
Widening Operators for Weakly-Relational

Numeric Abstractions?

Roberto Bagnara1, Patricia M. Hill2, Elena Mazzi1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara,mazzi,zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. We discuss the construction of proper widening operators
on several weakly-relational numeric abstractions. Our proposal differs
from previous ones in that we actually consider the semantic abstract
domains, whose elements are geometric shapes, instead of the (more con-
crete) syntactic abstract domains of constraint networks and matrices.
Since the closure by entailment operator preserves geometric shapes, but
not their syntactic expressions, our widenings are immune from the di-
vergence issues that could be faced by the previous approaches when
interleaving the applications of widening and closure. The new widen-
ings, which are variations of the standard widening for convex polyhedra
defined by Cousot and Halbwachs, can be made as precise as the pre-
vious proposals working on the syntactic domains. The implementation
of each new widening relies on the availability of an effective reduction
procedure for the considered constraint description: we provide such an
algorithm for the domain of octagonal shapes.

1 Introduction

Numerical properties are of great interest in the broad area of formal methods for
their complete generality and since they often play a crucial role in the definition
of static analyses and program verification techniques. In the field of abstract
interpretation, classes of numerical properties are captured by numerical abstract
domains. These have been and are widely used, either as the main abstraction
for the application at hand, or as powerful ingredients to improve the precision
of other abstract domains.

Among the wide spectrum of numerical abstractions proposed in the litera-
ture, the most famous ones are probably the (non-relational) abstract domain of
intervals [16] and the (relational) abstract domain of convex polyhedra [19]. As
far as the efficiency/precision trade-off is concerned, these domains occupy the
opposite extremes of the spectrum: on the one hand, the operations on convex

? This work has been partly supported by MURST projects “Constraint Based Ver-
ification of Reactive Systems” and “AIDA — Abstract Interpretation: Design and
Applications,” and by a Royal Society (UK) International Joint Project (ESEP)
award.



polyhedra achieve a significant level of precision, which is however countered
by a worst-case exponential time complexity, often leading to scalability prob-
lems; on the other hand, the great efficiency of the corresponding operations on
intervals is made unappealing by the fact that the obtained precision is often un-
satisfactory. This well-known dichotomy (which does not impede that, for some
applications, convex polyhedra or intervals are the right choices) has motivated
recent studies on several abstract domains that lie somehow between these two
extremes, and can therefore be called weakly-relational abstract domains. Ex-
amples include domains based on constraint networks [3–5], the abstract domain
of difference-bound matrices [26, 33], the octagon abstract domain [27], the ‘two
variables per inequality’ abstract domain [34], the octahedron abstract domain
[15], and the abstract domain of template constraint matrices [32]. Moreover,
similar proposals that are not abstractions of the domain of convex polyhedra
have been put forward, including the abstract domain of bounded quotients [3]
and the zone congruence abstract domain [28].

In this paper, we address the issue of the provision of proper widening op-
erators for these domains. For the abstract domain of convex polyhedra, all the
widenings that have been proposed are variations of, and/or improvements to,
what is commonly referred to as the standard widening [19, 22]. This is based on
the general widening principle “drop the unstable components” applied to con-
straints. Not surprisingly, most proposals for widening operators for the weakly
relational domains are based on the same principle and analogous to the standard
widening. For instance, for the domain of difference bound matrices mentioned
above, an operator meant to match the standard widening is given in [33]. Un-
fortunately, as pointed out in [26, 27], this operator is not a widening, since it
has no convergence guarantee. The reason is that closure by entailment, which
is systematically performed so as to provide a canonical form for the elements
and to improve the precision of several domain operations, has a negative inter-
action with the extrapolation operator of [33] that compromises the convergence
guarantee. Intuitively, what can happen is that, while the extrapolation operator
discards unstable constraints, the closure operation reinserts them (because they
were redundant): failure to drop such unstable constraints can (and, in practice,
quite often does) result in infinite upward iteration sequences. For this reason, it
is proposed in [26, 27] to apply the same operator given in [33] to the “syntactic”
version of the same abstract domain, that is, where closure is only very carefully
applied during the fixpoint computations.

We have taken a different approach and resolve the apparent conflict by
considering a “semantic” abstract domain whose elements are the geometric
shapes themselves. Since closure by entailment preserves the geometric shapes
(even though this does not preserve their syntactic expressions), the approach
is immune from the divergence problem described above. On the other hand, in
order to use the standard widening as the basis of the proposed widening, it is
important that we can compute reduced representations of the domain elements
that encode non-redundant systems of constraints. Thus the implementations of
any new widenings based on the semantic approach will need effective reduction

2



procedures for the considered constraint description: here we provide such an
algorithm for the domain of octagonal shapes.

As a by-product of our work on verifying the correctness of this reduction
algorithm, we noticed that the algorithm for computing the strong closure of
octagonal graphs as described in [26] could be simplified with a consequential
improvement in its efficiency. This revised strong closure algorithm is also de-
scribed here.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the domain of bounded difference graphs; a
domain of bounded difference shapes is presented in Section 4, where an alter-
native solution to the divergence problem is proposed; the generalization of the
above results to the case of octagons is the subject of Section 5, where we define
a new strong reduction procedure and an improved strong closure procedure for
octagonal graphs, as well as a semantic widening operator for octagonal shapes.
Section 6 argues in favor of the adoption of semantic abstract domains, as op-
posed to syntactic ones, also discussing some related work. Section 7 concludes.
Appendix A, which is not meant to be part of the paper and is included for the
convenience of the reviewers, contains the proofs of all the stated results.

2 Preliminaries

The reader is assumed to be familiar with the fundamental concepts of lattice
theory [12] and abstract interpretation theory [17, 18]. We refer the reader to the
classical works on the numeric domains of intervals [16] and convex polyhedra [19]
for the specification of the corresponding widening operators.

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that
d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A weighted directed graph

(graph, for short) G in N is a pair (N , w), where w : N ×N → Q∞ is the weight
function for G. A pair (ni, nj) ∈ N × N is an arc of G if w(ni, nj) < +∞; the
arc is proper if ni 6= nj .

A path π = n0 · · ·np in a graph G = (N , w) is a non-empty and finite
sequence of nodes such that (ni−1, ni) is an arc of G, for all i = 1, . . . , p; each
arc (ni−1, ni) where i = 1, . . . , p is said to be in the path π. The path π is
proper if all the arcs in it are proper. The path π is a proper cycle if it is a
proper path and n0 = np (so that p ≥ 2). The length of the path π is the
number p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path
π is

∑p

i=1
w(ni−1, ni) and denoted by w(π). The path π is a zero-cycle if it is

a proper cycle with 0 weight. A graph is consistent if it has no negative weight
cycles; it is zero-cycle free if all its proper cycles have strictly positive weights.

The set G of consistent graphs in N is partially ordered by the relation ‘E’
defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 E G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

When augmented with a bottom element ⊥ representing inconsistency, this par-
tially ordered set becomes a (non-complete) lattice G⊥ =

〈

G ∪ {⊥}, E,u,t
〉

,

3



where ‘u’ and ‘t’ denote the (finitary) greatest lower bound and least upper
bound operators, respectively.

Definition 1. (Closed graph.) A consistent graph G = (N , w) is closed if the

following properties hold:

∀i ∈ N : w(i, i) = 0; (1)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
⊔

{

Gc ∈ G
∣

∣ Gc
E G and Gc is closed

}

.

When trivially extended so as to behave as the identity function on the bottom
element ⊥, shortest-path closure is a kernel operator (monotonic, idempotent
and reductive) on the lattice G⊥.

3 Systems of Bounded Differences

The typical way to simplify the domain of convex polyhedra is by restricting
attention to particular subclasses of linear inequalities. One possibility, which has
a long tradition in computer science [11], is to only consider potential constraints,
also known as bounded differences : these are restricted to take the form vi−vj ≤ d
or ±vi ≤ d. Systems of bounded differences have been used by the artificial
intelligence community as a way to reason about temporal quantities [2, 20],
as well as by the model checking community as an efficient yet precise way
to model and propagate timing requirements during the verification of various
kinds of concurrent systems [21, 25]. In the abstract interpretation field, the idea
of using an abstract domain of bounded differences was put forward in [3].

A finite system C of bounded differences on variables V = {v0, . . . , vn−1} can
be represented by a weighted directed graph G = (N0, w) where 0 /∈ V is the
special variable, N0 = {0} ∪ V , and the weight function w is defined, for each
vi, vj ∈ N0, by

w(vi, vj) :=



















min
{

d ∈ Q
∣

∣ (vi − vj ≤ d) ∈ C
}

, if vi 6= 0 and vj 6= 0;

min
{

d ∈ Q
∣

∣ (vi ≤ d) ∈ C
}

, if vi 6= 0 and vj = 0;

min
{

d ∈ Q
∣

∣ (−vj ≤ d) ∈ C
}

, if vi = 0 and vj 6= 0;

0, if vi = vj = 0.

Notice that we assume that min ∅ = +∞; moreover, unary constraints are en-
coded by means of the special variable, which is meant to always have value 0.
A possible representation of (the weight function of) the graph G is by means of
a matrix-like data structure called Difference-Bound Matrix (DBM) [11]. How-
ever, this representation provides no conceptual advantage over the isomorphic
graph (or constraint network [20]) representation. For this reason we will consis-
tently adopt the terminology and notation introduced in Section 2 for weighted

4



directed graphs. In particular, a graph encoding a consistent system of bounded
differences will be called a Bounded Difference Graph (BDG).

The first fully developed application of bounded differences in the field of
abstract interpretation can be found in [33], where an abstract domain of closed
BDGs is defined. In this case, the shortest-path closure requirement was meant
as a simple and well understood way to obtain a canonical form for the do-
main elements by abstracting away from the syntactic details; since, basically,
it corresponds to the closure by entailment of the encoded system of bounded
differences. In [33] the specification of all the required abstract semantics oper-
ators is provided, including an operator that is meant to match the widening
operators defined on more classical numeric domains. This operator can be in-
terpreted either as a generalization for closed BDGs of the widening operator
defined on the abstract domain of intervals [16], or as a restriction on the do-
main of closed BDGs of the standard widening defined on the abstract domain
of convex polyhedra [19, 22]: its implementation is based on the following upper
bound operator on the set of consistent graph representations.

Definition 2. (Widening graphs.) Let G1 = (N , w1) and G2 = (N , w2) be

consistent graphs. Then G1∇G2 := (N , w), where the weight function w is de-

fined, for each i, j ∈ N , by

w(i, j) :=

{

w1(i, j), if w1(i, j) ≥ w2(i, j);

+∞, otherwise.

Unfortunately, as pointed out in [26, 27], when used in conjunction with shortest-
path closure, this extrapolation operator does not provide a convergence guar-
antee for fixpoint computations, hence it is not a widening. The reason is that,
whereas the closure operation adds redundant constraints to the input BDG, a
key requirement in the specification of the standard widening is that the first
argument polyhedron must be described by a non-redundant system of con-
straints.3 Thus we have a “conflict of interest” between the use of a convenient
canonical form for the abstract domain —a form that also allows for increased
precision of several domain operations— and the requirements of the widening.

The abstract domain of BDGs has been reconsidered in [26]. Differently from
[33], in [26] BDGs are not required to be closed. In this more concrete, syntactic
domain, the shortest-path closure operator maps each domain element into the
smallest BDG encoding the same geometric shape. Closure is typically used as
a preprocessing step before the application of most, though not all, of the ab-
stract semantic operators, allowing for improved accuracy in the results of the
abstract computation. The same widening operator proposed in [33] is also used
in [26]; however, it is observed that this widening “could have intriguing interac-
tions” with shortest-path closure, therefore identifying the divergence issue faced

3 This requirement was sometimes neglected in recent papers describing the standard
widening on convex polyhedra; it was recently recalled and exemplified in [6, 7].
Note that a similar requirement is implicitly present even in the specification of the
widening on intervals.

5



in [33]. This observation has led the author of [26] to concluding that “fixpoint
computations must be performed” in the lattice of BDGs, without enforcing
closure (emphasis in the original).

4 Bounded Difference Shapes

While the analysis of the divergence problem is absolutely correct, the solution
identified in [26] is sub-optimal since, as is usually the case, resorting to a syn-
tactic domain (such as the one of BDGs) has a number of negative consequences,
some of which will be recalled in Section 6.

To identify a simpler, more natural solution, we first have to acknowledge
that an element of our abstract domain should be a geometric shape, rather
than (any) one of its graph representations. To stress this concept, such an el-
ement will be called a Bounded Difference Shape (BDS). A BDS corresponds
to the equivalence class of all the BDGs representing it. The implementation of
the abstract domain can freely choose between these possible representations,
switching at will from one to the other, as long as the semantic operators are im-
plemented as expected. Notice that, in such a context, the shortest-path closure
operator is just a transparent implementation detail: on the abstract domain of
BDSs it corresponds to the identity function.

The other step towards the solution of the divergence problem is the simple
observation that a BDS is a convex polyhedron and the set of all BDSs is closed
under the application of the standard widening on convex polyhedra. Thus, no
divergence problem can be incurred when applying the standard widening to an
increasing sequence of BDSs. As mentioned in Section 3, a crucial requirement
in the specification of the standard widening is that the first argument polyhe-
dron is described by a non-redundant system of constraints [6, 7]. Thus it is not
surprising that using closed BDGs has problems since it is very likely that they
will encode redundant constraints. By contrast, we propose the use of a maximal
BDG in the equivalence class of BDGs representing the same geometric shape;
since such a graph encodes no redundant constraints at all.

Definition 3. (Reduced graph.) A consistent graph G1 is reduced if, for

each consistent graph G2 6= G1 such that G1 E G2, we have closure(G1) 6=
closure(G2). A reduction for the consistent graph G is any reduced graph Gr

such that closure(G) = closure(Gr).

Hence, a graph is reduced if it is maximal in the subset of graphs having the
same shortest-path closure. In order to provide a correct and reasonably efficient
implementation of the standard widening on the domain of BDSs, all we need
is a reduction procedure mapping a BDG representation into (any) one of the
equivalent reduced graphs. Such an algorithm was defined in [25] and called
shortest-path reduction. Basically, it is an extension of the transitive reduction
algorithm of [1] to the case of weighted directed graphs. Note that, since each
equivalence class may have many maximal elements, shortest-path reduction is

6



not a properly defined operator on the domain of BDGs. However, the shortest-
path reduction algorithm of [25] provides a canonical form as soon as we fix a
total order for the nodes in the graph.

In summary, the solution to the divergence problem for BDSs is to apply
the operator specified in Definition 2 to a reduced BDG representation of the
first argument of the widening. From the point of view of the user, this will
be a transparent implementation detail: on the domain of BDSs, shortest-path
reduction is the identity function, as was the case for shortest-path closure.

4.1 On the Precision of the Standard Widening

The standard widening on BDSs could result, if used with no precautions, in
poorer precision with respect to its counterpart defined on the syntactic do-
main of BDGs. For increased precision, the specification of [26] prescribes two
conditions that the abstract iteration sequence must satisfy:

1. the second argument of the widening should be represented by a closed BDG
(note that, in this case, no divergence problem can arise);

2. the first BDG of the abstract iteration sequence G0 E G1 E . . . E Gi E . . .
should be closed too.

The effects of both improvements can be obtained also with the semantic
domain of BDSs. As for the first one, this can be applied as is, leading to an
implementation where the two arguments of the widening are represented by
a reduced BDG and a closed BDG, respectively. The result of such a widen-
ing operator will depend on the specific reduced form computed for the first
argument. The second precision improvement can be achieved by applying the
well-known ‘widening up to’ technique defined in [23, 24] or its variation called
‘staged widening with thresholds’ [13, 14, 30]: in practice, it is sufficient to add
to the set of ‘up to’ thresholds all the constraints of the shortest-path closure of
the first BDG G0. Further precision improvements can be obtained by applying
any delay strategy and/or the framework defined in [6, 7].

5 Octagonal Graphs and Shapes

From a theoretical point of view, the observations made in the previous section
are immediately applicable to any other weakly-relational numeric domain whose
elements are convex polyhedra and is closed with respect to the application of
the standard widening, therefore including the domains proposed in [15, 27, 32,
34]. From a practical perspective, the success of such a construction depends on
the availability of a reasonably efficient reduction procedure for the considered
subclass of constraints, because the minimization algorithm for arbitrary linear
inequality constraints is not efficient enough. In this section we provide such a
reduction procedure for the octagon abstract domain [27].

The octagon abstract domain allows for the manipulation of octagonal con-
straints of the form avi + bvj ≤ c, where a, b ∈ {−1, 0, +1} (the same class of

7



constraints was considered in [10], where octagons were called simple sections).
Bounded differences can then be used to express octagonal constraints by split-
ting each variable vi ∈ V into two forms: a positive form v+

i , interpreted as +vi;
and a negative form v−

i , interpreted as −vi. Thus, an octagonal constraint such as
vi +vj ≤ d can be translated into the bounded difference constraint v+

i −v−j ≤ d;

alternatively, the same constraint can be translated into v+
j − v−i ≤ d. Note that

unary (octagonal) constraints such as vi ≤ d and −vj ≤ d can be encoded as
v+

i − v−i ≤ 2d and v−

j − v+
j ≤ 2d, respectively, so that the special variable 0 is

no longer needed.
In the following we assume that N± = {0, . . . , 2n−1} is a fixed and finite set

of nodes where, for all i = 0, . . . , n− 1, the node 2i represents the positive form
v+

i and 2i + 1 the negative form v−

i of the variable vi. Moreover, for all i ∈ N±,
ı denotes i+1 if i is even, and i−1 if i is odd. Thus, for all i ∈ N±, we also have
ı ∈ N± and ı = i. Therefore, any finite system of octagonal constraints on the
n variables V = {v0, . . . , vn−1} can be represented by a weighted directed graph
on the 2n nodes N±. Note that, for any i, j ∈ N±, as arcs (i, j) and (, ı) denote
equivalent expressions, the pair is said to be coherent. We restrict attention to
consistent systems of constraints and hence to consistent graphs where coherent
pairs of arcs have the same weight.

Definition 4. (Octagonal graph.) An octagonal graph in N± is any consis-

tent graph G = (N±, w) satisfying the coherence assumption:

∀i, j ∈ N± : w(i, j) = w(, ı). (3)

Thus any octagonal graph on the 2n nodes N± encodes a consistent system of
octagonal constraints on n variables. The set O of all octagonal graphs (with
the usual addition of the bottom element, representing the empty octagon) is a
sub-lattice of G⊥, sharing the same least upper bound and greatest lower bound
operators. Note that, at the implementation level, coherence can be automati-
cally and efficiently enforced by letting arc (i, j) and arc (, ı) share the same
representation.

The octagon abstract domain developed in [27] is thus a syntactic domain
having octagonal graphs as elements. When dealing with octagonal graphs, one
has to remember the relation linking the positive and negative forms of each vari-
able: in particular, besides transitivity, a proper closure by entailment procedure
should also consider the following inference rule:

i − ı ≤ d1  − j ≤ d2

2(i − j) ≤ d1 + d2

(4)

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs: to this end, a modified closure procedure
is defined in [27], yielding strongly closed octagonal graphs.

Definition 5. (Strongly closed graph.) An octagonal graph G = (N±, w) is

strongly closed if it is closed and the following property holds:

∀i, j ∈ N± : 2w(i, j) ≤ w(i, ı) + w(, j). (5)

8



The strong closure of an octagonal graph G in N± is

Closure(G) :=
⊔

{

GC ∈ O
∣

∣ GC
E G and GC is strongly closed

}

.

Similarly to shortest-path closure, strong closure is a kernel operator on the
lattice of octagonal graphs.

By repeating the reasoning of the previous section, we define the semantic
abstract domain of octagonal shapes, whose elements are equivalence classes of
octagonal graphs representing the same geometric shape. Hence, strong closure
maps an octagonal graph representation of a non-empty octagonal shape into the
minimum element of the corresponding equivalence class. The dual procedure,
mapping the octagonal graph into (any) one of the maximal elements in its
equivalence class, is called strong reduction.

Definition 6. (Strongly reduced graph.) An octagonal graph G1 is strongly
reduced if, for each octagonal graph G2 6= G1 such that G1 E G2, we have

Closure(G1) 6= Closure(G2). A strong reduction for the octagonal graph G is

any strongly reduced octagonal graph GR such that Closure(G) = Closure(GR).

Note that, in the above definition, we only compare G1 with other octagonal

graphs. Thus, we explicitly disregard those trivial redundancies that are due
to the coherence assumption. This is not a real problem because, as discussed
before, any reasonable implementation will automatically and efficiently filter
away this kind of redundancies.

5.1 A Strong Reduction Procedure for Octagonal Graphs

In this section we generalize the shortest-path reduction algorithm of [25] so as to
obtain a strong reduction procedure for octagonal graphs. Clearly, the algorithm
of [25] cannot be used without modifications, since it takes no account of the
redundancies caused by the new constraint inference rule (4). Nonetheless, the
high-level structure of the strong reduction procedure is the same as that defined
in [25] for shortest-path reduction:

1. Compute the closure by entailment of the constraint graph;
2. Partition the nodes into equivalence classes based on equality constraints;
3. Decompose the graph so as to separate those arcs that link different equiv-

alence classes (encoding only inequalities) from the partition information
(encoding the equivalence classes themselves, i.e., all the equalities);

4. Reduce the subgraph that gives constraints on different equivalence classes;
5. Reduce the partition information;
6. Merge the results of steps 4 and 5 to obtain the reduced constraint graph.

We now describe each of the above steps, formally stating the correctness of the
overall procedure.

Step 1 of the algorithm can be performed by applying the strong closure
procedure defined in [27].

9



Step 2 is also easily implemented by observing that, in a strongly closed
octagonal graph, equality constraints correspond to proper zero-cycles having
length two.

Definition 7. (Zero-equivalence.) Let G = (N±, w) be a strongly closed oc-

tagonal graph. The nodes i, j ∈ N± are zero-equivalent in G, denoted i ≡G j, if

and only if w(i, j) = −w(j, i).

While step 6 carries over from BDGs to octagonal graphs, the formal defini-
tion of steps 3–5 of the reduction algorithm is more difficult for octagonal graphs
than it was for BDGs, as it requires some understanding of the structure of the
zero-equivalence classes. As a first observation, note that i ≡G j if and only if
ı ≡G , so that we have the following lemma.

Lemma 1. Let G = (N±, w) be a strongly closed octagonal graph and E ⊆ N±

a zero-equivalence class for G. Then E := { ı ∈ N± | i ∈ E } is also a zero-

equivalence class for G.

Let G be a strongly closed octagonal graph and, for a zero-equivalence class E
of G, let E be defined as in Lemma 1. Then we say that E is non-singular if
E ∩ E = ∅ and singular if E = E .

Lemma 2. Let G = (N±, w) be a strongly closed octagonal graph. Then there

is at most one singular zero-equivalence class for G.

If it exists, the singular zero-equivalence class encodes all the unary equality
constraints.4 In contrast, all the other (non-singular) zero-equivalence classes
can only encode binary equality constraints.

We associate to each zero-equivalence class E ⊆ N± a leader `E := min E ;
the class having the leader in positive (resp., negative) form will be said to be a
positive (resp., negative) zero-equivalence class. Note that, this means that the
singular zero-equivalence class, if present, is always positive and, for non-singular
zero-equivalence classes E and E , we have `

E
= `E .

We are now ready to provide a formal specification for step 3 of the strong
reduction algorithm. As was the case in [25], the first subgraph resulting from the
decomposition, relating nodes in different zero-equivalence classes, is obtained
by only connecting the leaders. However, we do not connect the leader of the
singular zero-equivalence class to the other leaders. The second subgraph only
encodes those constraints relating nodes in the same zero-equivalence class.

Definition 8. (Non-singular leaders and zero-equivalence subgraphs.)
Let G = (N±, w) be a strongly closed octagonal graph and L ⊆ N± the set

of leaders of the non-singular zero-equivalence classes for G. The non-singular

4 When computing a reduced BDG, such a singular zero-equivalence class is always
present: it is the zero-equivalence class containing the special variable 0.

10



leaders’ subgraph of G is the graph L = (N±, wL), where the weight function

wL is defined, for each i, j ∈ N±, by

wL(i, j) :=

{

w(i, j), if i = j or {i, j} ⊆ L;

+∞, otherwise.

The zero-equivalence subgraph of G is the graph E = (N±, wE), where the

weight function wE is defined, for each i, j ∈ N±, by

wE(i, j) :=

{

w(i, j), if i ≡G j;

+∞, otherwise.

The following result states that the two subgraphs are still strongly closed and
the non-singular leaders’ subgraph encodes no equality constraints, therefore
describing a fully dimensional octagonal shape.

Lemma 3. Let L and E be the non-singular leaders’ subgraph and the zero-

equivalence subgraph of the strongly closed octagonal graph G, respectively. Then,

L and E are strongly closed octagonal graphs and L is zero-cycle free.

Step 4 of the strong reduction algorithm is implemented by checking, for
each proper arc in the non-singular leaders’ subgraph, whether it can be obtained
from the other arcs by a single application of the constraint inference rules. Once
again, note that we disregard redundancies caused by the coherence assumption.

Definition 9. (Strongly atomic arc and subgraph.) Let G = (N±, w) be

an octagonal graph. An arc (i, j) of G is atomic if it is proper and, for all

k ∈ N± \ {i, j}, w(i, j) < w(i, k) + w(k, j). The arc (i, j) is strongly atomic if

it is atomic and either i =  or 2w(i, j) < w(i, ı) + w(, j).
The strongly atomic subgraph of G is the graph A = (N±, wA) where the

weight function wA is defined, for all i, j ∈ N±, by

wA(i, j) =

{

w(i, j), if (i, j) is strongly atomic in G;

+∞, otherwise.

The implementation of step 5 of the algorithm, i.e., the strong reduction of
the zero-equivalence subgraph, is performed by reducing each zero-equivalence
class in isolation. Once again, we exploit the total ordering defined on N±.

The strong reduction for a positive non-singular zero-equivalence class E fol-
lows that of [25]: it creates a single zero-cycle connecting all nodes in E following
their total ordering, where the weights of the component arcs are as in the
strong closure of the graph. By the coherence assumption, the nodes in the cor-
responding negative zero-equivalence class E are automatically connected in the
opposite order. Figure 1 shows the arcs in the strong reduction of both E and
E , where E = {z0, . . . , zm} is the positive class and where z0 < · · · < zm. The
strong reduction for a singular zero-equivalence class E is similar except that

11



E z0 z1 . . . zm

E z0 z1
. . . zm

Fig. 1. Strong reduction for non-singular zero-equivalence classes

there is now a single zero-cycle connecting all the positive and negative nodes
in E . Figure 2 shows the strong reduction for the singular zero-equivalence class
E = {z0, z0, . . . , zm, zm}, where z0 < z0 < · · · < zm < zm. In both Figures 1
and 2, the dashed arcs are those that can be obtained from the non-dashed ones
by application of the coherence assumption.

E

z0 z1 . . . zm

z0 z1
. . . zm

Fig. 2. Strong reduction for the singular zero-equivalence class

The following definition formalizes the above observations.

Definition 10. (Zero-equivalence reduction.) Let G = (N±, w) be a strongly

closed octagonal graph and let w′ be the weight function defined, for all i, j ∈ N±,

as follows: if i, j ∈ E for some positive zero-equivalence class E of G and

– if E = {z0, . . . , zm} is non-singular, assuming z0 < · · · < zm,

w′(i, j) :=











w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = zm, j = z0 and m > 0;

+∞, otherwise;

12



– if E = {z0, z0, . . . , zm, zm} is singular, assuming z0 < z0 < · · · < zm < zm,

w′(i, j) :=











w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;

w(i, j), if i = z0, j = z0 or i = zm, j = zm;

+∞, otherwise;

and w′(i, j) := +∞, otherwise. Then, the zero-equivalence reduction for G is

the octagonal graph Z = (N±, wZ), where, for each i, j ∈ N±,

wZ(i, j) := min
{

w′(i, j), w′(, ı)
}

.

The final step 6 of the strong reduction algorithm is implemented by com-
puting the greatest lower bound AuZ, where A is the strongly atomic subgraph
of L and Z is the zero-equivalent reduction of E, as obtained at steps 4 and 5
of the algorithm.

Theorem 1. Given an octagonal graph, the strong reduction algorithm com-

putes its strong reduction.

If n is the cardinality of the original set V of variables, then steps 1 and 4
of the algorithm have worst-case complexity in O(n3), while all the others steps
are in O(n2). Thus, the overall procedure has cubic complexity. As was the case
for the reduction procedure of [25], once the ordering of variables is fixed, the
strong reduction algorithm returns a canonical form for octagonal graphs.

5.2 An Improved Strong Closure Algorithm

The formal proof of Theorem 1 led to a new result regarding the strong closure
operator for octagonal graphs. The strong closure algorithm formalized in [27,
31] performs n local propagation steps: in each step, the classical constraint
propagation of the Floyd-Warshall algorithm is followed by another constraint
propagation corresponding to the new inference rule (4). A finely tuned imple-
mentation of this algorithm [29] performs 10n3 + 14n2 coefficient additions and
10n3 + 11n2 coefficient comparisons, where n is the dimension of the vector
space. It turns out that the interleaving of the two kinds of propagation steps
is not needed: the same final result can be obtained by the application of the
classical Floyd-Warshall closure algorithm followed by a single local propagation
step using the constraint inference rule (4).

Theorem 2. Let Gc = (N±, wc) be a closed octagonal graph. Consider the

graph GS = (N±, wS), where wS is defined, for each i, j ∈ N±, by

wS(i, j) := min
{

wc(i, j), wc(i, ı)/2 + wc(, j)/2
}

.

Then GS = Closure(Gc).

When applied to the strong closure algorithm of [29], this optimization saves
2n3 − 2n additions and 2n3 − 3n comparisons: for n ≥ 5, the saving is between
15% and 20% of the total number of these operations.

13



5.3 A Semantic Widening for Octagonal Shapes

A correct implementation of the standard widening on octagonal shapes is ob-
tained by computing any strong reduction of the octagonal graph representing
the first argument. As in the case of BDSs, for maximum precision the strongly
closed representation for the second argument should be computed. Even better,
by adopting the following minor variant, we obtain a “truly semantic” widening
operator for the domain of octagonal shapes.

Definition 11. (Widening octagonal shapes.) Let S1, S2 ∈ ℘(Rn), where

∅ 6= S1 ⊆ S2, be two octagonal shapes represented by the strongly reduced octag-

onal graph G1 and the strongly closed octagonal graph G2, respectively. Let also

S ∈ ℘(Rn) be the octagonal shape represented by the octagonal graph G1 ∇ G2.

Then we define

S1 ∇ S2 :=

{

S2, if dim(S1) < dim(S2);

S, otherwise.

By refraining from applying the graph-based widening when the affine dimension
of the geometric shapes is increasing, the operator becomes independent from
the specific strongly reduced form computed, i.e., from the total ordering defined
on the nodes of the graphs. Also note that the test dim(S1) < dim(S2) can be
efficiently decided by checking whether the nodes of the two octagonal graphs
are partitioned into different collections of zero-equivalence classes.

Theorem 3. The operator ‘∇’ of Definition 11 is a proper widening on the

domain of octagonal shapes. Let ‘∇s’ be the standard widening on the domain of

convex polyhedra, as defined in [22]. Then, for all octagonal shapes S1, S2 ∈ Rn

such that ∅ 6= S1 ⊆ S2, we have S1 ∇ S2 ⊆ S1 ∇s S2.

The definition of a semantic widening for the domain of BDSs is obtained by
simply replacing, in Definition 11, the strongly reduced and strongly closed oc-
tagonal graph representations with the reduced and closed BDG representations,
respectively. Then a result similar to Theorem 3 holds for BDSs.

6 Discussion

In the previous sections we have shown that when considering weakly-relational
numeric abstractions, besides the syntactic domains of constraint systems, it is
possible to define the semantic domains of the corresponding geometric shapes.
To avoid misunderstandings, it is worth stressing that both kinds of abstract
domain are well defined and may be safely adopted for the implementation of a
static analysis application. Nonetheless, it can be argued that using a semantic
abstract domain provides several advantages.

Some of the advantages were already pointed out in [26, Section 5] where the
domain of BDGs is compared to the domain of closed BDGs.5 For instance, it

5 Similar observations, tailored to the case of octagons, are also in [27, Section VII].

14



is noted that the domain of closed BDGs allows for the specification of a nicer,
injective meaning function; also, the least upper bound operator on BDGs is
not the most precise approximation of the union of two geometric shapes. In
summary, the discussion in [26, Section 5] makes clear that the solution to the
divergence problem for the abstract iteration sequence was the one and only
motivation for adopting a syntactic domain.

One disadvantage of syntactic abstract domains concerns the user-level in-
terfaces of the corresponding software implementations. Namely, the user of a
syntactic abstract domain (e.g., the developer of a specific static analysis applica-
tion using this domain) has to be aware of many details that, in principle, should
be hidden by the implementation. As an example, consider the shortest-path clo-
sure and reduction procedures for BDGs, which the user might rightfully see as
semantics-preserving operations. As a matter of fact, for the syntactic domain
of BDGs, these are not semantics-preserving: their application affects both the
precision and the convergence of the abstract iteration. In such a situation, the
documentation of the abstract domain software needs to include several warn-
ings about the correct usage of these operators, so as to avoid possible pitfalls.
In contrast, when adopting the semantic domain of BDSs, both the closure and
reduction operators may be excluded from the public interface while the im-
plementation can apply them where and when needed or appropriate. Such an
approach is systematically pursued in the implementation of the Parma Polyhe-

dra Library [9] (PPL, http://www.cs.unipr.it/ppl), free software distributed
under the GNU General Public License; future releases of the library will support
computations on the domains of BDSs and octagonal shapes.

Another potential drawback of the adoption of a syntactic abstract domain
can be found in the application of domain refinement operators. As an example,
consider the application of the finite powerset operator [8] to the domains of
BDGs and BDSs, so as to obtain two abstract domains that are able to repre-
sent finite disjunctions of the corresponding abstract elements. In both cases, by
providing the widenings on BDGs and BDSs with appropriate finite convergence
certificates [8], it will be possible to lift them to corresponding widenings on the
powerset domains. However, when upgrading the syntactic domain, avoidable
redundancies will be incurred, since different disjuncts inside a domain element
may represent the same geometric shape; furthermore, these “duplicates” cannot
be systematically removed, since by doing so we could change the value of the
finite convergence certificate of the powerset element, possibly breaking the con-
vergence guarantee of the lifted widening. As a consequence, both efficiency and
precision are potentially degraded. In summary, the disadvantages of syntactic
domains are amplified when applying domain refinements.

6.1 Related Work

The shortest-path reduction algorithm of [25] has also been recently considered
in the PhD thesis of A. Miné [31]. In such a context, the reduction procedure
is used as a tool for the computation of hollow (i.e., sparse) representations for
BDGs, so as to obtain memory space savings. The author appears not to identify

15



the positive interaction between reduction and widening and, as a consequences,
he conjectures that the computation of hollow representations could compromise
the convergence of the abstract iteration sequence (see [31, Section 3.8.2]). An
adaptation of the reduction algorithm for the case of octagonal graphs is defined
in [31, Section 4.5.2] although this differs from the one proposed in Section 5.1.
It turns out that the algorithm of [31, Section 4.5.2] may not obtain a strongly
reduced graph in the sense of Definition 6: the adapted hollow representation
for octagonal graphs can still encode some redundant constraints, as it does not
take into proper account the peculiarities of the singular zero-equivalence class.

6.2 A Note on Floating-Point Computations

The theoretical results concerning weighted directed graphs hold when the data
type adopted for the representation of weights allows for exact computations. If
a bounded precision floating-point data type is considered, then most of these
results will be broken.

A careful implementation, that rounds on the safe side, may ensure that the
shortest-path closure and reduction algorithms, as well as their strong versions
working on octagonal graphs, will map a graph representation into another graph
representation encoding the same geometric shape. However, due to rounding er-
rors, these procedures will no longer provide canonical representations for the
underlying semantic objects: different closed/reduced graphs may still encode the
same geometric shape. Thus the implementation of a truly semantic abstract do-
main is not possible using only bounded precision floating-point computations.
Nonetheless, by quotienting the syntactic domain of graph representations ac-
cording to the closure/reduction operators, we obtain a more abstract (but still
syntactic) domain where most, although not all, of the redundancies have been
removed. As a consequence, the negative side to the adoption of a syntactic
abstract domain will be greatly mitigated.

It should also be observed that an abstract domain of BDGs or octagonal
graphs having weights in any bounded precision floating-point data type will
have a finite cardinality. In such a case, any upper bound operator can be used
as a widening.

7 Conclusions

By considering the semantic abstract domains of geometric shapes, instead of
the more concrete abstract domains of their syntactic representations in terms
of constraint networks, we have shown how proper widening operators can be
easily derived for several weakly-relational numeric abstractions, including the
domain of bounded difference shapes and octagonal shapes. For what concerns
the efficient representation of octagonal shapes by means of octagonal graphs,
we have specified and proved correct a strong reduction procedure, as well as a
more efficient strong closure procedure.

16



References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131–137, 1972.

2. J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In J. R.
Hobbs and R. Moore, editors, Formal Theories of the Commonsense World, pages
251–268. Ablex, Norwood, NJ, 1985.

3. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, March 1997.
Printed as Report TD-1/97.

4. R. Bagnara, R. Giacobazzi, and G. Levi. Static analysis of CLP programs over
numeric domains. In M. Billaud, P. Castéran, MM. Corsini, K. Musumbu, and
A. Rauzy, editors, Actes “Workshop on Static Analysis ’92”, volume 81–82 of
Bigre, pages 43–50, Bordeaux, September 1992. Atelier Irisa, IRISA Campus de
Beaulieu. Extended abstract.

5. R. Bagnara, R. Giacobazzi, and G. Levi. An application of constraint propagation
to data-flow analysis. In Proceedings of “The Ninth Conference on Artificial In-
telligence for Applications”, pages 270–276, Orlando, Florida, March 1993. IEEE
Computer Society Press, Los Alamitos, CA.

6. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators
for convex polyhedra. In R. Cousot, editor, Static Analysis: Proceedings of the
10th International Symposium, volume 2694 of Lecture Notes in Computer Science,
pages 337–354, San Diego, California, USA, 2003. Springer-Verlag, Berlin.

7. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 2005. To appear.

8. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. In B. Steffen and G. Levi, editors, Verification, Model Checking and Abstract
Interpretation: Proceedings of the 5th International Conference (VMCAI 2004),
volume 2937 of Lecture Notes in Computer Science, pages 135–148, Venice, Italy,
2003. Springer-Verlag, Berlin.

9. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, Parma, Italy, release
0.7 edition, December 2004. Available at http://www.cs.unipr.it/ppl/.

10. V. Balasundaram and K. Kennedy. A technique for summarizing data access and
its use in parallelism enhancing transformations. In B. Knobe, editor, Proceed-
ings of the ACM SIGPLAN’89 Conference on Programming Language Design and
Implementation (PLDI), volume 24(7) of ACM SIGPLAN Notices, pages 41–53,
Portland, Oregon, USA, 1989. ACM Press.

11. R. Bellman. Dynamic Programming. Princeton University Press, 1957.

12. G. Birkhoff. Lattice Theory, volume XXV of Colloquium Publications. American
Mathematical Society, Providence, Rhode Island, USA, third edition, 1967.

13. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In T. Æ. Mogensen, D. A.
Schmidt, and I. Hal Sudborough, editors, The Essence of Computation, volume
2566 of Lecture Notes in Computer Science, pages 85–108. Springer-Verlag, Berlin,
2002.

14. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings of

17



the ACM SIGPLAN 2003 Conference on Programming Language Design and Im-
plementation (PLDI’03), pages 196–207, San Diego, California, USA, 2003. ACM
Press.

15. R. Clarisó and J. Cortadella. The octahedron abstract domain. In R. Giacobazzi,
editor, Static Analysis: Proceedings of the 11th International Symposium, volume
3148 of Lecture Notes in Computer Science, pages 312–327, Verona, Italy, 2004.
Springer-Verlag, Berlin.

16. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In B. Robinet, editor, Proceedings of the Second International Symposium on Pro-
gramming, pages 106–130. Dunod, Paris, France, 1976.

17. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, New York, 1977. ACM Press.

18. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proceedings of the Sixth Annual ACM Symposium on Principles of Programming
Languages, pages 269–282, New York, 1979. ACM Press.

19. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM Symposium
on Principles of Programming Languages, pages 84–96, Tucson, Arizona, 1978.
ACM Press.

20. E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281–331, 1987.

21. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Proceedings of the International Workshop on Automatic Veri-
fication Methods for Finite State Systems, volume 407 of Lecture Notes in Computer
Science, pages 197–212, Grenoble, France, 1989. Springer-Verlag, Berlin.

22. N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. Thèse de 3ème cycle d’informatique, Université
scientifique et médicale de Grenoble, Grenoble, France, March 1979.

23. N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Static Analysis:
Proceedings of the 1st International Symposium, volume 864 of Lecture Notes in
Computer Science, pages 223–237, Namur, Belgium, 1994. Springer-Verlag, Berlin.

24. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–185,
1997.

25. K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time
systems: Compact data structure and state-space reduction. In Proceedings of the
18th IEEE Real-Time Systems Symposium (RTSS’97), pages 14–24, San Francisco,
CA, 1997. IEEE Computer Society Press.

26. A. Miné. A new numerical abstract domain based on difference-bound matrices. In
O. Danvy and A. Filinski, editors, Proceedings of the 2nd Symposium on Programs
as Data Objects (PADO 2001), volume 2053 of Lecture Notes in Computer Science,
pages 155–172, Aarhus, Denmark, 2001. Springer-Verlag, Berlin.

27. A. Miné. The octagon abstract domain. In Proceedings of the Eighth Working Con-
ference on Reverse Engineering (WCRE’01), pages 310–319, Stuttgart, Germany,
2001. IEEE Computer Society Press.

28. A. Miné. A few graph-based relational numerical abstract domains. In M. V.
Hermenegildo and G. Puebla, editors, Static Analysis: Proceedings of the 9th In-

18



ternational Symposium, volume 2477 of Lecture Notes in Computer Science, pages
117–132, Madrid, Spain, 2002. Springer-Verlag, Berlin.

29. A. Miné. The Octagon Abstract Domain Library. Semantics and Abstract Inter-
pretation Computer Science Lab., École Normale Supérieure, Paris, France, release
0.9.6 edition, October 2002. Available at http://www.di.ens.fr/~mine/oct/.

30. A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In D. Schmidt, editor, Programming Languages and Systems: Proceedings
of the 13th European Symposium on Programming, volume 2986 of Lecture Notes
in Computer Science, pages 3–17, Barcelona, Spain, 2004. Springer-Verlag, Berlin.

31. A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
technique, Paris, France, March 2005.

32. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In R. Cousot, editor, Verification, Model Check-
ing and Abstract Interpretation: Proceedings of the 6th International Conference
(VMCAI 2005), volume 3385 of Lecture Notes in Computer Science, pages 25–41,
Paris, France, 2005. Springer-Verlag, Berlin.

33. R. Shaham, E. K. Kolodner, and S. Sagiv. Automatic removal of array memory
leaks in Java. In D. A. Watt, editor, Proceedings of the 9th International Conference
on Compiler Construction (CC 2000), volume 1781 of Lecture Notes in Computer
Science, pages 50–66. Springer-Verlag, Berlin, 2000.

34. A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an ab-
stract domain. In M. Leuschel, editor, Logic Based Program Synthesis and Tranfor-
mation, 12th International Workshop, volume 2664 of Lecture Notes in Computer
Science, pages 71–89, Madrid, Spain, 2002. Springer-Verlag, Berlin.

19



A Proofs

This appendix is not meant to be part of the paper. It is included for the con-
venience of the reviewers only.

In the following we provide some further notation and terminology, as well as
the formal proofs for all the results stated in the previous sections. Most of the
proofs are based on auxiliary lemmas, some of which are well-known results of
graph theory. We nonetheless include their proofs for the sake of completeness.

A.1 Further Notation and Terminology

Let G = (N , w) be a weighted directed graph. If π1 = i0 · · · ih and π2 = ih · · · ip
are paths in G, where 0 ≤ h ≤ p, then the path concatenation π = i0 · · · ih · · · ip
of π1 and π2 is denoted by π1 :: π2; if π1 = i0i1 (so that h = 1), then π1 :: π2

will also be denoted by i0 · π2. Note that path concatenation is not the same
as sequence concatenation. Given a path π = i0 · · · ip in the graph G, for each
h = 0, . . . , p and k = 1, . . . , p the node ih and arc (ik−1, ik) are said to be in

the path π. The path π is simple if each node occurs at most once in π; it is
atomic if all the arcs in π are atomic in G.

A graph G′ = (N , w′) is a subgraph of G = (N , w) if, for all i, j ∈ N , we have
w′(i, j) = w(i, j) or w′(i, j) = +∞. If G′ is a subgraph of G, then G E G′ (the
converse does not necessarily hold). We write G C G′ when G E G′ and G 6= G′.

Let G = (N±, w) be an octagonal graph. If π = j0 · · · jp is a path in G,
then π denotes the path p · · · 0. Note that, by the coherence assumption (3) of
Definition 4, w(π) = w(π). A path π in G is strongly atomic if all the arcs in π
are strongly atomic in G.

A.2 Results on Weighted Directed Graphs

Lemma 4. Let G = (N , w) be a consistent graph. Let also π = i · · · j be a

path in G. Then there exists a simple path π′ = i · · · j such that w(π′) ≤ w(π).
Moreover each arc in π′ is also an arc in π.

Proof. The proof is by induction on p = ‖π‖. If π is a simple path, then let
π′ = π. Suppose now that π is not simple, so that π contains a cycle and p > 0.
Thus, π = π1 :: π2 :: π3, where π1 = i · · · k, π2 = k · · · k, π3 = k · · · j and
‖π2‖ > 0. Consider the path π1 :: π3, which is a path in G connecting i and j
and such that ‖π1 :: π3‖ < p. By the inductive hypothesis, there exists a simple
path π′ = i · · · j in G such that w(π′) ≤ w(π1 :: π3) and each arc in π′ is also an
arc in π1 :: π3 (and thus in π). As G is consistent, we have w(π2) ≥ 0 so that

w(π′) ≤ w(π1 :: π3)

= w(π1) + w(π3)

≤ w(π1) + w(π2) + w(π3)

= w(π).

ut

20



Lemma 5. Let G = (N , w) be a closed graph. Then, for any path π = i · · · j in

G, it holds that w(i, j) ≤ w(π).

Proof. The proof is by induction on p = ‖π‖. If p = 0, then i = j and, by
property (1) of Definition 1, w(i, i) = 0. Suppose now that p > 0, so that
π = i ·π′, where π′ = k · · · j and ‖π′‖ = p−1. Then, by the inductive hypothesis,
w(k, j) ≤ w(π′). By property (2) of Definition 1, w(i, j) ≤ w(i, k)+w(k, j). Hence

w(i, j) ≤ w(i, k) + w(π′) = w(π).

ut

Lemma 6. Let G = (N , w) be a closed graph. Suppose that, for some path

π = j0 · · · jp in G, w(j0, jp) = w(π). For each q, r ∈ {0, . . . , p} such that q ≤ r,
let πqr = jq · · · jr be the subpath of π starting from jq and ending in jr. Then,

w(jq, jr) = w(πqr).

Proof. Let q, r ∈ {0, . . . , p} be such that q ≤ r. By Lemma 5, there exists δ ≥ 0
such that w(πqr) = w(jq, jr) + δ. Then, by hypothesis,

w(j0, jp) = w(π)

= w(π0q :: πqr :: πrp)

= w(π0q) + w(πqr) + w(πrp)

= w(π0q) + w(jq, jr) + w(πrp) + δ

= w(π0q :: (jqjr) :: πrp) + δ

≥ w(j0, jp) + δ

where the final step uses Lemma 5 again. Thus δ = 0. ut

Lemma 7. Let G = (N , w) be a closed and zero-cycle free graph. Let also π =
j0 · · · jp be a proper path in G such that w(j0, jp) = w(π). Then π is a simple

path.

Proof. The proof is by contraposition; hence we suppose that the path is not
simple, i.e., for some q, r ∈ {0, . . . , p} such that q < r, we have jq = jr. Since
the path is proper, jq 6= jq+1 so that jr 6= jq+1. Thus, the path π′ = jq · · · jr is
a proper cycle and, since the graph is zero-cycle free, w(π′) > 0. However, by
Lemma 6, we also have w(jq, jr) = w(π′); therefore w(jq, jr) > 0, contradicting
property (1) of Definition 1, i.e., the assumption that the graph is closed. Thus
all the nodes in the path π are distinct, so that the path is simple. ut

Lemma 8. Let G = (N , w) be a closed and zero-cycle free graph. Suppose that

(i, j) is an arc in G. Then there exists a simple and atomic path π = i · · · j in G
such that w(i, j) = w(π).

Proof. If i = j, let π = i so that π is a simple and atomic path such that
w(π) = 0. As G is closed, w(i, j) = 0 so that w(i, j) = w(π) as required.

21



Suppose now that i 6= j. Let π = j0 · · · jp be a path of length p in G where
i = j0, j = jp and w(i, j) = w(π) (for instance we can take p = 1). Suppose
that ja−1 = ja, for some a ∈ {1, . . . , p}. Then, as G is closed, w(ja−1, ja) = 0
and, since i 6= j, we can drop the non-proper arc (ja−1, ja) from path π and
obtain another path π′ from i to j such that w(i, j) = w(π′). Therefore, we can
assume that π is a proper path. By Lemma 7, the path is also simple. Thus, as
N is finite, we can assume that p is maximal such that w(i, j) = w(π) and π is
a simple path in G.

Suppose, for some q = 1, . . . , p, that the arc (jq−1, jq) in π is not atomic
in G. Then, by property (2) of Definition 1 and Definition 9, there must exist
k ∈ N \ {jq−1, jq} such that w(jq−1, jq) = w(jq−1, k) + w(k, jq). Thus, letting
π1 = j0 · · · jq−1 and π2 = jq · · · jp, we obtain

w(j0, jp) = w
(

π1 :: (jq−1jq) :: π2

)

= w(π1) + w(jq−1, jq) + w(π2)

= w(π1) + w(jq−1, k) + w(k, jq) + w(π2)

= w
(

π1 :: (jq−1kjq) :: π2

)

.

By Lemma 7, the path π′ = π1 :: (jq−1kjq) :: π2, which has length p + 1, is
simple too, contradicting the maximality assumption for path π. Thus (jq−1, jq)
is atomic in G. As this holds for any arc in π, the path π is atomic. ut

A.3 An Improved Strong Closure Procedure for Octagonal Graphs

The following results, which are exploited in the proof of correctness of the strong
reduction procedure, also show the correctness of the improved strong closure
procedure described in Section 5.2.

Lemma 9. Let G = (N±, w) be an octagonal graph and Gc = (N±, wc) be the

closure of G. Let also (z1, z2) be an arc in Gc. Then there exists a simple path

π = z1 · · · z2 in G such that wc(z1, z2) = w(π).

Proof. If z1 = z2 then, by property (1) of Definition 1, wc(z1, z2) = 0, so that
the results holds by taking π = z1.

Suppose now that z1 6= z2. The proof is by contraposition; we assume that
wc(z1, z2) 6= w(z1 · · · z2), for all simple paths z1 · · · z2 in G. Let G be the smallest
octagonal graph for which this property holds and such that closure(G) = Gc.
It follows that Gc C G.

As closure(G) C G, by Definition 1, for some i, j, k ∈ N±, w(i, j) > w(i, k) +
w(k, j). Let Gk = (N±, wk) where the weight function wk is defined, for all
h1, h2 ∈ N±, by

wk(h1, h2) =

{

w(i, k) + w(k, j), if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.
(6)

22



By Definition 1, Gk is octagonal, Gc E Gk C G and closure(Gk) = Gc. Thus, by
our minimality assumption on G, there exists a simple path π0 = z1 · · · z2 in Gk

such that

wc(z1, z2) = wk(π0).

Let π1 be the path in Gk obtained from π0 by replacing all subpaths (ij) by
the path (ikj) and replacing all subpaths (ı) by the path (kı). Thus, by equa-
tion (6), wk(π0) = wk(π1) and wk(π1) = w(π1) so that

wc(z1, z2) = w(π1).

Moreover, by Lemma 4, there exists a simple path π = z1 · · · z2 in G such that
w(π1) ≥ w(π) so that

wc(z1, z2) ≥ w(π).

However, as Gc is closed, by Lemma 5, wc(z1, z2) ≤ wc(π) and, as Gc C G,
wc(π) ≤ w(π), so that wc(z1, z2) ≤ w(π). Therefore

wc(z1, z2) = w(π),

contradicting the assumption for G. ut

Lemma 10. Let G = (N±, w) be a closed octagonal graph and i, j ∈ N± be

such that i 6=  and 2w(i, j) ≥ w(i, ı)+w(, j). Let Gc
s = (N±, wc

s) = closure(Gs)
where Gs = (N±, ws) and, for each h1, h2 ∈ N±,

ws(h1, h2) :=

{

(

w(i, ı) + w(, j)
)

/2, if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.
(7)

Let also z1, z2 ∈ N±. Then one or both of the following hold:

wc
s(z1, z2) = w(z1, z2);

2wc
s(z1, z2) ≥ w(z1, z1) + w(z2, z2).

Proof. By Definition 4, the graph Gs is octagonal. By construction, Gc
s EGs EG.

If (z1, z2) is not an arc in Gc
s, then wc

s(z1, z2) = +∞; thus, as Gc
s E G, we also

have w(i, j) = +∞ and hence wc
s(z1, z2) = w(z1, z2). Suppose now that (z1, z2)

is an arc in Gc
s. Then we can apply Lemma 9, so that there exists a simple path

π = z1 · · · z2 in Gs such that wc
s(z1, z2) = ws(π).

Suppose first that ws(π) = w(π). Then, as G is closed, by Lemma 5 we
obtain w(π) ≥ w(z1, z2) so that wc

s(z1, z2) ≥ w(z1, z2). However Gc
s E G so that

wc
s(z1, z2) ≤ w(z1, z2) and therefore wc

s(z1, z2) = w(z1, z2).
Secondly suppose that ws(π) 6= w(π). Then, by equation (7), one or both of

(i, j) and (, ı) must be in π. Thus, without loss of generality, we need to consider
the following two cases:

π = π1 :: (ij) :: π2 (8)

π = π1 :: (ij) :: π3 :: (ı) :: π4, (9)

23



where π1 = z1 · · · i, π2 = j · · · z2, π3 = j · · · , π4 = ı · · · z2 are simple paths in
Gs that do not contain the arcs (i, j) and (, ı). Therefore, by equation (7), for
each k = 1, . . . , 4 we have ws(πk) = w(πk) and

2ws(i, j) = 2ws(, ı) = w(i, ı) + w(, j).

Consider first equation (8). Let

π′

1 = π1 :: (iı) :: π1, π′

2 = π2 :: (j) :: π2.

As G is an octagonal graph,

w(π′

1) = 2w(π1) + w(i, ı), w(π′

2) = 2w(π2) + w(, j).

As G is closed, by Lemma 5, w(π′
1) ≥ w(z1, z1) and w(π′

2) ≥ w(z2, z2). Thus

2ws(π) = 2ws(π1) + 2ws(i, j) + 2ws(π2)

= 2w(π1) + w(i, ı) + w(, j) + 2w(π2)

= w(π′

1) + w(π′

2)

≥ w(z1, z1) + w(z2, z2).

Consider next equation (9). Let

π′

1 = π1 :: (iı) :: π1, π′

3 = (j) :: π3 :: (j) :: π3, π′

4 = π4 :: (iı) :: π4.

As G satisfies the coherence assumption,

w(π′

1) = 2w(π1) + w(i, ı),

w(π′

3) = 2w(π3) + 2w(, j),

w(π′

4) = 2w(π4) + w(i, ı).

As G is consistent, 0 ≤ w(π′
3) and, as G is closed, by Lemma 5, w(π′

1) ≥ w(z1, z1)
and w(π′

4) ≥ w(z2, z2). Thus, we have

2ws(π) = 2ws(π1) + 2ws(i, j) + 2ws(π3) + 2ws(, ı) + 2ws(π4)

= 2w(π1) + w(i, ı) + w(, j) + 2w(π3) + w(, j) + w(i, ı) + 2w(π4)

= w(π′

1) + w(π′

3) + w(π′

4)

≥ w(z1, z1) + w(z2, z2).

Thus, if either equation (8) or (9) holds, 2ws(π) ≥ w(z1, z1) + w(z2, z2).
Therefore, as 2wc

s(z1, z2) = 2ws(π), we have 2wc
s(z1, z2) ≥ w(z1, z1) + w(z2, z2),

as required. ut

Lemma 11. Let G = (N±, w) be a closed octagonal graph. Let GC = (N±, wC)
be such that GC = Closure(G) and suppose that z1, z2 ∈ N±. Then one or both

of the following hold:

wC(z1, z2) = w(z1, z2); (10)

2wC(z1, z2) = w(z1, z1) + w(z2, z2). (11)

24



Proof. The proof is by contraposition; thus we assume that neither (10) nor (11)
hold. Let G be the smallest octagonal graph for which these equalities do not
hold and such that Closure(G) = GC. It follows that GC 6= G.

As GC = Closure(G), GC C G; hence, as G is closed, by Definitions 1 and 5,
there exist i, j ∈ N± such that i 6=  and 2w(i, j) > w(i, ı) + w(, j). Let
G1 = (N±, w1) where, for all h1, h2 ∈ N±,

w1(h1, h2) :=

{

(

w(i, ı) + w(, j)
)

/2, if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.
(12)

Let also

Gc
1 := (N±, wc

1) = closure(G1).

Then Gc
1 CG. By Definition 5, G1 is octagonal, GC EGc

1 and Closure(Gc
1) = GC

so that, by the minimality assumption, one or both of the following hold:

wC(z1, z2) = wc
1(z1, z2); (13)

2wC(z1, z2) = wc
1(z1, z1) + wc

1(z2, z2). (14)

Consider (13). By Lemma 10, at least one of wc
1(z1, z2) = w(z1, z2) and

2wc
1(z1, z2) ≥ w(z1, z1) + w(z2, z2) hold. If the first holds, then wC(z1, z2) =

w(z1, z2), contradicting the assumption for G. Alternatively, if the second holds,
then 2wC(z1, z2) ≥ w(z1, z1) + w(z2, z2). However, by Definition 5, we have
2wC(z1, z2) ≤ wC(z1, z1)+wC(z2, z2); and, as GCEG, wC(z1, z1)+wC(z2, z2) ≤
w(z1, z1) + w(z2, z2); so that 2wC(z1, z2) ≤ w(z1, z1) + w(z2, z2). Therefore
2wC(z1, z2) = w(z1, z1) + w(z2, z2), contradicting the assumption for G.

Finally consider (14). By Lemma 10, wc
1(z1, z1) = w(z1, z1) and wc

1(z2, z2) =
w(z2, z2). Thus 2wC(z1, z2) = w(z1, z1)+w(z2, z2), contradicting the assumption
for G. ut

Proof (of Theorem 2). Let GC = (N±, wC) be such that GC = Closure(Gc).
We will show that, for each i, j ∈ N±, wS(i, j) = wC(i, j).

By Definition 5, wC(i, j) ≤ wS(i, j) and 2wC(i, j) ≤ wS(i, ı)+wS(, j). More-
over, by Lemma 11, either wC(i, j) = wc(i, j) or 2wC(i, j) = wc(i, ı) + wc(, j).

Suppose that wC(i, j) = wc(i, j). Then, as by hypothesis wS(i, j) ≤ wc(i, j),
we obtain wS(i, j) = wC(i, j). Suppose now that 2wC(i, j) = wc(i, ı) + wc(, j).
Then, since by hypothesis 2wS(i, j) ≤ wc(i, ı) + wc(, j), we again obtain that
wS(i, j) = wC(i, j). ut

A.4 Proofs of the Results Stated in Section 5.1

Lemma 12. Let G = (N±, w) be a strongly closed octagonal graph and i, j ∈
N±. Then, i ≡G j if and only if ı ≡G .

25



Proof. By Definition 7, i ≡G j if and only if w(i, j) = −w(j, i), which is equiva-
lent to w(j, i) = −w(i, j). Since, by hypothesis, G is an octagonal graph, we can
rewrite the latter formula using the coherence assumption (3) of Definition 4, to
obtain w(ı, ) = −w(, ı) which, again by Definition 7, is equivalent to ı ≡G . ut

Proof (of Lemma 1 on page 10). In order to prove that E is a zero-equivalence
class for G, we have to show that:

1. E is not the empty set; and

2. for all i ∈ E and j ∈ N±, we have j ∈ E if and only if i ≡G j.

The first property follows from the observation that, as E is a zero-equivalence
class, it is not empty and thus, by construction, E is not empty.

To prove the second property, let i ∈ E and j ∈ N± so that, by construction,
we have ı ∈ E . Suppose that j ∈ E ; then, by construction,  ∈ E so that {ı, } ⊆ E .
Since E is a zero-equivalence class, ı ≡G . By Lemma 12, we obtain i ≡G j.
Suppose now that i ≡G j. Then, by Lemma 12, ı ≡G  and hence, since ı ∈ E
and E is a zero-equivalence class, we obtain  ∈ E . Therefore we have j ∈ E . ut

Lemma 13. Let G = (N±, w) be a strongly closed octagonal graph and E ⊆ N±

be a zero-equivalence class for G. Then, for each i, j ∈ E and k ∈ N±, we have

w(i, k) = w(i, j) + w(j, k) and w(k, i) = w(k, j) + w(j, i).

Proof. As G is closed, by property (2) of Definition 1, w(i, k) ≤ w(i, j) + w(j, k)
and w(k, i) ≤ w(k, j) + w(j, i). Hence, we only have to prove that w(i, k) ≥
w(i, j) + w(j, k) and w(k, i) ≥ w(k, j) + w(j, i). This is equivalent to proving
that:

w(j, k) ≤ −w(i, j) + w(i, k),

w(k, j) ≤ −w(j, i) + w(k, i).

Since i, j ∈ E , we have i ≡G j so that, by Definition 7, w(i, j) = −w(j, i). Hence,

w(j, k) ≤ w(j, i) + w(i, k),

w(k, j) ≤ w(i, j) + w(k, i),

which are true, again by property (2) of Definition 1. ut

Lemma 14. Let G = (N±, w) be a strongly closed octagonal graph and E ⊆ N±

be a zero-equivalence class for G. Let also i, j ∈ N± and π = i · · · j be a path in

G such that every node in π is also in E. Then w(π) = w(i, j).

Proof. The proof is by induction on p = ‖π‖. If p = 0, then i = j, π = i and
w(π) = 0; thus, as G is closed, the result w(i, i) = 0 holds by property (1) of
Definition 1. For the inductive case, when p > 0, let π = i ·π′, where the subpath

26



π′ = k · · · j is such that ‖π′‖ = p− 1 and all the nodes in π′ are also in E . Thus,
by the inductive hypothesis, w(π′) = w(k, j) and we obtain

w(π) = w(i, k) + w(π′)

= w(i, k) + w(k, j)

= w(i, j),

where the last step holds by Lemma 13, as i, k ∈ E . ut

Lemma 15. Let G = (N±, w) be a strongly closed octagonal graph with a sin-

gular zero-equivalence class E. Then, for each i ∈ E and j ∈ N±,

2w(i, j) = w(i, ı) + w(, j).

Proof. Let i ∈ E and j ∈ N±. As G is a strongly closed octagonal graph, by
property (5) of Definition 5, 2w(i, j) ≤ w(i, ı) + w(, j). Therefore, it remains to
prove that 2w(i, j) ≥ w(i, ı) + w(, j).

By hypothesis, i ∈ E so that, as E = E , we also have ı ∈ E . Therefore,
by Lemma 13, w(ı, j) = w(ı, i) + w(i, j). Since the graph G is octagonal, by
the coherence assumption (3) of Definition 4, this can be rewritten as w(, i) =
w(ı, i) + w(i, j). Thus, by applying property (2) of Definition 1, we obtain:

w(, j) ≤ w(, i) + w(i, j)

= w(ı, i) + w(i, j) + w(i, j)

= w(ı, i) + 2w(i, j).

Therefore, 2w(i, j) ≥ −w(ı, i) + w(, j). As we observed that i ≡G ı then, by
Definition 7, w(i, ı) = −w(ı, i), so that we obtain 2w(i, j) ≥ w(i, ı) + w(, j). ut

Proof (of Lemma 2 on page 10). Let E1 and E2 be singular zero-equivalence
classes for the strongly closed octagonal graph G = (N±, w). Let i ∈ E1 and
j ∈ E2. Then, as E1 = E1 and E2 = E2, we have i, ı ∈ E1 and j,  ∈ E2. Hence, by
Definition 7, w(i, ı) = −w(ı, i) and w(, j) = −w(j, ). Moreover, by Lemma 15,

2w(j, i) = w(j, ) + w(ı, i),

2w(i, j) = w(i, ı) + w(, j).

Thus we obtain:

2w(i, j) = w(i, ı) + w(, j)

= −w(ı, i) − w(j, )

= −2w(j, i).

Hence, w(i, j) = −w(j, i) so that, by Definition 7, i ≡G j. Thus, as i, j were
arbitrary nodes in E1 and E2, respectively, we have the result E1 = E2. ut

27



Proof (of Lemma 3 on page 11). Let G = (N±, w), L = (N±, wL) and E =
(N±, wE); let also L be the set of leaders of the non-singular zero-equivalence
classes for G. By Definition 8, if (i, j) is an arc in L (resp., in E), then (i, j) is
an arc in G and we have wL(i, j) = w(i, j) (resp., wE(i, j) = w(i, j)); hence, if π
is a path in L (resp., in E), then π is also a path in G and wL(π) = w(π) (resp.,
wE(π) = w(π)).

We first prove that graphs L and E are octagonal, i.e., by Definition 4, that
they are consistent graphs satisfying the coherence assumption (3).

To show that the coherence assumption for L holds, let i, j ∈ N±. If i = j,
then ı =  and, as G is a closed graph, w(i, i) = w(ı, ı) = 0. By Definition 8,
wL(i, i) = w(i, i) and wL(ı, ı) = w(ı, ı) so that wL(i, i) = wL(ı, ı) = 0. Suppose
next that i 6= j. If i /∈ L or j /∈ L then, by Lemma 1 and the definition of the
total ordering on N±, ı /∈ L or  /∈ L; thus, by Definition 8, wL(i, j) = wL(, ı) =
+∞. Suppose now that i, j ∈ L. Then, we also have ı,  ∈ L so that, again,
by Definition 8, wL(i, j) = w(i, j) and wL(, ı) = w(, ı). Since G is octagonal
w(i, j) = w(, ı) so that wL(i, j) = wL(, ı). Hence, L is a graph that satisfied
the coherence assumption (3).

To show that the coherence assumption for E holds, let i, j ∈ N±. If i = j,
then ı =  and, as G is a closed graph, w(i, i) = w(ı, ı) = 0. Since i ≡G i
and ı ≡G ı, by Definition 8, wE(i, i) = w(i, i) and wE(ı, ı) = w(ı, ı) so that
wE(i, i) = wE(ı, ı) = 0. Suppose next that i 6= j. By Lemma 12, i ≡G j if and
only if ı ≡G . Thus, by Definition 8, if i 6≡G j we have wE(i, j) = wE(, ı) = +∞
and, if i ≡G j, we have wE(i, j) = w(i, j) and wE(, ı) = w(, ı). In the latter
case, as G is octagonal, w(i, j) = w(, ı) so that wE(i, j) = wE(, ı). Hence, E is
a graph that satisfied the coherence assumption (3).

To show that L (resp., E) is consistent, consider any cyclic path π in L
(resp., in E). Then, by the first paragraph, π is also a cyclic path in G and
wL(π) ≥ w(π) (resp., wE(π) ≥ w(π)). As G is octagonal, we have w(π) ≥ 0 so
that wL(π) ≥ 0 (resp., wE(π) ≥ 0). Therefore L and E are both consistent.

Secondly, we prove that L and E are strongly closed. Namely, we show that
the weight functions wL and wE satisfy properties (1) and (2) of Definition 1
and property (5) of Definition 5.

Consider property (1) of Definition 1 and let i ∈ N±. As G is consistent,
w(i, i) = 0, so that, by Definition 8, we also have wL(i, i) = 0 and wE(i, i) = 0.

Consider property (2) of Definition 1 and let i, j, k ∈ N±. By the previous
paragraph, the property trivially holds when i = j or i = k or j = k. Thus we
assume that i, j and k are distinct nodes. Consider first the graph L. If i /∈ L
then, by Definition 8, wL(i, k) = +∞, so that the property holds. Similarly if
j /∈ L the property holds. Suppose now that i, j ∈ L so that, by Definition 8,
wL(i, j) = w(i, j). If k /∈ L, then wL(i, k) = wL(k, j) = +∞, so that the property
holds. Alternatively, if k ∈ L, wL(i, k) = w(i, k) and wL(k, j) = w(k, j). As G is a
closed graph, w(i, j) ≤ w(i, k)+w(k, j) and hence wL(i, j) ≤ wL(i, k)+wL(k, j).
Consider now the graph E. If i 6≡G j then, by Definition 8, wE(i, k) = +∞ or
wE(k, j) = +∞, so that the property holds. Suppose now that i ≡G j so that,
by Definition 8, wE(i, j) = w(i, j). If i 6≡G k, then wE(i, k) = +∞, so that the

28



property holds. Alternatively, if i ≡G k, then k ≡G j so that wE(i, k) = w(i, k)
and wE(k, j) = w(k, j). As G is a closed graph, w(i, j) ≤ w(i, k) + w(k, j) and
hence wE(i, j) ≤ wE(i, k) + wE(k, j).

Consider property (5) of Definition 5 and let i, j ∈ N±. By what we have
shown above, the property trivially holds when i = j. Thus we assume i 6= j.
Consider first the graph L. If i /∈ L or j /∈ L, then, by Definition 8, wL(i, ı) = +∞
or wL(, j) = +∞ so that the property holds. Suppose next that i, j ∈ L; then
by Lemma 1 and the definition of the total ordering on N±, ı,  ∈ L so that
wL(i, j) = w(i, j), wL(i, ı) = w(i, ı) and wL(, j) = w(, j). Since G is strongly
closed, 2w(i, j) ≤ w(i, ı) + w(, j) and hence 2wL(i, j) ≤ wL(i, ı) + wL(, j).
Consider now the graph E. Suppose first that i or j does not belong to the
singular zero-equivalence class. Then, by Lemma 1, we have i 6≡G ı or j 6≡G

. By Definition 8, wE(i, ı) = +∞ or wE(, j) = +∞, so that the property
holds. Suppose next that both i and j belong to the singular zero-equivalence
class. Then, i ≡G ı ≡G j ≡G  so that, by Definition 8, wE(i, j) = w(i, j),
wE(i, ı) = w(i, ı) and wE(, j) = w(, j). Since G is strongly closed, 2w(i, j) ≤
w(i, ı) + w(, j) and hence 2wE(i, j) ≤ wE(i, ı) + wE(, j).

Finally, we prove that L is a zero-cycle free graph. Let π = j0j1 · · · jp be a
proper cycle in L; thus, j0 = jp, j0 6= j1 and p ≥ 2. As shown in the first para-
graph, π is also a proper cycle in G and wL(π) = w(π). As G is a closed graph, by
Lemma 5, w(j1 · · · jp) ≥ w(j1, jp) = w(j1, j0) so that w(π) ≥ w(j0, j1)+w(j1, j0).
As w(j0, j1) < +∞ and j0 6= j1, by Definition 8, we have j0, j1 ∈ L, so that
j0 6≡G j1. Hence, by Definition 7, w(j0, j1) + w(j1, j0) > 0. As a consequence,
wL(π) = w(π) > 0. ut

Lemma 16. Let G = (N±, w) be a closed and zero-cycle free octagonal graph.

Suppose that, for some i ∈ N±, there is a proper path π = j0 · · · jp, where i = j0,
ı = jp and w(i, ı) = w(π). Then there is at most one arc in the path π that is

atomic but not strongly atomic in G.

Proof. The proof is by contraposition. Suppose that, for some q, r ∈ {1, . . . , p}
such that q < r, the arcs (jq−1, jq) and (jr−1, jr) are atomic but not strongly
atomic in G. Then, by Definition 9,

2w(jq−1, jq) ≥ w(jq−1, q−1) + w(q, jq),

2w(jr−1, jr) ≥ w(jr−1, r−1) + w(r, jr).

Let π1 = j0 · · · jq−1, π2 = jq · · · jr−1 and π3 = jr · · · jp, so that π = π1 ::
(jq−1jq) :: π2 :: (jr−1jr) :: π3. Since w(i, ı) = w(π), we obtain

2w(i, ı) = 2w
(

π1 :: (jq−1jq) :: π2 :: (jr−1jr) :: π3

)

= 2w(π1) + 2w(jq−1, jq) + 2w(π2) + 2w(jr−1, jr) + 2w(π3).

29



As G is an octagonal graph, this can be rewritten

2w(i, ı) ≥ w(π1) + w(jq−1, q−1) + w(π1)

+ w(q, jq) + w(π2) + w(jr−1, r−1) + w(π2)

+ w(π3) + w(r, jr) + w(π3)

= w
(

π1 :: (jq−1q−1) :: π1

)

+ w
(

(qjq) :: π2 :: (jr−1r−1) :: π2

)

+ w
(

π3 :: (rjr) :: π3

)

.

Note that the path π′
2 = (qjq) :: π2 :: (jr−1r−1) :: π2 is a proper cycle from

node q to itself. Moreover, both paths π′
1 = π1 :: (jq−1q−1) :: π1 and π′

3 = π3 ::
(rjr) :: π3 go from node i to node ı so that, by Lemma 5, we have

w(i, ı) ≤ w(π′

1),
w(i, ı) ≤ w(π′

3).

As a consequence,

2w(i, ı) ≥ w(i, ı) + w(π′

2) + w(i, ı).

Therefore we obtain w(π′
2) ≤ 0, contradicting the hypothesis that the octagonal

graph G is zero-cycle free. It follows that q = r. ut

Lemma 17. Let G = (N±, w) be a closed and zero-cycle free octagonal graph.

Suppose that (i, ı) is an arc in G. Then there exists a strongly atomic path π =
j0 · · · jp in G, where i = j0, ı = jp and w(i, ı) = w(π).

Proof. By Lemma 8, there exists a simple and atomic path π in G from i to ı
and w(i, ı) = w(π). Since the path is simple, we can take p = ‖π‖ to be maximal
in the set of paths having these properties. Suppose that π is not strongly atomic
in G. Then, by Lemma 16, there must be exactly one arc (jq−1, jq) in π that
is atomic but not not strongly atomic in G. Let h = jq−1 and k = jq. Thus,
π = πh :: (hk) :: πk, where the subpaths πh = j0 · · · jq−1 and πk = jq · · · jp are
strongly atomic in G. As the graph G is octagonal, the paths πh and πk are also
strongly atomic and satisfy w(πh) = w(πh) and w(πk) = w(πk).

Since the arc (h, k) is atomic but not strongly atomic, by Definition 9,

2w(h, k) ≥ w(h, h) + w(k, k).

Therefore, as G is octagonal,

2w(i, ı) = 2w(πh) + 2w(h, k) + 2w(πk)

≥ 2w(πh) + w(h, h) + w(k, k) + 2w(πk)

= w(πh) + w(h, h) + w(πh)

+ w(πk) + w(k, k) + w(πk)

= w
(

πh :: (hh) :: πh

)

+ w
(

πk :: (kk) :: πk

)

.

30



Note that both paths π′ = πh :: (hh) :: πh and π′′ = πk :: (kk) :: πk go from node
i to node ı. Thus, by Lemma 5, we have w(i, ı) ≤ w(π′) and w(i, ı) ≤ w(π′′). As
a consequence, we obtain

w(i, ı) = w(π′) = w(π′′).

As h 6= h and k 6= k and as πh, πh and πk, πk are proper paths, both π′

and π′′ are proper paths too; and hence, by Lemma 7, they are both simple
paths. Moreover, by the maximality assumption for p, we have ‖π′‖ = ‖π′′‖ = p.
Consider now just one of these paths: π′.

To conclude the proof, we will show that (h, h) is a strongly atomic arc in
G, so that π′ is a strongly atomic path in G. Suppose instead that (h, h) is
not strongly atomic in G. Then, by Definition 9, it is not atomic, so that there
exists ` ∈ N± \ {h, h} such that w(h, h) = w(h, `) + w(`, h). Consider the path
π′′′ = πh :: (h`h) :: πh. Then π′′′ is a proper path in G such that w(i, ı) = w(π′′′)
and ‖π′′′‖ > p; contradicting the assumption that p was maximal. It follows that
the arc (h, h) is strongly atomic in G. ut

Lemma 18. Let G = (N±, w) be a closed and zero-cycle free octagonal graph.

Suppose that (i, j) is an arc in G. Then one of the following properties holds:

1. there exists a strongly atomic path π = i · · · j in G where w(i, j) = w(π);
2. i 6= , 2w(i, j) ≥ w(i, ı) + w(, j) and there exist strongly atomic paths πi =

i · · · ı, πj =  · · · j in G where w(i, ı) = w(πi) and w(, j) = w(πj).

Proof. By Lemma 8, there exists a simple and atomic path π = i · · · j in G where
w(i, j) = w(π). If i = j, then ‖π‖ = 0, so that the path π is strongly atomic and
condition 1 holds. Suppose now that i 6= j.

If the path is strongly atomic in G, then condition 1 holds. Therefore to
complete the proof we assume that π is not strongly atomic in G and show that
condition 2 holds.

By Definition 9, there exists at least one arc (h, k) in π that is atomic but not
strongly atomic in G. As π is a simple path, h 6= k so that, again by Definition 9,

2w(h, k) = w(h, h) + w(k, k).

As the graph is octagonal, we have w(i, h) = w(h, ı) and w(k, j) = w(, k).
Moreover, by Lemma 5,

w(i, ı) ≤ w(i, h) + w(h, h) + w(h, ı),

w(, j) ≤ w(, k) + w(k, k) + w(k, j).

Thus, as w(i, j) = w(π), we have

2w(i, j) = 2w(i, h) + 2w(h, k) + 2w(k, j)

≥ 2w(i, h) + w(h, h) + w(k, k) + 2w(k, j)

= w(i, h) + w(h, h) + w(h, ı)

+ w(, k) + w(k, k) + w(k, j)

≥ w(i, ı) + w(, j).

31



By Lemma 17, there exist strongly atomic paths πi = i · · · ı and πj =  · · · j in
G where w(i, ı) = w(πi) and w(, j) = w(πj); therefore, condition 2 holds. ut

Lemma 19. Let G be a strongly closed and zero-cycle free octagonal graph and

let A be its strongly atomic subgraph. Then Closure(A) = G.

Proof. Let G = (N±, w) and Closure(A) = (N±, wC). Since GEA and the strong
closure operator is both monotonic and idempotent, we obtain G E Closure(A).
Therefore, to prove the result, it remains for us to show that Closure(A) E G.

Letting (i, j) be any arc of G, we will show that wC(i, j) ≤ w(i, j). Since G
is closed and zero-cycle free, either one of two cases of Lemma 18 holds.

If case 1 of Lemma 18 holds, then there exists a strongly atomic path π =
i · · · j in G where w(i, j) = w(π). By Definition 9, π is also a path in A having the
same weight w(π). Since strong closure is a reductive operator, wC(π) ≤ w(π).
Moreover, by Lemma 5, wC(i, j) ≤ wC(π) and hence wC(i, j) ≤ w(i, j).

If case 2 of Lemma 18 holds, then 2w(i, j) ≥ w(i, ı) + w(, j) and there
exist strongly atomic paths πi = i · · · ı, πj =  · · · j in G where w(i, ı) = w(πi)
and w(, j) = w(πj). By property (5) of Definition 5, we also have 2w(i, j) ≤
w(i, ı) + w(, j), so that we obtain

2w(i, j) = w(i, ı) + w(, j).

By Definition 9, πi and πj are also paths in A having the same weights w(πi)
and w(πj). Since strong closure is a reductive operator, wC(πi) ≤ w(πi) and
wC(πj) ≤ w(πj). By Lemma 5, wC(i, ı) ≤ wC(πi) and wC(, j) ≤ wC(πj); hence
wC(i, ı) ≤ w(i, ı) and wC(, j) ≤ w(, j). Thus, wC(i, ı)+wC(, j) ≤ 2w(i, j) and,
by property (5) of Definition 5, wC(i, j) ≤ w(i, j).

We can therefore conclude that Closure(A) E G. ut

Lemma 20. Let G = (N±, w) be an octagonal graph and GC = (N±, wC) be

such that GC = Closure(G); let also (i, j) be an arc in GC. Then one of the

following properties holds:

1. there exists a simple path π = i · · · j in G where wC(i, j) = w(π);
2. i 6= , 2wC(i, j) = wC(i, ı)+wC(, j) and there exist simple paths πi = i · · · ı,

πj =  · · · j in G where wC(i, ı) = w(πi) and wC(, j) = w(πj).

Proof. Let Gc = (N±, wc) = closure(G). Then we also have GC = Closure(Gc).
Suppose that property 1 does not hold. Then, by Lemma 9, wC(i, j) 6=

wc(i, j). Thus, by Lemma 11,

2wC(i, j) = wc(i, ı) + wc(, j)

and hence, i 6= . By Definition 5,

2wC(i, j) ≤ wC(i, ı) + wC(, j).

32



and, as Closure(Gc) = GC, wc(i, ı) ≥ wC(i, ı) and wc(, j) ≥ wC(, j). Therefore

2wC(i, j) = wC(i, ı) + wC(, j),

wC(i, ı) = wc(i, ı), wC(, j) = wc(, j).

By Lemma 9, there exist simple paths πi = i · · · ı in G and πj =  · · · j in G,
where

wc(i, ı) = w(πi), wc(, j) = w(πj)

so that

wC(i, ı) = w(πi), wC(, j) = w(πj).

ut

Lemma 21. Let G be a strongly closed octagonal graph and Z the zero-equiva-

lence reduction for G. Then Z is an octagonal subgraph of G.

Proof. Let G = (N±, w) and Z = (N±, wZ). Let the weight function w′ be
as defined in Definition 10; then (N±, w′) is a subgraph of G. To show that
Z is a subgraph of G, consider any i, j ∈ N± such that wZ(i, j) < +∞. By
Definition 10, wZ(i, j) = min

{

w′(i, j), w′(, ı)
}

and hence, wZ(i, j) = w(i, j) or
wZ(i, j) = w(, ı); since G is an octagonal graph, wZ(i, j) = w(i, j). Therefore, Z
is a subgraph of G, which implies GEZ and, as G is consistent, Z is a consistent
graph too. Moreover, for all i, j ∈ N±, we have

wZ(i, j) = wZ(, ı) = min
{

w′(i, j), w′(, ı)
}

.

Thus, wZ also satisfies the coherence assumption (3) of Definition 4. Therefore,
Z is octagonal and hence, an octagonal subgraph of G. ut

Lemma 22. Let E = (N±, wE) be the zero-equivalence subgraph of a strongly

closed octagonal graph and Z = (N±, wZ) the zero-equivalence reduction for E.

Let also i, j ∈ N± be such that i ≡E j. Then there exists a unique simple path

π = i · · · j in Z such that wZ(π) = wE(i, j).

Proof. Let w′ and wZ be as specified in Definition 10; thus, (N±, w′) is a sub-
graph of the octagonal graph Z. We first show that, for any zero-equivalence
class E for G, if E contains more than one node, then there is a unique simple
cycle πE in Z that contains all the nodes in E .

Suppose first that the zero-equivalence class E = {z0, . . . , zm}, where m > 0,
is non-singular. If E is positive and z0 < · · · < zm, then, by Definition 10, there
is a unique simple cycle πE = z0 · · · zmz0 in (N±, w′). Hence, πE is also a simple
cycle in Z. Moreover, since E ∩ E = ∅, the arcs in πE are the only arcs in Z
connecting nodes in E , so that the simple cycle is still unique. If E is a negative
zero-equivalence class, then E = {z0, . . . , zm} is positive and z0 < · · · < zm so

33



that, by the previous argument, there is a unique simple cycle π
E

= z0 · · · zmz0

in Z connecting the nodes of E . As E ∩ E = ∅ and Z is octagonal, there is also
a unique simple cycle πE = π

E
= z0zm · · · z0 in Z that connects the nodes of E .

Suppose next that the zero-equivalence class E = {z0, z0, . . . , zm, zm} is singular
and that z0 < z0 < · · · zm < zm. Then, by Definition 10, there is a unique
simple path π+ = z0 · · · zm in (N±, w′) connecting all and only the positive
nodes in E ; also, (N±, w′) contains the arcs (z0, z0) and (zm, zm). Since E = E
and Z is octagonal, both π+ and π− = π+ = zm · · · z0 are unique simple paths
in Z connecting all and only the positive and negative nodes of E , respectively.
Therefore, πE = π+ :: (zmzm) :: π− :: (z0z0) is a unique simple cycle in Z that
contains all the nodes in E .

As i ≡E j, by Definition 7, for some zero-equivalence class E in E, i, j ∈ E .
Note that, since i 6= j, if E = {z0, . . . , zm} is non-singular, then it must be
m > 0. Thus i and j are nodes in the unique simple cycle πE as defined above;
thus, there exists a unique simple path π = i · · · j in Z. As Z is a subgraph of E,
wZ(π) = wE(π). By Lemma 14, wE(π) = wE(i, j) and thus, wZ(π) = wE(i, j).

ut

Lemma 23. Let E = (N±, wE) be the zero-equivalence subgraph of a strongly

closed octagonal graph. Let also Z = (N±, wZ) be the zero-equivalence reduction

for E. Then Closure(Z) = E.

Proof. Let Closure(Z) = (N±, wC
Z ). Consider any i, j ∈ N±. Then we must

show that wC
Z (i, j) = wE(i, j). By Lemma 3, E is strongly closed. By Lemma 21

Z is a subgraph of E. Hence, E E Z and E E Closure(Z).
Suppose first that i 6≡E j. Then, by Definition 8, wE(i, j) = +∞. Since

E E Closure(Z), we have wC
Z (i, j) = +∞.

We now assume that i ≡E j. If i = j then, by property (1) of Definition 1,
wE(i, j) = wC

Z = 0. Suppose now that i 6= j. By Lemma 22, there exists a unique
simple path π = i · · · j in Z and wZ(π) = wE(i, j). As wC

Z (π) ≤ wZ(π) and
wC

Z (i, j) ≤ wC
Z (π), we have wC

Z (i, j) < +∞ so that (i, j) is an arc in Closure(Z).
By Lemma 20, one of the following properties holds:

1. there exists a simple path π′ = i · · · j in Z such that wC
Z (i, j) = wZ(π′);

2. 2wC
Z (i, j) = wC

Z (i, ı) + wC
Z (, j) and there exist simple paths πi = i · · · ı,

πj =  · · · j in Z such that wC
Z (i, ı) = wZ(πi) and wC

Z (, j) = wZ(πj).

Consider property 1. By Lemma 22, π′ = π and wZ(π) = wE(i, j) and therefore,
wC

Z (i, j) = wE(i, j). Consider next property 2. By Lemma 22, wZ(πi) = wE(i, ı)
and wZ(πj) = wE(, j). Therefore (i, ı) and (, j) are arcs in E and hence, by Def-
inition 8, i ≡E ı and  ≡E j so that E is singular. Thus we can apply Lemma 15,
to obtain wE(i, ı) + wE(, j) = 2wE(i, j). Therefore wC

Z (i, j) = wE(i, j). ut

Lemma 24. Let G = (N±, w) be an octagonal graph. Suppose that, for all arcs

(i, j) in G, the following properties hold:

1. for all simple paths π = i · · · j in G such that π 6= ij, w(i, j) < w(π);

34



2. if i 6= , then, for all simple paths πi = i · · · ı and πj =  · · · j in G, 2w(i, j) <
w(πi) + w(πj).

Let also G1 be a proper subgraph of G. Then Closure(G) 6= Closure(G1).

Proof. Let G1 = (N±, w1). Let also GC = (N±, wC) and GC
1 = (N±, wC

1 ) be
such that GC = Closure(G) and GC

1 = Closure(G1). As G1 is a proper subgraph
of G, there exists an arc (i, j) in G that is not an arc in G1. Then, as G and G1

are octagonal, (, ı) is also an arc in G but not in G1. To prove the result, we
show that wC(i, j) < wC

1 (i, j).
If wC

1 (i, j) = +∞, then the result follows. Suppose now that wC
1 (i, j) < +∞.

By Lemma 20, either wC
1 (i, j) = w1(π), for some simple path π = i · · · j in G1,

or 2wC
1 (i, j) = w1(πi)+w1(πj), for some simple paths πi = i · · · ı and πj =  · · · j

in G1. If the first equality holds, as G1 is a subgraph of G, w(π) = w1(π); also,
by hypothesis, we have w(i, j) < w(π). Thus, we have

wC(i, j) ≤ w(i, j) < w(π) = w1(π) = wC
1 (i, j).

Similarly, if the second equality holds, as G1 is a subgraph of G, w(πi) = w1(πi)
and w(πj) = w1(πj); also, by hypothesis, we have 2w(i, j) < w(πi) + w(πj).
Thus,

2wC(i, j) ≤ 2w(i, j) < w(πi) + w(πj) = w1(πi) + w1(πj) = 2wC
1 (i, j).

ut

Lemma 25. Let G = (N±, w) be a strongly reduced octagonal graph. Then G
is a subgraph of Closure(G).

Proof. Let GC = (N±, wC) = Closure(G). Suppose that (i, j) is an arc in G. We
first show that both of the following properties hold:

1. for all paths π = i · · · j in G, w(i, j) ≤ w(π);
2. for all paths πi = i · · · ı and πj =  · · · j in G, 2w(i, j) ≤ w(πi) + w(πj).

We prove this by contraposition. Thus we suppose either 1 or 2 does not hold.
Let G1 = (N±, w1) where the weight function w1 is defined, for all h1, h2 ∈ N±,
by

w1(h1, h2) =

{

+∞, if (h1, h2) ∈
{

(i, j), (, ı)
}

;

w(h1, h2), otherwise.
(15)

Then G C G1 and, as G is octagonal, by Definition 4, G1 is octagonal. Let
GC

1 = (N±, wC
1 ) = Closure(G1), so that GC E GC

1 . We will show that GC
1 E G

so that GC
1 = GC; which, by Definition 6, contradicts the assumption that G is

strongly reduced.
To prove that GC

1 E G, letting (h1, h2) be any arc in G, we must show
that wC

1 (h1, h2) ≤ w(h1, h2). Since strong closure is reductive, wC
1 (h1, h2) ≤

w1(h1, h2). Thus, by (15), if (h1, h2) /∈
{

(i, j), (, ı)
}

, then w1(h1, h2) = w(h1, h2)
and hence, wC

1 (h1, h2) ≤ w(h1, h2). It therefore remains to consider the case

35



when (h1, h2) ∈
{

(i, j), (, ı)
}

. We just prove that wC
1 (i, j) ≤ w(i, j), since the

other inequality wC
1 (, ı) ≤ w(, ı) will follow by using the coherence assump-

tion (3) in Definition 4, as G and G1 are both octagonal graphs.
Suppose 1 does not hold. Then, for some path π = i · · · j in G, w(i, j) > w(π).

Observe that the path π does not contain the arcs (i, j) and (, ı). This is because,
if π = πii :: (ij) :: πjj , then, as G is consistent, we obtain w(i, j) > w(i, j) and,
similarly, if π = πi :: (ı) :: πıj , then, as G satisfies the coherence assumption,
w(π) = w(πi :: πıj) + w(i, j) so that again, as G is consistent, w(i, j) > w(i, j).
Therefore, by (15), w1(π) = w(π). Moreover, by Lemma 5, wC

1 (i, j) ≤ wC
1 (π)

and, as strong closure is reductive, wC
1 (π) ≤ w1(π). Therefore,

wC
1 (i, j) ≤ wC

1 (π) ≤ w1(π) = w(π) < w(i, j).

Suppose 1 holds but 2 does not hold. Then i 6=  and for some paths πi = i · · · ı
and π =  · · · j, 2w(i, j) > w(πi) + w(πj). Observe that w(πi) does not contain
the arc (i, j); suppose to the contrary that πi = πii :: (ij) :: πjı. Then, as
G is octagonal, 2w(i, j) > w(πi) + w(πj) = w(πii) + w(i, j) + w(πjı :: πj) so
that w(i, j) > w(πjı :: πj) and 1 does not hold, contradicting our assumption
for this case. For similar reasons, πi also cannot contain the arc (, ı). There-
fore, by (15), we have w(πi) = w1(πi). Similarly w(πj) = w1(πj). Moreover, by
Lemma 5, wC

1 (i, ı) ≤ wC
1 (πi); as strong closure is reductive, wC

1 (πi) ≤ w1(πi) so
that wC

1 (i, ı) ≤ w1(πi). Similarly, wC
1 (, j) ≤ w1(πj). However, by Definition 5,

2wC
1 (i, j) ≤ wC

1 (i, ı) + wC
1 (, j). Therefore

2wC
1 (i, j) ≤ wC

1 (i, ı) + wC
1 (, j) ≤ w1(πi) + w1(πj) = w(πi) + w(πj) < 2w(i, j).

We have shown that (i, j) satisfies properties 1 and 2. We next prove that
wC(i, j) = w(i, j). As strong closure is reductive, wC(i, j) ≤ w(i, j). We now
prove wC(i, j) ≥ w(i, j). By Lemma 20, either there exists a simple path π =
i · · · j in G such that wC(i, j) = w(π); or there exist simple paths πi = i · · · ı and
πj =  · · · j such that 2wC(i, j) = w(πi) + w(πj). Since (i, j) satisfies 1 and 2, in
both cases, wC(i, j) ≥ w(i, j) and hence, wC(i, j) = w(i, j). Similarly we have
wC(, ı) = w(, ı). Therefore G is a subgraph of GC. ut

Proof (of Theorem 1 on page 13). Let G = (N±, w) be the strong closure of
the input octagonal graph, computed at step 1 of the strong reduction procedure;
let L = (N±, wL) be the non-singular leaders’ subgraph of G; E = (N±, wE) the
zero-equivalence subgraph of G; A = (N±, wA) the strongly atomic subgraph of
L; Z = (N±, wZ) the zero-equivalence reduction of E; GR = (N±, wR) = AuZ;
and GC

R = (N±, wC
R) = Closure(GR). Then we need to show that GR is a strongly

reduced octagonal graph and GC
R = G.

First we show that GR is an octagonal subgraph of G. By Definition 8, both
L and E are subgraphs of G; moreover, by Definitions 9 and 10, A is a subgraph
of L and Z is a subgraph of E, so that A and Z are also subgraphs of G. Thus,
as GR = A u Z, GR is a subgraph of G; hence, as G is consistent, GR is also
a consistent graph. Moreover, since both A and Z are octagonal graphs and,
therefore, satisfy the coherence assumption, GR = A u Z satisfies the coherence
assumption. Thus, GR is an octagonal subgraph of G.

36



Next we show that GC
R = G. By Lemma 3, L is a strongly closed an zero-cycle

free octagonal graph so that, by Lemma 19, Closure(A) = L; also, by Lemma 23,
Closure(Z) = E. Thus, we have

GC
R = Closure

(

Closure(A u Z)
)

= Closure
(

Closure(A) u Closure(Z)
)

= Closure(L u E).

As observed before, L and E are subgraphs of G and hence G E GC
R. It remains

to show that GC
R E G. Let (i, j) be an arc in G and suppose that i ∈ Ei and

j ∈ Ej , where Ei and Ej are zero-equivalence classes for G. Then, to prove that
GC

R E G, we just need to show that

wC
R(i, j) ≤ w(i, j). (16)

To do this, without loss of generality, we need to consider three cases:

1. Ei and Ej are singular zero-equivalence classes in G;
2. Ei is singular and Ej is a non-singular zero-equivalence class in G;
3. Ei and Ej are non-singular zero-equivalence classes in G.

Case 1. By Lemma 2, Ei = Ej so that w(i, j) = wE(i, j). Therefore, as
wC

R(i, j) ≤ wE(i, j), equation (16) holds.
Case 2. Let `j ∈ N± be the leader of Ej so that `j is the leader of the

non-singular zero-equivalence class E j . By Definition 8,

w(i, ı) = wE(i, ı), w(, `j) = wE(, `j),

w(`j , j) = wE(`j , j), w(`j , `j) = wL(`j , `j).
(17)

By Lemma 13,

w(, j) = w(, `j) + w(`j , j)

= w(, `j) + w(`j , `j) + w(`j , j)

so that, by Lemma 15 and (17),

2w(i, j) = w(i, ı) + w(, j)

= w(i, ı) + w(, `j) + w(`j , `j) + w(`j , j)

= wE(i, ı) + wE(, `j) + wL(`j , `j) + wE(`j , j).

Moreover, by Lemma 5,

2wC
R(i, j) ≤ wC

R(i, ı) + wC
R(, `j) + wC

R(`j , `j) + wC
R(`j , j)

≤ wE(i, ı) + wE(, `j) + wL(`j , `j) + wE(`j , j)

since GC
R E L and GC

R E E. Therefore equation (16) holds.

37



Case 3. By Definition 8,

w(i, `i) = wE(i, `i), w(`j , j) = wE(`j , j), w(`i, `j) = wL(`i, `j).

Therefore, by Lemma 13,

w(i, j) = w(i, `i) + w(`i, j)

= w(i, `i) + w(`i, `j) + w(`j , j)

= wE(i, `i) + wL(`i, `j) + wE(`j , j).

Moreover, by Lemma 5,

wC
R(i, j) ≤ wC

R(i, `i) + wC
R(`i, `j) + wC

R(`j , j)

≤ wE(i, `i) + wL(`i, `j) + wE(`j , j)

since GC
R E L and GC

R E E. Therefore equation (16) holds and hence GC
R = G.

Finally we show that GR is strongly reduced. Suppose there exists a strongly
reduced octagonal graph G1 such that GR C G1 and G = Closure(G1). Then,
by Lemma 25, G1 is a subgraph of G. Since GR is also a subgraph of G and
GR C G1, then G1 is a proper subgraph of GR.

Since A and Z are subgraphs of GR and GR = A u Z, for each i, j ∈ N±,
we have that (i, j) is an arc in GR if and only if it is an arc in A or in Z. Thus,
by Definitions 9 and 10, for all i, j ∈ N±, there is at most one simple path
π = i · · · j in GR. Thus, if (i, j) is an arc and π = i · · · j a simple path in GR, we
must have π = ij. Therefore condition (1) of Lemma 24 holds.

By Definitions 9 and 10, if (i, j) is an arc in A, 2wA(i, j) < w(i, ı) + w(, j)
and if (i, j) is an arc in Z, 2wZ(i, j) < w(i, ı) + w(, j). Thus, if (i, j) is an arc
in GR, 2wR(i, j) < w(i, ı) + w(, j). As G is closed, Lemma 5 applies so that, for
all paths πi = i · · · ı and πj =  · · · j in GR, w(i, ı) ≤ w(πi) and w(, j) ≤ w(πj).
As GR is a subgraph of G, we have, w(πi) ≤ wR(πi) and w(πj) ≤ wR(πj).
Hence 2wR(i, j) < w(πi) + w(πj) ≤ wR(πi) + wR(πj). Therefore condition (2)
of Lemma 24 also holds. Thus Lemma 24 can be applied to obtain GC

1 6= GC
R,

which is a contradiction. ut

A.5 Proofs of the Results Stated in Section 5.3

The standard widening operator ‘∇s’ for topologically closed convex polyhedra
defined in the PhD thesis of N. Halbwachs [22, Définition 5.3.3, p. 57] is slightly
different from the specification originally proposed in [19], in that the former
does not depend on the particular constraint systems chosen for representing
the arguments of the widening. Nonetheless, the following result, which is taken
from [6, 7], states that the two definitions happen to be equivalent when applied
to polyhedra S1 and S2 such that S1 ⊆ S2 and dim(S1) = dim(S2).

Proposition 1. Let S1, S2 ⊆ Rn be two topologically closed convex polyhedra

such that ∅ 6= S1 ⊆ S2 and dim(S1) = dim(S2). Let also C1 be a finite sys-

tem of non-strict linear inequalities describing S1 and suppose that C1 contains

38



no redundant constraint. Then the result of the standard widening S1 ∇s S2 is

described by the constraint system

Cs := {β ∈ C1 | all the points in S2 satisfy β }.

Proof. See the proof of [7, Proposition 6]. ut

Proof (of Theorem 3). Let S1, S2 ∈ ℘(Rn), where ∅ 6= S1 ⊆ S2, be two
octagonal shapes represented by the strongly reduced octagonal graph G1 and
the strongly closed octagonal graph G2, respectively. Let also G = G1 ∇ G2 =
(N±, w) and S the octagonal shape represented by G. Let C1, C2 and C be
the systems of octagonal constraints encoded by G1, G2 and G, respectively.
Note that, in such a construction, each pair of coherent arcs generates a single
octagonal constraint. Since the octagonal graph G1 is strongly reduced, the
corresponding constraint system C1 contains no redundant constraints.

We first assume dim(S1) = dim(S2) so that, by Definition 11, S1 ∇ S2 = S.
We will show that S = S1 ∇s S2. Let Cs be as defined in Proposition 1. Then
it follows from Proposition 1 that to prove S = S1 ∇s S2, we just need to show
that C = Cs. To prove C ⊆ Cs, suppose that β = (vi − vj ≤ d1) ∈ C, so that
w(i, j) = d1 < +∞. Then, by Definition 2, w1(i, j) = d1 and w2(i, j) = d2 ≤ d1.
Thus, there exists γ = (vi−vj ≤ d2) ∈ C2. Since all the points of S2 satisfy γ, they
also satisfy β and hence, β ∈ Cs. To prove the other inclusion Cs ⊆ C, suppose that
β = (vi − vj ≤ d1) ∈ Cs so that, since Cs ⊆ C1 and C1 contains no redundancies,
we have w1(i, j) = d1. By definition of Cs, all the points of S2 satisfy β. Since the
octagonal graph G2 is strongly closed, there exists γ = (vi − vj ≤ d2) ∈ C2 such
that d1 ≥ d2. Hence, w1(i, j) ≥ w2(i, j) and, by Definition 2, we obtain β ∈ C.

Suppose now that dim(S1) 6= dim(S2). By hypothesis, S1 ⊆ S2 so that
dim(S1) < dim(S2). Then, by Definition 11, S1 ∇ S2 = S2. Since the standard
widening ‘∇s’ is an upper bound operator, we obtain S1 ∇ S2 ⊆ S1 ∇s S2.

Thus, in both cases the operator ‘∇’ computes an upper bound of its argu-
ments which is at least as precise as the upper bound computed by the standard
widening ‘∇s’. To complete the proof, we only have to show that ‘∇’ is a proper
widening operator, i.e., it enforces the convergence of any abstract iteration se-
quence. This property is easily shown to hold by the observation, made above,
that the operator of Definition 11 can behave differently from the standard
widening only when there is a strict increase in the affine dimension of the ar-
guments. Since such an increase can only happen a finite number of times, the
operator ‘∇’ inherits the convergence guarantee of ‘∇s’. ut

39


