm returns L = ∅.
Suppose now that L1 6= ∅,L2 6= ∅ and L1 6⊆ L2. Let L′ be the empty grid in Gn

defined on line (5). Then the algorithm executes lines (6-14). Notice that there
are two lines in this range that return a value for L; line (13) when L = L1 and
line (14) when L = L′.

Consider first the case when line (13) is executed so that L = L1. By
definition of grid difference, L ⊇ L1 	 L2; Hence it remains to show that
L1 ⊆ L1 	 L2. If p ∈ L1 \ L2, then, by the definition of grid difference,
p ∈ L1 	 L2. Suppose now that p ∈ L1 ∩ L2. As line (13) is only executed
by following the else branches of the conditionals on lines (8) and (9), for some
congruence β = (e ≡f 0) ∈ C2, there exists a point q ∈ L1 that does not satisfy
(2e ≡f 0) so that q does not satisfy β and hence q /∈ L2. Consider the point
r = p + 2(q − p). Then, as r is an integral affine combination of points in L1,
r ∈ L1. Let e =

(

〈a,x〉 − b
)

. Then, as p ∈ L2 satisfies β, 〈a,p〉 − b ≡f 0. If
r also satisfies β, then 〈a, r〉 − b ≡f 0 and hence 〈a, 2q〉 − 2b ≡f 0 so that q

would satisfy (2e ≡f 0); a contradiction. Thus r /∈ L2. Therefore p = 2q − r is
an integral affine combination of points in L1 \ L2 and hence p ∈ L1 	 L2. As
p ∈ L1 = L was arbitrary, L ⊆ L1 	 L2.

Suppose now that line (13) is not executed. Then the loop iterates once
for each congruence in C2 before executing line (14). Suppose # C2 = c and
βi = (ei ≡f 0) ∈ C2 is the congruence selected at line (6) in the i-th iteration
of the loop, for 0 < i ≤ c. Let L′

0 = ∅ and L′

i denote the grid L′ after the i-th
iteration. Then we need to show that L′

c = L1 	 L2. We prove that L′

c ⊆ L1 	 L2

and L′

c ⊇ L1 	 L2 separately.
We first show that L′

c ⊇ L1 	 L2. Since L1 	 L2 is the smallest grid
containing L1 \ L2, we just need to show that L′

c ⊇ L1 \ L2. To do this, let
p ∈ L1 \ L2; then we prove that p ∈ L′

c. As p /∈ L2, for some j = 1, . . . , c,
p /∈ gcon

(

{βj}
)

. Consider the j-th iteration of the loop. Then the test on line (8)
will succeed and the execution continues with the test on line (9). Moreover, as
we know that line (13) will not be executed, this test must succeed so that
p ∈ gcon

(

{2ej ≡f 0}
)

and lines (10-11) will be executed with β = βj . As

gcon
(

{βj}
)

and gcon
(

{2ej ≡f f}
)

are disjoint and their set union is the grid

gcon
(

{2ej ≡f 0}
)

, p must satisfy the congruence
(

2ej − f ≡2f 0
)

. Let Lβj
=

gcon
(

C1 ∪ {2ej − f ≡2f 0}
)

as on line (10). Then, as p ∈ L1, we have p ∈ Lβj
;

hence, after line (11), p ∈ L′

j . For each i = j + 1, . . . , c, either L′

i = L′

i−1 or
line (10) is executed, in which case L′

i ⊇ L′

i−1; hence p ∈ L′

i. In particular,
p ∈ L′

c. As this holds for all p ∈ L1 \ L2, L
′

c ⊇ L1 \ L2.

33

Finally we prove, by induction on i, that, for each i = 0, . . . , c, L′

i ⊆ L1 	 L2.
Initially L′

0 = ∅ and the result holds. Suppose now that i > 0 and that L′

i−1 ⊆
L1 	 L2. If L1 ⊆ gcon

(

{βi}
)

, then L′

i = L′

i−1 is unchanged by the iteration.

On the other hand, if L1 6⊆ gcon
(

{βi}
)

, the test on line (8) will succeed and the
execution continues with the test on line (9). Moreover, as we know that line (13)
will not be executed, this test must succeed so that L1 ⊆ gcon

(

{2ei ≡f 0}
)

. Let

Lβi
= gcon

(

C1 ∪ {2ei − f ≡2f 0}
)

as defined on line (10); then Lβi
∩ L2 = ∅ so

that Lβi
⊆ L1 \ L2 ⊆ L1 	 L2. Since, on line (11), L′

i is assigned L′

i−1 ⊕ Lβi
,

by definition of grid join and grid difference, L′

i ⊆ L1 	 L2. Therefore, letting
i = c, we have L′

c ⊆ L1 	 L2. ut

Proof (of Proposition 6). Let C be a congruence system for L and let LR

be the smallest rectilinear grid that contains L. Suppose also that B defines
the rectilinear grid LB. Then we need to show that LB = LR. Let CB be the
congruence system for LB defined by equation (2) and CR be congruence system
in minimal form for LR. Observe that LR = ggen(GR) where GR is a minimal
form for the generator system

(

{`iei|` ∈ L, `i 6= 0}, {qiei|q ∈ Q, qi 6= 0}, {p}
)

.

To prove the result, we consider each dimension i where 1 ≤ i ≤ n separately
and show that there exists γi =

(

〈ei,x〉 ≡f b
)

∈ CR for some f, b ∈ Q if and only
if βi exists and gcon(γi) = gcon(βi). We consider each of the three cases (1), (2)
and (3) separately.

Suppose, for some ` ∈ L, `i 6= 0. Then case (1) applies and Ii = (0, 0).
Moreover, there is a line ei`i in GR. Thus, there are no congruences 〈a,x〉 ≡f b
in CB or CR where piv<(a) = i.

Suppose, for all ` ∈ L, `i = 0, and q1i = · · · = qqi = 0. Then case (2) applies
and Ii = (pi,∞). Therefore there exists βi =

(

〈ei,x〉 = pi

)

∈ CB. Moreover,
there are no lines or parameters in GR with a non-zero i-th coordinate. Thus
there exists γi ∈ CR where f = 0 and b = pi so that gcon(γi) = gcon(βi).

Suppose, for all ` ∈ L, `i = 0, and, for some j = 1, . . . , q, qji 6= 0. Then
case (3) applies and Ii = (pi, pi + |g|) where g = gcd

(

{q1i, . . . , qqi}
)

6= 0. There-

fore there exists βi =
(

〈ei,x〉 ≡g pi

)

∈ CB. Moreover, there are no lines in GR

with a non-zero i-th coordinate. Thus there exists γi ∈ CR where f = g and
b = pi +mg for some m ∈ Z. Thus gcon(γi) = gcon(βi). ut

In the following lemma, letting H ∈ Rn×n, we say that H is upper triangular

form if, for all i = 1, . . . , n, Hii 6= 0 and, for all j where 1 ≤ j < i ≤ n, Hij = 0.
Similarly, a matrix H is in lower triangular form if, for all i = 1, . . . , n, Hii 6= 0
and, for all j where 1 ≤ i < j ≤ n, Hij = 0. Thus the transpose of an upper
triangular matrix is lower triangular and vice-versa.

Lemma 1. There exists a computable, invertible function that converts a gen-

erator system G =
(

L,Q, {p}
)

in Qn in minimal form to a congruence system

C = E ∪ F in Qn in minimal form where E are equalities and F are proper

congruences and such that

34

1. #Q = #F = n− #L− # E;

2. there exists q ∈ Q if and only if there exists β =
(

〈a,x〉 ≡1 0
)

∈ F , such

that, for some k ∈ {1, . . . , n}, piv>(q) = piv<(a) = k and qkak = 1;
3. for all ` ∈ L and β =

(

〈a,x〉 = 0
)

∈ E, piv>(`) 6= piv<(a);
4. gcon(C) = ggen(G).

Proof. Let Ĝ be the homogeneous form for G and Ĉ = F̂ ∪Ê be the homogeneous
form for C where G is as defined in equation (5) and Ê and F̂ are as defined in
equations (3) and (4) in Section 5. Let Ê = ÊTx̂ = 0 and F̂ = F̂Tx̂ ≡1 0 where
x̂ = (x0, . . . , xn)T. Then, as G and C are in minimal form, by the definition of
homogeneous form, items (1), (2), (3), and (4) hold if and only if the following
hold:

5. # Q̂ = # F̂ = n+ 1 − # L̂− # Ê ;
6. there exists q ∈ Q̂ if and only if there exists β =

(

〈a, x̂〉 ≡1 0
)

∈ F̂ , such
that, for some k ∈ {0, . . . , n}, piv>(q) = piv<(a) = k and qkak = 1;

7. for all ` ∈ L̂ and β =
(

〈a, x̂〉 = 0
)

∈ Ê , piv>(`) 6= piv<(a);

8. gcon(Ĉ) = ggen(Ĝ)

It therefore remains to prove that (5), (6), (7), and (8) hold.
Let M,N be matrices in Zn+1, whose vectors are of the form ei, 1 ≤ i ≤ n,

and such that (L̂, Q̂,M) and (N, F̂ , Ê) are square and nonsingular. Then we let

(N, F̂ , Ê) :=
(

(L̂, Q̂,M)−1
)T

where #N = # L̂, # Q̂ = # F̂ and # Ê = #N ; ensuring (5) holds. Note that
matrix inversion and transposition are both computable and invertible.

Let ` = # L̂, q = # Q̂− 1 and m = #M . Then

x̂ ∈ Ĝ ⇐⇒ x̂ = Q̂π + L̂λ +M0, for λ ∈ R`,π ∈ Zq+1,0 ∈ Zm

⇐⇒ x̂ = (Q̂, L̂,M)(πT,λT,0T)T, for λ ∈ R`,π ∈ Zq+1,0 ∈ Zm

⇐⇒ (Q̂, L̂,M)−1x̂ = (πT,λT,0T)T, for λ ∈ R`,π ∈ Zq+1,0 ∈ Zm.

As Ĝ is in minimal form (so that the set of vectors in (L̂, Q̂) is a subset
of the set of vectors in a triangular matrix) and M adds the missing columns
with only the diagonal elements being non-zero, (Q̂, L̂,M) is a permutation of
a lower triangular matrix. Thus the transposed inverse (N, F̂ , Ê) is the same
permutation of an upper triangular matrix so that Ĉ is also a congruence system
in minimal form. The generating system Ĝ is the homogeneous form of a system
that contains a point if and only if there is an element q ∈ Q̂ such that q0 = 1
and piv>(q) = 1; that is, if and only if there is also an element a ∈ F̂ such that

a0 = 1 and piv<(a) = 1. Thus Ĉ is a congruence system in minimal homogeneous

form if and only if Ĝ is a generator system in minimal homogeneous form.
More generally, for vectors vi and wi in (N, F̂ , Ê) and (L̂, Q̂,M), respectively,

piv<(vi) = piv>(wi) = k and vikwik = 1. Since #N = # L̂, # Q̂ = # F̂ and

Ê = #M we have proved items (6) and (7).

35

Since (N, F̂ , Ê) =
(

(Q̂, L̂,M)−1
)T

we have that x̂ ∈ ggen(Ĝ) if and only if

NTx̂ = λ, F̂Tx̂ = π, ÊTx̂ = 0 for some λ ∈ R`,π ∈ Zq+1. Since λ ∈ R`,
the condition NTx̂ = λ is vacuous and, as π ∈ Zq+1, the condition F̂Tx̂ = π

holds if and only if F̂Tx̂ ≡1 0. Thus we have that x̂ ∈ ggen(Ĝ) if and only if
F̂Tx̂ ≡1 0, ÊTx̂ = 0. Therefore gcon(Ĉ) = ggen(Ĝ) and (8) holds. ut

Proof (of Propositions 7 and 8). These are direct consequences of Lemma 1.
ut

Proof (of Proposition 9). Suppose that C is not in strong minimal form.
Then, by Definition 5, there exists a proper congruence β =

(

〈a,x〉 ≡1 b
)

∈ C,
such that the following holds:

1. there exists i > 0 and a proper congruence γ =
(

〈c,x〉 ≡1 d
)

∈ C\{β} where
piv<(γ) = i and either 2ai ≤ −ci or 2ai > ci.

Suppose that 0 ≤ k ≤ n is the maximum value for the index i such that condi-
tion (1) holds.

We show, by induction on k, that there exists a sequence of at most n trans-
formations, each of which having complexity O

(

n
)

, from β to the congruence

β′ =
(

〈a′,x〉 ≡1 b
′
)

, such that, if C′ :=
(

C \{β}
)

∪{β′}, then gcon(C′) = gcon(C)
and condition (1) (when β is replaced by β′) does not hold.

If k = 0, then condition (1) does not hold for β. Therefore let β ′ = β.
Suppose now that k > 0 so that condition (1) holds for i = k. As C is in

minimal form, k < piv<(a). Let

a′′ =







a −
⌈

ak

ck

⌉

c and b′′ = b−
⌈

ak

ck

⌉

d, if ak mod ck >
ak

2
;

a −
⌊

ak

ck

⌋

c and b′′ = b−
⌊

ak

ck

⌋

d, if ak mod ck ≤ ak

2
.

Then −ck < 2a′′k ≤ ck. Also, for k + 1 ≤ j ≤ n, we have cj = 0 so that
aj = a′′j and piv<(a′′) = piv<(a). Letting β′′ :=

(

〈a′′,x〉 ≡1 b
′′
)

and C′′ :=
(

C \ {β}
)

∪ {β′′}, we have gcon(C ′′) = gcon(C). Note that this transformation

has a complexity O
(

n
)

. As k′′, the maximum index such that condition (1) holds
for β′′, is strictly less than k we can apply the inductive hypothesis to C ′′ and β′′.
Thus there is a sequence of at most n−1 transformations from β ′′ to β′ such that,

gcon
(

(

C′′ \ {β′′}
)

∪ {β′}
)

= gcon(C′′) and condition (1) (when β is replaced by

β′) does not hold. Thus there is a sequence of at most n transformations from β

to β′ such that gcon
(

(

C\{β}
)

∪{β′}
)

= gcon(C). As each of the individual steps

has complexity O
(

n
)

, the sequence of transformations has complexity O
(

n2
)

.
We repeat this sequence of transformations for each proper congruence in C

to obtain a congruence system C ′ such that, for each proper congruence β′ ∈ C′,
condition (1) does not hold. Thus, by Definition 5, C ′ is in strong normal form.
Thus, as there are at most n proper congruences in C since, by hypothesis, C
is in minimal form, the complexity of computing the strong minimal form is
O

(

n3
)

. ut

36

The proofs of Propositions 10 and 11 depend on the following lemma. This
shows that if one grid is a subset of another then the pivot elements of the
proper congruences of the larger grid must be divisible by the corresponding
pivot elements of the smaller grid.

Lemma 2. Let L1 = gcon(C1), L2 = gcon(C2) be non-empty grids in Gn such

that L1 ⊆ L2 and the congruence systems C1 and C2 are in minimal form. Then,

for each γ =
(

〈c,x〉 ≡g d
)

∈ C2, there exists β =
(

〈a,x〉 ≡f b
)

∈ C1 such that

piv<(a) = piv<(c) = k and either f = g = 0 or g 6= 0 and gak | fck.

Proof. Suppose γ =
(

〈c,x〉 ≡g d
)

∈ C2 and k = piv<(c). Then, as L1 ⊆ L2,

L1 ⊆ gcon
(

{γ}
)

. Let G1 =
(

L1, Q1, {p}
)

be a generator system for L1 in minimal
form constructed as in Lemma 1 from C1.

We first prove that there exists β =
(

〈a,x〉 ≡f b
)

∈ C1 such that piv<(a) = k.

To see this, suppose instead that, for all β =
(

〈a,x〉 ≡f b
)

∈ C1, piv<(a) 6= k.
Then, by Lemma 1, there must exist a line ` ∈ L1 such that piv>(`) = k; hence
〈c, `〉 = ck`k 6= 0. Since L1 ⊆ gcon

(

{γ}
)

, this implies that

〈

c, (p + r`)
〉

= 〈c,p〉 + rck`k ≡g d,

for all r ∈ R; which is a contradiction.

We next show that if g = 0 then f = 0. To see this, suppose instead that
g = 0 but f 6= 0. Then, by Lemma 1, there exists q ∈ Q1 such that piv>(q) = k;
hence 〈c, q〉 = ckqk 6= 0. Since L1 ⊆ gcon

(

{γ}
)

, this implies that

〈

c, (p + rq)
〉

= 〈c,p〉 +mckqk ≡g d,

for all m ∈ Z; which is a contradiction.
We now assume that g 6= 0 and show that gak | fck. This is trivial if f = 0;

therefore, suppose f 6= 0. By Lemma 1, there exists a parameter q in Q1 such
that piv>(q) = k (so that qkck 6= 0) and qk = fa−1

k . Thus, as L1 ⊆ gcon
(

{γ}
)

,
〈q, c〉 = qkck = mg, for some m ∈ Z\{0}. Therefore we must have gak | fck. ut

Proof (of Proposition 4). Let C ′ be the congruence system obtained, as in
Lemma 1, from G. Let G = (L,Q, P) and let C = (F , E) and C ′ = (F ′, E ′) where
E , E ′ are sets of equalities and F ,F ′ are sets of proper congruences. Then, by
Lemma 1,

#Q = #F ′ = n− #L− # E ′.

By applying Lemma 2 twice where L1 = L2 = L, we obtain # E = # E ′ and
#F = #F ′. Therefore

#Q = #F = n− #L− # E .

ut

37

The next lemma, which is needed in the proofs of Propositions 2, 10 and 11
shows that if, two grids, one a subset of the other are described by two congruence
systems in strong minimal form that are pivot equivalent, then, relative to the
affine hull of the grids, pivot equivalent congruences in these systems are the
same.

Lemma 3. Let L1 = gcon(C1), L2 = gcon(C2) be non-empty grids in Gn where

L1 ⊆ L2 and the congruence systems C1 and C2 are in strong minimal form.

Suppose that C1 is pivot equivalent to C2. Then, for each β ∈ C1 and γ ∈ C2 such

that β ⇑ γ,

gcon
(

{β}
)

∩ affine.hull(L1) = gcon
(

{γ}
)

∩ affine.hull(L1). (10)

Proof. Let β =
(

〈a,x〉 ≡f b
)

∈ C1. By the definition of pivot equivalence for

congruence systems in Section 3, as C1 ⇑ C2 there exists γ =
(

〈c,x〉 ≡g d
)

∈ C2

such that β ⇑ γ. We show that equation (10) holds. By the definition of pivot
equivalence for congruences in Section 2, piv<(a) = piv<(c) = k and gak = fck.
Thus as ak, ck 6= 0, either f = g = 0 and β, γ are both equalities, or we have
f, g 6= 0 so that β, γ are both proper congruences and we can assume that
f = g = 1.

Let E1 be the set of equalities in C1. By Gaussian elimination, the set E1

can be transformed to the set of equalities E ′

1 such that gcon(E ′

1) = gcon(E1) =
affine.hull(L1) and has the following property: let E ′

1 = {β1, . . . , βm} such that,
for each i ∈ {1, . . . ,m}, piv<(βi) = ki and βi =

(

〈ai,x〉 = bi
)

; then, for each
i, j ∈ {1, . . . ,m} where i 6= j, we have aikj

= 0. Let

a′′ = a − c −

m
∑

i=1

(aki
− cki

)

aki

ai, b′′ = b− d−

m
∑

i=1

(aki
− cki

)

aki

bi. (11)

Let β′′ :=
(

〈a′′,x〉 ≡1 b
′′
)

and ` := piv<(a′′). Then L1 ⊆ gcon
(

{β′′}
)

⊆ L2.
Moreover, for any equality βi ∈ E ′

1, piv<(ai) 6= `. Thus, if β, γ are equalities,
a′′ = 0 and, as C1 is consistent, b′′ = 0. Therefore gcon(E ′

1) ⊆ gcon
(

{β}
)

and

gcon(E ′

1) ⊆ gcon
(

{γ}
)

. Hence equation (10) holds.
Consider now the case when β, γ are proper congruences. We first show that

a′′ = 0 and b′′ ∈ Z. Without loss of generality we can assume that f = g = 1.
Note that, as ak = ck we have ` < k. We show ` = 0; suppose, to the contrary
that ` > 0. Since L1 ⊆ L2, and γ ∈ C2, we have L1 ⊆ gcon

(

{γ}
)

; so we can apply

Lemma 2 to the grids L1 and gcon
(

{γ}
)

. Thus there exists a proper congruence

β′ =
(

〈a′,x〉 ≡1 b
′
)

∈ C1 where piv<(a′) = ` and a′` | a
′′

` . Note that the number
of proper congruences p1 in C1 is equal to the number of proper congruences p2

in C2; since by Lemma 2, p2 ≤ p1 and, by hypothesis, p1 ≤ p2. Therefore, by
Lemma 2, there must exist a proper congruence γ ′ =

(

〈c′,x〉 ≡1 d
′
)

∈ C2 where
piv<(c′) = ` and c′` = a′`. Now as C1 and C2 are in strong minimal form, by
Definition 5,

−
a′`
2
< a` ≤

a′`
2

and −
c′`
2
< c` ≤

c′`
2
.

38

Therefore −a′` < a′′` < a′`. It follows that, as a′`|a
′′

` , a′′` = 0, contradicting the
assumption that piv<(a′′) = ` > 0. Therefore a′′ = 0 and β′′ is the relation
b′′ ≡1 0 for some b′′ ∈ Z.

It follows that, by (11),

a − c =

m
∑

i=1

(aki
− cki

)

aki

ai, b− d ≡1

m
∑

i=1

(aki
− cki

)

aki

bi.

Thus

gcon
(

{γ, β1, . . . , βm}
)

⊆ gcon
(

{β}
)

gcon
(

{β, β1, . . . , βm}
)

⊆ gcon
(

{γ}
)

so that

gcon
(

{γ, β1, . . . , βm}
)

= gcon
(

{β, β1, . . . , βm}
)

.

Hence equation (10) holds. ut

Proof (of Proposition 2). By Proposition 9, we can convert C1 and C2 to
strong minimal form, C′

1 and C′

2 respectively, so that, for i = 1, 2, Li = gcon(C′

i)
and C′

i is pivot equivalent to Ci. By Lemma 3, for each β ∈ C ′

1 and γ ∈ C′

2,

gcon
(

{β}
)

∩ affine.hull(L1) = gcon
(

{γ}
)

∩ affine.hull(L1).

Thus L1 = L2 as required. ut

Proof (of Proposition 10). Suppose C1, C2 6= ∅. By Lemma 2, for each β =
(

〈a,x〉 ≡f b
)

∈ C1 there exists γ =
(

〈c,x〉 ≡g d
)

∈ C2 such that piv<(a) =
piv<(c) = k and either f = g = 0 or f 6= 0 and fck | gak.

Also by Lemma 2, for γ =
(

〈c,x〉 ≡g d
)

∈ C2 there exists β′ =
(

〈a′,x〉 ≡f ′

b′
)

∈ C1, such that piv<(a′) = piv<(c) = k and either f ′ = g = 0 or g 6= 0
and ga′k | f ′ck. However as C1 is in strong minimal form β = β′. Therefore, by
Definition 2, ak, ck > 0, hence fck = gak.

Therefore, for each β ∈ C1 there exists γ ∈ C2 such that β ⇑ γ so that we can
apply Lemma 3 to prove the thesis. ut

Proof (of Proposition 11). In order to show that ‘∇’ is a widening operator,
we prove that conditions (1) and (2) in Definition 4 hold. Let L1 = gcon(C1),
L2 = gcon(C2) ∈ Gn, where L1 ⊆ L2, C1 is in minimal form and C2 is in strong
minimal form.

By Definition 6, if L1 = ∅ or dim(L1) < dim(L2), then L1 ∇ L2 = L2.
Therefore, in this case, condition (1) holds. Clearly, the empty grid can occur
only as the first element of a strictly increasing chain of grids; moreover, if
L and L′ are any two successive and distinct grids in the increasing chain of
condition (2) in Definition 4, then 0 ≤ dim(L) ≤ dim(L′) ≤ n. Hence, the case
when L1 = ∅ or dim(L1) < dim(L2) hold can occur no more than a finite
number of times in such a chain.

39

Suppose now that L1 6= ∅ and dim(L1) = dim(L2), so that the second case
of the widening computation applies (note that, due to the inclusion hypothesis,
dim(L1) > dim(L2) cannot hold), and let CS be as given in equation (6) in
Definition 6. Then, since CS ⊆ C2, condition (1) holds. By Proposition 2, if
CS = C2, we have L1 = L2; thus, if L1 6= L2, we have # CS < # C2. By Lemma 2,
as C1 and C2 are in minimal form, it follows that # C2 ≤ # C1 so that, if L1 6= L2,
CS < # C1. Therefore condition (2) of Definition 4 holds. ut

40

