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Abstract

For programming languages based on logic, a knowledge of variable sharing is important;

for instance, for their automatic parallelization and for many optimizations of the unifica-

tion procedure, such as occurs-check reduction. Because of its usefulness, a considerable

amount of research has been done on the design and development of techniques for the

static analysis of variable sharing. Despite this fact, some of the most important issues

related to the specification and implementation of a practical sharing analysis tool, such

as the correctness, the precision and the efficiency of the analysis, have lacked satisfac-

tory solutions. The thesis reports on our work in rectifying this situation and, thereby,

enhancing the state-of-the-art on sharing analysis. Our contributions include: a correct-

ness proof for the set-sharing domain of Jacobs and Langen that does not depend on the

presence of the occurs-check in the concrete unification procedure; the definition of the

simpler abstraction of set-sharing that is guaranteed to achieve the same precision on both

variable independence and groundness; the specification, on this new domain, of an ab-

stract unification operator having polynomial complexity, as opposed to the exponential

complexity of the abstract unification operator defined on set-sharing; the generalization

of all the above results to a combined abstract domain including set-sharing, freeness and

linearity information; an extensive experimental evaluation, including both the validation

of the above results as well as the implementation and comparison of many other recent

proposals for more precise sharing analysis domains; and the specification of a new rep-

resentation for set-sharing which, by allowing for the definition of a family of widening

operators, solves all the scalability problems of the analysis, while having a negligible

impact on its precision.
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Chapter 1
Introduction

During the execution of a logic program, two or more program variables can be bound

to terms sharing a common variable. Since a knowledge of variable sharing is essential

for triggering optimizations of logic languages, as well as providing good approximate in-

formation about many other interesting properties, in the recent past, sharing analysis

has received much attention from the researchers working on the static analysis of logic

languages. In this chapter, after presenting the goals of practical static analyses, we intro-

duce sharing analysis for logic languages and briefly survey the main proposals appeared

in the literature. We then discuss whether or not this state-of-the-art satisfies the require-

ments of a practical static analysis: we highlight how a key problem has been completely

disregarded while others have been provided with unsatisfactory solutions. The remaining

chapters then focus on these open issues, from both theoretical and practical perspectives,

presenting new solutions to some of them and providing more insight on what should be

the direction of future research in this area.

1.1 The Goals of Static Analysis

A static analyzer is a computer program that takes as input an arbitrary program and

delivers some partial information about the run-time behavior of that program. This

information is then made available to other semantics-based tools, including optimizing

compilers, debuggers and (semi-)automatic program verification systems. Any static an-

alyzer needs to fulfill the following tasks:

• it has to produce correct information; and

• it has to terminate.

From a theoretical point of view, the termination of the analysis is the real motivation

for considering approximations of program properties, since the exact characterization of

program behavior is, in general, not computable in finite time. Whenever the final goal

is the development of a useful analysis tool, then the mandatory requirements specified

19
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above are not enough. Any practical static analyzer also needs to enjoy the following

properties, which are as important as correctness and termination:

• it has to produce precise information; and

• it has to be efficient.

From a practical point of view, the property of correctness is too weak, because approx-

imations that are not precise are very likely to be useless. On the other hand, if the

analyzer is to be included in production tools, then termination should be achieved in a

reasonable amount of time. The exact meaning of the word “reasonable” depends on the

considered application and big variations have to be expected in this sense. For instance,

a few seconds can be considered reasonable for the optimization phase of a compiler, par-

ticularly during the program development process; in contrast, hours of CPU time can be

dedicated to the optimization of the production version of the software, since in this case

thousands (or millions) of program runs will benefit from any resulting improvement. In

no cases should a static analyzer take years to produce useful results.

Thus, a static analyzer should be correct, precise and efficient (note that the latter

requirement also enforces termination). Abstract interpretation is a mathematical frame-

work that allows the formal specification of correct analyses and a comparison of their

relative precision. In this framework, the concrete semantics domain and operators of the

language are replaced by correct abstract counterparts, which are then used to mimic all

the possible concrete computations of the analyzed program. Termination and efficiency

of the analysis are obtained by imposing suitable restrictions on the structure of the ab-

stract domain and/or by dynamically adjusting the approximation level using widening

operators. It follows that precision and efficiency are often contrapositive goals and that a

satisfactory trade-off can often only be obtained by coupling the theoretical design phase

with a deep experimental evaluation. Even though abstract interpretation concepts and

techniques are independent from the particular programming language considered, declar-

ative languages are probably one of the most studied fields of application. One reason

for this is that, while enjoying a clean and elegant semantics, declarative languages are

normally provided with just a few “basic” operations that are very general and power-

ful, such as matching for functional programming, unification for logic programming and

constraint solving for constraint (logic) programming. The optimized implementation of

these operations turns out to be a key issue where static analysis is really helpful.

1.2 Sharing Analysis for Logic Languages

“Analysis of Variable Aliasing is the centerpiece of analysis of non-trivial Logic

Programs.” [Lan90]

In logic programming, the information provided by sharing analysis can be used for

several applications, including the simplification of concrete unification in optimizing com-

pilers, the automatic parallelization of logic programs, the identification of unifications



1.2. SHARING ANALYSIS FOR LOGIC LANGUAGES 21

where the occurs-check can be safely omitted (occurs-check reduction), and debugging.

Besides practical applications, the study of abstract domains for sharing analysis is inter-

esting also from a theoretical point of view. There is considerable research interest in the

definition of operators that transform the abstract domains given as input, returning other

domains that are more precise or have a more compact representation. Sharing analysis

domains, since they encode many different kinds of information that interact with each

other in complex ways, turn out to be useful test-cases for probing the applicability of

these meta-level operators. In the following sections, we will explain the kind of informa-

tion collected by a sharing analysis and how this is used in its applications. Then, we will

survey the main literature on sharing analysis, trying to provide a picture of what was the

state-of-the-art in this field when we started our research.

1.2.1 Information Gathered by Sharing Analysis

The terminology “sharing analysis” identifies several different kinds of information about

the instantiation of logic variables at specific program points.

To avoid confusion, it is worth putting some emphasis on the meaning, in a static anal-

ysis context, of contrapositive adjectives like definite/possible and universal/existential.

A property is said to definitely hold at a particular program point if the property holds for

the set of computations reaching that program point, this set considered as a whole. Often,

properties on sets of computations can be checked by looking at the individual elements in

the set: in particular, a universal property is one that holds for all of the computations in

this set; an existential property is one that holds for at least one of these computations. In

contrast, in a static analysis context, when we say that a property possibly holds, formally

we provide no information at all: due to the intrinsic approximation, it may well be the

case that the property does not hold. However, a well-established convention in the field is

to consider the negation of possible properties, so that if a property cannot possibly hold

we correctly conclude that its negation definitely holds. This might cause some confusion,

in particular when dealing with existential properties. Note however that throughout this

thesis we will always be dealing with universal properties.

This stated, we now informally describe the many parts in which a sharing description

can be decomposed.

Independence. Two variables are said to be definitely independent if they are always

bound to terms that do not share a common variable. Equivalently, if we are not

able to prove that two variables are definitely independent, we say that they possibly

share (we can also say that they are possibly aliased). Given two sets of variables,

they are said to be independent if they are pair-wise independent, meaning that each

variable in the first set is independent from each variable in the second set. Thus,

definite independence corresponds to (the negation of) possible pair -sharing.

Groundness. A variable is said to be definitely ground if it is always bound to a term

containing no variables. Ground variables cannot share with other variables, so that
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they are always independent from all the variables; moreover, they cannot be further

instantiated, ensuring that this independence property will hold as the computation

progresses.

Freeness. A variable is said to be definitely free if it cannot be bound to a non-variable

term. Two free variables that are not independent are said to be possibly aliased :

note that in this case the terminology is really apt, since if the two variables do share

they provide different names denoting the same term.

Linearity. A variable is said to be definitely linear if it can only be bound to terms con-

taining single occurrences of variables. Note that a variable that is either definitely

ground or definitely free is also definitely linear.

Besides the ones above, which nowadays can be considered the classical ingredients

of a sharing analysis, recent work has highlighted how other properties can contribute to

the accuracy of sharing information. These will be introduced later in the thesis, when

discussing the potential benefits arising from considering them.

1.2.2 Applications of Sharing Analysis

Sharing analysis was initially proposed for occurs-check reduction and for the automatic

parallelization of logic programs. However, sharing analysis has been shown to provide

useful information for a number of other useful applications. For example, a classical

application of many static analyses for logic programs is the optimized compilation of

the concrete unification procedure [Tay91, VD92]. Sharing analysis provides useful infor-

mation in this respect. For instance, knowledge about the freeness or groundness of the

unified terms enables the replacement of the general unification procedure by a combi-

nation of simple tests and assignments. With the advent of concurrent logic languages,

sharing analysis information has also been used for the optimization of distributed uni-

fication algorithms: in this cases, important performance improvements can be achieved

by identifying those cases where unification can be computed locally, i.e., when variable

bindings do not need to be communicated to the other processes running concurrently.

Occurs-check reduction [CKS96, Pla84, Søn86] is an interesting application of static

analysis that, in our opinion, has not received the attention it deserves. It is well-known

that many implemented logic programming languages (in particular, almost all Prolog

systems) omit the occurs-check from the unification procedure. Occurs-check reduction

amounts to identifying all the unifications where such an omission is potentially unsafe, so

that these can be replaced by calls to a safe, but more expensive, variant of the unification

procedure, performing the occurs-check. For this purpose, as pointed out by [Pla84,

Søn86], information on variable independence and linearity is crucial.

Variable independence is also essential for the efficient exploitation of strict indepen-

dent AND-parallelism [CDD85, HG90, HR95, JL92, MH92]. Informally, two atoms in a

goal are executed in parallel if, by a mixture of compile-time and run-time checks, it can

be guaranteed that they do not share any variable. This form of independence implies the
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absence of binding conflicts at run-time, that is, it will never happen that the processes

associated to the two atoms try to bind the same variable. The goal of the analysis is

thus to gather enough information so that as many as possible of the run-time checks

can be replaced by compile-time checks, therefore reducing the overhead for paralleliza-

tion. In the more general case of non-strict independent AND-parallelism [CH94, HR95],

the requirements for running two processes in parallel are weakened by permitting some

restricted form of variable sharing to occur. By coupling independence with definite free-

ness information, it is possible to identify at compile-time some of the cases when such a

transformation is allowed.

A recent line of research shows that sharing analysis can be usefully exploited for

the efficient refinement of induced predicate definitions in Inductive Logic Programming

[BDJ+00]. In this case, independence is exploited to avoid the expensive recomputation of

those parts of the refined predicates that are not influenced by the considered refinement.

1.2.3 Domains for Sharing Analysis: the State-of-the-Art

Sharing analysis for logic programs has a 15 year history. After the first simple proposals,

Søndergaard [Søn86] outlined a sharing analysis domain, called ASub, that derived useful

information for the occurs-check reduction problem. The domain ASub encodes, in their

simplest form, three of the basic properties that we introduced in Section 1.2.1, namely

independence, groundness and linearity. Groundness information is represented by the set

of definitely ground variables. Variable independence is represented by the set of all the

pairs (v, w) of distinct program variables that possibly share a variable: for this reason, the

domain ASub is said to be a pair-sharing domain. Note that, according to the discussion

in Section 1.2.1, the independent pairs of variables are those pairs not occurring in such a

set. Similarly, linearity is represented by the set of all the variables that are possibly non-

linear. Actually, in [Søn86], possible pair-sharing and possible non-linearity information

are mixed in the representation of abstract elements, by letting pairs of the form (v, v)

denote the possible non-linearity of variable v. Note that any element of the domain ASub

can be represented in a polynomial amount of space (in the number of program variables).

A similar polynomial bound is enjoyed by the abstract unification algorithm informally

proposed in [Søn86], which has been formalized in [CDY91].

Jacobs and Langen [JL89] proposed a different domain for sharing analysis, called

Sharing. An element of this domain is a set of sets of variables, as opposed to the set

of pairs of variables characterizing the independence component of the domain ASub; for

this reason, the domain Sharing is said to be a set-sharing domain. The intuition behind

this domain is that any set occurring in an abstract element corresponds to one or more

variables that is possibly shared by all and only those variables occurring in the set. As

we will see in the following chapters, both independence and groundness information can

be represented in this way; however, the novelty with respect to the domain ASub is that

it is possible to encode the dependencies between these properties, therefore obtaining

a more precise description. When compared to ASub, the Sharing domain suffers from
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significant efficiency problems: the initial abstract description of a concrete element is

still polynomial in the number of program variables, but an exponential amount of space

may be needed to represent the domain elements computed as the analysis progresses.

Moreover, the abstract unification operator has a worst case exponential complexity in the

size of the representation. For these reasons, the simpler domain ASub, when compared to

Sharing from a practical point of view, was rightfully considered a better trade-off between

precision and efficiency.

Despite these practical problems, the set-sharing domain Sharing has received much

attention by most of the subsequent research in the field, becoming a de-facto standard

for sharing analysis. As a first improvement, in his PhD thesis [Lan90], Langen enriched

the Sharing domain by adding linearity information. Muthukumar and Hermenegildo

[MH92] exploited the synergistic effect of the combination of variable freeness with variable

independence. A composition with both linearity and freeness was defined and proved

correct in [HW92]. Since then several authors [BCM94a, CDFB96, Fil94, Kin94, KS94,

MSJB95] worked on more or less different combinations for these properties, by including

more information or resorting to more precise abstract unification operators. In many of

them some kind of explicit structural information was also considered, by recording the

concrete structure of terms up to a certain depth: more or less, these proposals can be

seen as variations of the abstract equation systems presented in [CDFB96] or the generic

structural domain constructor defined in [CLV94, CLV00].

1.3 Issues in Sharing Analysis

As discussed in Section 1.1, a practical static analysis tool has to enjoy three basic re-

quirements: correctness, precision and efficiency. We will now discuss these requirements,

arguing whether or not the available sharing analysis tools can be considered satisfactory

solutions.

1.3.1 Correctness . . .

In abstract interpretation, the concrete semantics of a program is approximated by mim-

icking its computation on the abstract domain. To this end, each elementary concrete

operation is replaced by an abstract operation which is a correct approximation of the

concrete one. For logic programming, the key elementary operation is unification, which

computes a solution to a set of equations. For global correctness of the abstract semantics,

there needs to be, therefore, a corresponding abstract operation that is sound with respect

to unification.

In theoretical terms, once the abstract domain has been specified and formally re-

lated to the concrete one, the specification of the best correct approximation of a concrete

operator is readily available and the implementer of the domain only needs to code it. Un-

fortunately, very often a direct implementation of this specification is not possible, since

it is expressed as the composition of functions that are not finitely computable: thus,
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we need to formally manipulate such a specification, so as to turn it into an executable

one. In many cases this is a simple task and the abstract operator obtained is, by defi-

nition, correct. There are important cases, however, when the concrete operator is really

far from being simple: unification is one of these. As a consequence, abstract unification

algorithms have traditionally been obtained by a trial-and-error process, where the theo-

retical specification is merely used as a hint. The drawback of this approach is that any

abstract unification operator obtained in this way needs to be proved correct with respect

to concrete unification.

The specification and proof of correctness of abstract unification for sharing analysis

domains have been difficult and error-prone tasks, in particular when integrating the

different components of sharing information: for instance, [CDFB96] reports that the

first proposal for combining independence and freeness information [MH91] was corrected

in [BdlBH94]; for the combination of independence with linearity, King [Kin93, Kin00]

points out an error in [CDY91] affecting the abstract unification on the domain ASub. In

both cases, no fundamental error was present: after simple corrections, both algorithms

have been proved correct and are still used as base references in sharing analysis research.

In summary, after the application of simple patches, the available sharing analysis

tools have been proved correct for the analysis of logic languages. However, in the next

section we will explain why all of the above results are not satisfactory when considering

the analysis of implemented logic languages.

1.3.2 . . . and the Occurs-Check?

An important step in standard unification algorithms based on that of Robinson [Rob65]

(such as the Martelli-Montanari algorithm [MM82]) is the occurs-check, which avoids the

generation of infinite (or cyclic) data structures. With such algorithms, the resulting

solution is both unique and idempotent. However, in computational terms, the occurs-

check is expensive and the vast majority of Prolog implementations omit this test, although

some Prolog implementations do offer unification with the occurs-check as a separate built-

in predicate (in ISO Prolog [ISO95] the predicate is unify with occurs check/2). If the

unification algorithm is based on the Martelli-Montanari algorithm but without the occurs-

check step, then the resulting solution may be non-idempotent. Consider the following

example.

Example 1.1 Consider the equation p
(

z, f(x, y)
)

= p
(

f(z, y), z
)

and an empty initial

substitution. We apply the steps in the Martelli-Montanari procedure but without the

occurs-check:

equations substitution

1 p(z, f(x, y)) = p(f(z, y), z) ∅

2 z = f(z, y), f(x, y) = z ∅
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3 f(x, y) = f(z, y)
{

z 7→ f(z, y)
}

4 x = z, y = y
{

z 7→ f(z, y)
}

5 y = y
{

z 7→ f(z, y), x 7→ z
}

6 ∅
{

z 7→ f(z, y), x 7→ z
}

Then σ =
{

z 7→ f(z, y), x 7→ z
}

is the computed substitution; it is not idempotent since,

for example, σ(x) = z and σ
(

σ(x)
)

= f(z, y).

Non-standard equality theories and unification procedures are also available and used in

many logic programming systems. In particular, there are theoretically coherent languages,

such as Prolog II and its successors [Col82, Col90], SICStus Prolog [SIC95], and Oz [ST94],

that employ an equality theory and unification algorithm based on a theory of rational

trees (possibly infinite trees with a finite number of subtrees). As remarked in [Col82],

complete (i.e., always terminating) unification with the omission of the occurs-check solves

equations over rational trees. Complete unification is made available by several Prolog

implementations and the substitutions computed by such systems are in rational solved

form, which is a much weaker property than idempotence. As an example, the substitution

{x 7→ f(x)}, which is clearly non-idempotent, is in rational solved form and could itself

be computed by the above algorithms.

It is therefore important that theoretical work in data-flow analysis makes no as-

sumption that the computed solutions are idempotent. In spite of this, at the time we

started our research, all the correctness proofs for sharing analysis of logic programs

assume a domain of idempotent substitutions. This is the case both for the correct-

ness results presented in [CDY91] for the domain ASub, and for the results presented

in [BCM94a, CF99, HW92, JL89, Lan90], for domains based on set-sharing.

Therefore, one of the main targets of our research is the problem of providing a cor-

rectness proof for sharing analysis whose validity does not depend on the presence, or even

the absence, of the occurs-check in the concrete unification procedure. It is worth stressing

that such a contribution cannot be obtained, in general, by simply adapting the proofs

developed for idempotent substitutions. As acknowledged in [LMM88], the possibility to

restrict attention to idempotent substitutions, by itself, is a considerable simplification,

since their semantics is that of mathematical equality. In contrast, using the words in

[LMM88], proofs for non-idempotent substitutions are

“. . . painful and tricky, as we are now dealing with a destructive assignment.”

Note that the quoted sentence was still referring to substitutions that are consistent in

the theory of finite trees: namely, non-idempotent substitutions defining finite trees only.

Dealing with arbitrary substitutions in rational solved form, where cyclic bindings are

allowed to occur, can be fairly expected to be even worse. For these reasons, in all of our

correctness proofs, efforts are made to properly justify any non-trivial passage, possibly by

making an explicit reference to a previously proved result. Probably, since we are trading

space for clarity, such an approach results in longer proofs.
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1.3.3 Precision and Efficiency

In static analysis, precision and efficiency issues are closely intertwined. As a matter of

fact, if considered in isolation, efficiency poses no problem at all: the most efficient (and

correct) static analysis always answers “don’t know”, regardless of the particular input

program. Clearly, difficulties arise when precision and efficiency are joint goals.

In our opinion, precision should always have priority over efficiency. Obtaining precise

information is the very motivation for performing a static analysis and, as new applica-

tions of this information are conceived and developed, the precision requirements keep

increasing. In contrast, once the precision requirements have been fixed, efficiency prob-

lems become less important as the computer technology progresses. As a rule of thumb,

any tiny precision improvement, by itself, outweighs the corresponding efficiency loss (pro-

vided there is such a loss; as we will see, it is also common that a precision improvement

gives rise to speed-ups). The only and obvious exception to the above rule is that the

results of the static analysis should always be obtained in a reasonable amount of time.

Strictly speaking, the only way to obtain an unbiased measure of the precision of

a static analysis is the full implementation of the particular application for that static

analysis. For instance, in the case of an analysis delivering information for an optimizing

compiler, one should implement the analyzer and the module of the compiler performing

the optimization phase, so that the precision of the analysis is evaluated by measuring the

efficiency improvements obtained thanks to the considered optimizations.

Unfortunately, there are several good reasons why this approach is seldomly used in

practice, at least while doing research. The most important one is that, in many cases, the

overall process is a formidable task, requiring a substantial effort and adequate resources.

Moreover, as is the case for the sharing analysis of logic languages, it might happen that

the same information can be used by many different applications: to be fully compliant

with the above approach, one should implement all of these applications and measure the

improvements obtained by each of them. Finally, it must be considered that, potentially,

the information provided by static analysis may be useful for a practical application that

still has to be conceived. For instance, when researchers started studying the sharing

analysis for logic programs, probably no one imagined that this information could be

usefully exploited in the field of Inductive Logic Programming [BDJ+00].

Therefore, as is usual in this research field, we will adopt a more pragmatic approach:

precision will be evaluated by measuring the information delivered by the static analyzer,

almost independently from the application using it. A questionable point is whether we

should perform the comparison on all the information produced by the analyzers or, in

contrast, we should project these results on the observable properties, i.e., those parts of the

analysis results that will be actually provided to the final applications. We argue that the

latter is a better alternative, since it allows us to abstract from the useless information that

a particular abstract domain may contain. For instance, in the case of sharing analyses

for logic languages, a suitable set of observable properties is probably given by variable

independence, groundness, freeness and linearity.
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Even when considering the above simplifications, the actual precision comparison can

be performed by following two fundamentally different approaches. The first one, based

on the theory of abstract interpretation, consists in checking whether one of the analyses

is uniformly more precise than the other, meaning that it will always return more precise

results. The main advantage of this approach is that it does not require the implementation

of the two analyses. On the other hand, very often the considered analyses provide results

that are not comparable in this sense, meaning that there exists cases, no matter how

rare they can be, when each one outperforms the other. For instance, this is the case

when comparing the sharing analysis domains ASub and Sharing, since the first one tracks

linearity while the second one is more precise, e.g., for groundness [CF93]. It might come as

a surprise the fact that, from this theoretical perspective, all the classical combinations of

set-sharing with freeness and linearity, such as those specified in [BCM94a, HW92, Lan90],

are still not comparable with respect to the pair-sharing domain ASub (when using the

correct abstract unification operator as specified in [Kin00]). The reason, which was

overlooked even by the experts, is that in all the above cases the integration of set-sharing

with linearity is not as powerful as that originally suggested by Søndergaard. One of the

contributions of this thesis will be the specification of a new abstract unification operator

for the combination of set-sharing, freeness and linearity: the resulting analysis will be

uniformly more precise than the analysis based on ASub.

Another possibility, based on a more pragmatic view, is to implement the two analyses

and compare the actual results obtained when analysing a given set of benchmarks. By

doing this, we can derive some useful hints on the relative precision of each analyses,

even when they are not comparable from the formal point of view. Clearly, in this case

the results also depend on the considered set of benchmarks, which is assumed to be

a representative sample. This second approach, by requiring the implementation of the

analyses, happens to be much less common. In particular, many of the recent proposals for

sharing analysis have never been implemented. Unfortunately, even the few experimental

comparisons of different analyses that have been done have been mainly performed on small

benchmark suites. These have shown that, from this pragmatic perspective, the classical

combinations of set-sharing with freeness and linearity provide better results than ASub,

while incurring significant efficiency problems when considering the bigger programs. This

scalability problem has been always disregarded. The implicitly suggested solution that

has been adopted is to revert to using the simpler domain ASub. The drawbacks of such

an approach are evident: to avoid efficiency problems in the analysis of a few programs,

we potentially degrade the precision of even those analyses with no efficiency problems

at all. Therefore, since we value precision more than efficiency, this solution is not really

satisfactory.

In this thesis, when comparing the precision and the efficiency of different domains,

we will consider both the formal and the pragmatic approach. In particular, for the set-

sharing domain of Jacobs and Langen we will define a new abstract domain that, while

formally obtaining the same precision on all the observable properties, is characterized
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by an abstract unification operator that can be computed in polynomial time. We will

then consider our new domain combination for set-sharing, freeness and linearity and we

will generalize the above results. The theoretical results will be also validated by an ex-

tensive experimentation, showing that even in practice it is possible to obtain significant

improvements in the efficiency of the analysis with no precision loss. Furthermore, the

implemented abstract domain will be used as a starting point for the systematic imple-

mentation and experimental evaluation of many different proposals for enhanced sharing

analysis domains, therefore allowing an investigation of the corresponding precision im-

provements.

Even though the new domain for sharing analysis can be considered much more efficient

with respect to the previous proposals based on set-sharing, it still suffers from scalability

problems. To solve this problem, we will define and prove correct a new representation

for set-sharing that supports the specification of many possible widening operators. Using

this representation, time and space requirements can be dynamically adjusted during the

analysis. The experimental evaluation will show that all termination problems are solved,

while the precision losses due to the widenings are extremely rare.

1.4 Plan of the Thesis

The thesis is organized as follows.

Chapter 2 presents most of the notation and terminology to be used throughout the

thesis, as well as providing the necessary background references on logic programming and

abstract interpretation.

Chapter 3 introduces the set-sharing domain of Jacobs and Langen and proves the

correctness of its abstract unification operator, for both finite-tree and rational-tree logic

languages. (This chapter is mainly based on the results of [HBZ98, HBZ02].)

Chapter 4 shows that the set-sharing domain is over-complex when the goal is the

computation of pair-sharing (that is, variable independence). By defining an equivalence

relation on the domain elements, the domain PSD is characterized as the weakest abstrac-

tion of set-sharing able to achieve the same precision on pair-sharing. Abstract unification

on PSD is shown to have a polynomial complexity, in contrast to the exponential com-

plexity of the corresponding operator on the set-sharing domain. (This chapter is mainly

based on the results of [BHZ97, BHZ02].)

Chapter 5 generalizes the results of the previous chapter by defining a hierarchy of

abstractions of the set-sharing domain each one enjoying a completeness result. The PSD

domain and the groundness domain Def are shown to be instances of this construction. By

investigating the lattice structure of these domains and exploiting the concept of abstract

domain complementation, PSD is factorized into three sub-domains, one of which is the

domain representing the pair-sharing property. (This chapter is mainly based on the

results of [ZHB99, ZHB02].)

Chapter 6 considers the integration of set-sharing with freeness and linearity informa-

tion, denoted by SFL. A novel abstract unification operator is defined and proved correct
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for both finite-tree and rational-tree languages. By generalizing the results of Chapter 4,

the non-redundant version of SFL, based on the domain PSD , is shown to achieve the

same precision on groundness, independence, freeness and linearity.

Chapter 7 describes our implementation of the above mentioned domains. An extensive

experimental evaluation is provided, confirming that the non-redundant version of SFL

achieves the same precision while obtaining a significant efficiency improvement.

Chapter 8 considers a number of proposals for enhanced sharing analyses. In order

to measure the corresponding precision gains, all but one of them are implemented and

experimentally evaluated. (This chapter contains an extended and improved version of

the results of [BZH00].)

Chapter 9 attacks the problem of obtaining a scalable sharing analysis without losing

precision. The idea underlying a recent proposal for a simpler sharing analysis is turned

into the definition of a suitable widening operator for the set-sharing domain, relying

on a new representation for set-sharing. (This chapter is mainly based on the results

of [ZBH99b].)

Chapter 10 presents a few of the more recent publications on sharing analysis. The

relationship between these works and the results presented in this thesis are discussed.

We conclude in Chapter 11.



Chapter 2
Notation and Background

In this chapter we introduce most of the notation and terminology that will be needed

throughout the thesis. Besides basic concepts, we provide the necessary background ref-

erences for both logic programming semantics and abstract interpretation.

2.1 Basic Concepts

2.1.1 Sets, Multisets and Sequences

For a set S, ℘(S) is the power set of S. The cardinality of S is denoted by #S and the

empty set is denoted by ∅. The notation ℘f(S) stands for the set of all the finite subsets

of S, while the notation S ⊆f T stands for S ∈ ℘f(T ).

A multiset is a mathematical entity that is like a set except for the fact that it can

contain multiple occurrences of identical elements. Note that we do not pose any cardi-

nality restriction on the occurrences of an element: elements can occur infinitely often in

a multiset. If an element a occurs more than once in a multiset M , we write a A M .

For any set S, S? is the set of all the finite sequences built from elements in S. The

empty sequence is denoted by ε. For each e ∈ S and s ∈ S?, e.s ∈ S? denotes the sequence

obtained by concatenating the sequence formed by element e with the sequence s. The

length of sequence s is denoted by |s| and defined as

|s| =







0, if s = ε;

1 + |s′|, if s = e . s′.

2.1.2 Orders, Lattices and Closure Operators

A preorder � over a set P is a binary relation that is reflexive and transitive. If � is also

antisymmetric, then it is called a partial order. A partial order � is a linear order or total

order if any two elements are comparable, that is, for each x, y ∈ P , either x � y or y � x.

A set P equipped with a partial order � is said to be partially ordered and sometimes

written 〈P,�〉. Partially ordered sets are also called posets. An increasing chain over the

31
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poset 〈P,�〉 is a subset X of P such that � is a linear order on X.

Given a poset 〈P,�〉 and S ⊆ P , y ∈ P is an upper bound for S if and only if x � y

for each x ∈ S. An upper bound y for S is the least upper bound (or lub) of S if and only

if, for every upper bound y′ for S, y � y′. The lub, when it exists, is unique. In this case

we write y = lubS. The terms lower bound and greatest lower bound (or glb) are defined

dually. A complete partial order, or simply cpo, is a poset such that every increasing chain

has a least upper bound.

A poset 〈L,�〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist, is

called a lattice. In this case, lub and glb are also called, respectively, the join and the

meet operations of the lattice. A complete lattice is a lattice 〈L,�〉 such that every subset

of L has both a least upper bound and a greatest lower bound. The top element of a

complete lattice L, denoted by >, is such that > ∈ L and ∀x ∈ L : x � >. The bottom

element of L, denoted by ⊥, is defined dually.

As an alternative definition, a lattice is an algebra 〈L,∧,∨〉 such that ∧ and ∨ are two

binary operations over L that are commutative, associative, idempotent, and satisfy the

following absorption laws, for each x, y ∈ L: x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.

The two definitions of lattices are equivalent, as can be seen by defining:

x � y
def
⇐⇒ x ∧ y = x

def
⇐⇒ x ∨ y = y

and

glb{x, y}
def
= x ∧ y, lub{x, y}

def
= x ∨ y.

If D and C are sets, then f : D → C denotes a total function f mapping elements

of the domain D into elements of the co-domain C; for any D′ ⊆ D, we write f(D′) to

denote the set
{

f(d)
∣

∣ d ∈ D′
}

⊆ C. The function f is injective if, for each d, d′ ∈ D,

f(d) = f(d′) implies d = d′; it is surjective if f(D) = C; it is a bijection if it is both

injective and surjective. Let 〈P ],�]〉 be a poset. Functions f, g : D → P ] can be partially

ordered by the point-wise extension of the order defined on their co-domain. Thus, we

write f �] g to indicate that, for all d ∈ D, it holds f(d) �] g(d). Let 〈P [,�[〉 be another

poset. A function f : P [ → P ] is called monotonic if, for each x, y ∈ P [, x �[ y implies

f(x) �] f(y); if P [ and P ] are cpo’s, then f is continuous if, for every non-empty chain

X ⊆ P [, it holds f(lub[X) = lub] f(X); if P [ and P ] are lattices, then f is additive

if the previous condition holds for arbitrary non-empty subsets of P [. The monotonic

function f : P [ → P ] is an order isomorphism (or, more simply, isomorphism) if it is

also bijective. When the partial orders are clear from the context, the existence of an

isomorphism between the two posets 〈P [,�[〉 and 〈P ],�]〉 is denoted by P [ ≡ P ].

A Galois connection is a pair of monotonic functions α : P [ → P ] and γ : P ] → P [

such that

∀x[ ∈ P [ : x[ �[ γ
(

α(x[)
)

, ∀x] ∈ P ] : α
(

γ(x])
)

�] x].
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The functions α and γ are said to be the lower adjoint and the upper adjoint, respectively.

A Galois insertion is a Galois connection where (α ◦ γ) : P ] → P ] is the identity function.

A monotonic self-map f : P → P over a poset 〈P,�〉 is idempotent if, for each x ∈ P ,

f(x) = f
(

f(x)
)

. A monotonic and idempotent self-map ρ : P → P is an upper closure

operator if it is also extensive, namely x � ρ(x) for each x ∈ P . A lower closure operator

% : P → P is defined dually, by requiring that %(x) � x for each x ∈ P .

Let 〈C,�〉 be a complete lattice. Each upper closure operator ρ over C is uniquely

determined by the set of its fixpoints, that is, by its image

ρ(C)
def
=

{

ρ(x)
∣

∣ x ∈ C
}

.

We will often denote upper closure operators by their images. The set of all upper closure

operators over the complete lattice C, denoted by uco(C), forms itself a complete lattice

ordered as follows: if ρ1, ρ2 ∈ uco(P ), ρ1 v ρ2 if and only if ρ2(C) ⊆ ρ1(C). This partial

order corresponds to the point-wise extension of the partial order defined on C.

For a detailed introduction to closure operators, the reader is referred to [GHK+80].

2.2 Abstract Interpretation

The theory of abstract interpretation has been developed by Patrick and Radhia Cousot

[CC77a, CC77b, CC79, CC92a, CC92b]. Using their own words [CC92a],

“Abstract interpretation is a method for designing approximate semantics of

programs which can be used to gather information about programs in order to

provide sound answers to questions about their run-time behaviours.”

Therefore, static analysis is just one of the many possible applications of abstract inter-

pretation theory. Other applications include, for instance, the formal comparison between

different concrete semantics and the design of semi-automatic proof methods, where the

conditions on the termination of the abstract semantics computation can be relaxed.

In all cases, we are provided with a set of concrete properties C, whose elements

represent the possible behaviors of programs, and a set of abstract properties A, whose

elements are “non-standard” descriptions of the concrete ones. These two sets are related

by a soundness relation ∝ ⊆ A×C. Intuitively, a ∝ c means that any conclusion we derive

by looking at the abstract description a ∈ A corresponds to a valid observation that we

could have done by looking at the concrete description c ∈ C.

A concrete semantics function [[·]] associates each program P to its corresponding (con-

crete) meaning [[P ]] ∈ C. One of the goals of abstract interpretation is to define a correct

abstract semantics function [[·]]], mapping each program P into an abstract description

[[P ]]] ∈ A such that [[P ]]] ∝ [[P ]].

The traditional abstract interpretation framework is based on the existence of a Galois

connection between the concrete and the abstract domains, which are both formalized as

complete lattices. In such a context, the soundness relation is defined, for each a ∈ A and
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c ∈ C, by

a ∝ c
def
⇐⇒ α(c) �A a

def
⇐⇒ c �C γ(a).

Thus, the partial orders �C and �A can both be regarded as approximation relations,

formalizing the intuitive notion that an element is more precise than another one. The

functions α : C → A and γ : A → C providing the Galois connection are called, respec-

tively, the abstraction and the concretization function. The abstraction function α maps

each concrete element c ∈ C into its best possible approximation α(c) ∈ A; in turn, we can

say that the meaning of an abstract element a ∈ A is precisely described by its concretiza-

tion γ(a) ∈ C. Note that, by a standard result on Galois connection, the abstraction

function uniquely defines the corresponding concretization function, and vice versa:

∀a ∈ A : γ(a) = lubC

{

c ∈ C
∣

∣ α(c) �A a
}

;

∀c ∈ C : α(c) = glbA

{

a ∈ A
∣

∣ c �C γ(a)
}

.

Also note that any additive function α : C → A always induces a Galois connection between

the concrete domain C and the abstract domain A.

It is almost always the case that the concrete semantics function [[·]] is defined as the

least fixpoint of an operator fC : C → C; in its turn, the operator fC can be specified

modularly, as the composition of a given set of simpler concrete operators. A well-known

and very useful result of abstract interpretation theory is that correctness is preserved

by function composition. Therefore, it is possible to obtain a correct approximation of

the concrete semantics function [[·]] by providing a correct approximation fA for each of

the basic concrete operators. The correctness of the abstract computation can thus be

specified as one of the following two equivalent conditions: for all c ∈ C and a ∈ A,

α(c) �A a =⇒ (α ◦ fC)(c) �A fA(a); (2.1)

c �C γ(a) =⇒ fC(c) �C (γ ◦ fA)(a). (2.2)

In the Galois connection framework it is always possible to specify the optimal abstract

semantics operator

f ]
A

def
= α ◦ fC ◦ γ, (2.3)

corresponding to the best correct approximation, on the abstract domain A, of the concrete

operator fC . Note however that, in general, optimality results are not preserved by the

composition of abstract semantics functions.

The function ρ
def
= γ ◦ α is an upper closure operator on the concrete domain C;

similarly, %
def
= α ◦ γ is a lower closure operator on the abstract domain A and we have

ρ(C) ≡ %(A), where the isomorphism is provided by the functions α and γ. When dealing

with a Galois insertion, % is the identity function on A, so that ρ(C) ≡ A. The presentation

of abstract interpretation in terms of Galois connections can be rephrased by using uco’s.

In particular, the partial order v defined on uco(C) formalizes the intuition of an abstract

domain being more precise than another one.
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Note that other frameworks, where the correspondence between the concrete and ab-

stract domains is weaker than a Galois connection, have been considered in [CC92a].

Besides the above fundamental concepts and results, an interesting line of research in

abstract interpretation theory studies how new abstract domains can be systematically

derived from known ones [CC79]. The typical example is the reduced product operator

between abstract domains: given two abstract domains, it returns the smaller (i.e., most

abstract) domain which is as precise as their conjunctive combination. An elegant char-

acterization of the reduced product can be obtained when adopting the upper closure

operator approach: given two elements ρ1, ρ2 ∈ uco(C), their reduced product, denoted

ρ1 u ρ2, is their glb on uco(C).

Another well-known example is the disjunctive completion operator, returning the

minimal domain encoding all possible disjunctions of the given domain elements. The

complementation operator of [CFG+97] can be interpreted as the reverse of the reduced

product and it can be used to decompose an abstract domain into a set of minimal factors.

Similarly, the least disjunctive base operator [GR96] can be seen as the inverse of the dis-

junctive completion operator. The quotient operator [CFW98] and the least fully-complete

extension [GR97] can be used to compute the simplest abstract domain being as precise

as a given reference domain with respect to a given observable property. Finally, the Heyt-

ing completion operator [GS97] takes an abstract domain encoding some properties and

enriches it by adding new abstract elements representing relational dependencies between

those properties.

2.3 Logic Programming

This thesis is not primarily about logic programming and it is assumed that the reader

is familiar with the concepts and techniques of the, by now standard, concrete semantics

constructions [Apt90, FLMP89, FLMP93, Llo87], how these can be extended for logic

languages with constraints [JLM87, JM94] and, in particular, to logic languages computing

on a domain of rational trees [Col82, Col84]. In the following, we will only review the basic

concepts that are strictly necessary for the presentation and development of the formal

results contained in this thesis.

2.3.1 Terms

Let Sig denote a possibly infinite set of function symbols, ranked over the set of natural

numbers. Let Vars denote a denumerable set of variables, disjoint from Sig. Then Terms

denotes the free algebra of all (possibly infinite) terms in the signature Sig having variables

in Vars. Thus a term can be seen as an ordered labeled tree, possibly having some infinite

paths and possibly containing variables: every inner node is labeled with a function symbol

in Sig with a rank matching the number of the node’s immediate descendants, whereas

every leaf is labeled by either a variable in Vars or a function symbol in Sig having rank

0 (a constant). It is assumed that Sig contains at least two distinct function symbols, one
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having rank 0 (so that there exist finite terms having no variables) and one having rank

greater than 0 (so that there exist infinite terms).

If t ∈ Terms then vars(t) and mvars(t) denote the set and the multiset of variables

occurring in t, respectively. By a slight abuse of notation, we will also write vars(o) to

denote the set of variables occurring in the syntactic representation of an arbitrary object

o. To prove a few of the results of this thesis, it is useful to assume a total ordering,

denoted with ‘≤’, on Vars.

Suppose s, t ∈ Terms: s and t are independent if vars(s) ∩ vars(t) = ∅; if y ∈ vars(t)

and ¬
(

y A mvars(t)
)

we say that variable y occurs linearly in t, more briefly written using

the predication occ lin(y, t); t is said to be ground if vars(t) = ∅; t is free if t ∈ Vars; t

is linear if, for all y ∈ vars(t), we have occ lin(y, t); finally, t is a finite term (or Herbrand

term) if it contains a finite number of occurrences of function symbols. The sets of all

ground, linear and finite terms are denoted by GTerms, LTerms and HTerms, respectively.

The function size: HTerms → N, for each t ∈ HTerms, is defined by

size(t)
def
=







1, if t ∈ Vars;

1 +
∑n

i=1 size(ti), if t = f(t1, . . . , tn).

A path p ∈
(

N \ {0}
)?

is any finite sequence of (non-zero) natural numbers. Given a

path p and a (possibly infinite) term t ∈ Terms, we denote by t[p] the subterm of t found

by following path p. Formally,

t[p] =







t if p = ε;

ti[q] if p = i . q ∧ (1 ≤ i ≤ n) ∧ t = f(t1, . . . , tn).

Note that t[p] is only defined for those paths p actually corresponding to subterms of t.

2.3.2 Substitutions

A substitution is a total function σ : Vars → HTerms that is the identity almost every-

where; in other words, the domain of σ,

dom(σ)
def
=

{

x ∈ Vars
∣

∣ σ(x) 6= x
}

,

is finite. Given a substitution σ : Vars → HTerms, we overload the symbol ‘σ’ so as

to denote also the function σ : HTerms → HTerms defined as follows, for each term

t ∈ HTerms:

σ(t)
def
=



















t, if t is a constant symbol;

σ(t), if t ∈ Vars;

f
(

σ(t1), . . . , σ(tn)
)

, if t = f(t1, . . . , tn).



2.3. LOGIC PROGRAMMING 37

If t ∈ HTerms, we write tσ to denote σ(t). Note that, for each substitution σ and each

finite term t ∈ HTerms, it holds size(t) ≤ size(tσ).

If x ∈ Vars and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set of all

bindings is denoted by Bind . Substitutions are denoted by the set of their bindings, thus

a substitution σ is identified with the (finite) set

{

x 7→ σ(x)
∣

∣ x ∈ dom(σ)
}

.

We denote by vars(σ) the set of variables occurring in the bindings of σ. We also define

the sets param(σ) and range(σ) (the parameter variables and the range variables of σ,

respectively) as

param(σ)
def
= vars(σ) \ dom(σ),

range(σ)
def
=

{

y ∈ vars(t)
∣

∣ (x 7→ t) ∈ σ
}

.

A substitution is said to be circular if, for n > 1, it has the form

{x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1},

where x1, . . . , xn are distinct variables. A substitution is in rational solved form if it has no

circular subset. The set of all substitutions in rational solved form is denoted by RSubst .

A substitution σ is idempotent if, for all t ∈ Terms, we have tσσ = tσ. Equivalently, σ is

idempotent if and only if dom(σ)∩ range(σ) = ∅. The set of all idempotent substitutions

is denoted by ISubst and ISubst ⊂ RSubst .

Example 2.1 Let x, y and z be distinct variables and a ∈ Sig, with rank 0, be a term

constant. The following hold:

{

x 7→ y, y 7→ a
}

∈ RSubst \ ISubst ,
{

x 7→ a, y 7→ a
}

∈ ISubst ,
{

x 7→ y, y 7→ g(y)
}

∈ RSubst \ ISubst ,
{

x 7→ y, y 7→ g(x)
}

∈ RSubst \ ISubst ,
{

x 7→ y, y 7→ x
}

/∈ RSubst ,
{

x 7→ y, y 7→ x, z 7→ a
}

/∈ RSubst .

We have assumed that there is a total ordering ‘≤’ for Vars. We say that σ ∈ RSubst

is ordered (with respect to this ordering) if, for each binding (x 7→ y) ∈ σ such that

y ∈ param(σ), we have y < x.

We will sometimes write t[x/s] to denote t{x 7→ s}.

The composition of substitutions is defined in the usual way. Thus τ ◦ σ is the substi-

tution such that, for all terms t ∈ HTerms, (τ ◦ σ)(t) = τ
(

σ(t)
)

and has the formulation

τ ◦ σ =
{

x 7→ xστ
∣

∣ x ∈ dom(σ), x 6= xστ
}

∪
{

x 7→ xτ
∣

∣ x ∈ dom(τ) \ dom(σ)
}

. (2.4)
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As usual, σ0 denotes the identity function (i.e., the empty substitution) and, when i > 0,

σi denotes the substitution (σ ◦ σi−1).

For each σ ∈ RSubst , s ∈ HTerms, the sequence of finite terms σ0(s), σ1(s), σ2(s), . . .

converges to a (possibly infinite) term, denoted σ∞(s) [IZ96, Kin00]. Therefore, the func-

tion rt : HTerms × RSubst → Terms such that

rt(s, σ)
def
= σ∞(s)

is well defined. Note that, in general, this function is not a substitution: while having

a finite domain, its “bindings” x 7→ rt(x, σ) can map a domain variable x into a term

rt(x, σ) ∈ Terms \ HTerms. However, as the name of the function suggests, the term

rt(x, σ) is granted to be rational, meaning that it can only have a finite number of distinct

subterms. Rational terms, even though infinite in the sense that they admit paths of

infinite length, can be finitely represented.

2.3.3 Equality Theories

An equation is of the form s = t where s, t ∈ HTerms. Eqs denotes the set of all equations.

A substitution σ may be regarded as the finite set of equations
{

x = t
∣

∣ (x 7→ t) ∈ σ
}

. We

say that a set of equations e is in rational solved form if
{

s 7→ t
∣

∣ (s = t) ∈ e
}

∈ RSubst .

In the rest of the paper, we will often write a substitution σ ∈ RSubst to denote a set of

equations in rational solved form (and vice versa).

As is common in research work involving equality, we overload the symbol ‘=’ and use

it to denote both equality and to represent syntactic identity. The context makes it clear

what is intended.

Let {r, s, t, s1, . . . , sn, t1, . . . , tn} ⊆ HTerms and f ∈ Sig with rank n. We assume

that any equality theory T over Terms includes the congruence axioms denoted by the

following schemata:

s = s, (2.5)

s = t↔ t = s, (2.6)

r = s ∧ s = t→ r = t, (2.7)

s1 = t1 ∧ · · · ∧ sn = tn → f(s1, . . . , sn) = f(t1, . . . , tn). (2.8)

In logic programming and most implementations of Prolog it is usual to assume an

equality theory based on syntactic identity. This consists of the congruence axioms to-

gether with the identity axioms denoted by the following schemata, where f, g ∈ Sig with

ranks n and m, respectively, are such that f and g are distinct function symbols or n 6= m:

f(s1, . . . , sn) = f(t1, . . . , tn) → s1 = t1 ∧ · · · ∧ sn = tn, (2.9)

¬
(

f(s1, . . . , sn) = g(t1, . . . , tm)
)

. (2.10)

The axioms characterized by schemata (2.9) and (2.10) ensure the equality theory depends
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only on the syntax. The equality theory for a non-syntactic domain replaces these axioms

by ones that depend instead on the semantics of the domain and, in particular, on the

interpretation given to functor symbols.

The equality theory of Clark [Cla78], denoted FT , on which pure logic programming

is based, usually called the Herbrand equality theory, is given by the congruence axioms,

the identity axioms, and the axiom schema

∀z ∈ Vars : ∀t ∈ (HTerms \ Vars) : z ∈ vars(t) → ¬(z = t). (2.11)

Axioms characterized by the schema (2.11) are called the occurs-check axioms and are an

essential part of the standard unification procedure in SLD-resolution.

An alternative approach used in some implementations of logic programming systems,

such as Prolog II, SICStus and Oz, does not require the occurs-check axioms. This ap-

proach is based on the theory of rational trees [Col82, Col84], denoted RT . It assumes

the congruence axioms and the identity axioms together with a uniqueness axiom for each

substitution in rational solved form. Informally speaking these state that, after assigning a

ground rational tree to each parameter variable, the substitution uniquely defines a ground

rational tree for each of its domain variables. Note that being in rational solved form is a

very weak property. Indeed, unification algorithms returning a set of equations in rational

solved form are allowed to be much lazier than one would usually expect (e.g., see the first

substitution in Example 2.1). We refer the interested reader to [JLM87, Kei94, Mah88]

for details on the subject.

In the sequel we will use the expression “equality theory” to denote any consistent,

decidable theory T satisfying the congruence axioms. We will also use the expression

“syntactic equality theory” to denote any equality theory T also satisfying the identity

axioms. Sometimes, when the equality theory T is clear from the context, it is convenient

to adopt the notations σ =⇒ τ and σ ⇐⇒ τ , where σ, τ are sets of equations, to denote

T ` ∀(σ → τ) and T ` ∀(σ ↔ τ), respectively.

Given an equality theory T , and a set of equations in rational solved form σ, we say

that σ is satisfiable in T if T ` ∀Vars \ dom(σ) : ∃dom(σ) . σ. If T is a syntactic equality

theory that also includes the occurs-check axioms, and σ is satisfiable in T , then we say

that σ is Herbrand.

Given a satisfiable set of equations e ∈ ℘f(Eqs) in an equality theory T , then a substi-

tution σ ∈ RSubst is called a solution for e in T if σ is satisfiable in T and T ` ∀(σ → e).

If vars(σ) ⊆ vars(e), then σ is said to be a relevant solution for e. In addition, σ is a

most general solution for e in T if T ` ∀(σ ↔ e). In this thesis, a most general solution

is always a relevant solution of e. When the theory T is clear from the context, the set of

all the relevant most general solutions for e in T is denoted by mgs(e).

Given an equality theory T , a set of equations in rational solved form may not be

satisfiable in T . For example, ∃x .
{

x = f(x)
}

is false in the equality theory FT .
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2.4 The Concrete Domain

In this thesis, we are interested in finding approximate information about the variable

sharing occurring in the possibly infinite set of solutions computed by logic programs.

Therefore, it is natural to consider a concrete domain whose elements contains a set of

substitutions in rational solved form. In addition, to give a meaning to the concrete de-

scription, we require a knowledge of the finite set of variables of interest. In the Ph.D. the-

sis of Langen [Lan90] a set of variables of interest is implicitly defined, for each program

clause being analyzed, as the finite set of variables occurring in that clause. In this

thesis we follow the clearer approach introduced in [CFW94, CFW98] and also adopted

in [BHZ97, BHZ02, CF99], where the set of variables of interest is provided as an explicit

component of the concrete domain.

Definition 2.2 (The concrete domain.) The concrete domain is the complete lattice

D[ def
=

(

℘(RSubst) × ℘f(Vars)
)

∪ {⊥[,>[},

ordered by ‘≤[’ defined as follows: for each d ∈ D[, ⊥[ ≤[ d and d ≤[ >[; for each

(Σ1,VI 1), (Σ2,VI 2) ∈ D[:

(Σ1,VI 1) ≤
[ (Σ2,VI 2) ⇐⇒ (VI 1 = VI 2) ∧ (Σ1 ⊆ Σ2).

The induced least upper bound, denoted ‘lub’ corresponds to the ‘merge-over-all-paths’

operator [CC77a]. Note that the only reason for including the distinguished elements ⊥[

and >[ is to obtain a complete lattice structure. Since they are never used in actual compu-

tations, all the remaining operations will not be explicitly specified for these distinguished

elements.

The operation unify : D[ × RSubst → D[ first extends the concrete element it takes as

an argument to the set of variables occurring in the substitution it is given as the second

argument; then it computes unification in the context of the syntactic equality theory T .

For each (Σ,VI ) ∈ D[ and µ ∈ RSubst, where vars(Σ) ∩ vars(µ) ⊆ VI , we have

unify
(

(Σ,VI ), µ
) def

=
(

⋃

{

mgs(σ ∪ µ)
∣

∣ σ ∈ Σ
}

,VI ∪ vars(µ)
)

.

The existential quantification of W ∈ ℘f(Vars) in (Σ,VI ) ∈ D[ is defined as follows:

∃∃W . (Σ,VI )
def
=







σ′ ∈ RSubst

∣

∣

∣

∣

∣

∣

σ ∈ Σ, ∆ = vars(σ) \ VI ,

T ` ∀
(

∃∆ . (σ′ ↔ ∃W . σ)
)







.

The operation of projecting (Σ,VI ) ∈ D[ on a new set W ∈ ℘f(Vars) of variables of

interest is defined as follows:

proj
(

(Σ,VI ),W
) def

=
(

∃∃(VI \W ) . (Σ,VI ),W
)

.
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Note that, by a little abuse of terminology, our ‘proj’ operator not only projects, but

also extends a concrete element to the new variables of interest.

If (Σ,VI ) ∈ D[, then (Σ,VI ) represents the possibly infinite set of first-order formulas

{

∃∆ . σ
∣

∣ σ ∈ Σ, ∆ = vars(σ) \ VI
}

where σ is interpreted as the logical conjunction of the equations corresponding to its

bindings. Concrete domains for constraint logic languages would be similar. If the ana-

lyzed language allows the use of constraints on various domains to restrict the values of

the variable leaves of rational trees, the corresponding concrete domain would have one or

more extra components to account for the constraints (see [BHZ00] for an example).

To better highlight the role of the set VI of variables of interests, consider the concrete

element

d
def
=

(

{σ},VI
)

,

where σ =
{

x 7→ f(y)
}

. Then, if VI = {x, y} we have that d ∈ D[ expresses a dependency

between the variables x and y. In contrast, if VI = {x} then the concrete element d

only constrains x. The same concept can be expressed by saying that in the first case the

variable name ‘y’ matters, but it does not in the second case.

This example shows that the set of variables of interest is crucial for defining the

meaning of the concrete (and, as we will see, also the abstract) descriptions. During

the computation process, this set expands (e.g., when solving the body of the clause)

and contracts (e.g., when the computed substitutions are projected onto the variables

occurring in the head of the clause). This technique has two advantages: first, a clear and

unambiguous description of those semantic operators that modify the set of variables of

interest can be provided; second, the definition of the concrete (and, hence, the abstract)

domain is completely independent from any particular program. Note that other solutions

are possible; we refer the interested reader to [CFW96, Section 7] and [Sco02, Section 10],

where this problem is discussed in the context of groundness analysis.

For the abstract interpretation of (constraint) logic languages, several general frame-

works [BGL93, Bru91, GDL95, JS87, Mel87, MS90, MSJ94] have been proposed which,

although independent from the actual abstract domain, differ for the particular type of

semantics construction: operational, denotational, or model-theoretic based; top-down or

bottom-up; based on a concrete domain of syntactic substitutions or on a generic constraint

domain. The common recipe, borrowed from the general theory of abstract interpretation,

is that the concrete semantics is constructed by using a minimal set of concrete opera-

tors, which are then correctly approximated on the abstract domain. Using these, the

construction of a correct abstract semantics can be automatically completed.

In this thesis, we adopt a bottom-up semantics construction which is very similar to the

one proposed in [BGL93]. The semantics provides information about the success patterns

of the analyzed logic program; information on the call-patterns can be derived by suitable

transforming this program [DR94]. The concrete semantics is obtained by iteration of a
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TP -like operator defined in terms of ‘lub’, ‘unify’ and ‘proj’ (the other operations needed,

such as the consistent renaming apart of concrete elements, are very simple). It is worth

noting that the considered concrete operators given in Definition 2.2 are additive, therefore

allowing a simplification of the statements of correctness. In particular, for the unification

operator, any correctness results for sets of substitutions is a direct consequence of the

corresponding correctness result for a single substitution.

2.5 Boolean Functions

Boolean functions have been extensively used for data-flow analysis of logic-based lan-

guages and, in particular, for groundness analysis.

Definition 2.3 (Boolean functions.) Let VI ∈ ℘f(Vars) and Bool
def
= {0, 1}. The set

of Boolean functions over VI is

Bfun
def
= ℘(VI ) → Bool .

The set m ∈ ℘(VI ) is a model of φ ∈ Bfun if and only if φ(m) = 1. We denote by [φ]VI

the set of all the models of φ ∈ Bfun. The set Bfun is partially ordered by the relation |=

where, for each φ, ψ ∈ Bfun, we have φ |= ψ if and only if [φ]VI ⊆ [ψ]VI .

Boolean functions are inductively constructed from the elementary functions corre-

sponding to variables by means of the usual logical connectives. Thus, if x ∈ VI , we write x

to denote the Boolean function identified by the set of models [x]VI = {m ⊆ VI | x ∈ m }.

Similarly, if φ, ψ ∈ Bfun, then we write ¬φ and φ ∧ ψ to denote the Boolean functions

identified by [¬φ]VI = ℘(VI )\ [φ]VI and [φ∧ψ]VI = [φ]VI ∩ [ψ]VI , respectively. The other

connectives are derived from the two above, as usual.

Two important classes of Boolean functions used for tracking groundness dependencies

are Pos and Def [AMSS98].

Definition 2.4 (Pos and Def ). The domain Pos ⊂ Bfun of positive Boolean functions

is defined as the set of functions having VI as a model; formally,

Pos
def
=

{

φ ∈ Bfun
∣

∣ φ(VI ) = 1
}

.

The domain Def ⊆ Pos of definite Boolean functions is defined as the subset of those

positive Boolean functions whose models are closed under set-intersection; formally,

Def
def
=

{

φ ∈ Pos
∣

∣ m1,m2 ∈ [φ]VI =⇒ (m1 ∩m2) ∈ [φ]VI

}

.

Therefore, by letting VI = {x, y}, we obtain that (x→ y) ∈ Def , (x ∨ y) ∈ Pos \ Def

and (¬x) ∈ Bfun \ Pos .



Chapter 3
Set-Sharing

In this chapter we introduce the set-sharing domain of Jacobs and Langen and the cor-

responding abstraction function defined on idempotent substitutions. After showing that

this abstraction function is inadequate for rational-tree languages, we address the problem

of a sound and precise approximation of the set-sharing information contained in a sub-

stitution in rational solved form. By introducing the new concept of variable idempotent

substitutions, we provide a generalization of this abstraction function that can be ap-

plied to any logic language computing on domains of syntactic structures, with or without

the occurs-check. Results for correctness, idempotence and commutativity for abstract

unification using this abstraction function are proven.

Note: this chapter is mainly based on the results of [HBZ98]; an extended

version will appear in [HBZ02].

3.1 The Set-Sharing Lattice

In this section, we first recall the definition of the set-sharing domain and present the

(classical) abstraction function used for dealing with idempotent substitutions. We will

then give evidence for the problems arising when applying this abstraction function to the

more general case of substitutions in rational solved form.

The set-sharing domain is due to Jacobs and Langen [JL89]. However, we use the

definition as presented in [BHZ97] where the set of variables of interest is given explicitly.

An element of the domain (a sharing set) is thus a set of subsets of the variables of interest

(the sharing groups). Even though the literature on set-sharing is almost unanimous in

defining sharing sets so that they always contain the empty set, we deviate from this de

facto standard: in our approach sharing sets never contain the empty set. We do this be-

cause the definitions turn out to be easier and, moreover, they describe the implementation

(where the empty set never appears in sharing sets) more faithfully. Clearly, no problem

can arise from a coherent omission/inclusion of the empty set, since the two corresponding

domain representations are isomorphic.

43
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Definition 3.1 (The set-sharing lattice.) The domain SH is given by

SH
def
= ℘(SG),

where the set of sharing groups SG is given by

SG
def
= ℘f(Vars) \ {∅}.

The set-sharing lattice is given by the set

SS
def
=

{

(sh,VI )
∣

∣ sh ∈ SH ,VI ∈ ℘f(Vars),∀S ∈ sh : S ⊆ VI
}

∪ {⊥,>},

ordered by �SS defined as follows, for each d, (sh1,VI 1), (sh2,VI 2) ∈ SS:

⊥ �SS d,

d �SS >,

(sh1,VI 1) �SS (sh2,VI 2) ⇐⇒ (VI 1 = VI 2) ∧ (sh1 ⊆ sh2).

It is straightforward to see that every subset of SS has a least upper bound with respect to

�SS . Hence SS is a complete lattice (as a matter of fact, the only reason we have > ∈ SS

is in order to turn SS into a lattice rather than a cpo). The lub operator over SS will be

denoted by Alub.

3.1.1 The Classical Abstraction Function for ISubst

An element sh of SH encodes the set-sharing information contained in an idempotent

substitution σ. Namely, each sharing group S ∈ SG in the sharing set sh corresponds to

one or more variables which are shared by all and only the variables occurring in S.

Definition 3.2 (Classical sg and abstraction functions.) The sharing group func-

tion, sg : ISubst × Vars → ℘f(Vars) is defined, for each σ ∈ ISubst and each v ∈ Vars,

by

sg(σ, v)
def
=

{

y ∈ Vars
∣

∣ v ∈ vars(yσ)
}

.

The concrete domain D[
I

def
= ℘(ISubst) × ℘f(Vars) is related to SS by means of the ab-

straction function αI : D[
I → SS. For each Σ ∈ ℘(ISubst) and each VI ∈ ℘f(Vars),

αI

(

(Σ,VI )
) def

= Alub
{

αI(σ,VI )
∣

∣ σ ∈ Σ
}

,

where αI : ISubst × ℘f(Vars) → SS is defined, for each substitution σ ∈ ISubst and each

VI ∈ ℘f(Vars), by

αI(σ,VI )
def
=

(

{

sg(σ, v) ∩ VI
∣

∣ v ∈ Vars
}

\ {∅},VI
)

.
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The sharing group function ‘sg’ was first defined by Jacobs and Langen [JL89] and used in

their definition of a concretization function for SH . The function αI corresponds closely

to the abstract counterpart of this concretization function, but explicitly includes the set

of variables of interest as a separate argument. It is identical to the abstraction function

for set-sharing defined by Cortesi and Filé [CF99].

In order to provide an intuitive reading of the sharing information encoded into an

abstract element, it is worth stressing once again that the analysis aims at capturing

possible sharing. The corresponding definite information (e.g., definite groundness or

independence) can be extracted by observing which sharing groups are not in the abstract

element. As an example, if we observe that there is no sharing group containing a particular

variable of VI , then we can safely conclude that this variable is definitely ground (namely,

it is bound to a term containing no variables). Similarly, if we observe that two variables

never occur together in the same sharing group, then we can safely conclude that they are

independent (namely, they are bound to terms that do not share a common variable).

Example 3.3 Assume VI = {x1, x2, x3, x4} and let

σ =
{

x1 7→ f(x2, x3), x4 7→ a
}

,

so that its abstraction is given by

αI(σ,VI ) =
(

{

{x1, x2}, {x1, x3}
}

,VI
)

.

From this abstraction we can safely conclude that variable x4 is ground and variables x2

and x3 are independent.

3.1.2 Toward an Abstraction Function for RSubst

To help motivate the approach we will take in adapting the classical abstraction function

to non-idempotent substitutions, we now explain some of the problems that arise if we

apply αI , as it is defined on ISubst , to the non-idempotent substitutions in RSubst . Note

that these problems are only partially caused by non-Herbrand substitutions (that is sub-

stitutions that are not satisfiable in a syntactic equality theory containing the occurs-check

axioms). They are also due to the presence of non-idempotent but Herbrand substitutions

that may arise because of the potential “laziness” of unification procedures based on the

rational solved form.

We use the following substitutions to illustrate the problems, where it is assumed that

the set of variables of interest is VI = {x1, x2, x3, x4}. Let

σ1 =
{

x1 7→ f(x1)
}

,

σ2 =
{

x3 7→ x4

}

,

σ3 =
{

x1 7→ x2, x2 7→ x3, x3 7→ x4

}

,

σ4 =
{

x1 7→ x4, x2 7→ x4, x3 7→ x4

}
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so that we have

αI(∅,VI ) = αI(σ1,VI ) =
(

{

{x1}, {x2}, {x3}, {x4}
}

,VI
)

,

αI(σ2,VI ) = αI(σ3,VI ) =
(

{

{x1}, {x2}, {x3, x4}
}

,VI
)

,

αI(σ4,VI ) =
(

{

{x1, x2, x3, x4}
}

,VI
)

.

The first problem is that the concrete equivalence classes induced by the classical

abstraction function on RSubst are much coarser than one would expect and hence we

have an unwanted loss of precision. For example, in all the sets of rational trees that are

solutions for σ1, the variable x1 is ground (formally, rt(x1, σ1) ∈ GTerms). However, the

computed abstract element fails to distinguish this situation from that resulting from the

empty substitution, where all the variables are free and un-aliased. Similarly, we have the

same abstract element for both σ2 and σ3 although, x1, x2 and x3 are independent in σ2

only.

The second problem is quite the opposite from the first in that the abstraction function

distinguishes between substitutions that are equivalent (with respect to any equality the-

ory). For example, σ3 and σ4 are equivalent although the abstract elements are distinct.

Note that the two problems described here are completely orthogonal although they can

interact and produce more complex situations.

3.2 Variable-Idempotence

In this section we define a new class of substitutions based on the concept of variable-

idempotence, a generalization of the well-known concept of idempotence. By considering

variable-idempotent substitutions only, it is possible to provide a simple solution to the

problems outlined in the previous section. Moreover, there is no loss of generality, since

we will show an algorithm transforming any substitution in rational solved form to an

equivalent (with respect to any equality theory) variable-idempotent substitution.

3.2.1 Variable-Idempotent Substitutions

Recall that, for substitutions, the definition of idempotence requires that repeated ap-

plications of a substitution do not change the syntactic structure of a term. However, a

sharing abstraction such as αI is only interested in the variables and not in the structure

that contains them. Thus, an obvious way to relax the definition of idempotence to al-

low for a non-Herbrand substitution is to ignore the structure and just require that its

repeated application leaves the set of variables in a term invariant.

Definition 3.4 (Variable-idempotence.) A substitution σ ∈ RSubst is variable-idem-

potent if and only if for all t ∈ HTerms we have

vars(tσσ) = vars(tσ).
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The set of variable-idempotent substitutions is denoted VSubst.

Note that any idempotent substitution is also variable-idempotent, so that we have the

inclusions ISubst ⊂ VSubst ⊂ RSubst .

Example 3.5 Consider the following substitutions which are all in RSubst.

σ1 =
{

x 7→ f(x)
}

∈ VSubst \ ISubst ,

σ2 =
{

x 7→ f(y), y 7→ z
}

/∈ VSubst ,

σ3 =
{

x 7→ f(z), y 7→ z
}

∈ ISubst ,

σ4 =
{

x 7→ z, y 7→ f(x, y)
}

/∈ VSubst ,

σ5 =
{

x 7→ z, y 7→ f(z, y)
}

∈ VSubst \ ISubst .

Note that σ2 is equivalent (with respect to any equality theory) to the idempotent substi-

tution σ3; and σ4 is equivalent (with respect to any equality theory) to the substitution σ5

which is variable-idempotent but not idempotent.

The next result provides an alternative characterization of variable-idempotence.

Lemma 3.6 Let σ ∈ RSubst. Then

σ ∈ VSubst ⇐⇒ ∀(x 7→ r) ∈ σ : vars(rσ) = vars(r).

Proof. Suppose first that σ ∈ VSubst and let (x 7→ r) ∈ σ. Then

vars(xσσ) = vars(xσ)

and hence, vars(rσ) = vars(r).

Next, suppose that for all (x 7→ r) ∈ σ, vars(rσ) = vars(r) and consider t ∈ HTerms.

We will show that vars(tσσ) = vars(tσ) by induction on the size of t. If t is a constant or

t ∈ Vars \ dom(σ), then the result follows from the fact that tσ = t. If t ∈ dom(σ), then

there exists (y 7→ s) ∈ σ such that t = y, so that tσ = s. Thus, we have

vars(tσσ) = vars(sσ) = vars(s) = vars(tσ).

Finally, if t = f(t1, . . . , tn), then by the inductive hypothesis vars(tiσσ) = vars(tiσ) for

i = 1, . . . , n. Therefore we have

vars(tσσ) =
n
⋃

i=1

vars(tiσσ) =
n
⋃

i=1

vars(tiσ) = vars(tσ).

Thus, by Definition 3.4, as σ ∈ RSubst , σ ∈ VSubst . 2

Note that, as a consequence of Lemma 3.6, any substitution consisting of a single

binding is variable-idempotent. Note though that we cannot assume that every subset of

a variable-idempotent substitution is variable-idempotent.
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Example 3.7 Let

σ1 = {x1 7→ a, x2 7→ f(x1, x3, x4), x3 7→ f(x1, x3, x4)},

σ2 = {x1 7→ a, x2 7→ f(x1, x3, x4)},

σ3 = σ1 \ σ2 = {x3 7→ f(x1, x3, x4)}.

It can be observed that σ1, σ3 ∈ VSubst. Also note that σ2 /∈ VSubst, because we have

x1 ∈ vars(x2σ2) but x1 /∈ vars(x2σ2σ2).

On the other hand, a variable-idempotent substitution does enjoy the following useful

property with respect to its subsets.

Lemma 3.8 Let σ ∈ VSubst and t ∈ HTerms. Then, for all σ′ ⊆ σ,

vars(tσσ′) \ dom(σ) = vars(tσ) \ dom(σ).

Proof. Since σ′ ⊆ σ, the relation vars(tσ) \ dom(σ) ⊆ vars(tσσ′) is trivial.

To prove the opposite relation, suppose that y ∈ vars(tσσ′)\dom(σ). Then there exists

x ∈ vars(tσ) such that y ∈ vars(xσ′). Now, if x /∈ dom(σ′), then x = y and y ∈ vars(tσ).

Otherwise, if x ∈ dom(σ′), then xσ′ = xσ so that y ∈ vars(tσσ) and hence, as σ ∈ VSubst ,

y ∈ vars(tσ). 2

Example 3.9 Considering again the substitutions defined in Example 3.7, it can be ob-

served that, for all t ∈ HTerms,

vars(tσ1) \ dom(σ1) = vars(tσ1σ2) \ dom(σ1),

vars(tσ1) \ dom(σ1) = vars(tσ1σ3) \ dom(σ1).

The next result provides a sufficient condition for a variable-idempotent substitution

so that all of its subsets are variable-idempotent too.

Lemma 3.10 Let σ ∈ VSubst be such that y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ).

Then, for all σ′ ⊆ σ, σ′ ∈ VSubst.

Proof. Let (x 7→ t) ∈ σ′ ⊆ σ. We will prove that vars(tσ′) = vars(t), so that the thesis

will follow from Lemma 3.6.

To prove the first implication, let y ∈ vars(tσ′), so that y ∈ range(σ). If it also holds

y ∈ dom(σ), then by the hypothesis y ∈ vars(yσ), so that y ∈ vars(tσ). Otherwise,

if y /∈ dom(σ), then again y ∈ vars(tσ). Thus, in both cases, since σ ∈ VSubst , by

Lemma 3.6 we obtain y ∈ vars(t).

To prove the other implication, let y ∈ vars(t), so that y ∈ range(σ). If y /∈ dom(σ ′)

then y ∈ vars(tσ′). Otherwise, if y ∈ dom(σ′), then we have y ∈ dom(σ) ∩ range(σ).

Thus, by hypothesis, y ∈ vars(yσ). Since yσ = yσ′, we have y ∈ vars(yσ′), so that

y ∈ vars(tσ′). 2
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We now state two technical results that will be needed later. Note that, when proving

these results at the end of this section, we require that the equality theory also satisfies the

identity axioms. They show that equivalent, ordered, variable-idempotent substitutions

have the same domain and bind the domain variables to terms with the same set of

parameter variables.

Lemma 3.11 Let τ, σ ∈ VSubst be ordered and satisfiable in the syntactic equality theory

T and suppose T ` ∀(τ → σ). Then dom(σ) ⊆ dom(τ).

Lemma 3.12 Let τ, σ ∈ VSubst be satisfiable in the syntactic equality theory T and sup-

pose T ` ∀(τ → σ). In addition, let s, t ∈ HTerms be such that T ` ∀
(

τ → (s = t)
)

and v ∈ vars(s) \ dom(τ). Then there exists a variable z ∈ vars(tσ) \ dom(σ) such that

v ∈ vars(zτ).

It is worth noting that, thanks to the above results, we know that one of the problems

outlined in Section 3.1.2, the possible “laziness” of the unification algorithm, does not

affect variable-idempotent substitutions.

3.2.2 S-transformations

A useful property of variable-idempotent substitutions is that any substitution in rational

solved form can be transformed to an equivalent (with respect to any equality theory)

variable-idempotent one. Thus, any result obtained for variable-idempotent substitutions

can be systematically generalized to arbitrary substitutions in RSubst .

Definition 3.13 (S-steps.) The relation
S

7−→ ⊆ RSubst × RSubst, called S-step, is

defined by
(x 7→ t) ∈ σ (y 7→ s) ∈ σ x 6= y

σ
S

7−→
(

σ \ {y 7→ s}
)

∪ {y 7→ s[x/t]}
.

If we have a finite sequence of S-steps σ1
S

7−→ · · ·
S

7−→ σn mapping σ1 to σn, then we write

σ1
S

7−→∗ σn and say that σ1 can be rewritten, by S-transformation, to σn.

Example 3.14 Let

σ0 =
{

x1 7→ f(x2), x2 7→ g(x3, x4), x3 7→ x1

}

.

Observe that substitution σ0 is not variable-idempotent, since we have vars(x1σ0) = {x2}

but vars(x1σ0σ0) = {x3, x4}. By considering all the bindings of the substitution, one at a

time, and applying the corresponding S-step to all the other bindings, we produce a new

substitution σ3.

σ0 =
{

x1 7→ f(x2), x2 7→ g(x3, x4), x3 7→ x1

}

σ1 =
{

x1 7→ f(x2), x2 7→ g(x3, x4), x3 7→ f(x2)
}

,

σ2 =
{

x1 7→ f(g(x3, x4)), x2 7→ g(x3, x4), x3 7→ f(g(x3, x4))
}

,
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σ3 =
{

x1 7→ f(g(f(g(x3, x4)), x4)),

x2 7→ g(f(g(x3, x4)), x4), x3 7→ f(g(x3, x4))
}

.

Then

σ0
S

7−→∗ σ1
S
7−→∗ σ2

S
7−→∗ σ3.

Note that σ3 is variable-idempotent and T ` ∀(σ0 ↔ σ3), for all equality theories T ;

moreover, for all y ∈ dom(σ3) ∩ range(σ3), we have y ∈ vars(yσ3).

The next two theorems, which are proved at the end of this section, show that we need

only consider variable-idempotent substitutions.

Theorem 3.15 Let T be an equality theory, σ ∈ RSubst and σ
S

7−→∗ σ′. Then we have

σ′ ∈ RSubst, vars(σ) = vars(σ′), dom(σ) = dom(σ′) and T ` ∀(σ ↔ σ′).

Theorem 3.16 Let σ ∈ RSubst. Then there exists σ′ ∈ VSubst such that σ
S
7−→∗ σ′ and

y ∈ dom(σ′) ∩ range(σ′) implies y ∈ vars(yσ′).

The proof of this theorem formalizes the rewriting process informally described in Exam-

ple 3.14.

Corollary 3.17 Let T be an equality theory and σ ∈ RSubst. There exists a substitution

σ′ ∈ VSubst such that vars(σ) = vars(σ′), dom(σ) = dom(σ′), T ` ∀(σ ↔ σ′) and

y ∈ dom(σ′) ∩ range(σ′) implies y ∈ vars(yσ′).

Proof. It is a simple consequence of Theorems 3.15 and 3.16. 2

Note that, thanks to the last property, we can also apply Lemma 3.10 to obtain that

τ ∈ VSubst , for all τ ⊆ σ′. Thus, substitutions such as σ1 in Example 3.7 can be

disregarded.

The following result concerning composition of substitutions will be needed later.

Lemma 3.18 Let σ, τ ∈ VSubst, where dom(σ) ∩ vars(τ) = ∅. Then τ ◦ σ has the

following properties.

1. T ` ∀
(

(τ ◦ σ) ↔ (τ ∪ σ)
)

, for any equality theory T ;

2. dom(τ ◦ σ) = dom(σ) ∪ dom(τ);

3. τ ◦ σ ∈ VSubst.

3.2.3 The Abstraction Function for VSubst

In the two previous sections we have seen how variable-idempotence is a general solution

to one of the problems outlined in Section 3.1.2. It is now sufficient to address the other

problem, that is the potential loss in precision due to the non-Herbrand substitutions. The

simple solution is to define a new abstraction function for VSubst which is the same as that
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in Definition 3.2 but where any sharing group generated by a variable in the domain of the

substitution is disregarded. This new abstraction function works for variable-idempotent

substitutions and no longer suffers the drawbacks outlined in Section 3.1.2.

Therefore, at least from a theoretical point of view, the problem of defining a sound

and precise abstraction function for arbitrary substitutions in rational solved form would

have been solved. Given a substitution in RSubst , we would proceed in two steps: we first

transform it to an equivalent substitution in VSubst and then compute the corresponding

description by using the modified abstraction function. However, from a practical point of

view, it is better to define an abstraction function that directly computes the description

of a substitution in RSubst in a single step, thus avoiding the expensive computation of the

intermediate variable-idempotent substitution. We present such an abstraction function

in Section 3.3.

3.2.4 Proofs of the Results of Section 3.2

To prove Lemmas 3.11 and 3.12, we need a few auxiliary results.

The next Lemma shows that, given a substitution in rational solved form, satisfiability

is maintained when binding a non-domain variable to a ground and finite term.

Lemma 3.19 Let σ ∈ RSubst be satisfiable in the equality theory T and consider x 7→ t

such that x /∈ dom(σ) and t ∈ GTerms ∩HTerms. Then, σ′ def
= σ ∪ {x 7→ t} ∈ RSubst and

σ′ is satisfiable in T .

Proof. As x /∈ dom(σ), σ ∈ RSubst and t ∈ GTerms ∩ HTerms, then σ′ ∈ RSubst .

Since σ is satisfiable in T , we have T ` ∀Vars \ dom(σ) : ∃dom(σ) . σ. Moreover, by

the congruence axiom (2.5), T ` ∀Vars \ {x} : ∃x . {x = t}. Hence,

T ` ∀Vars \
(

dom(σ) ∪ {x}
)

: ∃
(

dom(σ) ∪ {x}
)

. σ ∪ {x = t}.

Thus σ′ = σ ∪ {x 7→ t} is satisfiable in T . 2

Syntactically, any substitution in RSubst may be regarded as a set of equations in

rational solved form and vice versa. The next lemma shows the semantic relationship

between them.

Lemma 3.20 Let T be an equality theory, σ ∈ RSubst and t ∈ HTerms. Then

T ` ∀
(

σ → (t = tσ)
)

.

Proof. We assume the congruence axioms hold and prove that, for any t ∈ HTerms, we

have σ =⇒ {t = tσ}. The proof is by induction on the size of t.

Suppose, first that size(t) = 1. If t is a parameter variable of σ or a constant, then

tσ = t and the result follows from axiom (2.5). If t ∈ dom(σ), then, for some r ∈ HTerms,

(t 7→ r) ∈ σ. Thus σ =⇒ {t = tσ}.
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If size(t) > 1, then t has the form f(s1, . . . , sn), where n > 0 and, for each i = 1, . . . , n,

si ∈ HTerms and size(si) < size(t). By the inductive hypothesis, for each i = 1, . . . , n, we

have σ =⇒ {si = siσ}. Therefore, applying axiom (2.8), we have σ =⇒ {t = tσ}. 2

Lemma 3.21 Let σ ∈ VSubst, r ∈ HTerms and suppose that rσi ∈ Vars for all i ≥ 0.

Then rσ ∈ Vars \ dom(σ).

Proof. As σ ∈ VSubst , for all i ≥ 0 we have

{rσi+1} = vars(rσσi) = vars(rσ) = {rσ}.

In particular, rσ = rσσ, so that rσ /∈ dom(σ). 2

Lemma 3.22 Let σ ∈ VSubst be satisfiable in the syntactic equality theory T . Suppose

that v ∈ Vars \dom(σ) and r ∈ HTerms are such that T ` ∀
(

σ → {v = r}
)

. Then v = rσ.

Proof. We assume that the congruence and identity axioms hold.

Let t1, t2 ∈ GTerms∩HTerms have distinct outer-most symbols so that, by the identity

axioms, T ` ∀(t1 6= t2). By Lemma 3.21, either rσ ∈ Vars \ dom(σ) or, for some j ≥ 0,

rσj /∈ Vars. We consider each case separately.

If, for some j ≥ 0, rσj /∈ Vars, then, as t1 and t2 have distinct outer-most symbols,

there exists an i ∈ {1, 2} such that the terms ti and rσj have distinct outer-most symbols.

By the identity axioms, T ` ∀(ti 6= rσj). Let σ′ = σ∪{v = ti}. It follows from Lemma 3.19

that, as v /∈ dom(σ) and σ is satisfiable, σ′ ∈ RSubst and is satisfiable. By Lemma 3.20

and the congruence axioms, σ =⇒ {v = rσj}. However, we also have σ′ =⇒ σ, so

that we obtain σ′ =⇒ {v = rσj , v = ti}. Thus, by the congruence axioms, we have

σ′ =⇒ {ti = rσj}, which is a contradiction.

Suppose then that rσ ∈ Vars \ dom(σ). If v 6= rσ, then it follows from Lemma 3.19

that σ′ = σ ∪ {v = t1, rσ = t2} ∈ RSubst and, as σ is satisfiable, σ′ is satisfiable.

By Lemma 3.20, σ =⇒ {v = rσ}. However, we also have σ′ =⇒ σ, so that we

obtain σ′ =⇒ {v = rσ, v = t1, rσ = t2}. Thus, by the congruence axioms, we have

σ′ =⇒ {t1 = t2}, which is a contradiction. Hence v = rσ as required. 2

Proof of Lemma 3.11 on page 49. We assume that the congruence and identity axioms

hold. To prove the result, we suppose that there exists v ∈ dom(σ) \ dom(τ) and derive a

contradiction.

By hypothesis, τ =⇒ σ. Thus, using Lemma 3.20 and the congruence axioms, we

have τ =⇒ {v = vσi}, for any i ≥ 0. By Lemma 3.22, for all i ≥ 0, v = vσiτ so that

vσi ∈ Vars. By Lemma 3.21, vσ ∈ Vars \dom(σ), so that, as σ is ordered and v ∈ dom(σ),

vσ < v. In particular, vσ 6= v, so that as vστ = v and τ is ordered, we would have v < vσ,

which is a contradiction. 2

Proof of Lemma 3.12 on page 49. We assume that the congruence and identity axioms

hold. Note that, by the hypothesis, τ =⇒ σ and τ =⇒ {s = t} so that, using
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Lemma 3.20 and the congruence axioms, we have τ =⇒ {s = tσj} and τ =⇒ {tστk = s},

for all j, k ≥ 0.

Let v ∈ vars(s)\dom(τ). We prove, by induction on size(s), that there exists a variable

z ∈ vars(tσ) \ dom(σ) such that v ∈ vars(zτ). The base case is when size(s) = 1, so that

s = v. Now, for each j ≥ 0, τ =⇒ {v = tσj} and hence, by Lemma 3.22, as v /∈ dom(τ),

v = tσjτ . As a consequence, tσj ∈ Vars for all j ≥ 0 and v = tστ . By Lemma 3.21,

tσ ∈ Vars \ dom(σ). Thus, we define z = tσ.

For the inductive step, we assume that size(s) > 1 so that, for some n > 0, we have

s = f(s1, . . . , sn) and, for some i ∈ {1, . . . , n}, v ∈ vars(si) and size(si) < size(s). By

Lemma 3.21, either tσ ∈ Vars \ dom(σ) or there exists a j ≥ 0 such that tσj /∈ Vars.

First, suppose that tσ ∈ Vars \dom(σ). Now, τ =⇒ {tστ = s} so that, as sτ /∈ Vars,

by Lemma 3.22, we have tστ /∈ Vars \ dom(τ). Thus, by Lemma 3.21, there exists k > 1

such that tστk /∈ Vars. Then, using the identity axioms, we have tστ k = f(r1, . . . , rn)

and τ =⇒ {si = ri}. By the inductive hypothesis (letting σ be the empty substitution),

we have v ∈ vars(riτ). However, vars(ri) ⊆ vars(tστk) so that v ∈ vars(tστ k+1). As

τ ∈ VSubst and v /∈ dom(τ), v ∈ vars(tστ). Thus, in this case, let z = tσ.

Secondly, suppose tσj /∈ Vars for some j ≥ 0. Then, as τ =⇒ {s = tσj}, it

follows from the identity axioms that tσj = f(t1, . . . , tn) and τ =⇒ {si = ti}. By the

inductive hypothesis, there exists z ∈ vars(tiσ)\dom(σ) such that v ∈ vars(zτ). However,

vars(tiσ) ⊆ vars(tσj+1) so that we must have z ∈ vars(tσj+1) \ dom(σ). As σ ∈ VSubst ,

z ∈ vars(tσ) \ dom(σ) as required. 2

To prove Theorem 3.15, we need to show that the result holds for a single S-step.

Lemma 3.23 Let T be an equality theory, σ ∈ RSubst and σ
S

7−→ σ′. Then σ′ ∈ RSubst,

dom(σ) = dom(σ′), vars(σ) = vars(σ′), and T ` ∀(σ ↔ σ′).

Proof. Since σ
S

7−→ σ′, there exists x, y ∈ dom(σ), with x 6= y, such that (x 7→ t) ∈ σ,

(y 7→ s) ∈ σ and σ′ =
(

σ \ {y 7→ s}
)

∪
{

y 7→ s[x/t]
}

. If x /∈ vars(s), σ = σ′ and the result

is trivial. Suppose now that x ∈ vars(s). We define

σ0
def
= σ \ {x = t, y = s}.

Hence, as it is assumed that x 6= y,

σ = σ0 ∪ {x 7→ t, y 7→ s}, (3.1)

σ′ = σ0 ∪ {x 7→ t, y 7→ s[x/t]}. (3.2)

We first show that σ′ ∈ RSubst and dom(σ) = dom(σ′). If s /∈ Vars , then s[x/t] /∈ Vars

so that dom(σ) = dom(σ′). Also, as σ has no circular subset, σ′ has no circular subset and

σ′ ∈ RSubst . If s ∈ Vars , then s = x and s[x/t] = t. Thus, as σ = σ0∪{x 7→ t, y 7→ x} has

no circular subset, t 6= y so that dom(σ) = dom(σ′). Moreover, neither σ0 ∪ {x 7→ t} nor

σ0 ∪ {y 7→ t} have circular subsets. Hence σ′ has no circular subset. Thus σ′ ∈ RSubst .
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Now, since

(

vars(s) ∪ vars(t)
)

\ dom(σ) = vars
(

s[x/t] ∪ vars(t)
)

\ dom(σ),

it follows that vars(σ) = vars(σ′).

Therefore, it remains to show that T ` ∀(σ ↔ σ′) for any equality theory T . To do this,

we assume that the congruence axioms hold, and show that σ ⇐⇒ σ′. By Lemma 3.20,

we have

{x = t} =⇒ {s = s[x/t]}.

Thus, using the congruence axiom (2.7), we have

{x = t, y = s} =⇒
{

x = t, y = s, s = s[x/t]
}

=⇒
{

x = t, y = s[x/t]
}

.

Similarly, using congruence axioms (2.6) and (2.7), we have

{

x = t, y = s[x/t]
}

=⇒
{

x = t, y = s[x/t], s = s[x/t]
}

=⇒ {x = t, y = s}.

Thus

{x = t, y = s} ⇐⇒
{

x = t, y = s[x/t]
}

.

It therefore follows from (3.1) and (3.2) that σ ⇐⇒ σ′. 2

The condition x 6= y in the proof of Lemma 3.23 is necessary. For example, suppose

σ =
{

x 7→ f(x)
}

and σ′ =
{

x 7→ f(f(x))
}

. Then we do not have σ′ =⇒ σ. Note however

that this implication will hold as soon as we enrich the equality theory T with either the

occurs-check axioms of the finite-tree theory or the uniqueness axioms of the rational-tree

theory.

Proof of Theorem 3.15 on page 50. The proof is by induction on the length of the

sequence of S-steps transforming σ to σ′. The base case is the empty sequence. For the

inductive step, the sequence has length n > 0 and there exists σ1 such that σ
S

7−→ σ1
S

7−→∗ σ′

and σ1
S

7−→∗ σ′ has length n − 1. By applying Lemma 3.23, we obtain σ1 ∈ RSubst ,

dom(σ) = dom(σ1), vars(σ) = vars(σ1) and T ` ∀(σ ↔ σ1). By the inductive hypothesis,

σ′ ∈ RSubst , dom(σ1) = dom(σ′), vars(σ1) = vars(σ′) and T ` ∀(σ1 ↔ σ′). Hence we

have dom(σ) = dom(σ′), vars(σ) = vars(σ′), and T ` ∀(σ ↔ σ′). 2

Proof of Theorem 3.16 on page 50. To prove the theorem, we construct an S-

transformation and show that the resulting substitution has the required properties.
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Suppose that {x1, . . . , xn} = dom(σ), σ0 = σ and, for each j = 0, . . . , n,

σj = {x1 7→ t1,j, . . . , xn 7→ tn,j},

where, if j > 0, tj,j = tj,j−1 and, for each i = 1, . . . , n with i 6= j, ti,j = ti,j−1[xj/tj,j ].

It follows from the definition of σj that, for j = 1, . . . , n , σj can be obtained from

σj−1 by two sequences of S-steps of lengths j − 1 and n− j + 1:

σj−1 = σ0
j−1

S
7−→ · · ·

S
7−→ σj−1

j−1 = σj
j−1

S
7−→ · · ·

S
7−→ σn

j−1 = σj ,

where, for i = 1, . . . , n with i 6= j,

σi
j−1 =

(

σi−1
j−1 \ {xi 7→ ti,j−1}

)

∪
{

xi 7→ ti,j−1[xj/tj,j ]
}

= {x1 7→ t1,j , . . . , xi 7→ ti,j , xi+1 7→ ti+1,j−1, . . . , xn 7→ tn,j−1}.

Hence, by Theorem 3.15, σ1, . . . , σn ∈ RSubst .

We next show, by induction on j, with 0 ≤ j ≤ n, that, for each i = 1, . . . , n and each

h = 1, . . . , j, we have vars(ti,j) = vars
(

ti,j [xh/th,j ]
)

.

For the base case when j = 0 there is nothing to prove. Suppose, therefore, that

1 ≤ j ≤ n and that, for each i = 1, . . . , n and h = 1, . . . , j − 1,

vars(ti,j−1) = vars
(

ti,j−1[xh/th,j−1]
)

.

Now by the definition of tk,j where 1 ≤ k ≤ n, k 6= j, we have

vars(tk,j) = vars
(

tk,j−1[xj/tj,j ]
)

. (3.3)

Since a substitution consisting of a single binding is variable-idempotent,

vars(tj,j) = vars
(

tj,j [xj/tj,j]
)

so that, as tj,j = tj,j−1,

vars(tj,j) = vars
(

tj,j−1[xj/tj,j ]
)

. (3.4)

Thus, by (3.3) and (3.4), for all k such that 1 ≤ k ≤ n, we have

vars(tk,j) = vars
(

tk,j−1[xj/tj,j ]
)

. (3.5)

Therefore, for each i = 1, . . . , n and h = 1, . . . , j, using (3.5) and the inductive hypothesis,

we have

vars
(

ti,j [xh/th,j ]
)

= vars
(

ti,j−1[xj/tj,j ]
[

xh/th,j−1[xj/tj,j ]
]

)
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= vars
(

ti,j−1[xh/th,j−1][xj/tj,j]
)

= vars
(

ti,j−1[xj/tj,j]
)

= vars(ti,j).

Letting j = n we obtain, for each i, h = 1, . . . , n,

vars
(

ti,n[xh/th,n]
)

= vars(ti,n).

Therefore, for each i = 1, . . . , n,

vars(ti,nσn) = vars(ti,n).

Thus, letting σ′ = σn, by Lemma 3.6, we obtain σ′ ∈ VSubst .

Finally, we show by induction on j, with 0 ≤ j ≤ n, that

∀h ∈ {1, . . . , j} : xh ∈ range(σj) =⇒ xh ∈ vars(xhσj). (3.6)

For the base case when j = 0 there is nothing to prove. Suppose, therefore, that (3.6)

holds for an index j (where 0 ≤ j < n) and consider the index j + 1. It is not difficult to

observe that, by construction,

range(σj+1) =
(

range(σj) \ {xj+1}
)

∪ vars(tj+1,j).

Thus, for each h ∈ {1, . . . , j}, since xh 6= xj+1, we have

xh ∈ range(σj+1) ⇐⇒ xh ∈ range(σj)

=⇒ xh ∈ vars(xhσj)

=⇒ xh ∈ vars(xhσj+1).

Consider now h = j + 1. Note that, if xj+1 /∈ vars(xj+1σj+1) = vars(tj+1,j), then every

occurrence of xj+1 in the terms ti,j (where i 6= j) will be replaced, in ti,j+1, by term tj+1,j,

so that xh /∈ range(σj+1). Formally, we have

xh ∈ range(σj+1) =⇒ xj+1 ∈ vars(xj+1σj+1),

therefore completing the inductive proof. By letting j = n in (3.6), since σn = σ′, we

obtain that y ∈ dom(σ′) ∩ range(σ′) implies y ∈ vars(yσ′). 2

Proof of Lemma 3.18 on page 50. We have that (τ ∪ σ) ∈ RSubst because, by

hypothesis, σ, τ ∈ RSubst and dom(σ) ∩ vars(τ) = ∅. It follows from (2.4) that τ ◦ σ

can be obtained from (τ ∪ σ) by a sequence of S-steps so that, by Theorem 3.15, we have

properties 1 and 2.
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To prove property 3, we will show that, for all terms t ∈ HTerms,

vars(tστ) = vars(tστστ).

• We start by proving the inclusion vars(tστ) ⊆ vars(tστστ). Thus, let z ∈ vars(tστ).

First note that, if z /∈ dom(σ) ∪ dom(τ), then the result is trivial.

Suppose z ∈ dom(σ). By hypothesis, z /∈ vars(τ) so that z ∈ vars(tσ). Since σ is

variable-idempotent, z ∈ vars(tσσ), so that there exists v ∈ vars(tσ) ∩ dom(σ) such

that z ∈ vars(vσ). Thus v /∈ vars(τ), so that v ∈ vars(tστ). Therefore z ∈ vars(tστσ)

and, since z /∈ vars(τ), we can conclude z ∈ vars(tστστ).

Otherwise, let z ∈ dom(τ), so that z /∈ dom(σ). There exists v ∈ vars(tσ) ∩ dom(τ)

such that z ∈ vars(vτ). Since τ is variable-idempotent, z ∈ vars(vττ) so that there

exists w ∈ vars(vτ) ∩ dom(τ) such that z ∈ vars(wτ). Since w /∈ dom(σ) then

w ∈ vars(tστσ). Therefore we can conclude z ∈ vars(tστστ).

• To prove the other inclusion, let z ∈ vars(tστστ), so that there exists v ∈ vars(tστσ)

such that z ∈ vars(vτ). Similarly, there exists w ∈ vars(tστ) such that v ∈ vars(wσ).

Suppose v 6= w. Then w ∈ dom(σ), so that by hypothesis w /∈ vars(τ). As a

consequence, w ∈ vars(tσ), v ∈ vars(tσσ) and z ∈ vars(tσστ). Thus, as σ ∈ VSubst ,

we obtain z ∈ vars(tστ).

Otherwise, if v = w, there exists x ∈ vars(tσ) such that z ∈ vars(xττ). Thus,

z ∈ vars(tσττ) and, since τ ∈ VSubst , z ∈ vars(tστ).

2

3.3 The Abstraction Function for RSubst

In this section we define a new abstraction function mapping arbitrary substitutions in

rational solved form into their abstract descriptions. This abstraction function is based on

a new definition for the notion of occurrence. The new occurrence operator ‘occ’ is defined

on RSubst so that it does not require the explicit computation of intermediate variable-

idempotent substitutions. In particular, it can be seen as a partial evaluation of the

composition of the S-transformation algorithm and the abstraction function for VSubst ,

as informally outlined in the previous section. The ‘occ’ operator, which is defined as the

fixed point of a sequence of occurrence functions, generalizes the ‘sg’ operator, defined for

ISubst , coinciding with it when applied to idempotent substitutions.

Definition 3.24 (Occurrence functions.) For each n ∈ N, the occurrence function

occn : RSubst × Vars → ℘f(Vars) is defined, for each σ ∈ RSubst and each v ∈ Vars, by

occ0(σ, v)
def
= {v} \ dom(σ),

occn+1(σ, v)
def
=

{

y ∈ Vars
∣

∣ vars(yσ) ∩ occn(σ, v) 6= ∅
}

.
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The following monotonicity property for occn is proved at the end of this section.

Lemma 3.25 For each n ∈ N, each σ ∈ RSubst and each v ∈ Vars,

occn(σ, v) ⊆ occn+1(σ, v).

Note that, by considering the substitution {u 7→ v, v 7→ w}, it can be seen that, if we

had not excluded the domain variables in the definition of occ0, then this monotonicity

property would not have held.

For any n, the set occn(σ, v) is restricted to the set {v} ∪ dom(σ). Thus, it follows

from Lemma 3.25, that there is an index ` ≤ #σ such that occ`(σ, v) = occn(σ, v) for all

n ≥ `.

Definition 3.26 (Occurrence operator.) For each σ ∈ RSubst and each v ∈ Vars,

the occurrence operator occ : RSubst × Vars → ℘f(Vars) is defined by

occ(σ, v)
def
= occ# σ(σ, v).

Note that, by combining Definitions 3.24 and 3.26, we obtain

occ(σ, v) =
{

y ∈ Vars
∣

∣ vars(yσ) ∩ occ(σ, v) 6= ∅
}

. (3.7)

The following simpler characterizations for ‘occ’ can be used when the variable is in

the domain of the substitution, the substitution is variable-idempotent or the substitution

is idempotent.

Lemma 3.27 If σ ∈ RSubst and v ∈ dom(σ), then occ(σ, v) = ∅.

Lemma 3.28 If σ ∈ VSubst then, for each v ∈ Vars,

occ(σ, v) = occ1(σ, v)

=
{

y ∈ Vars
∣

∣ v ∈ vars(yσ) \ dom(σ)
}

.

Lemma 3.29 If σ ∈ ISubst and v ∈ Vars then occ(σ, v) = sg(σ, v).

The next result shows that the ‘occ’ operator precisely captures the intended property.

All of these results are proved at the end of this section.

Proposition 3.30 Let σ ∈ RSubst and y, v ∈ Vars. Then

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(

rt(y, σ)
)

.

Example 3.31 Consider Example 3.14. For all i ≥ 0, we have dom(σi) = {x1, x2, x3},

so that

occ(σi, x1) = occ(σi, x2) = occ(σi, x3) = ∅.
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Moreover,

occ0(σ0, x4) = {x4},

occ1(σ0, x4) = {x2, x4},

occ2(σ0, x4) = {x1, x2, x4},

occ3(σ0, x4) = {x1, x2, x3, x4} = occ(σ0, x4).

Also, note that

occ1(σ3, x4) = {x1, x2, x3, x4} = occ(σ3, x4).

The definition of abstraction is based on the occurrence operator.

Definition 3.32 (Abstraction.) The concrete domain D[ is related to SS by means of

the abstraction function α : D[ → SS. For each Σ ∈ ℘(RSubst) and VI ∈ ℘f(Vars),

α
(

(Σ,VI )
) def

= Alub
{

α(σ,VI )
∣

∣ σ ∈ Σ
}

where α : RSubst ×℘f(Vars) → SS is defined, for each σ ∈ RSubst and VI ∈ ℘f(Vars), by

α(σ,VI )
def
=

(

{

occ(σ, v) ∩ VI
∣

∣ v ∈ Vars
}

\ {∅},VI
)

.

Example 3.33 Let us consider Examples 3.14 and 3.31 once more. Then, assuming

VI = {x1, x2, x3, x4},

α(σ0,VI ) =
(

{

occ(σ0, x4)
}

,VI
)

=
(

{

{x1, x2, x3, x4}
}

,VI
)

.

As a second example, consider the substitution

σ =
{

x1 7→ f(x1), x2 7→ x1, x3 7→ x1, x4 7→ x2

}

.

Then

occ(σ, x1) = occ(σ, x2) = occ(σ, x3) = occ(σ, x4) = ∅

so that, if we again assume VI = {x1, x2, x3, x4},

α(σ,VI ) = (∅,VI ).

Any substitution in rational solved form is equivalent, with respect to any equality

theory, to a variable-idempotent substitution having the same abstraction.

Theorem 3.34 Let σ ∈ RSubst be satisfiable in the equality theory T . Then, there exists

σ′ ∈ VSubst such that vars(σ) = vars(σ′), T ` ∀(σ ↔ σ′), y ∈ dom(σ′)∩ range(σ′) implies

y ∈ vars(yσ′) and α(σ,VI ) = α(σ′,VI ), for any VI ∈ ℘f(Vars).
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Equivalent substitutions in rational solved form have the same abstraction. We note

that this property is essential for the implementation of the SS domain.

Theorem 3.35 Let σ, σ′ ∈ RSubst be satisfiable in the syntactic equality theory T and

suppose T ` ∀(σ ↔ σ′). Then α(σ,VI ) = α(σ′,VI ), for any VI ∈ ℘f(Vars).

3.3.1 Proofs of the Results of Section 3.3

Proof of Lemma 3.25 on page 58. The proof is by induction on n. For the base case,

when n = 1, if occ0(σ, v) 6= ∅ then v /∈ dom(σ) and occ0(σ, v) = {v}. Thus, v = vσ so

that, by Definition 3.24, v ∈ occ1(σ, v). Suppose n > 1. Then, if y ∈ occn−1(σ, v), we

have, by Definition 3.24, vars(yσ) ∩ occn−2(σ, v) 6= ∅. By the inductive hypothesis,

occn−2(σ, v) ⊆ occn−1(σ, v)

so that vars(yσ) ∩ occn−1(σ, v) 6= ∅ and thus y ∈ occn(σ, v). 2

Proof of Lemma 3.27 on page 58. By Definition 3.24, occ0(σ, v) = ∅ and, for all

n > 0, we have occn(σ, v) = ∅ if occn−1(σ, v) = ∅. Thus, occn(σ, v) = ∅, for all n ≥ 0, so

that, by Definition 3.26, occ(σ, v) = ∅. 2

Proof of Lemma 3.28 on page 58. Suppose first that v ∈ dom(σ). Then

{

y ∈ Vars
∣

∣ v ∈ vars(yσ) \ dom(σ)
}

= ∅.

Also, by Lemma 3.27, occ1(σ, v) = occ(σ, v) = ∅.

Suppose next that v /∈ dom(σ). It follows from Definition 3.24, that

occ0(σ, v) = {v},

occ1(σ, v) =
{

y ∈ Vars
∣

∣ vars(yσ) ∩ {v} 6= ∅
}

=
{

y ∈ Vars
∣

∣ v ∈ vars(yσ)
}

,

occ2(σ, v) =
{

y ∈ Vars
∣

∣

∣
vars(yσ) ∩

{

y1 ∈ Vars | v ∈ vars(y1σ)
}

6= ∅
}

=
{

y ∈ Vars
∣

∣ v ∈ vars(yσ2)
}

.

Since σ ∈ VSubst , vars(yσ) = vars(yσ2). Thus, occ1(σ, v) = occ2(σ, v) and hence, by

Definition 3.24, we have also occn(σ, v) = occ1(σ, v), for all n ≥ 1. Therefore, by Defini-

tion 3.26, occ(σ, v) = occ1(σ, v) =
{

y ∈ Vars
∣

∣ v ∈ vars(yσ)
}

. 2

Proof of Lemma 3.29 on page 58. As σ ∈ ISubst then, for all y ∈ Vars, we have
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vars(yσ) \ dom(σ) = vars(yσ). Also, as σ ∈ VSubst , we can apply Lemma 3.28 so that

occ(σ, v) =
{

y ∈ Vars
∣

∣ v ∈ vars(yσ) \ dom(σ)
}

=
{

y ∈ Vars
∣

∣ v ∈ vars(yσ)
}

= sg(σ, v).

2

To prove Proposition 3.30 and Theorem 3.34, we need to show that the operator ‘occ’

is invariant with respect to S-transformation.

Lemma 3.36 Let σ, σ′ ∈ RSubst be such that σ
S

7−→∗ σ′. Then, for all v ∈ Vars, we have

occ(σ, v) = occ(σ′, v).

Proof. Suppose first that σ
S

7−→ σ′. Thus we assume that (x 7→ t) ∈ σ and (y 7→ s) ∈ σ,

where x 6= y, and that

σ′ =
(

σ \ {y 7→ s}
)

∪
{

y 7→ s[x/t]
}

. (3.8)

If x /∈ vars(s), then σ′ = σ and there is nothing to prove. Also, if v ∈ dom(σ) then, by

Theorem 3.15, v ∈ dom(σ′) so that, by Lemma 3.27, occ(σ, v) = occ(σ′, v) = ∅.

We now assume that x ∈ vars(s) and v = vσ = vσ′. We first prove that, for each

m ≥ 0,

occm(σ, v) ⊆ occ(σ′, v). (3.9)

The proof is by induction on m. By Definition 3.24, we have that

occ0(σ, v) = occ0(σ
′, v) = {v},

so that (3.9) holds for m = 0. Suppose then that m > 0 and vm ∈ occm(σ, v). Then, to

prove (3.9), we must show that vm ∈ occ(σ′, v). By Definition 3.24, there exists

vm−1 ∈ vars(vmσ) ∩ occm−1(σ, v). (3.10)

Hence, by the inductive hypothesis, vm−1 ∈ occ(σ′, v). If vm−1 ∈ vars(vmσ
′), then,

by (3.7), vm ∈ occ(σ′, v). Suppose now that vm−1 /∈ vars(vmσ
′). Since, by (3.10), we

have that vm−1 ∈ vars(vmσ), it follows, using (3.8), that vm = y and vm−1 = x. However,

by assumption, v /∈ dom(σ), so that x 6= v and m > 1. Thus, by Definition 3.24, there

exists

vm−2 ∈ vars(xσ) ∩ occm−2(σ, v). (3.11)

However, xσ = t and x ∈ vars(s) so that, by (3.11), vm−2 ∈ vars
(

s[x/t]
)

. Since,

by (3.8),
(

y 7→ s[x/t]
)

∈ σ′, we have also vm−2 ∈ vars(yσ′). Moreover, by (3.11),

vm−2 ∈ occm−2(σ, v) so that, by the inductive hypothesis, we have that vm−2 ∈ occ(σ′, v).

Thus, by Eq. (3.7), as vm = y, vm ∈ occ(σ′, v).
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Conversely, we now prove that, for all m ≥ 0,

occm(σ′, v) ⊆ occ(σ, v). (3.12)

The proof is by induction on m. As before, occ0(σ
′, v) = occ0(σ, v) = {v} so that (3.12)

holds for m = 0. Suppose then that m > 0 and vm ∈ occm(σ′, v). Then, to prove (3.12),

we must show that vm ∈ occ(σ, v). By Definition 3.24, there exists

vm−1 ∈ vars(vmσ
′) ∩ occm−1(σ

′, v). (3.13)

Hence, by the inductive hypothesis, vm−1 ∈ occ(σ, v). If vm−1 ∈ vars(vmσ) then, by (3.7),

we have vm ∈ occ(σ, v). Suppose now that vm−1 /∈ vars(vmσ). Since, by (3.13), we have

vm−1 ∈ vars(vmσ
′), it follows, using (3.8), that vm = y and vm−1 ∈ vars(t) = vars(xσ).

Hence, since vm−1 ∈ occ(σ, v), by (3.7), also x ∈ occ(σ, v). Furthermore, x ∈ vars(yσ) so

again, by (3.7), as vm = y, vm ∈ occ(σ, v).

Combining (3.9) and (3.12) we obtain the result that, if σ′ is obtained from σ by a

single S-step, then occ(σ, v) = occ(σ′, v).

Suppose now that σ = σ1
S

7−→ · · ·
S

7−→ σn = σ′. If n = 1, then σ = σ′. If n > 1, we

have by the first part of the proof that, for each i = 2, . . . , n, occ(σi−1, v) = occ(σi, v),

and hence the required result. 2

In Lemma 3.36 the choice of the variable v is arbitrary: thus the following Corollary

follows easily from Definition 3.32.

Corollary 3.37 Let σ, σ′ ∈ RSubst be such that σ
S
7−→∗ σ′. Then, for all VI ∈ ℘f(Vars),

we have α(σ,VI ) = α(σ′,VI ).

The next result shows that the operator ‘occ’ behaves as expected on all variable-

idempotent substitutions.

Lemma 3.38 Let σ ∈ VSubst and y, v ∈ Vars. Then

y ∈ occ(σ, v) ⇐⇒ v ∈ vars
(

rt(y, σ)
)

.

Proof. By Lemma 3.28, y ∈ occ(σ, v) if and only if v ∈ vars(yσ) \ dom(σ).

To prove the first implication (⇒), let v ∈ vars(yσ) \ dom(σ). Then, for all i > 0, we

have v ∈ vars(yσi) \ dom(σ), so that v ∈ vars
(

rt(y, σ)
)

.

To prove the other implication (⇐), assume that v ∈ vars
(

rt(y, σ)
)

. We prove by

contradiction that v ∈ vars(yσ) \ dom(σ). In fact, assume that v /∈ vars(yσ) \ dom(σ).

Then, since σ ∈ VSubst , by Definition 3.4 we obtain v /∈ vars(yσσ) \ dom(σ) so that, for

all i > 0, v /∈ vars(yσi) \ dom(σ). Thus, by definition of ‘rt’, v /∈ vars
(

rt(y, σ)
)

. 2

In order to prove Proposition 3.30 it is useful to provide an auxiliary result relating

the function ‘rt’ and the concept of equivalence under a syntactic equality theory.
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Lemma 3.39 Let σ ∈ RSubst be satisfiable in the syntactic equality theory T . Suppose

s, t ∈ HTerms are such that T ` ∀
(

σ → (s = t)
)

. Then rt(s, σ) = rt(t, σ).

Proof. We suppose, toward a contradiction, that rt(s, σ) 6= rt(t, σ). Then, there must

exist a finite path p such that:

a. x = rt(s, σ)[p] ∈ Vars \ dom(σ), y = rt(t, σ)[p] ∈ Vars \ dom(σ) and x 6= y; or

b. x = rt(s, σ)[p] ∈ Vars \dom(σ) and r = rt(t, σ)[p] /∈ Vars or, symmetrically, we have

r = rt(s, σ)[p] /∈ Vars and x = rt(t, σ)[p] ∈ Vars \ dom(σ); or

c. r1 = rt(s, σ)[p] /∈ Vars, r2 = rt(t, σ)[p] /∈ Vars and r1 and r2 have different principal

functors.

Then, by definition of ‘rt’, there must exists an index i ∈ N such that one of these holds:

1. x = sσi[p] ∈ Vars \ dom(σ), y = tσi[p] ∈ Vars \ dom(σ) and x 6= y; or

2. x = sσi[p] ∈ Vars \ dom(σ) and r = tσi[p] /∈ Vars or, symmetrically, we have

r = sσi[p] /∈ Vars and x = tσi[p] ∈ Vars \ dom(σ); or

3. r1 = sσi[p] /∈ Vars and r2 = tσi[p] /∈ Vars have different principal functors.

By Lemma 3.20, we have T ` ∀
(

σ → (sσi = tσi)
)

; from this, by the identity axioms,

we obtain that

T ` ∀
(

σ →
(

sσi[p] = tσi[p]
)

)

. (3.14)

We now prove that each case leads to a contradiction.

Consider case 1. Let r1, r2 ∈ GTerms ∩ HTerms be two ground and finite terms

having different principal functors, so that T ` ∀(r1 6= r2). By Lemma 3.19, we have

that σ′ = σ ∪ {x 7→ r1, y 7→ r2} ∈ RSubst is satisfiable; moreover, T ` ∀(σ′ → σ),

T ` ∀
(

σ′ → (x = r1)
)

and T ` ∀
(

σ′ → (y = r2)
)

. This is a contradiction, since, by (3.14),

we have T ` ∀
(

σ → (x = y)
)

.

Consider case 2. Without loss of generality, consider the first subcase, where x = sσi

and r = tσi[p] /∈ Vars. Let r′ ∈ GTerms ∩ HTerms be such that r and r′ have different

principal functors, so that T ` ∀(r 6= r′). By Lemma 3.19, σ′ = σ ∪ {x 7→ r′} ∈ RSubst is

satisfiable; we also have T ` ∀(σ′ → σ) and T ` ∀
(

σ′ → (x = r′)
)

. This is a contradiction,

since, by (3.14), T ` ∀
(

σ → (x = r)
)

.

Finally, consider case 3. In this case T ` ∀(r1 6= r2). This immediately leads to a

contradiction, since, by (3.14), T ` ∀
(

σ → (r1 = r2)
)

. 2

Proof of Proposition 3.30 on page 58. By Theorem 3.16, there exists τ ∈ VSubst such

that σ
S
7−→∗ τ . By Theorem 3.15, dom(σ) = dom(τ) and T ` ∀(σ ↔ τ). By Lemma 3.36,

occ(σ, v) = occ(τ, v). Moreover, by Lemma 3.38, we have y ∈ occ(τ, v) if and only if
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v ∈ vars
(

rt(y, τ)
)

. Thus, we have y ∈ occ(σ, v) if and only if v ∈ vars
(

rt(y, τ)
)

and, to

complete the proof, it is sufficient to show that

v ∈ vars
(

rt(y, σ)
)

⇐⇒ v ∈ vars
(

rt(y, τ)
)

.

We only prove the first implication, since the other one follows by symmetry.

Suppose v ∈ vars
(

rt(y, σ)
)

. Then there exists an index i ≥ 0 such that v ∈ vars(yσi).

Note that v /∈ dom(σ) = dom(τ), so that v ∈ vars
(

rt(yσi, τ)
)

. Since T ` ∀(τ → σ), by

Lemma 3.20 we have T ` ∀
(

τ → (y = yσi)
)

. By Lemma 3.39, rt(y, τ) = rt(yσi, τ). Thus,

v ∈ vars
(

rt(y, τ)
)

. 2

Proof of Theorem 3.34 on page 59. All but the last property follow by Corollary 3.17.

The last property, α(σ,VI ) = α(σ′,VI ), follows by Corollary 3.37. 2

To prove Theorem 3.35, we need to show that the abstraction function α is invariant

when we exchange equivalent variables to obtain an ordered substitution.

Lemma 3.40 Let σ ∈ VSubst, v, w ∈ Vars and (v 7→ w) ∈ σ. Let ρ = {v 7→ w,w 7→ v}

and define σ′ = ρ ◦ σ = {xρ 7→ tρ | x 7→ t ∈ σ }. Then

1. σ′ ∈ VSubst,

2. vars(σ) = vars(σ′),

3. α(σ,VI ) = α(σ′,VI ), for all VI ∈ ℘f(Vars), and

4. T ` ∀(σ ↔ σ′), for any equality theory T .

Proof. Since σ′ is obtained from σ by renaming variables and σ ∈ VSubst , we have also

that σ′ ∈ VSubst . Also, vars(σ) \ {v, w} = vars(σ′) \ {v, w} so that, since (v 7→ w) ∈ σ

and (w 7→ v) ∈ σ′, we have vars(σ) = vars(σ′).

To prove property 3, we have to show that, if

α(σ,VI )
def
= (sh,VI ) and α(σ′,VI )

def
= (sh ′,VI ),

then sh = sh ′. By the hypothesis, for all y ∈ Vars we have x ∈ vars(yσ) if and only if

xρ ∈ vars(yσ′). As σ, σ′ ∈ VSubst , we can use the alternative characterization of ‘occ’

given by Lemma 3.28 and conclude that, for each x ∈ Vars, occ(σ, x) = occ(σ ′, xρ).

Therefore sh ⊆ sh ′. The reverse inclusion follows by symmetry so that sh = sh ′.

To prove property 4, we first show by induction on the size of r ∈ HTerms that

T ` ∀
(

(v = w) → (r = rρ)
)

. (3.15)

For the base case, size(r) = 1. If r is a constant or a variable z such that z 6= v and z 6= w,

then we have r = rρ. If r = v, then rρ = w and T ` ∀
(

(v = w) → (v = w)
)

. Finally,

if r = w, then rρ = v and, using the congruence axioms, T ` ∀
(

(v = w) → (w = v)
)

.
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For the inductive step, let r = f(r1, . . . , rn). Then rρ = f(r1ρ, . . . , rnρ). Thus, using the

inductive hypothesis, for each i = 1, . . . , n, T ` ∀
(

(v = w) → (ri = riρ)
)

. Hence, by the

congruence axioms, (3.15) holds.

Note that (v 7→ w) ∈ σ. Therefore, it follows from (3.15) that, for each (x 7→ t) ∈ σ,

T ` ∀
(

σ → {x = t, x = xρ, t = tρ}
)

and, using the congruence axioms, we obtain

T ` ∀
(

σ → {xρ = tρ}
)

. Thus, T ` ∀(σ → σ′). Since (w 7→ v) ∈ σ′, the reverse implication

follows by symmetry so that T ` ∀(σ′ ↔ σ). 2

Lemma 3.41 Let σ ∈ VSubst. Then there exists an ordered substitution σ′ ∈ VSubst such

that vars(σ) = vars(σ′), α(σ,VI ) = α(σ′,VI ), for all VI ∈ ℘f(Vars), and T ` ∀(σ ↔ σ′),

for any equality theory T .

Proof. The proof is by induction on the number b ≥ 0 of the bindings (v 7→ w) ∈ σ such

that w ∈ param(σ) and w > v (the number of unordered bindings). For the base case,

when b = 0, σ is ordered and the result holds by taking σ′ = σ.

For the inductive case, when b > 0, let (v 7→ w) ∈ σ be an unordered binding and define

ρ = {v 7→ w,w 7→ v}. Then, by Lemma 3.40, we have ρ◦σ ∈ VSubst , vars(σ) = vars(ρ◦σ),

α(σ,VI ) = α(ρ ◦ σ,VI ), for all VI ∈ ℘f(Vars), and, finally, T ` ∀(σ ↔ ρ ◦ σ), for any

equality theory T . In order to apply the inductive hypothesis to ρ ◦ σ, we must show that

the number of unordered bindings in ρ◦σ is less than b. To this end, roughly speaking, we

start showing that any ordered binding in σ is mapped by ρ into another ordered binding

in ρ ◦σ, therefore proving that the number of unordered bindings is not increasing. There

are three cases. First, any ordered binding (y 7→ t) ∈ σ such that t /∈ Vars is mapped by

ρ into the binding (yρ 7→ tρ) ∈ (ρ ◦ σ) which is clearly ordered, since tρ /∈ Vars. Second,

consider any ordered binding (y 7→ z) ∈ σ such that z ∈ dom(σ). Since w ∈ param(σ), we

have z 6= w. If also z 6= v then we have zρ = z and z ∈ dom(ρ◦σ); otherwise z = v so that

zρ = w and, as (w 7→ v) ∈ (ρ ◦σ), zρ ∈ dom(ρ ◦σ). Thus, in either case, such a binding is

mapped by ρ into the binding (yρ 7→ zρ) ∈ (ρ ◦ σ) which is ordered since zρ ∈ dom(ρ ◦ σ).

Third, consider any ordered binding (y 7→ z) ∈ σ such that z ∈ param(σ) and z < y. The

ordering relation implies y 6= v and we also have y 6= w, since w ∈ param(σ). Hence, we

obtain yρ = y. Now, as z ∈ param(σ), z 6= v. If z 6= w, then zρ = z. On the other hand,

if z = w, then zρ = v so that zρ < z. Thus, in both cases, as z < y, zρ < y and hence,

(yρ 7→ zρ) ∈ (ρ ◦ σ) is ordered. Finally, to show that the number of unordered bindings is

strictly decreasing, we note that the unordered binding (v 7→ w) ∈ σ is mapped by ρ into

the binding (w 7→ v) ∈ (ρ ◦ σ), which is ordered.

Therefore, by applying the inductive hypothesis, there exists a substitution σ ′ such

that σ′ ∈ VSubst is ordered, vars(ρ ◦ σ) = vars(σ′), α(ρ ◦ σ,VI ) = α(σ′,VI ), for all

VI ∈ ℘f(Vars), and T ` ∀(ρ◦σ ↔ σ′), for any equality theory T . Then the required result

follows by transitivity. 2

Proof of Theorem 3.35 on page 60. By Theorem 3.34, we can assume σ, σ′ ∈ VSubst ,

T ` ∀(σ ↔ σ′) and α(σ,VI ) = α(σ′,VI ), for any VI ∈ ℘f(Vars). By Lemma 3.41,
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we can also assume that σ and σ′ are ordered substitutions so that, by Lemma 3.11,

dom(σ′) = dom(σ).

We prove the result by showing that, for all v ∈ Vars, both occ(σ, v) ⊆ occ(σ ′, v) and

occ(σ′, v) ⊆ occ(σ, v). We just prove the first of these as the other case is symmetric.

Suppose that w ∈ Vars and that v ∈ vars(wσ) \ dom(σ). Then, using the alternative

characterization of ‘occ’ for variable-idempotent substitutions given by Lemma 3.28, we

just have to show that v ∈ vars(wσ′) \ dom(σ′).

By Lemma 3.12 (replacing τ by σ, σ by σ′ and s = t by w = w), we have that there

exists z ∈ vars(wσ′) \ dom(σ′) such that v ∈ vars(zσ). Therefore, as dom(σ′) = dom(σ),

z /∈ dom(σ), and hence, v = z so that v ∈ vars(wσ′) \ dom(σ′), as required. 2

3.4 Abstract Unification

The operation of abstract unification and the results stating its correctness, idempotence

and commutativity are presented here in three stages. In the first two stages, we consider

substitutions containing just a single binding. For the first, it is assumed that the set of

variables of interest is fixed so that the definition is based on the SH domain. Then, in

the second, using the SS domain, the definition is extended to allow for the introduction

of new variables in the binding. The final stage extends this definition further to deal with

arbitrary substitutions.

3.4.1 Abstract Operations for Sharing Sets

The abstract unifier amgu abstracts the effect of a single binding on an element of the SH

domain. For this we need some ancillary definitions.

Definition 3.42 (Auxiliary functions.) The closure under union function (also called

star-union), (·)? : SH → SH , is given, for each sh ∈ SH , by

sh? def
=

{

S ∈ SG
∣

∣ ∃n ≥ 1 . ∃S1, . . . , Sn ∈ sh . S = S1 ∪ · · · ∪ Sn

}

.

For each sh ∈ SH and each V ∈ ℘f(Vars), the extraction of the relevant component of sh

with respect to V is encoded by rel : ℘f(Vars) × SH → SH defined as

rel(V, sh)
def
= {S ∈ sh | S ∩ V 6= ∅ };

the irrelevant component of sh with respect to V is thus defined as

rel(V, sh)
def
= sh \ rel(V, sh).

For each sh1, sh2 ∈ SH , the binary union function bin: SH × SH → SH is given by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.
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Definition 3.43 (amgu.) The function amgu: SH ×Bind → SH captures the effects of a

binding on an SH element. Suppose x ∈ Vars, r ∈ HTerms, and sh ∈ SH . Let vx
def
= {x},

vr
def
= vars(r) and vxr

def
= vx ∪ vr. Then

amgu(sh, x 7→ r)
def
= rel(vxr, sh) ∪ bin

(

rel(vx, sh)?, rel(vr, sh)?
)

.

The following correctness result for amgu is proved in Section 3.4.4.

Theorem 3.44 Let σ ∈ RSubst and (x 7→ r) ∈ Bind be such that µ ∈ mgs
(

{x = r}∪σ
)

in

the syntactic equality theory T ; let also (sh,VI ) ∈ SS, where vars(x 7→ r)∪ vars(σ) ⊆ VI .

Then

α(σ,VI ) �SS (sh,VI ) =⇒ α(µ,VI ) �SS

(

amgu(sh, x 7→ r),VI
)

.

The following theorems, proved in Section 3.4.4, show that amgu is idempotent and

commutative.

Theorem 3.45 Let sh ∈ SH and (x 7→ r) ∈ Bind. Then

amgu(sh, x 7→ r) = amgu
(

amgu(sh, x 7→ r), x 7→ r
)

.

Theorem 3.46 Let sh ∈ SH and (x 7→ r), (y 7→ t) ∈ Bind. Then

amgu
(

amgu(sh, x 7→ r), y 7→ t
)

= amgu
(

amgu(sh, y 7→ t), x 7→ r
)

.

3.4.2 Considering the Variables of Interest

The definitions and results of Section 3.4.1 can be lifted to apply to the proper set-sharing

domain.

Definition 3.47 (Amgu.) The operation Amgu: SS × Bind → SS extends the SS de-

scription it takes as an argument to the set of variables occurring in the binding it is given

as the second argument; then it applies amgu. Formally:

U
def
= vars(x 7→ r) \ VI ,

Amgu
(

(sh,VI ), x 7→ r
) def

=

(

amgu
(

sh ∪
{

{u}
∣

∣ u ∈ U
}

, x 7→ r
)

,VI ∪ U

)

.

The results for amgu can easily be extended to apply to Amgu giving us the following

corollaries.

Corollary 3.48 Let σ ∈ RSubst and (x 7→ r) ∈ Bind be such that µ ∈ mgs
(

{x = r} ∪ σ
)

in the syntactic equality theory T ; let also (sh,VI ) ∈ SS, where U = vars(x 7→ r) and

vars(σ) ⊆ VI . Then

α(σ,VI ) �SS (sh,VI ) =⇒ α
(

µ,VI ∪ U
)

�SS Amgu
(

(sh,VI ), x 7→ r
)

.
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Corollary 3.49 Let sh ∈ SH and (x 7→ r) ∈ Bind. Then

Amgu
(

(sh,VI ), x 7→ r
)

= Amgu
(

Amgu
(

(sh,VI ), x 7→ r
)

, x 7→ r
)

.

Corollary 3.50 Let sh ∈ SH and (x 7→ r), (y 7→ t) ∈ Bind. Then

Amgu
(

Amgu
(

(sh,VI ), x 7→ r
)

, y 7→ t
)

= Amgu
(

Amgu
(

(sh,VI ), y 7→ t
)

, x 7→ r
)

.

3.4.3 Abstract Unification for Set-Sharing

We now extend the above definitions and results for a single binding to any substitution.

Definition 3.51 (Aunify.) The function Aunify : SS × RSubst → SS generalizes Amgu

to any substitution µ ∈ RSubst in the context of some syntactic equality theory T : for each

(sh,VI ) ∈ SS and each µ satisfiable in T , where (x 7→ r) ∈ µ,

Aunify
(

(sh,VI ),∅
) def

= (sh,VI );

Aunify
(

(sh,VI ), µ
) def

= Aunify
(

(

Amgu(sh,VI ), x 7→ r
)

, µ \ {x 7→ r}
)

;

and, if µ is not satisfiable in T ,

Aunify
(

(sh,VI ), µ
) def

= ⊥.

For the distinguished elements ⊥ and > of SS,

Aunify(⊥, µ)
def
= ⊥,

Aunify(>, µ)
def
= >.

As a result of Corollary 3.50, Amgu and Aunify commute.

Lemma 3.52 Let (sh,VI ) ∈ SS, ν ∈ RSubst and (y 7→ t) ∈ Bind. Then

Aunify
(

Amgu
(

(sh,VI ), y 7→ t
)

, ν
)

= Amgu
(

Aunify
(

(sh,VI ), ν
)

, y 7→ t
)

.

As a consequence of this and Corollaries 3.48, 3.49 and 3.50, we have the following cor-

rectness, idempotence and commutativity results required for Aunify to be sound and

well-defined.

Theorem 3.53 Let (sh,VI ) ∈ SS and σ, ν ∈ RSubst, where vars(σ) ⊆ VI . Suppose also

that µ ∈ mgs(ν ∪ σ) in the syntactic equality theory T . Then

α(σ,VI ) �SS (sh,VI ) =⇒ α
(

µ,VI ∪ vars(ν)
)

�SS Aunify
(

(sh,VI ), µ
)

.

This theorem shows also that it is safe for the analyzer to perform part or all of the

concrete unification algorithm before computing Aunify.
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Theorem 3.54 Let (sh,VI ) ∈ SS and ν ∈ RSubst. Then

Aunify
(

(sh,VI ), ν
)

= Aunify
(

Aunify
(

(sh,VI ), ν
)

, ν
)

.

Theorem 3.55 Let (sh,VI ) ∈ SS and ν1, ν2 ∈ RSubst. Then

Aunify
(

Aunify
(

(sh,VI ), ν1

)

, ν2

)

= Aunify
(

Aunify
(

(sh,VI ), ν2

)

, ν1

)

.

The proofs of all these results are in Section 3.4.5.

3.4.4 Proofs of the Results of Section 3.4.1

In the proofs we use the fact that (·)? and rel are monotonic so that, for all sh1, sh2 ∈ SH

and V ∈ ℘f(Vars),

sh1 ⊆ sh2 =⇒ sh?
1 ⊆ sh?

2, (3.16)

sh1 ⊆ sh2 =⇒ rel(V, sh1) ⊆ rel(V, sh2). (3.17)

We will also use the fact that (·)? is idempotent.

Let t1, . . . , tn be terms. For the sake of brevity we will use the notation vt1···tn to

denote
⋃n

i=1 vars(ti). In particular, if x and y are variables, and r and t are terms, we will

use the following definitions:

vx
def
= {x}, vr

def
= vars(r), vxr

def
= vx ∪ vr,

vy
def
= {y}, vt

def
= vars(t), vyt

def
= vy ∪ vt.

Proof of Theorem 3.44 on page 67. We first prove the result under the assumption

that α(σ,VI ) = (sh,VI ). We do this in two parts. In the first, we partition σ into two

substitutions one of which, called σ−, is the same as σ when σ and µ are idempotent. We

construct a new substitution ν which, in the case that σ and µ are idempotent, is a most

general solution for xσ = rσ. Finally we compose ν with σ− to define a substitution that

has the same abstraction as µ but with a number of useful properties including that of

variable-idempotence. In the second part, we use this composed substitution in place of

µ to prove the result.

Part 1. By Theorem 3.34, we can assume that

σ ∈ VSubst , (3.18)

y ∈ dom(σ) ∩ range(σ) =⇒ y ∈ vars(yσ). (3.19)

Let σ◦, σ− ∈ RSubst be defined such that

σ◦ =
{

(y 7→ t) ∈ σ
∣

∣ y ∈ vars(xσ = rσ)
}

, (3.20)

σ− = σ \ σ◦. (3.21)
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Then, it follows from (3.19) and Lemma 3.10 that

σ◦ ∈ VSubst , σ− ∈ VSubst . (3.22)

Suppose z ∈ vars(σ◦) \ dom(σ◦). Then z ∈ vars(yσ◦) for some y ∈ dom(σ◦). By (3.20),

z ∈ vars(xσσ = rσσ)\dom(σ◦). By (3.18), z ∈ vars(xσ = rσ). Thus, as z was an arbitrary

variable in vars(σ◦) \ dom(σ◦),

vars(σ◦) ⊆ vars(xσ = rσ). (3.23)

Combining (3.20), (3.21), and (3.23), we have

dom(σ−) ∩ vars(σ◦) = ∅. (3.24)

Let ν ∈ mgs
(

{xσ = rσ} ∪ σ◦
)

in T so that

T ` ∀
(

ν ↔ {xσ = rσ} ∪ σ◦
)

, (3.25)

vars(ν) ⊆ vars(xσ = rσ) ∪ vars(σ◦). (3.26)

By Theorem 3.34, we can assume that

ν ∈ VSubst . (3.27)

By (3.20), (3.24), and (3.26), we have

dom(σ−) ∩ vars(ν) = ∅. (3.28)

Therefore, as σ−, ν ∈ VSubst (by (3.22) and (3.27)), we can use Lemma 3.18 to obtain

the following properties for ν ◦ σ−.

T ` ∀
(

(ν ◦ σ−) ↔ (ν ∪ σ−)
)

, (3.29)

dom(ν ◦ σ−) = dom(σ−) ∪ dom(ν), (3.30)

ν ◦ σ− ∈ VSubst . (3.31)

Now we have

T ` ∀
(

µ↔ {x = r} ∪ σ
)

[by hypothesis]

T ` ∀
(

µ↔ {xσ = rσ} ∪ σ
)

[by Lemma 3.20]

T ` ∀
(

µ↔ ν ∪ σ−
)

[by (3.21), (3.21) and (3.25)]

T ` ∀
(

µ↔ ν ◦ σ−
)

[by (3.29)]. (3.32)

Therefore, by Theorem 3.35,

α(µ,VI ) = α(ν ◦ σ−,VI ). (3.33)
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Part 2. To prove the result under the assumption α(σ,VI ) = (sh,VI ), we define

sh ′ ∈ SH so that

α(µ,VI ) = (sh ′,VI ). (3.34)

By (3.33), it holds α(ν ◦ σ−,VI ) = (sh ′,VI ). We show that sh ′ ⊆ amgu(sh, x 7→ r). If

sh ′ = ∅, there is nothing to prove. Therefore, we assume that there exists S ∈ sh ′ so that

S 6= ∅ and, for some v ∈ Vars,

v /∈ dom(ν ◦ σ−), (3.35)

S
def
= occ(ν ◦ σ−, v). (3.36)

Note that (3.30) and (3.35) imply that

v /∈ dom(ν), v /∈ dom(σ−). (3.37)

Let

S′ def
=

⋃

{

occ(σ, y)
∣

∣ y ∈ occ(ν, v)
}

. (3.38)

We show that

S = S′. (3.39)

By (3.18), (3.27) and (3.31), σ, ν, ν◦σ− ∈ VSubst and, by (3.35) and (3.37), v /∈ dom(ν◦σ−)

and v /∈ dom(ν). Thus, it follows from Lemma 3.28 with (3.36) and (3.38), that it

suffices to show that, for each w ∈ Vars, v ∈ vars(wσ−ν) if and only if there exists

z ∈ vars(wσ) \ dom(σ) such that v ∈ vars(zν).

First, we suppose that v ∈ vars(wσ−ν). Thus, there exists y ∈ vars(wσ−) such that

v ∈ vars(yν). Since σ◦, ν ∈ VSubst , T ` ∀(ν → σ◦) (by (3.25)), v /∈ dom(ν) (by (3.37))

and T ` ∀
(

ν → (yν = y)
)

(using Lemma 3.20), we can apply Lemma 3.12 (replacing

τ by ν, σ by σ◦ and s = t by yν = y) so that there exists z ∈ vars(yσ◦) \ dom(σ◦)

such that v ∈ vars(zν). We want to show that z ∈ vars(wσ) \ dom(σ). Now either

z ∈ dom(ν) or z = v so that, by (3.28) (if z ∈ dom(ν)) or (3.37) (if z = v), z /∈ dom(σ−).

However, z /∈ dom(σ◦), so that z /∈ dom(σ). Thus, it remains to prove that z ∈ vars(wσ).

Now, as y ∈ vars(wσ−) and z ∈ vars(yσ◦), we have z ∈ vars(wσ−σ◦). So we must

show that vars(wσ−σ◦) \ dom(σ) ⊆ vars(wσ). To see this note that, if w /∈ dom(σ−),

then wσ− = w and, by (3.20), wσ◦ = wσ so that wσ−σ◦ = wσ. On the other hand, if

w ∈ dom(σ−), then, by (3.21), wσ− = wσ so that wσ−σ◦ = wσσ◦ Now, as σ ∈ VSubst

and σ◦ ⊆ σ, we can apply Lemma 3.8 so that vars(wσσ◦) \ dom(σ) ⊆ vars(wσ). Hence,

vars(wσ−σ◦) \ dom(σ) ⊆ vars(wσ).

Suppose now there exists z ∈ vars(wσ) \ dom(σ) such that v ∈ vars(zν). Then we

have v ∈ vars(wσν). We need to show that v ∈ vars(wσ−ν). By (3.21), if w ∈ dom(σ−)

then wσν = wσ−ν, so that v ∈ vars(wσ−ν). On the other hand, once again by (3.21),

if w /∈ dom(σ−) then v ∈ vars(wσ◦ν). Moreover, w = wσ− so that, by (3.25) and
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Lemma 3.20 with the congruence axioms, T ` ∀
(

ν → (wσ◦ν = wσ−)
)

. Hence, since

ν ∈ VSubst and v /∈ dom(ν) (by (3.37)), we can apply Lemma 3.12 (replacing τ by ν, σ

by the empty substitution and s = t by wσ◦ν = wσ−) and obtain v ∈ vars(wσ−ν).

As a consequence of the previous two paragraphs, we have S = S ′.

Let

Sx
def
=

⋃

(

{

occ(σ, y)
∣

∣ y ∈ occ(ν, v)
}

∩ rel(vx, sh)
)

, (3.40)

Sr
def
=

⋃

(

{

occ(σ, y)
∣

∣ y ∈ occ(ν, v)
}

∩ rel(vr, sh)
)

, (3.41)

S0
def
=

⋃

(

{

occ(σ, y)
∣

∣ y ∈ occ(ν, v)
}

∩ rel(vxr, sh)
)

. (3.42)

Note that by (3.38), (3.39) and the fact that

rel(vxr, sh) = sh \
(

rel(vx, sh) ∪ rel(vr, sh)
)

,

we have

S0 = S \ (Sx ∪ Sr). (3.43)

We now consider the two cases S0 6= ∅ and S0 = ∅ separately.

Consider first the case when S0 6= ∅. Then, by (3.42), for some y ∈ Vars,

y ∈ occ(ν, v), (3.44)

occ(σ, y) ∈ rel(vxr, sh). (3.45)

Thus, by Lemma 3.27, y /∈ dom(σ) and hence, by (3.20), y /∈ dom(σ◦). Also, by (3.45),

occ(σ, y) ∩ vxr = ∅. Thus as σ ∈ VSubst (by (3.18)) we can use Lemma 3.28 to see that,

for each w ∈ vxr, y /∈ vars(wσ) and hence, y /∈ vars(xσ = rσ). Therefore, by (3.23)

and (3.26), y /∈ vars(ν). As ν ∈ VSubst (by (3.27)), we can apply Lemma 3.28 to both

occ(ν, y) and occ(ν, v). Thus, as y /∈ vars(ν), occ(ν, y) = {y} and also (using (3.44)) v = y

so that occ(ν, v) = {v}. It therefore follows from (3.38) and (3.39) that S = occ(σ, v) and

hence from (3.45), that

S ∈ rel(vxr, sh). (3.46)

Now consider the case when S0 = ∅. By (3.43), and the assumption that S 6= ∅,

S = Sx ∪ Sr 6= ∅. (3.47)

As a consequence of (3.40) and (3.41),

Sx ∈ rel(vx, sh)? ∪ ∅, (3.48)

Sr ∈ rel(vr, sh)? ∪ ∅. (3.49)

Now, by (3.47) Sx 6= ∅ or Sr 6= ∅. We will show that both Sx 6= ∅ and Sr 6= ∅.

Suppose first that Sx 6= ∅. Then, by (3.48), x ∈ Sx. Hence, by (3.47), x ∈ S. By (3.36),
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x ∈ occ(ν ◦σ−, v). However, ν ◦σ− ∈ VSubst (by (3.31)) so that we can apply Lemma 3.28

to occ(ν ◦σ−, v) and obtain that v ∈ vars(xσ−ν). By the definition of µ in the hypothesis

and (3.32), T ` ∀
(

ν ◦ σ− → (x = r)
)

and hence, by Lemma 3.20 with the congruence

axioms, T ` ∀
(

ν ◦ σ− → (xσ−ν = r)
)

. Thus, as ν ◦ σ− ∈ VSubst (by (3.31)) and

v /∈ dom(ν ◦ σ−) (by (3.35)), by Lemma 3.12 (replacing τ by ν ◦ σ−, σ by the empty

substitution and s = t by xσ−ν = r), we have v ∈ vars(rσ−ν). By re-applying Lemma 3.28

to occ(ν ◦ σ−, v), it can be seen that, as v /∈ dom(ν) (by (3.35)), vr ∩ occ(ν ◦ σ−, v) 6= ∅.

Hence, by (3.36), S ∩ vr 6= ∅. Thus, by (3.38) and (3.39), there exists a y ∈ occ(ν, v) such

that occ(σ, y) ∩ vr 6= ∅. Therefore, by (3.41), Sr ∩ vr 6= ∅ and so Sr 6= ∅. By a similar

argument, if Sr 6= ∅ then we have Sx 6= ∅. Hence Sx 6= ∅ and Sr 6= ∅ so that, by (3.48)

and (3.49), Sx ∈ rel(vx, sh)? and Sr ∈ rel(vr, sh)?. Therefore, we have, by (3.47),

S ∈ bin
(

rel(vx, sh)?, rel(vr, sh)?
)

. (3.50)

Combining (3.46) when S0 6= ∅ and (3.50) when S0 = ∅ we obtain

S ∈ rel(vxr, sh) ∪ bin
(

rel(vx, sh)?, rel(vr, sh)?
)

.

Therefore, by Definition 3.43, S ∈ amgu(sh, x 7→ r).

As a consequence, since S was any set in sh ′, we have sh ′ ⊆ amgu(sh, x 7→ r) and

hence, by (3.34),

α(µ,VI ) �SS

(

amgu(sh, x 7→ r),VI
)

. (3.51)

We now drop the assumption that α(σ,VI ) = (sh,VI ) and just assume the hypothesis

of the theorem that α(σ,VI ) �SS (sh,VI ). Suppose α(σ,VI ) = (sh1,VI ). Then sh1 ⊆ sh.

It follows from Definition 3.43 that amgu is monotonic on its first argument so that

amgu(sh1, x 7→ r) ⊆ amgu(sh, x 7→ r).

Thus, by (3.51) (replacing sh by sh1), we obtain the required result

α(µ,VI ) �SS

(

amgu(sh, x 7→ r),VI
)

.

2

Lemma 3.56 For each sh1, sh2 ∈ SH , we have bin(sh1, sh2)
? = bin(sh?

1, sh
?
2).

Proof. Suppose S ∈ SG . Then S ∈ bin(sh1, sh2)
? means that, for some n ∈ N, there exist

sets R1, . . . , Rn ∈ sh1 and T1, . . . , Tn ∈ sh2 such that S = (R1∪T1)∪· · ·∪ (Rn∪Tn). Thus

S = (R1 ∪ · · · ∪Rn)∪ (T1 ∪ · · · ∪Tn). However R1 ∪ · · · ∪Rn ∈ sh?
1 and T1 ∪ · · · ∪Tn ∈ sh?

2.

Thus S ∈ bin(sh?
1, sh

?
2).

On the other hand, S ∈ bin(sh?
1, sh

?
2) means that S = R ∪ T where, for some k, l ∈ N,

some R1, . . . , Rk ∈ sh1 and some T1, . . . , Tl ∈ sh2, we have R = R1 ∪ · · · ∪ Rk and

T = T1 ∪ · · · ∪ Tl. Let n be the maximum of {k, l} and suppose that, for each i, j ∈ N
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where k + 1 ≤ i ≤ n and l + 1 ≤ j ≤ n, we define Ri
def
= Rk and Tj

def
= Tl. Then,

S = (R1 ∪ T1) ∪ · · · ∪ (Rn ∪ Tn). However, for 1 ≤ i ≤ n, Ri ∪ Ti ∈ bin(sh1, sh2). Thus

S ∈ bin(sh1, sh2)
?. 2

Proof of Theorem 3.45 on page 67. Let

sh−
def
= rel(vxr, sh),

shxr
def
= bin

(

rel(vx, sh)?, rel(vr, sh)?
)

.

Then, by Lemma 3.56, sh?
xr = shxr and bin(shxr, shxr) = shxr. Moreover,

rel(vx, shxr) = shxr, rel(vx, sh−) = ∅,

rel(vr, shxr) = shxr, rel(vr, sh−) = ∅,

rel(vxr, shxr) = ∅, rel(vxr, sh−) = sh−.

Hence, we have

rel(vx, sh− ∪ shxr) = shxr,

rel(vr, sh− ∪ shxr) = shxr,

rel(vxr, sh− ∪ shxr) = sh−.

Now, by Definition 3.43,

amgu
(

amgu(sh, x 7→ r), x 7→ r
)

= rel(vxr, sh− ∪ shxr) ∪ bin
(

rel(vx, sh− ∪ shxr)
?, rel(vr, sh− ∪ shxr)

?
)

= sh− ∪ shxr

= amgu(sh, x 7→ r).

2

For the proof of commutativity, we require the following auxiliary results.

Lemma 3.57 For each V ∈ ℘f(Vars) and sh ∈ SH we have rel(V, sh?) = rel(V, sh)?.

Proof. Let S ∈ SG . Then S ∈ rel(V, sh?) means S ∈ sh? and S ∩V = ∅. In other words,

there exist S1, . . . , Sn ∈ sh such that S =
⋃n

i=1 Si and, for each i = 1, . . . , n, we have

Si ∩ V = ∅. This amounts to saying that there exist S1, . . . , Sn ∈ rel(V, sh) such that

S =
⋃n

i=1 Si, which is equivalent to S ∈ rel(V, sh)?. 2

The auxiliary function ‘rel’ possesses a weaker property.

Lemma 3.58 For each V ∈ ℘f(Vars) and sh ∈ SH we have rel(V, sh?) ⊇ rel(V, sh)?.
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Proof. Let S ∈ SG . Then S ∈ rel(V, sh)? means that there exist S1, . . . , Sn ∈ sh

such that Si ∩ V 6= ∅, for each i = 1, . . . , n, and S =
⋃n

i=1 Si. Thus S ∩ V 6= ∅ and

S ∈ rel(V, sh?). Hence, rel(V, sh?) ⊇ rel(V, sh)?. 2

Lemma 3.59 For each V ∈ ℘f(Vars), sh1, sh2 ∈ SH and S ∈ ℘f(Vars),

S ∈ rel(V, sh1 ∪ sh2)
? ∪ {∅}

⇐⇒ ∃S1 ∈ rel(V, sh1)
? ∪ {∅} . ∃S2 ∈ rel(V, sh2)

? ∪ {∅} . S = S1 ∪ S2.

Proof. If S = ∅ the statement is trivial.

Let S ∈ rel(V, sh1∪ sh2)
?. For some n ∈ N, there exists n sets R1, . . . , Rn ∈ (sh1∪ sh2)

such that Ri∩V 6= ∅ for each i = 1, . . . , n, and S =
⋃n

i=1Ri. Suppose that, for j = 1, 2, we

have Sj =
⋃

{Ri ∈ shj | 1 ≤ i ≤ n }. Thus S1 ∈ rel(V, sh1)
?∪{∅}, S2 ∈ rel(V, sh2)

?∪{∅},

and S = S1 ∪ S2.

Suppose

∃S1 ∈ rel(V, sh1)
? ∪ {∅} . ∃S2 ∈ rel(V, sh2)

? ∪ {∅} . S = S1 ∪ S2,

where S1 and S2 are not both empty. Then, for some m ≥ 0 and n ≥ 0, there must

exist R1, . . . , Rm ∈ rel(V, sh1) and T1, . . . , Tn ∈ rel(V, sh2) such that S1 =
⋃m

i=1Ri and

S2 =
⋃n

i=1 Ti. Then R1, . . . , Rm, T1, . . . , Tn ∈ rel(V, sh1 ∪ sh2) and

S =
(

m
⋃

i=1

Ri

)

∪
(

n
⋃

i=1

Ti

)

.

Thus S ∈ rel(V, sh1 ∪ sh2)
?. 2

Lemma 3.60 For each V1, V2 ∈ ℘f(Vars) and sh ∈ SH we have

rel
(

V1, rel(V2, sh)
)

= rel
(

V2, rel(V1, sh)
)

.

Proof. Suppose S ∈ SG . Then S ∈ rel
(

V1, rel(V2, sh)
)

means S∩V1 6= ∅ and S∩V2 = ∅.

Similarly, S ∈ rel
(

V2, rel(V1, sh)
)

means that S ∩ V2 = ∅ and S ∩ V1 6= ∅. 2

Proof of Theorem 3.46 on page 67. We let R, S, T , and U (possibly subscripted)

denote elements of sh?. The subscripts reflect certain properties of the sets. In particular,

subscripts x, r, xr, y, t, yt indicate sets of variables that definitely have a variable in common

with the subscripted set. For example, Rx is a set in sh? that has a common element with

vx and Txt is a set in sh? that has common elements with vx and vt. In contrast, the

subscript ‘−’ indicates that the subscripted set does not share with one of the sets vxr or

vyt. Of course, in the proof, each set is formally defined as needed.

We will prove the implication

S ∈ amgu
(

amgu(sh, x 7→ r), y 7→ t
)

=⇒ S ∈ amgu
(

amgu(sh, y 7→ t), x 7→ r
)

.
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The converse will then holds by simply exchanging x and y, and r and t.

There are two cases due to the two components of the definition of amgu.

Case 1. Assume S ∈ rel
(

vyt, amgu(sh, x 7→ r)
)

.

Then S ∈ amgu(sh, x 7→ r) and S ∩ vyt = ∅. Again there are two possibilities.

Subcase 1a. Suppose first that S ∈ rel(vxr, sh). Thus S ∈ sh, and, since in this case we

have S ∩ vyt = ∅, S ∈ rel(vyt, sh). Definition 3.43 implies rel(vyt, sh) ⊆ amgu(sh, y 7→ t)

and thus we have also S ∈ amgu(sh, y 7→ t). Now, since the hypothesis of this subcase

implies S ∩ vxr = ∅, we obtain S ∈ rel
(

vxr, amgu(sh, y 7→ t)
)

. Hence, again by Defini-

tion 3.43, we can conclude that S ∈ amgu
(

amgu(sh, y 7→ t), x 7→ r
)

.

Subcase 1b. Suppose now that S ∈ bin
(

rel(vx, sh)?, rel(vr, sh)?
)

.

Then, there exist Sx, Sr ∈ SG such that S = Sx ∪ Sr, where

Sx ∈ rel(vx, sh)?, Sr ∈ rel(vr, sh)?.

By the hypothesis for this case we have S∩vyt = ∅ and thus Sx∩vyt = ∅ and Sr∩vyt = ∅.

This allows us to state that

Sx ∈ rel
(

vyt, rel(vx, sh)?
)

, Sr ∈ rel
(

vyt, rel(vr, sh)?
)

,

and hence, by Lemma 3.57,

Sx ∈ rel
(

vyt, rel(vx, sh)
)?
, Sr ∈ rel

(

vyt, rel(vr, sh)
)?
,

Thus, by Lemma 3.60,

Sx ∈ rel
(

vx, rel(vyt, sh)
)?
, Sr ∈ rel

(

vr, rel(vyt, sh)
)?
,

so that, by (3.16), (3.17), and Definition 3.43,

Sx ∈ rel
(

vx, amgu(sh, y 7→ t)
)?
, Sr ∈ rel

(

vr, amgu(sh, y 7→ t)
)?
.

Therefore, Sx ∪Sr ∈ bin
(

rel
(

vx, amgu(sh, y 7→ t)
)?
, rel

(

vr, amgu(sh, y 7→ t)
)?

)

, so that, as

Sx ∪ Sr = S, it follows from Definition 3.43 that

S ∈ amgu
(

amgu(sh, y 7→ t), x 7→ r
)

.

Case 2. Assume S ∈ bin
(

rel
(

vy, amgu(sh, x 7→ r)
)?
, rel

(

vt, amgu(sh, x 7→ r)
)?

)

.
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Then there exist Sy, St ∈ SG such that

S = Sy ∪ St, (3.52)

Sy ∈ rel
(

vy, amgu(sh, x 7→ r)
)?
,

St ∈ rel
(

vt, amgu(sh, x 7→ r)
)?
.

Then, by Lemma 3.58,

Sy ∩ vy 6= ∅, St ∩ vt 6= ∅. (3.53)

By Definition 3.43 and Lemma 3.59, there exist R−, Rxr, T−, and Txr such that

Sy = R− ∪Rxr, St = T− ∪ Txr (3.54)

where

R− ∈ rel
(

vy, rel(vxr, sh)
)?

∪ {∅},

Rxr ∈ rel
(

vy,bin
(

rel(vx, sh)?, rel(vr, sh)?
)

)?
∪ {∅},

T− ∈ rel
(

vt, rel(vxr, sh)
)?

∪ {∅},

Txr ∈ rel
(

vt,bin
(

rel(vx, sh)?, rel(vr, sh)?
)

)?
∪ {∅}.

(3.55)

Then, by Lemmas 3.60 and 3.57,

R− ∈ rel
(

vxr, rel(vy, sh)?
)

∪ {∅},

T− ∈ rel
(

vxr, rel(vt, sh)?
)

∪ {∅}.
(3.56)

Also, using Lemmas 3.58, 3.56, and then the idempotence of (·)?,

Rxr ∈ rel
(

vy,bin
(

rel(vx, sh)?, rel(vr, sh)?
)

)

∪ {∅},

Txr ∈ rel
(

vt,bin
(

rel(vx, sh)?, rel(vr, sh)?
)

)

∪ {∅}.
(3.57)

Subcase 2a. Suppose Rxr = Txr = ∅. Then, by (3.54),

Sy = R−, St = T−. (3.58)

By (3.53), R−, T− 6= ∅ and hence, using (3.56), R− ∪ T− ∈ bin
(

rel(vy, sh)?, rel(vt, sh)?
)

,

so that, by Definition 3.43, R− ∪ T− ∈ amgu(sh, y 7→ t). Also, it follows from (3.56) that

R− ∩ vxr = ∅ and T− ∩ vxr = ∅, so that R− ∪ T− ∈ rel
(

vxr, amgu(sh, y 7→ t)
)

. However,

by (3.52) and (3.58), S = R− ∪ T− so that, by Definition 3.43,

S ∈ amgu
(

amgu(sh, y 7→ t), x 7→ r
)

.
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Subcase 2b. Suppose Rxr ∪ Txr 6= ∅. Then, by (3.57),

(Rxr ∪ Txr) ∩ vyt 6= ∅. (3.59)

The proof of this subcase is in two parts. In the first part we divide Rxr and Txr into a

number of subsets. In the second part, these subsets will be reassembled so as to prove

the required result.

First, by (3.57), there exist Rx, Rr, Tx, Tr ∈ ℘f(Vars) such that

Rxr = Rx ∪Rr, Txr = Tx ∪ Tr, (3.60)

where either Rx = Rr = ∅ or

Rx ∈ rel(vx, sh)?, Rr ∈ rel(vr, sh)?,

and either Tx = Tr = ∅ or

Tx ∈ rel(vx, sh)?, Tr ∈ rel(vr, sh)?.

Thus, if either Rx ∪ Tx = ∅ or Rr ∪ Tr = ∅, it follows that

Rxr ∪ Txr = (Rx ∪Rr) ∪ (Tx ∪ Tr) = ∅.

However, by (3.59), Rxr ∪ Txr 6= ∅, so that we have

Rx ∪ Tx 6= ∅, Rr ∪ Tr 6= ∅. (3.61)

We now subdivide the sets Rx, Tx, Rr, and Tr further. First note that

sh = rel(vyt, sh) ∪ rel(vy, sh) ∪ rel
(

vy, rel(vt, sh)
)

,

sh = rel(vyt, sh) ∪ rel
(

vt, rel(vy, sh)
)

∪ rel(vt, sh).

Hence, by Lemma 3.59, sets Rx−, Rxy, Rxt, Rr−, Rry, Rrt, Tx−, Txy, Txt, Tr−, Try,

Trt ∈ ℘f(Vars) exist such that

Rx = Rx− ∪Rxy ∪Rxt,

Rr = Rr− ∪Rry ∪Rrt,

Tx = Tx− ∪ Txy ∪ Txt,

Tr = Tr− ∪ Try ∪ Trt,
(3.62)

where

Rx−, Tx− ∈ rel
(

vx, rel(vyt, sh)
)?

∪ {∅},

Rr−, Tr− ∈ rel
(

vr, rel(vyt, sh)
)?

∪ {∅},
(3.63)
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and

Rxy, Txy ∈ rel
(

vx, rel(vy, sh)
)?

∪ {∅},

Rry, Try ∈ rel
(

vr, rel(vy, sh)
)?

∪ {∅},

Rxt, Txt ∈ rel
(

vx, rel(vt, sh)
)?

∪ {∅},

Rrt, Trt ∈ rel
(

vr, rel(vt, sh)
)?

∪ {∅},

(3.64)

and also
(Rx \Rxy) ∩ vy = ∅,

(Rr \Rry) ∩ vy = ∅,

(Tx \ Txt) ∩ vt = ∅,

(Tr \ Trt) ∩ vt = ∅.
(3.65)

We note a few simple but useful consequences of these definitions. First, it follows

from (3.63) using (3.16), (3.17), and Definition 3.43, that

Rx−, Tx− ∈ rel
(

vx, amgu(sh, y 7→ t)
)?

∪ {∅},

Rr−, Tr− ∈ rel
(

vr, amgu(sh, y 7→ t)
)?

∪ {∅}.
(3.66)

Secondly, using (3.63) with Lemma 3.58, we have

Rx−, Tx−, Rr−, Tr− ∈ rel(vyt, sh)? ∪ {∅}, (3.67)

and then, using this with (3.59), (3.60), and (3.62), it follows that

Rxy ∪ Txy ∪Rry ∪ Try ∪Rxt ∪ Txt ∪Rrt ∪ Trt 6= ∅. (3.68)

In the second part of the proof for this subcase, the component subsets of S are

reassembled in an order that proves the required result. First, let

Uy
def
= R− ∪Rxy ∪Rry ∪ Txy ∪ Try,

Ut
def
= T− ∪Rxt ∪Rrt ∪ Txt ∪ Trt,

(3.69)

U
def
= Uy ∪ Ut. (3.70)

By relations (3.55) and (3.64) (with Lemma 3.58), each component set in the definition

of Uy is in rel(vy, sh)? ∪ {∅}; similarly, each component set in the definition of Ut is in

rel(vt, sh)? ∪ {∅}. Thus, by the definition of (·)?,

Uy ∈ rel(vy, sh)? ∪ {∅},

Ut ∈ rel(vt, sh)? ∪ {∅}.

By (3.60) and (3.65) we have
(

Rxr\(Rxy∪Rry)
)

∩vy = ∅ and hence, by (3.54), we have also

that
(

Sy \ (Rxy ∪Rry ∪R−)
)

∩ vy = ∅. By (3.53), Sy ∩ vy 6= ∅. Thus, Rxy ∪Rry ∪R− 6= ∅



80 CHAPTER 3. SET-SHARING

and, as a consequence of (3.69), Uy 6= ∅. For similar reasons, Ut 6= ∅. Hence, by (3.70),

U ∈ bin
(

rel(vy, sh)?, rel(vt, sh)?
)

,

and therefore, using Definition 3.43, it follows that

U ∈ amgu(sh, y 7→ t). (3.71)

Now, by (3.68), at least one of the following two inequalities holds:

Rxy ∪ Txy ∪Rxt ∪ Txt 6= ∅,

Rry ∪ Try ∪Rrt ∪ Trt 6= ∅.
(3.72)

Assume first that Rxy ∪ Txy ∪ Rxt ∪ Txt = ∅ and Rry ∪ Try ∪ Rrt ∪ Trt 6= ∅. Then,

using (3.61) and (3.62) with the first of these, Rx−∪Tx− 6= ∅. Also, using (3.64) with the

second, we have (Rry ∪ Rrt ∪ Try ∪ Trt) ∩ vr 6= ∅ and therefore it follows from (3.69) and

(3.70), that U ∩ vr 6= ∅. Hence, by (3.66) and (3.71),

Rx− ∪ Tx− ∈ rel
(

vx, amgu(sh, y 7→ t)
)?
,

U ∪Rr− ∪ Tr− ∈ rel
(

vr, amgu(sh, y 7→ t)
)?
.

(3.73)

Similarly, assuming Rxy ∪Txy ∪Rxt ∪Txt 6= ∅ and Rry ∪Try ∪Rrt ∪Trt = ∅ it follows that

Rr− ∪ Tr− ∈ rel
(

vr, amgu(sh, y 7→ t)
)?
,

Rx− ∪ Tx− ∪ U ∈ rel
(

vx, amgu(sh, y 7→ t)
)?
.

(3.74)

Finally, assuming Rxy ∪ Txy ∪ Rxt ∪ Txt 6= ∅ and Rry ∪ Try ∪ Rrt ∪ Trt 6= ∅ it follows

from (3.64) that U ∩ vx 6= ∅ and U ∩ vr 6= ∅, and hence

Rx− ∪ Tx− ∪ U ∈ rel
(

vx, amgu(sh, y 7→ t)
)?
,

U ∪Rr− ∪ Tr− ∈ rel
(

vr, amgu(sh, y 7→ t)
)?
.

(3.75)

Thus, as one of the inequalities in (3.72) holds, one of (3.73), (3.74) or (3.75) holds so that

Rx− ∪ Tx− ∪ U ∪Rr− ∪ Tr− ∈ bin
(

rel
(

vx, amgu(sh, y 7→ t)
)?
, rel

(

vr, amgu(sh, y 7→ t)
)?

)

.

However, since S = Rx− ∪ Tx− ∪ U ∪Rr− ∪ Tr−, we have

S ∈ bin
(

rel
(

vx, amgu(sh, y 7→ t)
)?
, rel

(

vr, amgu(sh, y 7→ t)
)?

)

.

Hence, by Definition 3.43, S ∈ amgu
(

amgu(sh, y 7→ t), x 7→ r
)

. 2
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3.4.5 Proofs of the Results of Section 3.4.3

We prove all the results in this section by induction on the cardinality of a substitution

ν. All proofs are obvious if ν is empty or does not unify. Thus, in the following proofs we

assume that ν unifies, is not empty and (x 7→ r) ∈ ν, with ν ′
def
= ν \ {x 7→ r}.

Proof of Lemma 3.52 on page 68. We have

Aunify
(

Amgu
(

(sh,VI ), y 7→ t
)

, ν
)

[by Definition 3.51]

= Aunify

(

Amgu
(

Amgu
(

(sh,VI ), y 7→ t
)

, x 7→ r
)

, ν ′
)

[by Corollary 3.50]

= Aunify

(

Amgu
(

Amgu
(

(sh,VI ), x 7→ r
)

, y 7→ t
)

, ν ′
)

[by the inductive hypothesis]

= Amgu

(

Aunify
(

Amgu
(

(sh,VI ), x 7→ r
)

, ν ′
)

, y 7→ t

)

[by Definition 3.51]

= Amgu
(

Aunify
(

(sh,VI ), ν
)

, y 7→ t
)

.

2

Proof of Theorem 3.53 on page 68. Let µ′ ∈ mgs(ν ′ ∪ σ). Then

α(σ,VI ) �SS (sh,VI )

[by the induction hypothesis]

=⇒ α
(

µ′,VI ∪ vars(ν ′)
)

�SS Aunify
(

(sh,VI ), ν ′
)

[by Corollary 3.48]

=⇒ α
(

µ,VI ∪ vars(ν)
)

�SS Amgu
(

Aunify
(

(sh,VI ), ν ′
)

, x 7→ r
)

[by Lemma 3.52]

=⇒ α
(

µ,VI ∪ vars(ν)
)

�SS Aunify
(

Amgu
(

(sh,VI ), x 7→ r
)

, ν ′
)

[by Definition 3.51]

=⇒ α
(

µ,VI ∪ vars(ν)
)

�SS Aunify
(

(sh,VI ), ν
)

.

2

Proof of Theorem 3.54 on page 69. We have

Aunify
(

Aunify
(

(sh,VI ), ν
)

, ν
)
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[by Definition 3.51]

= Aunify

(

Amgu
(

Aunify
(

Amgu((sh,VI ), x 7→ r), ν ′
)

, x 7→ r
)

, ν ′
)

[by Lemma 3.52]

= Aunify

(

Aunify
(

Amgu
(

Amgu((sh,VI ), x 7→ r), x 7→ r
)

, ν ′
)

, ν ′
)

[by the inductive hypothesis]

= Aunify
(

Amgu
(

Amgu((sh,VI ), x 7→ r), x 7→ r
)

, ν ′
)

[by Corollary 3.49]

= Aunify
(

Amgu
(

(sh,VI ), x 7→ r
)

, ν ′
)

[by Definition 3.51]

= Aunify
(

(sh,VI ), ν
)

.

2

Proof of Theorem 3.55 on page 69. The induction is on the set of equations ν1. The

comments at the start of this section apply therefore to ν1 instead of ν and thus we let

ν ′1
def
= ν1 \ {x 7→ r} so that we have

Aunify
(

Aunify
(

(sh,VI ), ν1

)

, ν2

)

[by Definition 3.51]

= Aunify

(

Aunify
(

Amgu
(

(sh,VI ), x 7→ r
)

, ν ′1

)

, ν2

)

[by the inductive hypothesis]

= Aunify

(

Aunify
(

Amgu
(

(sh,VI ), x 7→ r
)

, ν2

)

, ν ′1

)

[by Lemma 3.52]

= Aunify

(

Amgu
(

Aunify
(

(sh,VI ), ν2

)

, x 7→ r
)

, ν ′1

)

[by Definition 3.51]

= Aunify
(

Aunify
(

(sh,VI ), ν2

)

, ν1

)

.

2

3.5 Abstract Projection

The abstract unification function Aunify is the key operation that makes the abstract

domain SS suitable for computing static approximations of the substitutions generated

by the execution of logic programs. This operator is combined with simpler ones so as to
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provide a complete definition of the abstract semantics. As far as the correctness of the

analysis is concerned, these auxiliary operators do not pose any serious problem.

For instance, the ‘merge-over-all-paths’ operator is implemented as the lub (Alub) of

the domain SS : in this case, correctness follows from a standard result of abstract inter-

pretation theory [CC77a]. Other operators, such as the consistent renaming of variables,

are almost trivial.

We now define the abstract version of the concrete projection operator ‘proj’. This

operator is interesting in that it modifies the set of variables of interest.

Definition 3.61 (Abstract projection.) For each V ∈ ℘f(Vars), the abstract function

aexists: SH ×℘f(Vars) → SH provides the existential quantification of an element of SH :

for each sh ∈ SH ,

aexists(sh, V )
def
=

{

S \ V
∣

∣ S ∈ sh, S \ V 6= ∅
}

∪
{

{x}
∣

∣ x ∈ V
}

.

The function Aproj : SS × ℘f(Vars) → SS projects an element of SS onto a new set of

variables of interest. For each d ∈ SS and W ∈ ℘f(Vars),

Aproj(d,W )
def
=



















>, if d = >;

(sh ′,W ) if d = (sh,VI );

⊥, if d = ⊥;

where sh ′ =
(

aexists(sh,VI \W ) \
{

{x}
∣

∣ x ∈ VI \W
}

)

∪
{

{x}
∣

∣ x ∈W \ VI
}

.

The statement and proof of correctness for this abstract projection operator are omitted

for space reasons.

3.6 Summary

The set-sharing domain SS , which was defined in [JL89, Lan90], is considered to be the

principal abstract domain for sharing analysis of logic programs in both practical work

and theoretical study. In this chapter we have defined a new abstraction function mapping

a set of substitutions in rational solved form into their corresponding sharing abstraction.

The new function is a generalization of the classical abstraction function of [JL89], which

was defined for idempotent substitutions only. Using our new abstraction function, we

have proved the correctness of the classical abstract unification operator Aunify. Other

contributions of our work are the formal proofs of the commutativity and idempotence

of the Aunify operator on the set-sharing domain. Even if commutativity was a known

property, the corresponding proof in [Lan90] was not satisfactory. As far as idempotence

is concerned, our result differs from that given in [Lan90], which was based on a composite

abstract unification operator performing also the renaming of variables. It is our opinion

that our main result, the correctness of the Aunify operator, is really valuable as it allows
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for the safe application of sharing analysis based on SS to any constraint logic language

supporting syntactic term structures, based on either finite trees or rational trees. This

happens because our result does not rely on the presence (or even the absence) of the

occurs-check in the concrete unification procedure implemented by the analysed language.

Furthermore, as the groundness domain Def is included in SS [CFW94, CFW98], our

main correctness result also shows that Def is sound for non-idempotent substitutions.

From a technical point of view, we have introduced a new class of concrete substitutions

based on the notion of variable-idempotence, generalizing the classical concept of idempo-

tence. We have shown that any substitution is equivalent to a variable-idempotent one,

providing a finite sequence of transformations for its construction. This result assumes an

arbitrary equality theory and is therefore applicable to the study of any abstract property

which is preserved by logical equivalence. Our application of this idea to the study of

the correctness of abstract unification for SS has shown that it is particularly suitable for

data-flow analyzers where the corresponding abstraction function only depends on the set

of variables occurring in a term. However, as we will show in Chapter 6 when we combine

the set-sharing domain with freeness and linearity, this concept can be usefully exploited

in more general contexts.



Chapter 4
Set-Sharing is Redundant for Pair-Sharing

Although the usual goal of sharing analysis is to detect which pairs of variables may share,

the standard choice for sharing analysis is a domain that characterizes set-sharing. In this

chapter we show that the set-sharing domain is over-complex for pair-sharing analysis. By

defining an equivalence relation over the domain SS we obtain a simpler domain which

is as precise as SS as far as the computation of pair-sharing is concerned. We also prove

that no further abstraction of this domain satisfies this property. A key feature of the

simplified domain is that it allows a significant reduction in the theoretical complexity of

the abstract unification procedure.

Note: this chapter is mainly based on the results of [BHZ97]; an extended

version will appear in [BHZ02].

4.1 Pair-Sharing or Set-Sharing?

Soon after the introduction of the set-sharing domain by Jacobs and Langen, a remarkable

amount of research work has been dedicated to the comparison between this domain and

its classic challenger, the pair-sharing domain ASub of Søndergaard.

From a practical point of view, the ASub domain looks more appealing, being char-

acterized by a representation and abstract operators that only require polynomial space

and time, respectively. In contrast, in the set-sharing domain, the representation and the

abstract operators require an exponential amount of space and time.

In spite of this, today the set-sharing domain has become the preferred one in most

theoretical work on the sharing analysis for logic languages. The adequacy of this domain

is not normally questioned. Researchers appear to be more concerned as to which add-ons

are best: linearity, freeness, depth-k abstract substitutions and so on [BC93, BCM94a,

CDFB93, Kin94, KS94, MH91], rather than whether it is the optimal domain for the

sharing information under investigation.

The reason for this standard choice lies in the accuracy of the domain: even if, from a

formal point of view, neither of the two domains is uniformly more precise than the other,

85
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the dependencies encoded in the set-sharing domain make it more “interesting”, in partic-

ular when integrating it with other kinds of information. Indeed, the SS domain is quite

difficult to understand. Taking an abstract element and writing down its concretization

(namely, the concrete substitutions that are approximated by it) is fairly simple, provided

one strictly follows the well-established principles of abstract interpretation. However, it

is quite common for researchers to get into trouble when trying to informally explain such

a mathematical formula, in order to provide a reader-friendly interpretation.

So the question arises: is this complexity actually needed for an accurate sharing

analysis? Before providing an answer, we must agree on what the purpose of sharing

analysis is. The results in this chapter rely on the following

Assumption: The goal of sharing analysis for logic programs is to detect which pairs of

variables are definitely independent.

We thus focus our attention on the pair-sharing property, investigating whether all of

the information in the SS domain is really needed for detecting which pairs of variables

can share. The answer turns out to be negative: there exists a domain that is simpler

than SS and, at the same time, as precise as SS , as far as pair-sharing is concerned.

4.2 The Pair-Sharing Property

Let us define the pair-sharing property through a domain that captures it exactly. This

domain is very similar to Søndergaard’s ASub, which however also includes groundness

and linearity information [Søn86].

Definition 4.1 (The pair-sharing domain.) Let S be a set. Then

pairs(S)
def
=

{

P ∈ ℘(S)
∣

∣ #P = 2
}

.

The pair-sharing domain is given by the complete lattice

PS
def
=

{

(ps,VI )
∣

∣

∣
VI ∈ ℘f(Vars), ps ∈ ℘

(

pairs(VI )
)

}

∪ {⊥PS ,>PS}

ordered by �PS , which is defined, for each d, (ps1,VI 1), (ps2,VI 2) ∈ PS, by

⊥PS �PS d,

d �PS >PS ,

(ps1,VI 1) �PS (ps2,VI 2) ⇐⇒ (VI 1 = VI 2) ∧ (ps1 ⊆ ps2).

An element of the pair-sharing domain is, roughly speaking, the “end-user image” of

the result of the analysis. That is, the only interest of the end-user of our analysis (e.g.,

the optimizer module of the compiler) is knowing which pairs of variables possibly share.

The PS domain will be used to measure the accuracy of the other domains in computing

pair-sharing.
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4.3 The Information Content of Sharing Sets

We now look at the information content of the elements of the SS domain. First consider

the pair-sharing information.

Pair-sharing. Clearly, PS is a strict abstraction of SS through the abstraction function

αPS : SS → PS given, for each (sh,VI ) ∈ SS , by

αPS(⊥)
def
= ⊥PS ,

αPS(>)
def
= >PS ,

αPS

(

(sh,VI )
) def

=
(

↓(sh) ∩ pairs(VI ),VI
)

,

where ↓ : SH → SH is defined, for each sh ∈ SH , by

↓(sh)
def
=

{

T ∈ SG
∣

∣ ∃S ∈ sh . T ⊆ S
}

.

As it has been observed by several authors, the SS lattice encodes several properties

besides pair-sharing. We next give examples that show the relevance of these proper-

ties with respect to computing the pair-sharing information. In what follows, the set of

variables of interest is fixed as VI
def
= {x, y, z} and will be omitted from elements of SS .

Moreover, the elements of SH will be written in a simplified notation, omitting the inner

braces. For example, the element

({

{x}, {x, y}, {x, z}
}

, {x, y, z}
)

will be written simply as {x, xy, xz}. This notation will be adopted in all the examples in

the thesis, provided no confusion can arise.

Groundness. Consider sh1
def
= {xy} and sh2

def
= {xy, z}. They encode the same pair-

sharing information, namely αPS(sh1) = αPS(sh2) = {xy}. Since z does not occur in any

sharing group of sh1, we know that the variable z is ground. In contrast, in concrete

substitutions abstracted by sh2, z is not necessarily ground. This knowledge is useful for

pair-sharing detection:

αPS

(

amgu(sh1, x 7→ z)
)

= αPS(∅) = ∅,

αPS

(

amgu(sh2, x 7→ z)
)

= αPS

(

{xyz}
)

= {xy, xz, yz}.

Incidentally, this example constitutes a proof of the fact that any abstraction of SS which

is as precise as SS on pair-sharing is also as precise as SS on groundness. The proof is

by contraposition: lose only one ground variable and precision on pair-sharing is compro-

mised.
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Ground dependencies. Let sh1
def
= {xy, xyz} and sh2

def
= {xy, xz, yz}. They still

encode the same pair-sharing information. They also encode the same groundness infor-

mation (no variable is ground). However, in contrast to sh2, x occurs in all sharing groups

in sh1 that contain y. Thus, for sh1, the groundness of y depends solely on the groundness

of x. Let us bind variable x to the term a ∈ GTerms ∩ HTerms and see what happens:

αPS

(

amgu(sh1, x 7→ a)
)

= αPS(∅) = ∅,

αPS

(

amgu(sh2, x 7→ a)
)

= αPS

(

{yz}
)

= {yz}.

Therefore, a knowledge of ground dependencies is important for pair-sharing detection.

Pair-sharing dependencies. The following has been obtain by adapting a similar ex-

ample in [CF93]. Let

sh1
def
= {x, y, z, xyz},

sh2
def
= {x, y, z, xy, xz, yz}.

They encode the same pair-sharing, groundness, and ground dependency information.

Again, let us ground x and look at the results:

αPS

(

amgu(sh1, x 7→ a)
)

= αPS

(

{y, z}
)

= ∅,

αPS

(

amgu(sh2, x 7→ a)
)

= αPS

(

{y, z, yz}
)

= {yz}.

In sh1, x occurs in all the sharing groups that contain the pair yz. Thus in sh1 the sharing

between y and z depends on the (non-) groundness of x, while in sh2 this is not the case.

Redundant information? Given these three examples, one gets the impression that

different elements in SH do encode different information with respect to the computation

of the pair-sharing property. However, this is not always the case. Consider

sh1
def
= {x, y, z, xy, xz, yz},

sh2
def
= {x, y, z, xy, xz, yz, xyz}.

These two different elements do encode the same pair-sharing, groundness, ground de-

pendency, and sharing dependency information. Since the set of variables of interest is

VI = {x, y, z}, we have sh2 = ℘(VI ) \ {∅}. This means that any sharing is possible, and

thus that sh2 describes all the substitutions in rational solved form having VI as the set of

variables of interest. In contrast, the only relevant information in sh1 is that the sharing

group xyz is not allowed: sh1 represents all the substitutions σ ∈ RSubst such that

vars
(

rt(x, σ)
)

∩ vars
(

rt(y, σ)
)

∩ vars
(

rt(z, σ)
)

= ∅.
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That is, the variables x, y, and z cannot share the same variable (but they still can share

pairwise). As observed before, this difference is irrelevant from the end-user point of view.

We will show that sh1 and sh2 are completely equivalent with respect to the pair-sharing

property and that the sharing group xyz in sh2 is redundant for pair-sharing.

4.4 Set-Sharing is Redundant for Pair-Sharing

In the previous example, we noted that the sharing group xyz was redundant for sh2. We

now formalize this notion of redundancy.

Definition 4.2 (Redundancy.) Let sh ∈ SH and S ∈ SG. S is redundant for sh if and

only if #S > 2 and

pairs(S) =
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

.

Read it this way: S is redundant for sh if and only if all its sharing pairs can be extracted

from the elements of sh that are contained in S. As the name suggests, redundant sharing

groups can be dropped. For the moment, as we are walking on theoretical ground, we add

them so as to obtain a sort of normal form. A notable advantage is that we can still use

subset inclusion for the ordering. We thus define an upper closure operator over SH that

induces an equivalence relation over the elements of SH .

Definition 4.3 (A closure operator on SH .) The function ρ : SH → SH is given, for

each sh ∈ SH , by

ρ(sh)
def
= sh ∪ {S ∈ SG | S is redundant for sh }.

Theorem 4.4 The function ρ : SH → SH is an upper closure operator.

In Definition 4.2, a sharing group S can be added to a sharing set sh without changing

the pair-sharing information if and only if, for each variable x in S, every pair such as

xy in S is in some sharing group in sh which is also a subset of S. This implies that, for

each variable x in S, S must be the union of some of the sets in sh that contain x. This

observation leads to the following alternative definition for ρ.

Theorem 4.5 If sh ∈ SH then

ρ(sh) =
{

S ∈ SG
∣

∣

∣
∀x ∈ S : S ∈ rel

(

{x}, sh
)?

}

.

While the original definition refers directly to the pair-sharing concept, the alternative

definition provided by Theorem 4.5 is very elegant and concise, and turns out to be useful

for proving several results.
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Abusing notation, we can easily define the overloading ρ : SS → SS such that

ρ(⊥)
def
= ⊥,

ρ(>)
def
= >,

ρ
(

(sh,VI )
) def

=
(

ρ(sh),VI
)

.

We have thus implicitly defined a new domain that we will denote by PSD (the pair-

sharing dependency domain). The domain PSD is the quotient of SS with respect to the

equivalence relation induced by ρ: d1 and d2 are equivalent if and only if ρ(d1) = ρ(d2).

Clearly, PSD is a proper abstraction of SS .

It is straightforward to prove the following.

Theorem 4.6 For each d ∈ SS we have αPS

(

ρ(d)
)

= αPS(d).

Thus the addition of redundant sharing groups does not cause any precision loss, as far

as pair-sharing is concerned. In other words, PSD is as good as SS for representing pair-

sharing. We now show that ρ is a congruence with respect to the operations Aunify, Alub,

and Aproj.

Theorem 4.7 Let d1, d2 ∈ SS. If ρ(d1) = ρ(d2) then, for each σ ∈ RSubst, each d′ ∈ SS,

and each V ∈ ℘f(Vars),

1. ρ
(

Aunify(d1, σ)
)

= ρ
(

Aunify(d2, σ)
)

;

2. ρ
(

Alub(d′, d1)
)

= ρ
(

Alub(d′, d2)
)

; and

3. ρ
(

Aproj(d1, V )
)

= ρ
(

Aproj(d2, V )
)

.

As a corollary of the two results above we have that PSD is as good as SS for propagat-

ing pair-sharing through the analysis process. We also show that any proper abstraction

of PSD is less precise than PSD on computing pair-sharing.

Theorem 4.8 For each d1, d2 ∈ SS, ρ(d1) 6= ρ(d2) implies

∃σ ∈ RSubst . αPS

(

Aunify(d1, σ)
)

6= αPS

(

Aunify(d2, σ)
)

.

To summarize, the equivalence relation induced by ρ identifies two elements if and only if

their behavior in the analysis process is indistinguishable with respect to the pair-sharing

property.

4.5 Star-Union is Not Needed

When moving from the theoretical to the practical ground, the first issue concerns the

choice of an actual representation for the elements of PSD , which are the equivalence

classes induced by ρ over SS . One possibility is to fix once and for all the representative
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of each equivalence class. In particular, this would allow for an implementation of the

equivalence check as an identity check.

One obvious candidate representative for the class is the image under ρ of any element

of the class. By a standard result of the theory of closure operators, this element is the

maximum element in its class with respect to the lattice ordering. Of course, as far as

efficiency is concerned, this would be a really unfortunate choice as, in general, # ρ(sh) is

an exponential function of # sh.

A much more interesting alternative is made possible by the following result, which

shows that all the equivalence classes based on ρ are also endowed with a minimum element

with respect to the lattice ordering.

Theorem 4.9 For all sh1, sh2 ∈ SH ,

ρ(sh1) = ρ(sh2) =⇒ ρ(sh1 ∩ sh2) = ρ(sh2).

Not surprisingly, the minimum element is the only element of the equivalence class

containing no redundant sharing groups.

Theorem 4.10 For all sh ∈ SH ,

sh \ {S ∈ SG | S is redundant for sh } =
⋂

{

sh ′ ∈ SH
∣

∣ ρ(sh ′) = ρ(sh)
}

.

Using the minimum elements (from now on also called reduced elements) as representa-

tives for the equivalence classes would seem the best thing to do: memory occupation and

the computational cost would be kept at a minimum. However, it must not be forgotten

that reducing a sharing set (i.e., removing all its redundant sharing groups) has a price.

Moreover, the abstract operators on sharing sets may generate non-reduced elements even

from reduced ones.

A different solution to the problem of deciding on the classes’ representatives is to

allow the implementation to select it dynamically. In this setting, the implementation is

left free to choose any element of an equivalence class as the representative of the class.

Moreover, the implementation can make different choices at different times during the

analysis. These choices can be guided by several heuristics, with the objective of finding

a good trade-off between the cost of reductions and the benefits of working with smaller,

and possibly minimal, elements. One of the consequences of allowing this kind of freedom

is that the equivalence check can no longer be implemented as an identity check. This

does not constitute a serious drawback: as we will see the complexity of the equivalence

check is bounded by the square of the number of sharing groups.

Since the computational complexity of all the abstract operators depends on the car-

dinality of the sharing sets involved, a general recipe for efficiency is avoiding, wherever

possible, the generation of redundant sharing groups. For this purpose, another very in-

teresting practical consequence of the theory developed in the previous section is that the

star-union operator can be safely replaced by the binary-union operator.



92 CHAPTER 4. SET-SHARING IS REDUNDANT FOR PAIR-SHARING

Theorem 4.11 For each sh ∈ SH we have sh? = ρ
(

bin(sh, sh)
)

.

In words, bin(sh, sh) is granted to be in the same equivalence class of sh? and it is quite

likely to contain less redundant sharing groups. Moreover, in the worst-case, the com-

plexity of the star-union operator is exponential in the number of sharing groups of the

input, while for the binary-union operator the complexity is quadratic. For notational

convenience, for each sh ∈ SH , we will write sh2 to denote bin(sh, sh).

This method for computing (a representative of) the star-union can be safely applied

in the computation for abstract unification. We prove here the result for the operator

amgu. Since Aunify is defined in terms of amgu (via Amgu), the revised definition for

amgu can be used in the computation of Aunify.

Theorem 4.12 Let sh ∈ SH and (x 7→ t) ∈ Bind. Let also

sh−
def
= rel

(

{x} ∪ vars(t), sh
)

, shx
def
= rel

(

{x}, sh
)

, sht
def
= rel

(

vars(t), sh
)

.

Then

ρ
(

amgu(sh, x 7→ t)
)

= ρ
(

sh− ∪ bin(sh2
x, sh

2
t )

)

.

4.6 The Quotient of Abstract Interpretations

All the results in this chapter have been obtained by following a precise methodology, that

we now briefly review and reinterpret in the light of recent results in abstract interpretation

theory. We would like to stress that all the conceptual devices we have resorted to are

part of the classic inheritance of the semantics of programming languages: in this respect,

we did not invent anything.

For the purpose of the present discussion, let us adopt the closure operator approach

to abstract interpretation and let us call SS the “concrete domain” and PSD the “abstract

domain”. We have looked for an upper closure operator over SS that is

1. more concrete than the upper closure operator associated to PS ,

2. such that the induced equivalence relation over SS is a congruence relation with

respect to all the semantic operators of the domain.

These properties give rise to a completeness result of the abstract semantics (PSD) with

respect to the concrete semantics (SS ). In other words, every pair-sharing captured by

SS is also captured by PSD , with their respective operations. Moreover, we established

that ρ is the weakest upper closure operator satisfying the above requisites. This property

constitutes a minimality result of the abstract semantics with respect to the property

under investigation: if two elements are different in the abstract semantics then there

exists a context (i.e., a program, in our case a single substitution) that shows the difference

between the two elements in terms of pair-sharing.

In recent years, several researchers have investigated how different abstract domains

can be composed or decomposed, enriched or simplified, in order to enjoy a given set of
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properties. In particular, after an initial attempt in [CFW92], Cortesi, Filé, and Winsbor-

ough defined, in [CFW94, CFW98], the notion of quotient of an abstract interpretation

with respect to a certain property. This notion is intended to isolate, in a given abstract

domain, those parts that are useful to compute the selected property.

Note that, in [CFW98], the word “quotient” is used in a context which is different from

the usual one. When the authors talk about the quotient of a domain D “with respect to

the property P”, they mean “with respect to the equivalence relation ≡αP
induced by the

property P”. However, such an equivalence relation is defined by

d1 ≡αP
d2

def
⇐⇒ ∀i ≥ 0 : ∀µ : αP

(

µi(d1)
)

= αP

(

µi(d2)
)

, (4.1)

where µ is an arbitrary “derived operator”, that is, any expression built from operators

and elements of the domain D and involving only one variable. Note how this definition

significantly differs from the, by now standard, notion of equivalence relation induced by

an abstraction function (see [CC77a]), which is formalized as follows:

d1 ≡αP
d2

def
⇐⇒ αP (d1) = αP (d2).

Our work can thus be considered as an application of [CFW98] where we take set-

sharing (SS ) as the starting domain and pair-sharing (PS ) as the property under inves-

tigation. Once put together, the completeness and minimality results mentioned above

imply that the domain PSD we have found is exactly the quotient of SS with respect to

PS (using the terminology of [CFW98]). It is our opinion that the formalization of the

problem in terms of completeness and minimality is more intuitive than the formalization

given by (4.1). As a matter of fact, when in [CFW98] the authors prove that Def is the

quotient of Pos with respect to the property of groundness, they adopt the same approach.

It is interesting to note that, in the view of another recent result on abstract domain

completeness [GR97], PSD is the least fully-complete extension (lfce) of PS with respect

to SS . The lfce exactly formalizes the methodology requiring to couple a completeness

and a minimality result. From a theoretical point of view, the quotient of an abstract

interpretation with respect to a property of interest and the least fully-complete extension

of an upper closure operator with respect to a reference concrete domain are not equivalent.

It is known [CFW94] that the quotient may not exist, while the lfce is always defined

(assuming the concrete semantics operators are continuous, as it is almost always the

case). However, it is also known [GRS98b] that when the quotient exists it is exactly the

same as the lfce, so that the latter has also been called generalized quotient. In particular,

for the case considered here, these two approaches to the completeness problem in abstract

interpretation are equivalent.
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4.7 Proofs

Lemma 4.13 Suppose sh ∈ SH . Then S is redundant for ρ(sh) if and only if S is

redundant for sh.

Proof. Since sh ⊆ ρ(sh), if S is redundant for sh, then S is redundant for ρ(sh).

Suppose that S is redundant for ρ(sh). Then

S =
⋃

{

pairs(T )
∣

∣ T ∈ ρ(sh), T ⊂ S
}

.

Thus, by definition of ρ,

S =
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

∪
⋃

{

pairs(T )
∣

∣ T is redundant for sh, T ⊂ S
}

.

However, if T is redundant for sh, T =
⋃

{

pairs(U)
∣

∣ U ∈ sh, U ⊂ T
}

, and hence, if

T ⊂ S, we have T ⊆
⋃

{

pairs(U)
∣

∣ U ∈ sh, U ⊂ S
}

. It follows that,

⋃

{

pairs(T )
∣

∣ T is redundant for sh, T ⊂ S
}

⊆
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

.

Thus, S =
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

and so S is redundant for sh. 2

Proof of Theorem 4.4 on page 89. Monotonicity and extensivity of ρ are direct con-

sequences of the definition. For idempotence, suppose that sh ∈ SH . We show that

ρ
(

ρ(sh)
)

= ρ(sh). By definition,

ρ
(

ρ(sh)
)

= ρ(sh) ∪
{

S ∈ SG
∣

∣ S is redundant for ρ(sh)
}

.

Therefore, by Lemma 4.13,

ρ
(

ρ(sh)
)

= ρ(sh) ∪
{

S ∈ SG
∣

∣ S is redundant for sh
}

= ρ(sh).

2

Proof of Theorem 4.5 on page 89. Let us define, for each sh ∈ SH ,

ρ̇(sh)
def
=

{

S ∈ SG
∣

∣

∣
∀x ∈ S : S ∈ rel

(

{x}, sh
)?

}

.

Let sh ∈ SH : we want to show that ρ(sh) = ρ̇(sh). First suppose S ∈ ρ(sh). If S ∈ sh, then

S ∈ ρ̇(sh). Suppose S 6∈ sh. Then as S is redundant for sh, we have S = {x, x1, . . . , xn}

with n ≥ 2, and, for each xi there exists a Ti such that Ti ∈ sh, Ti ⊂ S, and {x, xi} ⊆ Ti.

Thus S = T1 ∪ · · · ∪ Tn. As T1, . . . , Tn ∈ rel
(

{x}, sh
)

, we have S ∈ rel
(

{x}, sh
)?

. Since the

choice of x ∈ S was arbitrary, S ∈ ρ̇(sh).
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Secondly, suppose S ∈ ρ̇(sh). If S ∈ sh, then S ∈ ρ(sh). Suppose that S /∈ sh. Then

we need to show that S is redundant for sh. That is, we need to show that #S > 2 and

pairs(S) =
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

. (4.2)

By definition of ρ̇(sh), for each x ∈ S,

S =
⋃

{

T ∈ sh
∣

∣ T ⊆ S, x ∈ T
}

. (4.3)

Since S /∈ sh, the case T = S can be ruled out in (4.3) obtaining

S =
⋃

{

T ∈ sh
∣

∣ T ⊂ S, x ∈ T
}

, (4.4)

and thus #S > 2. Also, as (4.4) holds for all x ∈ S, S =
⋃

{

T ∈ sh
∣

∣ T ⊂ S
}

. Thus,

pairs(S) ⊇
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

. (4.5)

Suppose {x, y} ∈ pairs(S) for some x, y ∈ Vars. Then, by (4.4), there is a T ∈ sh such

that T ⊂ S and x, y ∈ T and hence {x, y} ∈ pairs(T ). Hence

pairs(S) ⊆
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}

. (4.6)

Combining (4.5) and (4.6) gives (4.2) as required. 2

Since both ρ (by Theorem 4.4) and (·)? are upper closure operators it follows that

sh1 ⊆ ρ(sh2) ⇐⇒ ρ(sh1) ⊆ ρ(sh2), (4.7)

sh1 ⊆ sh?
2 ⇐⇒ sh?

1 ⊆ sh?
2. (4.8)

Lemma 4.14 For each sh ∈ SH and each V ∈ ℘f(Vars), rel
(

V, ρ(sh)
)

= ρ
(

rel(V, sh)
)

.

Proof. By Theorem 4.5,

S ∈ ρ
(

rel(V, sh)
)

⇐⇒ ∀x ∈ S : S =
⋃







T ⊆ S

∣

∣

∣

∣

∣

∣

T ∈ rel
(

{x}, sh
)

T /∈ rel
(

V, sh
)







⇐⇒ S ∈ ρ(sh) ∧ S ∩ V = ∅

⇐⇒ S ∈ rel
(

V, ρ(sh)
)

.

2

Lemma 4.15 For each sh1, sh2 ∈ SH and each V ∈ ℘f(Vars),

sh1 ⊆ ρ(sh2) =⇒ rel(V, sh1)
? ⊆ rel(V, sh2)

?.
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Proof. Suppose S ∈ rel(V, sh1). Then, S ∈ sh1 and V ∩ S 6= ∅. By the hypothesis,

S ∈ ρ(sh2). Suppose x ∈ V ∩ S. Then, by Theorem 4.5, we have S = T1 ∪ · · · ∪ Tk where,

for each i = 1, . . . , k, x ∈ Ti and Ti ∈ sh2. Hence, Ti ∈ rel(V, sh2) for i = 1, . . . , k. Thus

S ∈ rel(V, sh2)
?. The result then follows from (4.8). 2

Lemma 4.16 Suppose sh1, sh2 ∈ SH . Then, for each (x 7→ t) ∈ Bind,

ρ(sh1) = ρ(sh2) =⇒ ρ
(

amgu(sh1, x 7→ t)
)

= ρ
(

amgu(sh2, x 7→ t)
)

.

Proof. We will show that

sh1 ⊆ ρ(sh2) =⇒ amgu(sh1, x 7→ t) ⊆ ρ
(

amgu(sh2, x 7→ t)
)

.

The result then follows from (4.7).

Let vx
def
= {x}, vt

def
= vars(t). Suppose S ∈ amgu(sh1, x 7→ t). Then, by definition of

amgu,

S ∈ rel(vx ∪ vt, sh1) ∪ bin
(

rel(vx, sh1)
?, rel(vt, sh1)

?
)

.

There are two cases:

1. S ∈ rel(vx ∪ vt, sh1). Then S ∈ sh1 so that, by hypothesis, S ∈ ρ(sh2). Hence we

have S ∈ rel
(

vx ∪ vt, ρ(sh2)
)

. Thus, by Lemma 4.14,

S ∈ ρ
(

rel(vx ∪ vt, sh2)
)

.

2. S ∈ bin
(

rel(vx, sh1)
?, rel(vt, sh1)

?
)

. Then, S = T ∪ R, where T ∈ rel(vx, sh1)
? and

R ∈ rel(vt, sh1)
?. By Lemma 4.15, T ∈ rel(vx, sh2)

? and R ∈ rel(vt, sh2)
?. Hence,

S ∈ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

.

Combining cases 1 and 2 we obtain

S ∈ ρ
(

rel(vx ∪ vt, sh2)
)

∪ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

.

Hence as ρ is extensive and monotonic

S ∈ ρ
(

rel(vx ∪ vt, sh2) ∪ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

)

,

and hence S ∈ ρ
(

amgu(sh2, x 7→ t)
)

. 2

Corollary 4.17 Suppose d1, d2 ∈ SS. Then, for each (x 7→ t) ∈ Bind,

ρ(d1) = ρ(d2) =⇒ ρ
(

Amgu(d1, x 7→ t)
)

= ρ
(

Amgu(d2, x 7→ t)
)

.

Proof. There are three cases:
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1. d1 = ⊥. By hypothesis, d2 = ⊥. Straightforward.

2. d1 = >. By hypothesis, d2 = >. Straightforward.

3. d1 = (sh1,VI ). By hypothesis, we have d2 = (sh2,VI ) and ρ(sh1) = ρ(sh2). Let

V
def
= vars(x 7→ t) \ VI and sV

def
=

{

{y}
∣

∣ y ∈ V
}

. By definition of Amgu and ρ, we

have

ρ
(

Amgu
(

(sh1,VI ), x 7→ t
)

)

= ρ
(

(

amgu(sh1 ∪ sV , x 7→ t),VI ∪ V
)

)

=
(

ρ
(

amgu(sh1 ∪ sV , x 7→ t)
)

,VI ∪ V
)

,

and, similarly,

ρ
(

Amgu
(

(sh2,VI ), x 7→ t
)

)

=
(

ρ
(

amgu(sh2 ∪ sV , x 7→ t)
)

,VI ∪ V
)

.

Note that, since sV contains singletons only, it holds

ρ(sh1) = ρ(sh2) =⇒ ρ(sh1 ∪ sV ) = ρ(sh2 ∪ sV ).

Thus, the proof is completed by applying Lemma 4.16.

2

Theorem 4.18 Suppose d1, d2 ∈ SS. Then, for each σ ∈ RSubst,

ρ(d1) = ρ(d2) =⇒ ρ
(

Aunify(d1, σ)
)

= ρ
(

Aunify(d2, σ)
)

.

Proof. The proof is by induction on the number of bindings in σ.

The base case, when #σ = 0 and thus σ = ∅, follows easily by the definition of Aunify.

For the inductive case, when #σ = n > 0, take (x 7→ t) ∈ σ and let σ′ = σ \ {x 7→ t}.

Since #σ′ = n− 1, by applying the inductive hypothesis we have that, for all d′1, d
′
2 ∈ SS ,

ρ(d′1) = ρ(d′2) =⇒ ρ
(

Aunify(d′1, σ
′)
)

= ρ
(

Aunify(d′2, σ
′)
)

. (4.9)

Moreover, by definition of Aunify, we obtain

ρ
(

Aunify(d1, σ)
)

= ρ
(

Aunify
(

Amgu(d1, x 7→ t), σ′
)

)

,

ρ
(

Aunify(d2, σ)
)

= ρ
(

Aunify
(

Amgu(d2, x 7→ t), σ′
)

)

.

Therefore, to complete the proof, it is sufficient to instantiate (4.9) by taking, for i ∈ {1, 2},

d′i = Amgu(di, x 7→ t) and prove that ρ(d′1) = ρ(d′2). The latter is indeed a consequence

of Corollary 4.17. 2

Lemma 4.19 Suppose sh1, sh2 ∈ SH . Then ρ(sh1 ∪ sh2) = ρ
(

ρ(sh1) ∪ ρ(sh2)
)

.
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Proof. This is a classical property of upper closure operators [GHK+80, War42]. We prove

it here for completeness. By monotonicity of ρ, we have ρ(sh1) ∪ ρ(sh2) ⊆ ρ(sh1 ∪ sh2).

Hence, by monotonicity and idempotence of ρ, we obtain ρ
(

ρ(sh1)∪ρ(sh2)
)

⊆ ρ(sh1∪sh2).

By extensiveness of ρ, sh1 ∪ sh2 ⊆ ρ(sh1)∪ ρ(sh2), and hence, again by monotonicity of ρ,

we conclude ρ(sh1 ∪ sh2) ⊆ ρ
(

ρ(sh1) ∪ ρ(sh2)
)

. 2

Theorem 4.20 Suppose that d1, d2 ∈ SS. Then, for all d′ ∈ SS,

ρ(d1) = ρ(d2) =⇒ ρ
(

Alub(d′, d1)
)

= ρ
(

Alub(d′, d2)
)

.

Proof. There are three cases:

1. d1 = ⊥. By hypothesis, d2 = ⊥. Straightforward.

2. d1 = >. By hypothesis, d2 = >. Straightforward.

3. d1 = (sh1,VI ). By hypothesis, d2 = (sh2,VI ) and ρ(sh1) = ρ(sh2). Let d′ ∈ SS .

Again, if d′ ∈ {⊥,>} the proof is straightforward. Thus, let d′ = (sh ′,VI ′); if

VI 6= VI ′ then the proof is straightforward, so we consider VI = VI ′. By definition

of Alub, for i ∈ {1, 2}, we have

ρ
(

Alub
(

(sh ′,VI ), (sh i,VI )
)

)

= ρ
(

(sh ′ ∪ shi,VI )
)

=
(

ρ(sh ′ ∪ shi),VI
)

.

We conclude the proof by applying Lemma 4.19.

2

Lemma 4.21 Suppose sh1, sh2 ∈ SH . Then, for each V ∈ ℘f(Vars),

ρ(sh1) = ρ(sh2) =⇒ ρ
(

aexists(sh1, V )
)

= ρ
(

aexists(sh2, V )
)

.

Proof. We show that

sh1 ⊆ ρ(sh2) =⇒ aexists(sh1, V ) ⊆ ρ
(

aexists(sh2, V )
)

.

The result then follows from (4.7).

Suppose sh1 ⊆ ρ(sh2) and S ∈ aexists(sh1, V ). Then, as aexists is monotonic, we have

S ∈ aexists
(

ρ(sh2), V
)

. Note that, if S = {x} and x ∈ V , the result is trivial. Otherwise,

by definition of aexists, there exists S ′ ∈ ρ(sh2) such that S = S′ ∩ V . By Theorem 4.5,

∀x ∈ S′ : ∃T1, . . . , Tk ∈ rel
(

{x}, sh2

)

. S =

( k
⋃

i=1

Ti

)

∩ V,
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hence

∀x ∈ S : ∃T1, . . . , Tk ∈ rel
(

{x}, sh2

)

. S =

( k
⋃

i=1

Ti

)

∩ V,

and hence

∀x ∈ S : ∃T1, . . . , Tk ∈ rel
(

{x}, sh2

)

. S =
k

⋃

i=1

(Ti ∩ V ).

However,

∀x ∈ S : (T1 ∩ V ), . . . , (Tk ∩ V ) ∈ rel
(

{x}, aexists(sh2, V )
)

,

and thus S ∈ ρ
(

aexists(sh2, V )
)

. 2

Theorem 4.22 Suppose that d1, d2 ∈ SS and V ∈ ℘f(Vars). Then

ρ(d1) = ρ(d2) =⇒ ρ
(

Aproj(d1, V )
)

= ρ
(

Aproj(d2, V )
)

.

Proof. There are three cases:

1. d1 = ⊥. By hypothesis, d2 = ⊥. Straightforward.

2. d1 = >. By hypothesis, d2 = >. Straightforward.

3. d1 = (sh1,VI ). By hypothesis, d2 = (sh2,VI ) and ρ(sh1) = ρ(sh2). By definition of

Aproj, for each i ∈ {1, 2}, we have

ρ
(

Aproj
(

(shi,VI ), V
)

)

=
(

ρ(sh ′
i), V

)

,

where

sh ′
i =

(

aexists(sh i,VI \ V ) \
{

{x}
∣

∣ x ∈ VI \ V
}

)

∪
{

{x}
∣

∣ x ∈ V \ VI
}

.

Since singletons do not affect the operator ρ, we have

ρ(sh ′
i) =

(

ρ
(

aexists(sh i,VI \ V )
)

\
{

{x}
∣

∣ x ∈ VI \ V
}

)

∪
{

{x}
∣

∣ x ∈ V \VI
}

.

Thus, we can conclude the proof by applying Lemma 4.21.

2

Proof of Theorem 4.7 on page 90. Statements 1, 2 and 3 follow, respectively, from

Theorems 4.18, 4.20 and 4.22. 2
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Lemma 4.23 Let σ ∈ RSubst be such that t ∈ GTerms, for all (x 7→ t) ∈ σ. Then, for

all (sh,VI ) ∈ SS we have

Aunify
(

(sh,VI ), σ
)

=
(

rel
(

dom(σ), sh
)

,VI ∪ dom(σ)
)

.

Proof. By induction on the number of bindings of σ. The base case, when #σ = 0, is

obvious. For the inductive case, let #σ > 0, (x 7→ t) ∈ σ and σ′ = σ \ {x 7→ t}. Note that

vars(t) = ∅, so that

Amgu
(

(sh,VI ), x 7→ t
)

=

(

rel
(

{x}, sh ′
)

∪ bin
(

rel
(

{x}, sh ′
)?
, rel

(

∅, sh ′
)?

)

,VI ∪ {x}

)

=
(

rel
(

{x}, sh
)

,VI ∪ {x}
)

,

where sh ′ = sh ∪
{

{x}
}

, if x /∈ VI , and sh ′ = sh, otherwise.

Thus, by applying the definition of Aunify, the above result and the inductive hypoth-

esis, we have

Aunify
(

(sh,VI ), σ
)

= Aunify
(

Amgu
(

(sh,VI ), x 7→ t
)

, σ′
)

= Aunify

(

(

rel
(

{x}, sh
)

,VI ∪ {x}
)

, σ′
)

=

(

rel
(

dom(σ′), rel
(

{x}, sh
)

)

,VI ∪ {x} ∪ dom(σ′)

)

=
(

rel
(

dom(σ), sh
)

,VI ∪ dom(σ)
)

.

2

Theorem 4.24 Let d1
def
= (sh1,VI ) and d2

def
= (sh2,VI ) be two elements of SS. Then

ρ(d1) 6= ρ(d2) implies

∃σ ∈ RSubst . αPS

(

Aunify(d1, σ)
)

6= αPS

(

Aunify(d2, σ)
)

.

Proof. Suppose ρ(d1) 6= ρ(d2). Then it follows that ρ(sh1) 6= ρ(sh2). We assume that

S ∈ ρ(sh1) \ ρ(sh2). (If such an S does not exist we simply swap sh1 and sh2.)

Let a ∈ GTerms ∩ HTerms be a ground and finite term and let

σS
def
= {x 7→ a | x ∈ VI \ S }.

For i = 1, 2, we define

shS
i

def
= {T | T ⊆ S, T ∈ sh i },

so that, by Lemma 4.23, we have

(shS
i ,VI ) = Aunify

(

(shi,VI ), σS

)

.
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Suppose first that #S ≥ 2. For this case, let σ
def
= σS. Then,

(shS
i ,VI ) = Aunify

(

(shi,VI ), σ
)

.

Since S /∈ ρ(sh2), there exists a pair P ⊆ S such that

∀T ∈ sh2 : T ⊆ S =⇒ P * T.

However, by definition of shS
2 , this is the same as saying ∀T ∈ shS

2 : P * T or, equivalently,

(

{P},VI
)

�PS αPS

(

(shS
2 ,VI )

)

.

Also, since S ∈ ρ(sh1), there exists T ′ ∈ sh1 such that T ′ ⊆ S and P ⊆ T ′. Moreover,

T ′ ∈ shS
1 , so that

(

{P},VI
)

�PS αPS

(

(shS
1 ,VI )

)

.

Thus

αPS

(

(shS
1 ,VI )

)

6= αPS

(

(shS
2 ,VI )

)

.

Second, suppose that #S = 1. Let σ = σS∪{x 7→ z}, where S = {x} and z ∈ Vars\VI

is a new variable. By applying the definition of Aunify we obtain, for each i ∈ {1, 2},

Aunify
(

(shi,VI ), σ
)

= Aunify
(

(shi,VI ), σS ∪ {x 7→ z}
)

= Aunify
(

(shS
i ,VI ), {x 7→ z}

)

= Amgu
(

(shS
i ,VI ), x 7→ z

)

=

(

amgu
(

shS
i ∪

{

{z}
}

, x 7→ z
)

,VI ∪ {z}

)

.

Also, by definition of shS
1 and shS

2 , we have shS
1 =

{

{x}
}

and shS
2 = ∅. Hence

amgu
(

shS
1 ∪

{

{z}
}

, x 7→ z
)

=
{

{x, z}
}

,

amgu
(

shS
2 ∪

{

{z}
}

, x 7→ z
)

= ∅.

Thus,

αPS

(

Aunify
(

(sh1,VI ), σ
)

)

=
(

{

{x, z}
}

,VI ∪ {z}
)

is distinct from

αPS

(

Aunify
(

(sh2,VI ), σ
)

)

=
(

∅,VI ∪ {z}
)

.

2

Proof of Theorem 4.8 on page 90. We have four cases. If one of the following holds
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1. d1 = ⊥ or d2 = ⊥,

2. d1 = > or d2 = >,

3. d1 = (sh1,VI 1), d2 = (sh2,VI 2), and VI 1 6= VI 2,

then we simply take σ = ∅. The last case,

4. d1 = (sh1,VI ) and d2 = (sh2,VI ),

has been proved as Theorem 4.24. 2

Proof of Theorem 4.9 on page 91. From sh1 ∩ sh2 ⊆ sh2 and the monotonicity of ρ,

we have that ρ(sh1 ∩ sh2) ⊆ ρ(sh2).

To prove the reverse inclusion, we will show ρ(sh1 ∩ sh2) ⊇ sh1 ∪ sh2. Then, by ρ

monotonicity and idempotence, we obtain

ρ(sh1 ∩ sh2) = ρ
(

ρ(sh1 ∩ sh2)
)

⊇ ρ(sh1 ∪ sh2)

⊇ ρ(sh2).

Let S ∈ sh1 ∪ sh2. We will prove S ∈ ρ(sh1 ∩ sh2) by induction on #S.

Let #S ≤ 2. As S ∈ ρ(sh1) = ρ(sh2) we have, by definition of ρ, both S ∈ sh1 and

S ∈ sh2. Thus S ∈ sh1 ∩ sh2 and the result follows by ρ extensivity.

Let now #S = k > 2. There are three cases:

a) If S ∈ sh1 ∩ sh2 then the result follows, as before, by ρ extensivity.

b) Let S ∈ sh1 \ sh2. As S ∈ ρ(sh1) = ρ(sh2), we have S ∈ ρ(sh2) \ sh2. Thus, by the

definition of ρ,

pairs(S) =
⋃

{

pairs(T )
∣

∣ T ∈ sh2, T ⊂ S
}

.

Note that, for all such T , we have #T < k and thus, by the inductive hypothesis,

T ∈ ρ(sh1 ∩ sh2). Hence, by the definition of ρ and ρ idempotence, we have

S ∈ ρ
(

ρ(sh1 ∩ sh2)
)

= ρ(sh1 ∩ sh2).

c) The case for S ∈ sh2 \ sh1 is symmetric to case b) above.

2

Lemma 4.25 S is redundant for sh if and only if S is redundant for sh \ {S}.

Proof. We have that S is redundant for sh if and only if #S > 2 and

pairs(S) =
⋃

{

pairs(T )
∣

∣ T ∈ sh, T ⊂ S
}
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if and only if #S > 2 and

pairs(S) =
⋃

{

pairs(T )
∣

∣ T ∈ sh \ {S}, T ⊂ S
}

if and only if S is redundant for sh \ {S}. 2

Corollary 4.26 Let S ∈ sh. Then S is redundant for sh if and only if ρ(sh) = ρ
(

sh\{S}
)

.

Proof. By the monotonicity of ρ we have ρ(sh) ⊇ ρ
(

sh \ {S}
)

. Assume S is redundant

for sh. Then by Lemma 4.25, S is redundant for sh \ {S} and thus S ∈ ρ
(

sh \ {S}
)

. By

the extensivity of ρ we have also sh \ {S} ⊆ ρ
(

sh \ {S}
)

, and thus sh ⊆ ρ
(

sh \ {S}
)

. By

the monotonicity and idempotence of ρ we can conclude that ρ(sh) ⊆ ρ
(

sh \ {S}
)

.

Assume now ρ(sh) = ρ
(

sh\{S}
)

. Since S ∈ sh, by extensivity S ∈ ρ(sh) = ρ
(

sh\{S}
)

.

Thus S is redundant for sh \ {S}. 2

Proof of Theorem 4.10 on page 91. Let

shred
def
= sh \ {S ∈ SG | S is redundant for sh }. (4.10)

We first prove that ρ(shred) = ρ(sh).

For each S ∈ SG such that S is redundant for sh, let shS
def
= sh \ {S} and note that

shred =
⋂

{ shS | S is redundant for sh }. By Corollary 4.26, we have ρ(shS) = ρ(sh).

Thus we can apply Theorem 4.9 and obtain

ρ(shred) = ρ
(

⋂

{ shS | S is redundant for sh }
)

= ρ(sh).

Having proved ρ(shred) = ρ(sh), we only need to prove

shred =
⋂

{

sh ′ ∈ SH
∣

∣ ρ(sh ′) = ρ(shred)
}

.

The inclusion shred ⊇
⋂

{

sh ′ ∈ SH
∣

∣ ρ(sh ′) = ρ(shred)
}

is obvious, since shred is one of

the sets that are intersected in the right hand side. For the reverse inclusion, let sh ′ ∈ SH

be such that ρ(sh ′) = ρ(shred). We have:

S ∈ shred ⇐⇒ S ∈ sh \ {T ∈ SG | T red. for sh } [eq. (4.10)]

⇐⇒ S ∈ ρ(sh) \ {T ∈ SG | T red. for sh } [Def. 4.3]

⇐⇒ S ∈ ρ(sh) \
{

T ∈ SG
∣

∣ T red. for ρ(sh)
}

[Lemma 4.13]

⇐⇒ S ∈ ρ(sh ′) \
{

T ∈ SG
∣

∣ T red. for ρ(sh ′)
}

[ρ(sh) = ρ(sh ′)]

⇐⇒ S ∈ sh ′ \
{

T ∈ SG
∣

∣ T red. for ρ(sh ′)
}

[def. ρ]

⇐⇒ S ∈ sh ′ \ {T ∈ SG | T red. for sh ′ } [Lemma 4.13]

=⇒ S ∈ sh ′.

Hence shred ⊆
⋂

{

sh ′ ∈ SH
∣

∣ ρ(sh ′) = ρ(shred)
}

. 2
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Proof of Theorem 4.11 on page 92. The inclusion sh? ⊇ ρ
(

bin(sh, sh)
)

follows from

Theorem 4.5 and the definition of the ‘bin’ operator. We now prove the other inclusion

sh? ⊆ ρ
(

bin(sh, sh)
)

. Let S ∈ sh?. Then

∃T1, . . . , Tn ∈ sh . S =
n
⋃

i=1

Ti, with n ≥ 1.

If S ∈ bin(sh, sh), then, by definition, S ∈ ρ
(

bin(sh, sh)
)

. Suppose now S /∈ bin(sh, sh).

Then #S > 1 and there exists {x, y} ∈ pairs(S). Then there must exist i, j ∈ {1, . . . , n}

(note that i and j need not be distinct) such that x ∈ Ti and y ∈ Tj . This implies

{x, y} ∈ pairs(Ti ∪ Tj). However, Ti ∪ Tj ∈ bin(sh, sh). Hence, as S /∈ bin(sh, sh),

Ti ∪ Tj ⊂ S. Since the choices of {x, y} ∈ pairs(S) and i, j ∈ {1, . . . , n} such that x ∈ Ti

and y ∈ Tj were arbitrary, S is redundant for bin(sh, sh). 2

Lemma 4.27 For each sh1, sh2 ∈ SH ,

ρ
(

bin(sh1, sh2)
)

= ρ
(

bin
(

ρ(sh1), ρ(sh2)
)

)

.

Proof. By the monotonicity of ‘bin’ and ρ, we have

ρ
(

bin(sh1, sh2)
)

⊆ ρ
(

bin
(

ρ(sh1), ρ(sh2)
)

)

.

Thus, we must show that

ρ
(

bin
(

ρ(sh1), ρ(sh2)
)

)

⊆ ρ
(

bin(sh1, sh2)
)

.

Since ρ is monotonic and idempotent, we just need to show that

bin
(

ρ(sh1), ρ(sh2)
)

⊆ ρ
(

bin(sh1, sh2)
)

.

Using Theorem 4.5 we have:

S ∈ bin
(

ρ(sh1), ρ(sh2)
)

⇐⇒ S = S1 ∪ S2 where S1 ∈ ρ(sh1) and S2 ∈ ρ(sh2)

⇐⇒ S = S1 ∪ S2 where, for each i = 1, 2,

∀x ∈ Si : Si =
⋃

{

Ti ⊆ S
∣

∣

∣
Ti ∈ rel

(

{x}, shi

)

}

=⇒ ∀x ∈ S : S =
⋃

{

T ⊆ S
∣

∣

∣
T ∈ rel

(

{x},bin(sh1, sh2)
)

}

⇐⇒ S ∈ ρ
(

bin(sh1, sh2)
)

.

2
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Proof of Theorem 4.12 on page 92. By Definition 3.43 for amgu,

ρ
(

amgu(sh, x 7→ t)
)

= ρ
(

sh− ∪ bin(sh?
x, sh

?
t )

)

.

By Lemma 4.19, ρ
(

amgu(sh, x 7→ t)
)

= ρ
(

ρ(sh−)∪ ρ
(

bin(sh?
x, sh

?
t )

)

)

. However, by Theo-

rem 4.11, bin(sh?
x, sh

?
t ) = bin

(

ρ(sh2
x), ρ(sh2

t )
)

. By Lemma 4.27 and the idempotence of ρ,

ρ
(

bin(sh?
x, sh

?
t )

)

= ρ
(

bin(sh2
x, sh

2
t )

)

. Thus, by Lemma 4.19,

ρ
(

amgu(sh, x 7→ t)
)

= ρ
(

sh− ∪ bin(sh2
x, sh

2
t )

)

.

2

4.8 Summary

We have questioned whether the set-sharing domain SS is the right choice for tracking

pair-sharing between program variables. The answer turned out to be negative. We have

presented a new domain PSD that is, at the same time, a strict abstraction of SS and

as precise as SS on pair-sharing. We have also shown that no abstract domain weaker

than PSD can enjoy this last property. This work has led us to an important theoretical

result that is very likely to be valuable even from a practical perspective: the exponential

star-union operation in the abstract unification procedure can be safely replaced by the

binary union operation, which has quadratic complexity, therefore obtaining a new ab-

stract unification procedure characterized by a polynomial complexity in the number of

sharing groups of the abstract description.
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Chapter 5
Set-Sharing and Complementation

Complementation, the inverse of the reduced product operation, is a technique for system-

atically finding minimal decompositions of abstract domains. Filé and Ranzato advanced

the state of the art by introducing a simple method for computing a complement. As an

application, they considered the extraction by complementation of the pair-sharing do-

main PS from the Jacobs and Langen’s set-sharing domain SS . However, since the result

of this operation was still SS , they concluded that PS was too abstract for this. Here,

we show that the reason for this result lies not with PS but with SS and, more precisely,

with the redundant information contained in SS with respect to ground-dependencies and

pair-sharing. In fact, a proper decomposition is obtained if the non-redundant version of

SS , PSD , is substituted for SS . To establish the results for PSD , we define a general

schema for subdomains of SS that includes PSD and Def as special cases. This sheds

new light on the structure of PSD and exposes a natural though unexpected connection

between Def and PSD . Moreover, we substantiate the claim that complementation alone

is not sufficient to obtain truly minimal decompositions of domains. The right solution

to this problem is to first remove redundancies by computing the quotient of the domain

with respect to the observable behavior, and only then decompose it by complementation.

Note: this chapter is mainly based on the results of [ZHB99]; an extended

version will appear in [ZHB02].

5.1 Sharing Domains as Test-Cases

Complementation [CFG+97], which is the inverse of the well-known reduced product op-

eration [CC79], can systematically obtain minimal decompositions of complex abstract

domains. It has been argued that these decompositions would be useful in finding space

saving representations for domains and to simplify domain verification problems.

In [FR96], Filé and Ranzato presented a new method for computing the complement,

which is simpler than the original proposal by Cortesi et al. [CFG+95, CFG+97] because

it has the advantage that, in order to compute the complement, only a relatively small

number of elements (namely the meet-irreducible elements of the reference domain) need

107
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be considered. As an application of this method, the authors considered the Jacobs and

Langen’s set-sharing domain [JL92] and minimally decomposed SS into three components;

using the words of the authors [FR96, Section 1]:

“[. . .] each representing one of the elementary properties that coexist in the

elements of Sharing, and that are as follows: (i) the ground-dependency in-

formation; (ii) the pair-sharing information, or equivalently variable indepen-

dence; (iii) the set-sharing information, without variable independence and

ground-dependency.”

However, this decomposition did not use the usual domain PS for pair-sharing. Filé

and Ranzato observed that the complement of the pair-sharing domain PS with respect

to SS is again SS and concluded that PS was too abstract to be extracted from SS by

means of complementation. Thus, in order to obtain their non-trivial decomposition of SS ,

they used a different (and somewhat unnatural) definition for an alternative pair-sharing

domain, called PS ′. The nature of PS ′ and its connection with PS will be examined more

carefully at the end of this chapter.

We noticed that the reason why Filé and Ranzato obtained this result was not to be

found in the definition of PS , which accurately represents the property of pair-sharing,

but in the use of the domain SS . As observed in Chapter 4, for groundness and pair-

sharing the domain SS includes redundant elements. In this chapter we show that a

proper decomposition, using the natural definition of the pair-sharing domain PS , can

be obtained by applying the method given in [FR96] to the non-redundant PSD domain,

instead of SS . Moreover, we show that PS is exactly one of the components obtained by

complementation of PSD . Thus the problem exposed by Filé and Ranzato was, in fact,

due to the “information preserving” property of complementation, as any factorization

obtained in this way is such that the reduced product of the factors gives back the original

domain. In particular, any factorization of SS has to encode the redundant information

identified in Chapter 4. We will show that such a problem disappears when PSD is used

as the reference domain.

To establish the results for PSD , we define a general schema for subdomains of

SS that includes, as special cases, both PSD and the groundness dependency domain

Def [AMSS98]. This sheds new light on the structure of the domain PSD , which is

smaller but significantly more involved than SS . Moreover, we discover a natural connec-

tion between the abstract domains Def and PSD . The results confirm that PSD is, in

fact, the “appropriate” abstraction of the set-sharing domain SS that has to be considered

when groundness and pair-sharing are the properties of interest.

5.2 Lattice Theory: a Supplement

Besides the basic notions introduced in Chapter 2, the technical results presented in this

chapter also relies on the following lattice theory concepts and results.
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A complete lattice C is meet-continuous if for any chain Y ⊆ C and each x ∈ C,

x ∧
(

∨

Y
)

=
∨

y∈Y

(x ∧ y).

Most domains for abstract interpretation [CFG+97] and, in particular, all the domains

considered here are meet-continuous.

Assume that C is a meet-continuous lattice. Then the inverse of the reduced product

operation, called weak relative pseudo-complement, is well defined and given as follows.

Let ρ, ρ1 ∈ uco(C) be such that ρ v ρ1. Then

ρ ∼ ρ1
def
=

⊔

{

ρ2 ∈ uco(C)
∣

∣ ρ1 u ρ2 = ρ
}

.

Given ρ ∈ uco(C), the weak pseudo-complement (or, by an abuse of terminology now

customary in the field of abstract interpretation, simply complement) of ρ is denoted by

idC ∼ ρ, where idC is the identity over C. Let Di
def
= ρDi

(C) with ρDi
∈ uco(C) for

i = 1, . . . , n. Then {Di | 1 ≤ i ≤ n } is a decomposition for C if C = D1 u · · · u Dn.

The decomposition is also called minimal if, for each k ∈ N with 1 ≤ k ≤ n and each

Ek ∈ uco(C), Dk < Ek implies

C < D1 u · · · uDk−1 uEk uDk+1 u · · · uDn.

Assume now that C is a complete lattice. If X ⊆ C, then Moore(X) denotes the Moore

completion of X, namely,

Moore(X)
def
=

{

∧

Y
∣

∣ Y ⊆ X
}

.

We say that C is meet-generated by X if C = Moore(X). An element x ∈ C is meet-

irreducible if

∀y, z ∈ C :
(

(x = y ∧ z) =⇒ (x = y or x = z)
)

.

The set of meet-irreducible elements of a complete lattice C is denoted by MI(C). Note

that > ∈ MI(C). An element x ∈ C is a dual-atom if x 6= > and, for each y ∈ C,

x ≤ y < > implies x = y. The set of dual-atoms is denoted by dAtoms(C). Note that

dAtoms(C) ⊂ MI(C). The domain C is dual-atomistic if C = Moore
(

dAtoms(C)
)

. Thus,

if C is dual-atomistic, MI(C) = {>} ∪ dAtoms(C). The following result holds [FR96,

Theorem 4.1].

Theorem 5.1 If C is meet-generated by MI(C) then uco(C) is pseudo-complemented and

for any ρ ∈ uco(C)

idC ∼ ρ = Moore
(

MI(C) \ ρ(C)
)

.

Another interesting result is the following [FR96, Corollary 4.5].

Theorem 5.2 If C is dual-atomistic then uco(C) is pseudo-complemented and for any
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ρ ∈ uco(C)

idC ∼ ρ = Moore
(

dAtoms(C) \ ρ(C)
)

.

5.3 A Handful of Sharing Domains

In this section we consider a particular subset of the lattice of upper closure operators

defined on the set-sharing domain. The elements of this subset will be partially ordered

with respect to precision and it will be shown that a few of these abstractions indeed

correspond to well-known domains for static analysis.

As discussed in Section 2.3, the knowledge of the set VI of variable of interest has a

key role in the formal definition of the concrete meaning of an abstract element. Thus,

in Chapters 3 and 4 we have adopted a domain representation that explicitly includes

this set. However, when defining the abstract operators and stating their properties, we

have also followed an incremental approach, taking care to provide results for both the

implicit and the explicit representations. The ratio was that we wanted to make clear that,

from a technical point of view, no problem can arise when extending the results proven

for the implicit version of the abstract operators (e.g., amgu) so that they apply to the

explicit one (e.g., Amgu). Typically, the latter are obtained as corollaries of the former.

For these reasons, from now on we will only provide the definitions and results for the

implicit case. We would like to emphasize that this is done for ease of presentation only: a

generalization to the explicit case can be easily obtained by mimicking the structure of the

proofs presented in Chapters 3 and 4. Thus, all the abstract domains defined are restricted

to a fixed set of variables of interest VI of finite cardinality n, which is not included

explicitly in the representation of the domain elements; also, when considering abstract

semantics operators having some arguments in RSubst , such as amgu, the considered

substitutions are assumed to have their variables only in VI .

The sets SG and SH , as defined in Chapter 3, are independent of any particular set

of variables of interest, although the actual set-sharing lattice SS as well as the domains

PS and PSD defined in Chapters 3 and 4 include VI explicitly. To avoid cluttering up

the presentation with a handful of new symbols, we will overload names such as SG , SH ,

PS and PSD so that the variables that they contain are implicitly restricted to VI . To

start with, we provide an overloaded definition for the set-sharing lattice.

Definition 5.3 Let SG
def
= ℘(VI ) \ {∅} be the set of sharing groups. The set-sharing

lattice is defined by SH
def
= ℘(SG), ordered by subset inclusion.

Note that we have not considered the distinguished element ⊥ for representing the

semantics of those programs having no successful computations, so that the partial order

on SH is simply given by subset inclusion. Since in this chapter we adopt the upper closure

operator approach to abstract interpretation, all the domains we define are ordered by

subset inclusion. As usual, this ordering provides a formalization of precision where the

less precise domain elements are those occurring higher in the partial order (more precise
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elements contain less sharing groups). It is clear that one can define the overloading

SS
def
= {⊥}∪SH , with the usual extension of the lattice ordering (since SG is the maximum

element of SH , the introduction of the distinguished element > is not necessary).

5.3.1 The Lattice Structure of SH

Since SH is a power set, SH is dual-atomistic and

dAtoms(SH ) =
{

SG \ {S}
∣

∣ S ∈ SG
}

.

As in Section 4.3, all the examples in this chapter will represent sharing sets with the

simplified notation that omits the inner braces.

Example 5.4 Suppose VI = {x, y, z}. Then the seven dual-atoms of SH are:

s1 = { y, z, xy, xz, yz, xyz},

s2 = {x, z, xy, xz, yz, xyz},

s3 = {x, y, xy, xz, yz, xyz},















these lack a singleton;

s4 = {x, y, z, xz, yz, xyz},

s5 = {x, y, z, xy, yz, xyz},

s6 = {x, y, z, xy, xz, xyz},















these lack a pair;

s7 = {x, y, z, xy, xz, yz }, this lacks VI .

The meet-irreducible elements of SH are s1,. . . , s7, and the top element SG.

5.3.2 The Tuple-Sharing Domains

To provide a general characterization of domains such as the groundness and pair-sharing

domains contained in SH , we first identify the sets of elements that have the same cardi-

nality.

Definition 5.5 (The tuples of cardinality k.) The functions tuplesk : SG → SH and

tuplesk : SH → SH are defined, for each k ∈ N such that 1 ≤ k ≤ n, as

tuplesk(S)
def
=

{

T ∈ ℘(S)
∣

∣ #T = k
}

,

tuplesk(sh)
def
=

⋃

{

tuplesk(S
′)

∣

∣ S′ ∈ sh
}

.

In particular, if S ∈ SG and sh ∈ SH , we have (again by overloading)

pairs(S) = tuples2(S),

pairs(sh)
def
= tuples2(sh).

The usual domains that represent groundness and pair-sharing information will be

shown to be special cases of the following more general domain.
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Definition 5.6 (The tuple-sharing domains TS k.) The function ρTSk
: SH → SH is

defined, for each k ∈ N such that 1 ≤ k ≤ n, as

ρTSk
(sh)

def
=

{

S ∈ SG
∣

∣ tuplesk(S) ⊆ tuplesk(sh)
}

.

Since ρTSk
∈ uco(SH ), it induces the lattice TS k

def
= ρTSk

(SH ).

Note that ρTSk

(

tuplesk(sh)
)

= ρTSk
(sh) and that there is a one to one correspondence

between TS k and ℘
(

tuplesk(VI )
)

. The isomorphism is given, for each 1 ≤ k ≤ n, by

the pair of functions tuplesk : TS k → ℘
(

tuplesk(VI )
)

and ρTSk
: ℘

(

tuplesk(VI )
)

→ TS k.

Thus the domain TS k is the smallest domain that can represent properties characterized

by sets of variables of cardinality k. We now consider the tuple-sharing domains for k = 1,

2, and n.

Definition 5.7 (The groundness domain Con.) The operator ρCon : SH → SH and

the corresponding domain Con are defined as

ρCon

def
= ρTS1

,

Con
def
= TS 1(SH ) = ρCon(SH ).

This domain, which represents groundness information, is isomorphic to a domain of con-

junctions of Boolean variables. The isomorphism tuples1 maps each element of Con to

the set of variables that are possibly non-ground. From the domain tuples1(Con), by

set complementation, we obtain the classical domain G [JS87] for representing the set of

variables that are definitely ground (so that we have TS 1
def
= Con ≡ G).

We now define the upper closure operator corresponding to the pair-sharing domain

of Definition 4.1. The overloading of the domain name PS is intentional: as already

explained, the two definitions differ in that we now deal implicitly with the fixed set VI

of variables of interest.

Definition 5.8 (The pair-sharing domain PS .) The operator ρPS : SH → SH and

the corresponding domain PS are defined as

ρPS

def
= ρTS2

,

PS
def
= TS 2(SH ) = ρPS(SH ).

The isomorphism tuples2 maps each element of PS to the set of pairs of variables that may

be bound to terms that share a common variable. The domain for representing variable

independence can be obtained by set complementation.

Finally, in the case when k = n we have a domain consisting of just two elements:

TSn =
{

SG ,SG \ {VI }
}

.
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Note that the bottom of TSn differs from the top element SG only in that it lacks the

sharing group VI . There is no intuitive reading for the information encoded by this

element: it describes all but those substitutions σ ∈ RSubst such that

⋂

{

vars
(

rt(x, σ)
)

∣

∣

∣
x ∈ VI

}

6= ∅

Just as for SH , the domain TS k (where 1 ≤ k ≤ n) is dual-atomistic and:

dAtoms(TS k) =
{

(

SG \ {U ∈ SG | T ⊆ U }
)

∣

∣

∣
T ∈ tuplesk(VI )

}

.

Thus we have

dAtoms(Con) =
{

(

SG \ {U ∈ SG | x ∈ U }
)

∣

∣

∣
x ∈ VI

}

,

dAtoms(PS ) =
{

(

SG \ {U ∈ SG | x, y ∈ U }
)

∣

∣

∣
x, y ∈ VI , x 6= y

}

.

Example 5.9 Consider Example 5.4. Then the dual-atoms of Con are

r1 = s1 ∩ s4 ∩ s5 ∩ s7 = { y, z, yz},

r2 = s2 ∩ s4 ∩ s6 ∩ s7 = {x, z, xz },

r3 = s3 ∩ s5 ∩ s6 ∩ s7 = {x, y, xy };

the dual-atoms of PS are

m1 = s4 ∩ s7 = {x, y, z, xz, yz},

m2 = s5 ∩ s7 = {x, y, z, xy, yz},

m3 = s6 ∩ s7 = {x, y, z, xy, xz }.

It can be seen from the dual-atoms that, for each j = 1, . . . , n, where j 6= k, the

precision of the information encoded by domains TSj and TS k is not comparable. Also,

we note that, if j < k, then ρTSj
(TSk) = {SG} and ρTSk

(TSj) = TSj .

5.3.3 The Tuple-Sharing Dependency Domains

We now need to define domains that capture the propagation of groundness and pair-

sharing; in particular, the dependency of these properties on the further instantiation of

the variables. In the same way as with TS k for Con and PS , we first define a general

subdomain TSDk of SH . This must be safe and precise with respect to the tuple-sharing

property represented by TS k when performing the usual abstract operations. This was

the motivation behind the introduction of the pair-sharing dependency domain PSD in

Chapter 4. We now generalize this for tuple-sharing.

Definition 5.10 (The tuple-sharing dependency domain TSDk.) The function
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ρTSDk
: SH → SH is defined, for each k ∈ N such that 1 ≤ k ≤ n, as

ρTSDk
(sh)

def
=

{

S ∈ SG
∣

∣

∣
∀T ⊆ S : #T < k =⇒ S =

⋃

{U ∈ sh | T ⊆ U ⊆ S }
}

.

Since ρTSDk
∈ uco(SH ), it induces the lattice TSDk

def
= ρTSDk

(SH ).

It follows from the definitions that the domains TSDk form a strict chain.

Proposition 5.11 For j, k ∈ N with 1 ≤ j < k ≤ n, TSD j ⊂ TSDk.

Moreover, TSDk is not less precise than TS k.

Proposition 5.12 For k ∈ N with 1 ≤ k ≤ n, we have TS k ⊆ TSDk. Furthermore, if

n > 1 then TS k ⊂ TSDk.

As an immediate consequence of Propositions 5.11 and 5.12 we have that that TSDk is

not less precise than TS 1 u · · · u TS k.

Corollary 5.13 For j, k ∈ N with 1 ≤ j ≤ k ≤ n, we have TSj ⊆ TSDk.

In Chapter 4 we have seen how, when working on elements of the domain PSD , the star-

union operator can be safely replaced by binary union. In order to generalize this result

so that it applies to an arbitrary tuple-sharing dependency domain, we now introduce the

j-self-union operator.

Definition 5.14 (j-self-union.) The j-self-union function (·)j : SH → SH is defined,

for each j ≥ 1 and sh ∈ SH , as

shj def
=

{

S ∈ SG
∣

∣

∣
∃sh ′ ⊆ sh .

(

# sh ′ ≤ j, S =
⋃

sh ′
)}

.

Note that, letting j = 1, 2, and n, we have sh1 = sh, sh2 = bin(sh, sh), and, as #VI = n,

shn = sh?.

For the TSDk domain, the star-union operator can be replaced by the k-self-union

operator.

Proposition 5.15 For 1 ≤ k ≤ n, we have ρTSDk

(

shk
)

= sh?.

We now instantiate the tuple-sharing dependency domains for k = 1, 2, and n.

Definition 5.16 (The ground dependency domain Def .) The domain Def is induced

by the upper closure operator ρDef : SH → SH . They are defined as

ρDef

def
= ρTSD1

,

Def
def
= TSD1 = ρDef (SH ).
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By Proposition 5.15, we have, for all sh ∈ SH , ρTSD1
(sh) = sh? so that TSD1 is a repre-

sentation of the domain Def used for capturing definite groundness [CFW94, CFW98]. It

also provides evidence for the fact that the computation of the star-union is not needed

for the elements in Def .

We now define the upper closure operator for the pair-sharing dependency domain

PSD , corresponding to Definition 4.3. Note that the equivalence of the two definitions has

already been stated in Theorem 4.5. Again, the overloading of the domain name PSD is

intentional.

Definition 5.17 (The pair-sharing dependency domain PSD .) The upper closure

operator ρPSD : SH → SH and the corresponding domain PSD are defined as

ρPSD

def
= ρTSD2

,

PSD
def
= TSD2 = ρPSD(SH ).

By Proposition 5.15 we have, for all sh ∈ SH , that ρPSD(sh2) = sh?, therefore confirming

the result stated in Theorem 4.11: for elements in PSD the star-union operator sh? can

be replaced by the 2-self-union sh2 = bin(sh, sh) without any loss of precision. Further-

more, Corollary 5.13 confirms the observation made in Chapter 4 that PSD also captures

groundness.

Finally, letting k = n, we observe that TSDn = SH . Figure 5.1 summarizes the

relations between the tuple-sharing and the tuple-sharing dependency domains (domains

occurring lower are the most precise ones).

Going on strengthening and generalizing the results of Chapter 4, we now show that,

for each k ∈ {1, . . . , n}, TSDk is the quotient of SH with respect to the reduced product

TS 1 u · · · uTS k. To this end, we need to provide the “implicit VI ” version of the Aunify

operator.

Definition 5.18 (aunify.) The function aunify : SH × RSubst → SH generalizes amgu

to any substitution in RSubst. If sh ∈ SH and σ ∈ RSubst, then

aunify(sh, σ)
def
=







sh, if σ = ∅;

aunify
(

amgu(sh, x 7→ r), σ \ {x 7→ r}
)

, if (x 7→ r) ∈ σ.

We are now ready to state the completeness and minimality results for the tuple-sharing

dependency domains. Both results are proved at the end of this section.

Theorem 5.19 Let sh1, sh2 ∈ SH be such that ρTSDk
(sh1) = ρTSDk

(sh2), where 1 ≤ k ≤ n.

Then, for each σ ∈ RSubst, sh ′ ∈ SH and V ∈ ℘(VI ),

ρTSDk

(

aunify(sh1, σ)
)

= ρTSDk

(

aunify(sh2, σ)
)

,

ρTSDk
(sh ′ ∪ sh1) = ρTSDk

(sh ′ ∪ sh2),

ρTSDk

(

aexists(sh1, V )
)

= ρTSDk

(

aexists(sh2, V )
)

.
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Figure 5.1: The set-sharing domain SH and some of its abstractions.
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Theorem 5.20 Let sh1, sh2 ∈ SH be such that ρTSDk
(sh1) 6= ρTSDk

(sh2), where 1 ≤ k ≤ n.

Then there exist σ ∈ RSubst and j ∈ {1, . . . , k} such that

ρTSj

(

aunify(sh1, σ)
)

6= ρTSj

(

aunify(sh2, σ)
)

.

5.3.4 Proofs of Theorems 5.19 and 5.20

In what follows we use the fact that ρTSDk
is an upper closure operator so that, for each

sh1, sh2 ∈ SH ,

sh1 ⊆ ρTSDk
(sh2) ⇐⇒ ρTSDk

(sh1) ⊆ ρTSDk
(sh2). (5.1)

Lemma 5.21 For each sh ∈ SH and V ∈ ℘(VI ), rel
(

V, ρTSDk
(sh)

)

= ρTSDk

(

rel(V, sh)
)

.

Proof. By Definition 5.10,

S ∈ ρTSDk

(

rel(V, sh)
)

⇐⇒ ∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{

U ∈ rel(V, sh)
∣

∣ T ⊆ U ⊆ S
}

)

⇐⇒ ∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{U ∈ sh | T ⊆ U ⊆ S }
)

∧ S ∩ V = ∅

⇐⇒ S ∈ ρTSDk
(sh) ∧ S ∩ V = ∅

⇐⇒ S ∈ rel
(

V, ρTSDk
(sh)

)

.

2

Lemma 5.22 For each sh1, sh2 ∈ SH , each V ∈ ℘(VI ) and each k ∈ N with 1 < k ≤ n,

ρTSDk
(sh1) ⊆ ρTSDk

(sh2) =⇒ rel(V, sh1)
? ⊆ rel(V, sh2)

?.

Proof. We prove that

sh1 ⊆ ρTSDk
(sh2) =⇒ rel(V, sh1) ⊆ rel(V, sh2)

?.

The result then follows from Eq. (5.1).

Suppose that S ∈ rel(V, sh1). Then, S ∈ sh1 and S ∩ V 6= ∅. By the hypothesis,

S ∈ ρTSDk
(sh2). Let x ∈ S ∩ V . Then, by Definition 5.10, we have

S =
⋃

{

U ∈ sh2

∣

∣ {x} ⊆ U ⊆ S
}

=
⋃

{

U ∈ rel(V, sh2)
∣

∣ {x} ⊆ U ⊆ S
}

.

Thus S ∈ rel(V, sh2)
?. 2

Lemma 5.23 Let sh1, sh2 ∈ SH be such that ρTSDk
(sh1) = ρTSDk

(sh2). Then, for each

(x 7→ t) ∈ Bind and each k ∈ N with 1 ≤ k ≤ n,

ρTSDk

(

amgu(sh1, x 7→ t)
)

= ρTSDk

(

amgu(sh2, x 7→ t)
)

.
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Proof. We will show that

sh1 ⊆ ρTSDk
(sh2) =⇒ amgu(sh1, x 7→ t) ⊆ ρTSDk

(

amgu(sh2, x 7→ t)
)

.

The result then follows from Eq. (5.1).

Let vx
def
= {x}, vt

def
= vars(t), and vxt

def
= vx ∪ vt. Suppose S ∈ amgu(sh1, x 7→ t). Then,

by definition of amgu,

S ∈ rel(vxt, sh1) ∪ bin
(

rel(vx, sh1)
?, rel(vt, sh1)

?
)

.

There are two cases:

1. S ∈ rel(vxt, sh1). In this case S ∈ sh1, so that S ∈ ρTSDk
(sh2). It also holds

S ∩ V = ∅. Hence, we have S ∈ rel
(

vxt, ρTSDk
(sh2)

)

. Thus, by Lemma 5.21,

S ∈ ρTSDk

(

rel(vxt, sh2)
)

.

2. S ∈ bin
(

rel(vx, sh1)
?, rel(vt, sh1)

?
)

. In this case S = T ∪ R, where T ∈ rel(vx, sh1)
?

and R ∈ rel(vt, sh1)
?.

The proof here splits into two branches, 2a and 2b, depending on whether we have

k > 1 or k = 1.

2a. Assume k > 1. Then, by Lemma 5.22, T ∈ rel(vx, sh2)
? and R ∈ rel(vt, sh2)

?. Hence,

S ∈ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

.

Combining case 1 and case 2a we obtain

S ∈ ρTSDk

(

rel(vxt, sh2)
)

∪ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

.

As ρTSDk
is extensive and monotonic, we obtain

S ∈ ρTSDk

(

rel(vxt, sh2) ∪ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

)

,

and hence, when k > 1, S ∈ ρTSDk

(

amgu(sh2, x 7→ t)
)

.

2b. Secondly suppose that k = 1. In this case, by Proposition 5.15:

ρTSD1
(sh2) = sh?

2,

ρTSD1

(

amgu(sh2, x 7→ t)
)

= amgu(sh2, x 7→ t)?.

Thus, by the hypothesis,

S ∈ bin
(

rel(vx, sh
?
2)

?, rel(vt, sh
?
2)

?
)

= bin
(

rel(vx, sh
?
2), rel(vt, sh

?
2)

)

.
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Therefore we can write S = T ∪ Tx ∪R ∪Rt, where

T ∪ Tx ∈ rel(vx, sh
?
2),

R ∪Rt ∈ rel(vt, sh
?
2),

T ,R ∈ rel(vxt, sh2)
?,

Tx ∈ rel(vx, sh2)
? \ ∅,

Rt ∈ rel(vt, sh2)
? \ ∅.

Thus S ∈
(

rel(vxt, sh2) ∪ bin
(

rel(vx, sh2)
?, rel(vt, sh2)

?
)

)?
= amgu(sh2, x 7→ t)?.

Combining case 1 and case 2b for k = 1, the result follows immediately by the mono-

tonicity and extensivity of (·)?. 2

Lemma 5.24 Let sh1, sh2 ∈ SH be such that ρTSDk
(sh1) = ρTSDk

(sh2). Then, for each

σ ∈ RSubst and each k ∈ N with 1 ≤ k ≤ n,

ρTSDk

(

aunify(sh1, σ)
)

= ρTSDk

(

aunify(sh2, σ)
)

.

Proof. The proof is by induction on the cardinality of σ. The base case, when #σ = 0

and thus σ = ∅, is obvious from the definition of aunify. For the inductive case, when

#σ = m > 0, assume the result holds for all substitutions µ ∈ RSubst such that #µ < m.

Let (x 7→ t) ∈ σ and let σ′ = σ \ {x 7→ t}. Note that #σ′ = m− 1 < m.

For i ∈ {1, 2}, by definition of aunify,

aunify(sh i, σ) = aunify
(

amgu(sh i, x 7→ t), σ′
)

.

By Lemma 5.23, it also holds

ρTSDk

(

amgu(sh1, x 7→ t)
)

= ρTSDk

(

amgu(sh2, x 7→ t)
)

. (5.2)

However, this allows us to complete the proof, since Eq. (5.2) is exactly the condition

needed in order to apply the inductive hypothesis to σ′. 2

Lemma 5.25 For each sh1, sh2 ∈ SH , ρTSDk
(sh1∪sh2) = ρTSDk

(

ρTSDk
(sh1)∪ρTSDk

(sh2)
)

.

Proof. This is a classical property of upper closure operators. The proof is essentially

the same as the one given for Lemma 4.19. 2

Lemma 5.26 Let sh1, sh2 ∈ SH be such that ρTSDk
(sh1) = ρTSDk

(sh2). Then, for each

V ⊆ VI ,

ρTSDk

(

aexists(sh1, V )
)

= ρTSDk

(

aexists(sh2, V )
)

.

Proof. We show that

sh1 ⊆ ρTSDk
(sh2) =⇒ aexists(sh1, V ) ⊆ ρTSDk

(

aexists(sh2, V )
)

.
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The result then follows from Eq. (5.1).

Suppose sh1 ⊆ ρTSDk
(sh2) and S ∈ aexists(sh1, V ). Then, as aexists is monotonic, we

have S ∈ aexists
(

ρTSDk
(sh2), V

)

. We distinguish two cases.

1. ∃x ∈ V . S = {x}. Then, by Definition 3.61, S ∈ aexists(sh2, V ) and hence, by

Definition 5.10, S ∈ ρTSDk

(

aexists(sh2, V )
)

.

2. Otherwise, by definition of aexists and Definition 5.10, there exists a sharing group

S′ ∈ ρTSDk
(sh2) such that S = S′ ∩ V 6= ∅ and

∀T ⊆ S′ :
(

#T < k =⇒ S =
⋃

{U ∈ sh2 | T ⊆ U ⊆ S′ } ∩ V
)

.

Hence

∀T ⊆ S :
(

#T < k =⇒ S =
⋃

{

U ∈ aexists(sh2, V )
∣

∣ T ⊆ U ⊆ S
}

)

,

and thus S ∈ ρTSDk

(

aexists(sh2, V )
)

.

2

Proof of Theorem 5.19 on page 115. The three stated congruence properties follow

from Lemmas 5.24, 5.25 and 5.26, respectively. 2

Proof of Theorem 5.20 on page 117. Let S ∈ ρTSDk
(sh1) \ ρTSDk

(sh2). (If such an S

does not exist we simply swap sh1 and sh2.)

Let t ∈ GTerms ∩ HTerms be a ground and finite term and let

σ
def
= {x 7→ t | x ∈ VI \ S }.

Then, by Lemma 4.23, for i = 1, 2, we define shS
i

def
= aunify(sh i, σ), so that

shS
1 = {T ⊆ S | T ∈ sh1 },

shS
2 = {T ⊂ S | T ∈ sh2 }.

Now, if #S = j and j ≤ k, then we have S ∈ sh1 \ sh2. Therefore S ∈ shS
1 \ shS

2 and

we can easily observe that S ∈ ρTSj
(shS

1 ) but S /∈ ρTSj
(shS

2 ).

On the other hand, if #S = j and j > k, then by Definition 5.10 there exists T with

#T < k such that

S =
⋃

{U ∈ shS
1 | T ⊆ U }

but

S ⊃
⋃

{U ∈ shS
2 | T ⊆ U }

def
= S′.
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Let x ∈ S \ S′. We have h
def
= #

(

T ∪ {x}
)

≤ k and thus we have T ∪ {x} ∈ ρTSh
(shS

1 ) but

T ∪ {x} /∈ ρTSh
(shS

2 ). 2

5.4 The Meet-Irreducible Elements

In Section 5.5, we will use the method of Filé and Ranzato [FR96] to decompose the

dependency domains TSDk. In preparation for this, in this section, we identify the meet-

irreducible elements for the domains and state some general results.

We have already observed that TS k and TSDn = SH are dual-atomistic. However,

TSDk, for k < n, is not dual-atomistic and we need to identify the meet-irreducible

elements. In fact, the set of dual-atoms for TSDk is

dAtoms(TSDk) =
{

SG \ {S}
∣

∣ S ∈ SG ,#S ≤ k
}

.

Note that #dAtoms(TSDk) =
∑k

j=1

(

n
j

)

. Specializing this for k = 1 and k = 2, respec-

tively, we have

dAtoms(Def ) =
{

SG \ {{x}}
∣

∣ x ∈ VI
}

,

dAtoms(PSD) =
{

SG \ {S}
∣

∣ S ∈ pairs(VI )
}

∪ dAtoms(Def ),

and we have #dAtoms(Def ) = n and #dAtoms(PSD) = n(n + 1)/2. We present as an

example of this the dual-atoms for Def and PSD when n = 3.

Example 5.27 Consider Example 5.4. Then the 3 dual-atoms for Def are s1, s2, s3 and

the 6 dual-atoms for PSD are s1, . . . , s6. Note that these are not all the meet-irreducible

elements since sets that do not contain the sharing group xyz such as {x} and ∅ = ρDef (∅)

cannot be obtained by the meet (which is set intersection) of a set of dual-atoms. Thus,

unlike Con and PS, neither Def nor PSD are dual-atomistic.

Consider next the set Mk of the meet-irreducible elements of TSDk that are neither

the top element SG nor dual-atoms. Mk has an element for each sharing group S ∈ SG

such that #S > k and each tuple T ⊂ S with #T = k. Such an element is obtained from

SG by removing all the sharing groups U such that T ⊆ U ⊆ S. Formally, for 1 ≤ k ≤ n,

Mk
def
=

{

SG \ {U ∈ SG | T ⊆ U ⊆ S }
∣

∣ T, S ∈ SG , T ⊂ S,#T = k
}

.

As there are
(

n
k

)

possible choices for T and 2n−k − 1 possible choices for S, we have

#Mk =
(

n
k

)

(2n−k − 1) and #MI(TSDk) =
∑k−1

j=0

(

n
j

)

+
(

n
k

)

2n−k.

We now show that we have identified all the meet-irreducible elements of TSD k.

Theorem 5.28 If k ∈ N with 1 ≤ k ≤ n, then

MI(TSDk) = {SG} ∪ dAtoms(TSDk) ∪Mk.
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Proof. We prove the two inclusions separately.

1. MI(TSDk) ⊇ {SG} ∪ dAtoms(TSDk) ∪Mk.

Let m be in the right-hand side. If m ∈ {SG} ∪ dAtoms(TSDk) there is nothing to

prove. Therefore we assume m ∈Mk. We need to prove that

∀sh1, sh2 ∈ TSDk : m = sh1 ∩ sh2 =⇒ (m = sh1 ∨m = sh2).

Suppose m = sh1 ∩ sh2. Obviously, we have m ⊆ sh1 and m ⊆ sh2. Moreover, by

definition of Mk, there exist T, S ∈ SG where #T = k and T ⊂ S such that

m = SG \
{

U ∈ SG
∣

∣ T ⊆ U ⊆ S
}

.

Since S /∈ m, we have S /∈ sh1 or S /∈ sh2. Let us consider the first case (the other is

symmetric). Then, applying the definition of TSDk, there is a T ′ ⊂ S with #T ′ < k

such that
⋃

{U ′ ∈ sh1 | T ′ ⊆ U ′ ⊆ S } 6= S.

Since #T ′ < #T , there exists x such that x ∈ T \ T ′. Thus T ′ ⊂ S \ {x} and

S \ {x} ∈ m. Hence, as m ⊆ sh1, we have S \ {x} ∈ sh1. Consider an arbitrary

U ∈ SG where T ⊆ U ⊆ S. Then x ∈ U . Thus, since S =
(

S \{x}
)

∪U and S /∈ sh1,

U /∈ sh1. Thus, as this is true for all such U , sh1 ⊆ m.

2. MI(TSDk) ⊆ {SG} ∪ dAtoms(TSDk) ∪Mk.

Let sh ∈ TSDk. We need to show that sh is the meet of elements in the right-hand

side. If sh = SG then there is nothing to prove. Suppose sh 6= SG. For each S ∈ SG

such that S /∈ sh, we will show there is an element mS in the right-hand side such

that S /∈ mS and sh ⊆ mS. Then sh =
⋂

{mS | S /∈ sh }.

There are two cases.

2a. #S ≤ k; Let mS = SG \ {S}. Then mS ∈ dAtoms(TSDk) and sh ⊆ mS.

2b. #S > k; in this case, applying the definition of TSDk, there must exist a set

T ′ ⊂ S with #T ′ < k such that

⋃

{U ′ ∈ sh | T ′ ⊂ U ′ ⊆ S } ⊂ S.

However, since T ′ ⊂ S, we have S =
⋃

{

T ′ ∪ {x}
∣

∣ x ∈ S \T ′
}

. Thus, for some

x ∈ S \ T ′, if U is such that T ′ ∪ {x} ⊆ U ⊆ S then U /∈ sh. Choose T ∈ SG so

that T ′ ∪ {x} ⊆ T and #T = k and let mS = SG \ {U ∈ SG | T ⊆ U ⊆ S }.

Then mS ∈Mk, S /∈ mS, and sh ⊆ mS.

2

We illustrate the above results for the case when n = 3.
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Example 5.29 Consider again Example 5.27. First, consider the domain Def . The

meet-irreducible elements which are not dual-atoms, besides SG, are the following (see

Figure 5.2, where the rightmost elements are the most precise ones):

q1 = { y, z, xz, yz, xyz} ⊂ s1,

q2 = { y, z, xy, yz, xyz} ⊂ s1, r1 = { y, z, yz} ⊂ q1 ∩ q2,

q3 = {x, z, xz, yz, xyz} ⊂ s2,

q4 = {x, z, xy, xz, xyz} ⊂ s2, r2 = {x, z, xz } ⊂ q3 ∩ q4,

q5 = {x, y, xy, yz, xyz} ⊂ s3,

q6 = {x, y, xy, xz, xyz} ⊂ s3, r3 = {x, y, xy } ⊂ q5 ∩ q6.

Next, consider the domain PSD. The only meet-irreducible elements that are not dual-

atoms, beside SG, are the following (see Figure 5.3):

m1 = {x, y, z, xz, yz } ⊂ s4

m2 = {x, y, z, xy, yz } ⊂ s5

m3 = {x, y, z, xy, xz } ⊂ s6.

Each of these lack a pair and none contains the sharing group xyz.

Looking at Examples 5.9 and 5.29, it can be seen that all the dual-atoms of the domains

Con and PS are meet-irreducible elements of the domains Def and PSD , respectively. In

fact, the following general result shows that the dual-atoms of the domain TS k are meet-

irreducible elements for the domain TSDk.

Corollary 5.30 Let k ∈ N with 1 ≤ k ≤ n. Then

dAtoms(TS k) =
{

sh ∈ MI(TSDk)
∣

∣ VI /∈ sh
}

.

For the decomposition, we need to identify which meet-irreducible elements of TSD k

are in TSj . Using Corollaries 5.13 and 5.30 we have the following result.

Corollary 5.31 If j, k ∈ N with 1 ≤ j < k ≤ n, then

MI(TSDk) ∩ TSj = {SG}.

By combining Proposition 5.11 with Theorem 5.28 we can identify the meet-irreducible

elements of TSDk that are in TSD j , where j < k.

Corollary 5.32 If j, k ∈ N with 1 ≤ j < k ≤ n, then

MI(TSDk) ∩ TSD j = dAtoms(TSD j).
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Figure 5.2: The meet-irreducible elements of Def for n = 3, with dual-atoms emphasized.
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x, y, z
xy, xz, yz
xyz

SG

y, z
xy, xz, yz
xyz

s1

x, z
xy, xz, yz
xyz

s2

x, y
xy, xz, yz
xyz

s3

x, y, z
xz, yz
xyz

s4

x, y, z
xz, yz m1

x, y, z
xy, yz
xyz

s5

x, y, z
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Figure 5.3: The meet-irreducible elements of PSD for n = 3, with dual-atoms emphasized.
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5.5 The Decomposition of the Domains

5.5.1 Removing the Tuple-Sharing Domains

We first consider the decomposition of TSDk with respect to TSj . It follows from Theo-

rem 5.1 and Corollaries 5.13 and 5.31 that, for 1 ≤ j < k ≤ n, we have

TSDk ∼ TSj = Moore
(

MI(TSDk) \ ρTSj
(TSDk)

)

= Moore
(

MI(TSDk) \ TSj

)

= TSDk. (5.3)

Since SH = TSDn, we have, using Eq. (5.3) and setting k = n, that, if j < n,

SH ∼ TSj = SH . (5.4)

Thus, in general, TSj is too abstract to be removed from SH by means of complementation.

(Note that here it is required j < n, because we have SH ∼ TSn 6= SH .) In particular,

letting j = 1, 2 (assuming n > 2) in Eq. (5.4), we have

SH ∼ PS = SH ∼ Con = SH , (5.5)

showing that Con and PS are too abstract to be removed from SH by means of comple-

mentation. Also, by Eq. (5.3), letting j = 1 and k = 2 it follows that the complement of

Con in PSD is PSD .

Now consider decomposing TSDk using TS k. It follows from Theorem 5.1, Proposition

5.12 and Corollary 5.30 that, for 1 ≤ k ≤ n, we have

TSDk ∼ TS k = Moore
(

MI(TSDk) \ ρTSk
(TSDk)

)

= Moore
(

MI(TSDk) \ TS k

)

= { sh ∈ TSDk | VI ∈ sh }. (5.6)

Thus we have

TSDk ∼ (TSDk ∼ TS k) = TS k. (5.7)

We have therefore extracted all the domain TS k from TSDk. So by letting k = 1, 2 in

Eq. (5.6), we have found the complements of Con in Def and PS in PSD :

Def ∼ Con = { sh ∈ Def | VI ∈ sh },

PSD ∼ PS = { sh ∈ PSD | VI ∈ sh }.

Thus if we denote the domains induced by these complements as Def ⊕ and PSD⊕, re-

spectively, we have the following result.
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Theorem 5.33

Def ∼ Con = Def ⊕, Def ∼ Def ⊕ = Con,

PSD ∼ PS = PSD⊕, PSD ∼ PSD⊕ = PS .

Moreover, Con and Def ⊕ form a minimal decomposition for Def and, similarly, PS and

PSD⊕ form a minimal decomposition for PSD.

5.5.2 Removing the Dependency Domains

First we note that, by Theorem 5.28, Proposition 5.11, and Corollary 5.32, the complement

of TSD j in TSDk, where 1 ≤ j < k ≤ n, is given as follows:

TSDk ∼ TSD j = Moore
(

MI(TSDk) \ ρTSDj
(TSDk)

)

= Moore
(

MI(TSDk) \ TSD j

)

=
{

sh ∈ TSDk

∣

∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh
}

. (5.8)

It therefore follows from Eq. (5.8) and setting k = n that the complement of ρTSDj
in SH

for j < n is:

SH +
j

def
= SH ∼ TSD j =

{

sh ∈ SH
∣

∣ ∀S ∈ SG : #S ≤ j =⇒ S ∈ sh
}

. (5.9)

In particular, in Eq. (5.9) when j = 1, we have the following result for Def , also proved

in [FR96, Lemma 5.4]:

SH +
Def

def
= SH ∼ Def =

{

sh ∈ SH
∣

∣ ∀x ∈ VI : {x} ∈ sh
}

.

Also, in Eq. (5.9) when j = 2, we have the following result for PSD :

SH +
PSD

def
= SH ∼ PSD =

{

sh ∈ SH
∣

∣ ∀S ∈ SG : #S ≤ 2 =⇒ S ∈ sh
}

.

We next construct the complement of PSD with respect to Def . By Eq. (5.8),

PSD+ def
= PSD ∼ Def =

{

sh ∈ PSD
∣

∣ ∀x ∈ VI : {x} ∈ sh
}

.

Then the complement factor Def −
def
= PSD ∼ PSD+ is exactly SH ∼ SH +

Def so that PSD

and SH behave similarly for Def .

5.5.3 Completing the Decomposition

Just as for SH , the complement of SH +
Def using PS (or, more generally, using TSj where

1 < j < n) is SH +
Def . By Corollary 5.30 and Theorem 5.1, as PS is dual-atomistic, the

complement of PS in PSD+ is given as follows.
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Def − TS 2 = PS PSD‡

PSD+
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TSD2 = PSD
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Figure 5.4: A non-trivial decomposition of PSD .

Theorem 5.34

PSD‡ def
= PSD+ ∼ PS =

{

sh ∈ PSD
∣

∣ VI ∈ sh,∀x ∈ VI : {x} ∈ sh
}

,

PS = PSD+ ∼ PSD‡.

So, we have extracted all the domain PS from PSD+ and we have the following result

(see Figure 5.4).

Corollary 5.35 Def −, PS, and PSD‡ form a minimal decomposition for PSD.

5.6 Discussion

By studying the set-sharing domain in a more general framework, we have been able to

show that the domain PSD has a natural place in a scheme of domains based on SH . Since

the well-known domain Def for groundness analysis is an instance of this scheme, we have

been able to highlight the close relationship between Def and PSD and the many properties

they share. In particular, it was somehow unexpected that these domains could both be

obtained as instances of a single parametric construction. As another contribution, we have

generalized and strengthened the results found in [CFW94, CFW98] and in Chapter 4,

stating that

• Def is the quotient of SH with respect to the groundness domain G ≡ Con; and

• PSD is the quotient of SH with respect to ConuPS (the reduced product of ground-

ness and pair-sharing).

We have provided a minimal decomposition for PSD whose components include Def −

and PS . Moreover, we have shown that Def and PSD are not dual-atomistic and we have

completely specified their meet-irreducible elements.

Our starting point was the work of Filé and Ranzato. In [FR96], they noted, as we

have, that SH +
Def ∼ PS = SH +

Def so that nothing of the domain PS could be extracted from

SH +
Def . They observed that ρPS maps all dual-atoms that contain the sharing group VI to
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the top element SG and thus lose all pair-sharing information. To avoid this, they replaced

the classical pair-sharing domain PS with the domain PS ′ where, for all sh ∈ SH +
Def ,

ρPS ′(sh) = ρPS(sh) \
(

{VI } \ sh
)

,

and noted that SH +
Def ∼ PS ′ = { sh ∈ SH +

Def | VI ∈ sh }. To understand the nature of

this new domain PS ′, we first observe that,

PS ′ = PS u TSn.

This is because TSn = MI(TSn) =
{

SG \ {VI },SG
}

. In addition,

SH +
Def ∼ TSn = { sh ∈ SH +

Def | VI ∈ sh },

which is precisely the same as SH +
Def ∼ PS ′. As a consequence, since SH +

Def ∼ PS = SH +
Def ,

it is not surprising that it is precisely the added component TS n that is removed when we

compute the complement for SH +
Def with respect to PS ′.

We would like to point out that, in our opinion, the problems outlined above are not

the consequence of the particular domains considered. Rather, they are mainly related to

the methodology for decomposing a domain. As shown here, complementation alone is

not sufficient to obtain truly minimal decompositions of domains. The reason being that

complementation only depends on the domain’s data (that is, the domain elements and the

partial order relation modeling their intrinsic precision), while it is completely independent

from the domain operators that manipulate that data. In particular, if the concrete domain

contains elements that are redundant with respect to its operators (because the observable

behavior of these elements is exactly the same in all possible program contexts) then any

factorization of the domain obtained by complementation will encode this redundancy.

However, the theoretical solution to this problem is well-known [CFW94, CFW98, GR97,

GRS98b] and it is straightforward to improve the methodology so as to obtain truly

minimal decompositions: first remove all redundancies from the domain (this can be done

by computing the quotient of the domain with respect to the observable behavior) and

only then decompose it by complementation. This is precisely what is done here.

We conclude our discussion about complementation with a few remarks. It is our

opinion that, from a theoretical point of view, complementation is an excellent concept

to work with: by allowing the splitting of complex domains into simpler components,

avoiding redundancies between them, it really enhances our understanding of the domains

themselves.

However, as things stand at present, complementation has never been exploited from

a practical point of view. This may be because it is easier to implement a single complex

domain than to implement several simpler domains and integrate them together. Note that

complementation requires the implementation of a full integration between components

(i.e., the reduced product together with its corresponding best approximations of the

concrete semantic operators), otherwise precision would be lost and the theoretical results
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would not apply.

Moreover, complementation appears to have little relevance when trying to design or

evaluate better implementations of a known abstract domain. In particular, this reasoning

applies to the use of complementation as a tool for obtaining space saving representations

for domains. As a notable example, the GER representation for Pos [BS99] is a well-

known domain decomposition that does enable significant memory and time savings with

no precision loss. This is not (and could not be) based on complementation. Observe that

the complement of G with respect to Pos is Pos itself. This is because of the isomorphisms

Pos ≡ SH [CS98] and G ≡ Con
def
= TS 1 so that, by Eq. (5.5), Pos ∼ G = Pos . It is not

difficult to observe that the same phenomenon happens if one considers the groundness

equivalence component E, that is, Pos ∼ E = Pos. Intuitively, each element of the

domain E defines a partition of the variable of interest VI into groundness equivalence

classes. In fact, it can be shown that two variables x, y ∈ VI are ground-equivalent in the

abstract element sh ∈ SH ≡ Pos if and only if rel
(

{x}, sh
)

= rel
(

{y}, sh
)

. In particular,

this implies both {x} /∈ sh and {y} /∈ sh. Thus, it can be easily observed that in all

the dual-atoms of Pos no variable is ground-equivalent to another variable (because each

dual-atom lacks just a single sharing group).



Chapter 6
Freeness and Linearity

It is well-known that freeness and linearity positively interact with aliasing information,

therefore allowing improvements to both the precision and the efficiency of the sharing

analysis of logic programs. In this chapter we present a novel combination of set-sharing

with freeness and linearity information which is characterized by an improved abstract

unification operator. We provide a new abstraction function and prove the correctness of

the analysis, both for the finite-tree and the rational-tree languages. Moreover, we show

that the same notion of redundant information as identified in Chapter 4 also applies to

this abstract domain combination.

6.1 Yet Another Domain Combination

Even though the set-sharing domain is, in a sense, remarkably precise, more precision is

attainable by combining it with other domains. In particular, definite freeness and definite

linearity information have received much attention by the literature on sharing analysis.

As argued informally by Søndergaard [Søn86], the mutual interaction between linearity

and aliasing information can improve the accuracy of a sharing analysis. This observation

has been formally applied in [CDY91] to the specification of the abstract mgu operator for

the domain ASub. In his PhD thesis [Lan90], Langen proposed a similar integration with

linearity, but for the set-sharing domain (he has also shown how the aliasing information

allows for freeness to be computed with a good degree of accuracy, but freeness information

was not exploited to improve aliasing). King [Kin94] has also shown how a more refined

tracking of linearity allows for further precision improvements.

The synergy attainable from a bi-directional interaction between aliasing and free-

ness information was initially pointed out by Muthukumar and Hermenegildo [MH91,

MH92]. Since then, several authors considered the integration of set-sharing with free-

ness, sometimes including additional explicit structural information [CDFB93, CDFB96,

Fil94, KS94].

Building on the results obtained in [Søn86], [CDY91] and [MH91], but independently

from [Lan90], Hans and Winkler [HW92] proposed a combined integration of freeness and

131
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linearity information with set-sharing. Similar combinations have been proposed in [BC93,

BCM94a, BCM94b]. From a more pragmatic point of view, Codish et al. [CMB+93,

CMB+95] integrate the information captured by the domains of [Søn86] and [MH91] by

performing the analysis with both the domains at the same time, exchanging information

between the two components at each step.

Most of the above proposals differ in the carrier of the underlying abstract domain.

Even when considering the simplest domain combinations, where no explicit structural

information is taken into account, there is no general consensus on the specification of the

abstract unification procedure. From a theoretical point of view, once the abstract domain

has been related to the concrete one by means of a Galois connection, it is always possible

to specify the best correct approximation of each operator of the concrete semantics.

However, as we will see in Chapter 8, empirical observations suggest that sub-optimal

operators are likely to result in better complexity/precision trade-offs. As a consequence,

it is almost impossible to identify “the right combination” of variable aliasing with freeness

and linearity information, at least when practical issues, such as the complexity of the

abstract unification procedure, are taken into account.

Given this state of affairs, we will now consider a domain combination whose carrier is

essentially the same as specified by Langen [Lan90] and Hans and Winkler [HW92] (the

same domain combination was also considered by Bruynooghe et al. [BCM94a, BCM94b],

but with the addition of compoundness and explicit structural information). The novelty

of our proposal lies in the specification of an improved abstract unification procedure,

better exploiting the interaction between sharing and linearity. By extending the results of

Chapter 3 to this combination, we provide a new abstraction function that can be applied

to any logic language computing on domains of syntactic structures, with or without

the occurs-check; by using this abstraction function, we also prove the correctness of the

abstract unification procedure.

It is worth stressing that, though very precise, our abstract domain and operators

are not meant to subsume all the similar approaches that can be found in the literature.

Rather, the goal is to provide a strong basis, with formal results of correctness, where

other proposals for improved precision can be plugged in. Some of them will be presented,

discussed and experimentally evaluated in Chapter 8.

6.2 The Domain SFL

The abstract domain SFL is made up of three components: the first one is the set-sharing

component, providing aliasing and groundness information; the other two components

provide freeness and linearity information, each represented by simply recording those

variables of interest that are known to enjoy the corresponding property. For the same

reasons explained in Chapter 5, we consider a fixed set of variables of interest VI .

Definition 6.1 (The domain SFL.) Let F
def
= ℘(VI ) and L

def
= ℘(VI ) be partially



6.3. THE ABSTRACTION FUNCTION 133

ordered by reverse subset inclusion. The abstract domain SFL is defined as

SFL
def
=

{

〈sh, f, l〉
∣

∣ sh ∈ SH , f ∈ F, l ∈ L
}

and is ordered by ≤S, the component-wise extension of the orderings defined on the sub-

domains. With this ordering, SFL is a complete lattice whose least upper bound operation

is denoted by alubS. The bottom element (∅,VI ,VI ) will be denoted by ⊥S.

The domain SFL contains many redundancies, i.e., different abstract elements rep-

resenting the same set of concrete computation states. Reasoning informally,1 all the

elements where f * vars(sh), such as ⊥S, represent the semantics of those program frag-

ments that have no successful computations: this is because any free variable necessarily

shares (at least, with itself). Similarly, the element d1 = 〈sh, f, l〉 has the same meaning

as the element d2 = 〈sh, f, l′〉, where l′ =
(

VI \ vars(sh)
)

∪ f ∪ l: in this case, the reason

is that any variable that is either ground or free is also necessarily linear.

All of these redundancies can be removed by taking, as abstract domain, the image of

the concrete domain under the abstraction function. Apart from the simple cases shown

above, it is somehow difficult to explicitly characterize such a set. For instance, as observed

in [Fil94], the element

〈

{xy, yz, xz}, {x, y, z}, {x, y, z}
〉

∈ SFL (6.1)

does not correspond to the abstraction of any concrete computation state (and can be

shown to be equivalent to ⊥S). Moreover, such an approach would be complicated by the

necessity of proving that all the abstract operators are well-defined on the given abstract

domain.

For the above reasons, we adopt the redundant domain SFL. It is worth stressing that

these “spurious” elements do not cause problems to the analysis as far as its correctness is

concerned. Rather, they might affect the precision of the analysis. However, the abstract

operators of SFL are designed to avoid the simpler cases, while the more involved ones,

such as (6.1), occur rarely in practice (we refer the interested reader to Section 8.8, where

such a claim is confirmed by our experimental evaluation).

6.3 The Abstraction Function

When defining the abstraction function for the domain SFL, we need to solve the same

problems faced in Chapter 3. Namely, we would like to specify an abstraction function

that precisely captures the properties of interest. This function should be invariant under

logical equivalence, so that different representations of the same set of rational trees will

be abstracted uniformly. We proceed toward a solution by considering each domain com-

ponent separately. For the set-sharing component, we use the occurrence operator ‘occ’

of Definition 3.26.
1A formal argument can only be obtained when the abstraction function has been specified.
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6.3.1 The Freeness Operator

As for possible sharing, the definite freeness information is abstracted from a substitution

in rational solved form by means of a fixpoint computation.

Definition 6.2 (Freeness functions.) For each n ∈ N, fvarsn : RSubst → ℘(Vars) is

defined, for each σ ∈ RSubst, by

fvars0(σ)
def
= Vars \ dom(σ),

fvarsn+1(σ)
def
= fvarsn(σ) ∪

{

y ∈ dom(σ)
∣

∣ yσ ∈ fvarsn(σ)
}

.

For each n ∈ N, although fvarsn(σ) is an infinite set, its set complement Vars \ fvarsn(σ) is

finite, so that each freeness function is finitely computable. Since fvarsn(σ) ⊆ fvarsn+1(σ)

and #
(

Vars \ fvars0(σ)
)

= #σ, there is an index ` ≤ #σ such that fvars`(σ) = fvarsn(σ)

for all n ≥ `.

Definition 6.3 (Freeness operator.) For each σ ∈ RSubst, the freeness operator

fvars : RSubst → ℘(Vars) is defined by

fvars(σ)
def
= fvars# σ(σ).

Example 6.4 Consider σ ∈ RSubst, where

σ =
{

x1 7→ x2, x2 7→ f(x3), x3 7→ x4, x4 7→ x5

}

.

Then,

fvars0(σ) = Vars \ {x1, x2, x3, x4},

fvars1(σ) = Vars \ {x1, x2, x3},

fvars2(σ) = Vars \ {x1, x2}

= fvars(σ).

Thus, x1 /∈ fvars(σ), although x1σ ∈ Vars. Also, x3 ∈ fvars(σ), although x3σ ∈ dom(σ).

6.3.2 The Groundness Operator

As all ground trees are linear, a knowledge of the definite groundness information as-

sociated to a substitution can be useful for proving properties concerning the linearity

abstraction. As we observed in Chapters 3 and 5, the set-sharing abstraction already

captures groundness information. For both a simplified notation and a clearer intuitive

reading, we now explicitly define the set of variables that are associated to ground trees

by a substitution in RSubst . This set is expressed in terms of the ‘occ’ operator.

Definition 6.5 (Groundness operator.) For each σ ∈ RSubst, the groundness opera-



6.3. THE ABSTRACTION FUNCTION 135

tor gvars: RSubst → ℘f(Vars) is defined by

gvars(σ)
def
=

{

y ∈ dom(σ)
∣

∣ ∀v ∈ vars(σ) : y /∈ occ(σ, v)
}

.

Example 6.6 Consider σ ∈ RSubst, where

σ =
{

x1 7→ x2, x2 7→ f(a), x3 7→ x4, x4 7→ f(x2, x4)
}

.

Then gvars(σ) = {x1, x2, x3, x4}. Observe that x1 ∈ gvars(σ), although x1σ ∈ Vars. Also,

x3 ∈ gvars(σ), although vars(x3σ
i) = {x2, x4} 6= ∅ for all i ≥ 2.

6.3.3 The Linearity Operator

Linearity information is more conveniently specified by characterizing the set of variables

that are not linear by means of another fixpoint computation. The base for the inductive

definition is specified by using both the ‘occ’ and the ‘gvars’ operators.

Definition 6.7 (Non-linearity functions.) For each n ∈ N, the non-linearity function

nlvarsn : RSubst → ℘f(Vars) is defined, for each σ ∈ RSubst, by

nlvars0(σ)
def
=

{

y ∈ dom(σ)
∣

∣ ∃v ∈ vars(yσ) \ gvars(σ) . ¬ occ lin(v, yσ)
}

∪







y ∈ dom(σ)

∣

∣

∣

∣

∣

∣

∃w, z ∈ vars(yσ) . ∃v ∈ vars(σ) .

w 6= z ∧ {w, z} ⊆ occ(σ, v)







,

nlvarsn+1(σ)
def
= nlvarsn(σ) ∪

{

y ∈ dom(σ)
∣

∣ vars(yσ) ∩ nlvarsn(σ) 6= ∅
}

.

It is easy to observe that nlvarsn(σ) ⊆ nlvarsn+1(σ) and #nlvarsn(σ) ≤ #σ, so that there

is an index ` ≤ #σ such that nlvars`(σ) = nlvarsn(σ) for all n ≥ `.

Definition 6.8 (Linearity operator.) For each σ ∈ RSubst, the linearity operator

lvars : RSubst → ℘(Vars) is defined by

lvars(σ)
def
= Vars \ nlvars# σ(σ).

Example 6.9 Consider σ ∈ RSubst, where

σ =
{

x1 7→ f(x2, x2), x2 7→ f(a, x3), x4 7→ g(x2, x5),

x5 7→ f(x3), x6 7→ g(a, x1), x7 7→ f(x8, x8), x8 7→ f(x8)
}

.

Then,

nlvars0(σ) = {x1, x4},

nlvars1(σ) = {x1, x4, x6}

= nlvars2(σ).
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Note that x1 /∈ lvars(σ) due to the first case in the definition of nlvars0, since x2 /∈ gvars(σ);

x4 /∈ lvars(σ) due to the second case of the definition of nlvars0, since {x2, x5} ⊆ occ(σ, x3);

x6 /∈ lvars(σ) since the non-linear variable x1 occurs in x6σ. Finally, x7 ∈ lvars(σ),

although, for all i > 0, the variable x8 occurs more than once in the term x7σ
i.

The freeness, groundness and linearity operators precisely capture the intended prop-

erties over the domain of rational trees.

Proposition 6.10 If σ ∈ RSubst and y ∈ Vars then

y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars, (6.2)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (6.3)

y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms. (6.4)

6.3.4 The Abstraction Function for SFL

We are now in position to define the abstraction function mapping substitutions in rational

solved form to elements of the domain SFL.

Definition 6.11 (The abstraction function for SFL.) For each σ ∈ RSubst, the

function αS : RSubst → SFL is defined by

αS(σ)
def
=

〈

ssets(σ), fvars(σ) ∩ VI , lvars(σ) ∩ VI
〉

,

where

ssets(σ)
def
=

{

occ(σ, v) ∩ VI
∣

∣ v ∈ Vars
}

\ {∅}.

The concrete domain D[ is related to the abstract domain SFL by means of the abstraction

function αS : D[ → SFL such that, for each Σ ∈ ℘(RSubst),

αS(Σ)
def
= alubS

{

αS(σ)
∣

∣ σ ∈ Σ
}

.

Since the abstraction function αS is additive, it induces a Galois connection; the corre-

sponding concretization function γS is provided by the adjoint [CC77a]

γS

(

〈sh, f, l〉
) def

=
{

σ ∈ RSubst
∣

∣ ssets(σ) ⊆ sh, fvars(σ) ⊇ f, lvars(σ) ⊇ l
}

.

We introduced the new operator ‘ssets’ for notational convenience only: its role is essen-

tially the same of the function α : RSubst × ℘f(Vars) → SS introduced in Definition 3.32,

which, however, explicitly deals with the set of variables of interest.

With the definitions given in this section, one of our goals has been achieved: substi-

tutions in RSubst that are equivalent have the same abstraction.
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Theorem 6.12 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and

suppose T ` ∀(σ ↔ τ). Then αS(σ) = αS(τ).

6.3.5 Proofs of the Results of Section 6.3.

In Chapter 3 we introduced variable-idempotent substitutions as a tool to reason about

the aliasing of variables when we cannot assume idempotence. We will now show that

variable-idempotence is also useful when reasoning about the freeness of a rational term

as well as the multiplicity of the variables occurring in it, that is, its linearity.

For a substitution σ ∈ VSubst , when computing the operators ‘fvars’ and ‘nlvars’ the

fixpoint is reached after a single iteration.

Lemma 6.13 For each σ ∈ VSubst we have fvars(σ) = fvars1(σ).

Proof. We show that fvars2(σ) ⊆ fvars1(σ). Let y ∈ fvars2(σ). By Definition 6.2, we

have two cases:

1. if y ∈ fvars1(σ) then there is nothing to prove;

2. assume now y ∈ dom(σ) and yσ ∈ fvars1(σ). Again by Definition 6.2, we have two

subcases:

(a) if yσ ∈ Vars \ dom(σ) then we easily obtain y ∈ fvars1(σ);

(b) otherwise, let yσ ∈ dom(σ) and yσσ ∈ Vars \dom(σ). Then y 6= yσ 6= yσσ and

vars(yσ) 6= vars(yσσ), which is a contradiction since σ ∈ VSubst .

2

Lemma 6.14 For each σ ∈ VSubst we have nlvars(σ) = nlvars1(σ).

Proof. We show that nlvars2(σ) ⊆ nlvars1(σ). Let y ∈ nlvars2(σ). By Definition 6.7, we

have two cases:

1. if y ∈ nlvars1(σ) then there is nothing to prove;

2. let y ∈ dom(σ) and z ∈ vars(yσ) ∩ nlvars1(σ). By Definition 6.7 we have two

subcases:

(a) if z ∈ nlvars0(σ) then, again by Definition 6.7, y ∈ nlvars1(σ);

(b) otherwise, let z ∈ dom(σ) and suppose vars(zσ) ∩ nlvars0(σ) 6= ∅. However,

since σ ∈ VSubst , we have vars(zσ) ⊆ vars(yσ). Thus vars(yσ)∩nlvars0(σ) 6= ∅

and y ∈ nlvars1(σ).

2

When σ ∈ VSubst , the following simplified characterizations for the operators ‘fvars’,

‘gvars’ and ‘lvars’ can be used.
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Proposition 6.15 For each σ ∈ VSubst, we have

fvars(σ) =
{

y ∈ Vars
∣

∣ yσ ∈ Vars \ dom(σ)
}

, (6.5)

gvars(σ) =
{

y ∈ Vars
∣

∣ vars(yσ) ⊆ dom(σ)
}

, (6.6)

lvars(σ) =







y ∈ Vars

∣

∣

∣

∣

∣

∣

∀z ∈ vars(yσ) \ dom(σ) : occ lin(z, yσ),

∀z ∈ vars(yσ) ∩ dom(σ) : z ∈ gvars(σ)







. (6.7)

The proof of Proposition 6.15 relies on the following simple result, which will also be

needed later.

Lemma 6.16 For all σ ∈ RSubst, x ∈ gvars(σ) if and only if vars(xσ) ⊆ gvars(σ).

Proof. We prove the result by showing that x /∈ gvars(σ) if and only if there exists

w ∈ vars(xσ) \ gvars(σ).

First, let x /∈ gvars(σ). By Definition 6.5, there exists v ∈ Vars such that x ∈ occ(σ, v).

By Definitions 3.24 and 3.26, there exists w ∈ vars(xσ) such that w ∈ occ(σ, v). Thus, by

Definition 6.5, w /∈ gvars(σ).

Assume now that there exists w ∈ vars(xσ) such that w /∈ gvars(σ). By Definition 6.5,

there exists v ∈ Vars such that w ∈ occ(σ, v). By Definitions 3.24 and 3.26, we have

x ∈ occ(σ, v). Thus, by Definition 6.5, x /∈ gvars(σ). 2

Proof of Proposition 6.15. Equation (6.5) is easily obtained by applying Lemma 6.13

and then unfolding Definition 6.2.

Consider equation (6.6). By Definition 6.5, y ∈ gvars(σ) if and only if, for all v ∈ Vars,

we have y /∈ occ(σ, v). By Lemma 3.28, this holds if and only if there does not exist

v ∈ Vars such that v ∈ vars(yσ) \ dom(σ), i.e., if and only if vars(yσ) ⊆ dom(σ).

Consider now equation (6.7). Given Definition 6.8, it is simpler to reason about the

set complement of the left-hand side of equation (6.7). Thus, by applying Lemma 6.14

and then unfolding Definition 6.7, we have that y /∈ lvars(σ) if and only if y ∈ nlvars(σ) if

and only if any of the following holds:

y ∈ dom(σ) ∧ ∃v ∈ vars(yσ) \ gvars(σ) . ¬ occ lin(v, yσ), (6.8)

y ∈ dom(σ) ∧ ∃w1, w2 ∈ vars(yσ) .

∃v ∈ vars(σ) . w1 6= w2 ∧ {w1, w2} ⊆ occ(σ, v), (6.9)

y ∈ dom(σ) ∧ ∃y′ ∈ vars(yσ) ∩ dom(σ) .

∃v ∈ vars(y′σ) \ gvars(σ) . ¬ occ lin(v, y′σ), (6.10)

y ∈ dom(σ) ∧ ∃y′ ∈ vars(yσ) ∩ dom(σ) . ∃w1, w2 ∈ vars(y′σ) .

∃v ∈ vars(σ) . w1 6= w2 ∧ {w1, w2} ⊆ occ(σ, v). (6.11)

On the other hand, variable y is not in the right-hand side of equation (6.7) if and only if
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any of the following holds:

y ∈ dom(σ) ∧ ∃z ∈ vars(yσ) \ dom(σ) . ¬ occ lin(z, yσ), (6.12)

y ∈ dom(σ) ∧ ∃z ∈ vars(yσ) ∩ dom(σ) . z /∈ gvars(σ). (6.13)

Thus, in order to complete the proof, we need to show that

(6.8) ∨ (6.9) ∨ (6.10) ∨ (6.11) ⇐⇒ (6.12) ∨ (6.13).

We first prove the implication ⇒.

1. Suppose that (6.8) holds. If v /∈ dom(σ), by taking z = v, we have that (6.12) holds.

Otherwise, v ∈ dom(σ), by taking z = v, we have that (6.13) holds.

2. Suppose that (6.9) holds. Note that, by Definition 6.5, we have that w1 /∈ gvars(σ)

and w2 /∈ gvars(σ). Since w1 6= w2, there exists an index j ∈ {1, 2} such that wj 6= v.

Since wj ∈ occ(σ, v), we obtain wj ∈ dom(σ). Hence, by taking z = wj , (6.13) holds.

3. Suppose that (6.10) holds. Then, by Lemma 6.16, y′ /∈ gvars(σ). As a consequence,

by taking z = y′, we have that (6.13) holds.

4. Suppose that (6.11) holds. By Definition 6.5, we have w1 /∈ gvars(σ). Thus, as in

the previous case, by Lemma 6.16 we obtain y′ /∈ gvars(σ) and, by taking z = y′, we

have that (6.13) holds.

We now prove the other implication (⇐).

1. Suppose that (6.12) holds. Note that z /∈ dom(σ) implies z /∈ gvars(σ). Thus, by

taking v = z, we have that (6.8) holds.

2. Finally, suppose that (6.13) holds. By Definition 6.5, there exists w ∈ Vars such

that z ∈ occ(σ,w). Since z ∈ vars(yσ), by Definitions 3.24 and 3.26, we have

y ∈ occ(σ,w). Since σ ∈ VSubst , by Lemma 3.28 we obtain w ∈ vars(yσ). Also note

that z 6= w, because z ∈ dom(σ) whereas w /∈ dom(σ). Thus, by taking w1 = z,

w2 = w and v = w, we have that (6.9) holds.

2

The following proposition shows that, for a substitution σ ∈ VSubst , the freeness,

groundness and linearity operators precisely capture the intended properties.

Proposition 6.17 Let σ ∈ VSubst and y ∈ Vars. Then:

y ∈ fvars(σ) ⇐⇒ rt(y, σ) ∈ Vars, (6.14)

y ∈ gvars(σ) ⇐⇒ rt(y, σ) ∈ GTerms, (6.15)

y ∈ lvars(σ) ⇐⇒ rt(y, σ) ∈ LTerms. (6.16)
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Proof. We start by proving item (6.14). By Proposition 6.15, y ∈ fvars(σ) if and only if

yσ ∈ Vars \ dom(σ). To prove the first implication (⇒), let yσ ∈ Vars \ dom(σ). Then,

rt(y, σ) ∈ Vars \ dom(σ) and, more generally, rt(y, σ) ∈ Vars.

To prove the other implication (⇐), assume that rt(y, σ) ∈ Vars. We prove by contra-

diction that yσ ∈ Vars \ dom(σ). In fact, assume that yσ /∈ Vars \ dom(σ). We have two

cases:

1. if yσ /∈ Vars then, by definition, rt(y, σ) /∈ Vars.

2. otherwise, let yσ ∈ dom(σ). Thus, we have y 6= yσ 6= yσσ, so that (y 7→ yσ) ∈ σ

and (yσ 7→ yσσ) ∈ σ. Since σ ∈ VSubst , we also have {yσ} = vars(yσ) = vars(yσσ).

Therefore, yσσ /∈ Vars , so that there exists an n > 0 such that yσσ = f(t1, . . . , tn),

and size(yσσ) > 1. Since rt(y, σ) ∈ Vars , this is a contradiction because we also

have size(yσ2) ≤ size
(

rt(y, σ)
)

= 1.

We now prove item (6.15). By Definition 6.5, we have y ∈ gvars(σ) if and only if

y /∈ occ(σ, v), for all v ∈ Vars. By Lemma 3.38, this is equivalent to v /∈ vars
(

rt(y, σ)
)

,

for all v ∈ Vars. Thus, vars
(

rt(y, σ)
)

= ∅ and rt(y, σ) ∈ GTerms.

Finally, we prove item (6.16). In order to prove the first implication (⇒), assume

y ∈ lvars(σ) so that, by Proposition 6.15, we have

∀z ∈ vars(yσ) \ dom(σ) : occ lin(z, yσ), (6.17)

∀z ∈ vars(yσ) ∩ dom(σ) : vars(zσ) ⊆ dom(σ). (6.18)

We need to show that rt(y, σ) ∈ LTerms and we proceed by contradiction, negating

the conclusion. Thus assume there exists v ∈ vars
(

rt(y, σ)
)

such that occ lin
(

v, rt(y, σ)
)

does not hold. Note that v /∈ dom(σ); also, since σ ∈ VSubst , vars(yσ) = vars(yσi),

for all i > 0, so that v ∈ vars(yσ). If occ lin(v, yσ) does not hold, then we obtain the

negation of equation (6.17), hence a contradiction. So, assume that occ lin(v, yσ) hold.

As a consequence, there exists an index j > 1 such that occ lin(v, yσj−1) holds and

occ lin(v, yσj) does not hold. Thus, there exists w ∈ vars(yσj−1) ∩ dom(σ) such that

v ∈ vars(wσ) \ dom(σ). Since σ ∈ VSubst , w ∈ vars(yσj−1) if and only if w ∈ vars(yσ).

Hence j = 2, w ∈ vars(yσ)∩dom(σ) and vars(wσ) 6⊆ dom(σ). Hence we have contradicted

equation (6.18).

To prove the other implication (⇐), assume rt(y, σ) ∈ LTerms, so that, by defini-

tion, we have occ lin
(

z, rt(y, σ)
)

, for all z ∈ vars
(

rt(y, σ)
)

. We need to show that equa-

tions (6.17) and (6.18) hold. We proceed by contradiction, negating the conclusion. There

are two cases.

1. Assume that equation (6.17) does not hold, i.e., there exists z ∈ vars(yσ) \ dom(σ)

such that occ lin(z, yσ) does not hold. Then, for all i > 0, z ∈ vars(yσi), but

occ lin(z, yσi) does not hold. As a consequence, occ lin
(

z, rt(y, σ)
)

does not hold

and rt(y, σ) /∈ LTerms, obtaining a contradiction.
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2. Assume that equation (6.18) does not hold, i.e., there exists z ∈ vars(yσ) ∩ dom(σ)

such that vars(zσ) 6⊆ dom(σ). Thus, let v ∈ vars(zσ)\dom(σ). Since σ ∈ VSubst and

v ∈ vars(yσσ), then v ∈ vars(yσ). Then, since z ∈ vars(yσ)∩dom(σ), occ lin(v, yσσ)

does not hold. Also, since v /∈ dom(σ), for all i ≥ 2, occ lin(v, yσi) does not hold.

By definition, occ lin
(

v, rt(y, σ)
)

does not hold and rt(y, σ) /∈ LTerms, obtaining the

contradiction.

2

In order to prove Proposition 6.10, i.e., to show that the freeness and linearity operators

precisely capture the intended properties even for arbitrary substitutions in RSubst , we

now prove that these operators are invariant under the application of S-steps.

Lemma 6.18 For each m > 0 we have

fvarsm−1(σ) ⊆ fvarsm(σ),

nlvarsm−1(σ) ⊆ nlvarsm(σ).

Proof. Straightforward by Definitions 6.2 and 6.7. 2

Lemma 6.19 Let σ, σ′ ∈ RSubst and σ
S

7−→ σ′. Then fvars(σ) = fvars(σ′).

Proof. Let (x 7→ t), (y 7→ s) ∈ σ, where x 6= y, such that

σ′ =
(

σ \ {y 7→ s}
)

∪
{

y 7→ s[x/t]
}

. (6.19)

If x /∈ vars(s) then we have σ = σ′ and the result trivially holds. Thus, we assume

x ∈ vars(s). We prove, by induction on m ≥ 0, that we have

fvarsm(σ) ⊆ fvars(σ′).

For the base case, when m = 0, by Theorem 3.15 we have

fvars0(σ) = Vars \ dom(σ)

= Vars \ dom(σ′)

= fvars0(σ
′)

⊆ fvars(σ′).

For the inductive step, when m > 0, assume fvarsm−1(σ) ⊆ fvars(σ′). Assume that

z ∈ fvarsm(σ).

fvarsm(σ) = fvarsm−1(σ) ∪
{

z ∈ dom(σ)
∣

∣ zσ ∈ fvarsm−1(σ)
}

.

If z ∈ fvarsm−1(σ) then, by the inductive hypothesis, z ∈ fvars(σ′). Assume now that
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z ∈
{

z ∈ dom(σ)
∣

∣ zσ ∈ fvarsm−1(σ)
}

. If z 6= y then zσ = zσ′ so that,

{

z ∈ dom(σ)
∣

∣ zσ ∈ fvarsm−1(σ)
}

⊆ fvars(σ′) ∪
{

z ∈ dom(σ′)
∣

∣ zσ ∈ fvars(σ′)
}

.

Thus, by Definitions 6.2 and 6.3, we have z ∈ fvars`+1(σ
′) = fvars(σ′).

If otherwise z = y then s = zσ ∈ fvarsm−1(σ); however, since x ∈ vars(s), we also have

x = s = zσ and zσ ∈ fvarsm−1(σ
′). Since x ∈ dom(σ), x /∈ fvars0(σ). By Definitions 6.2

and 6.3, we have that x ∈ fvarsm−1(σ) implies t ∈ fvarsm−2(σ). By Lemma 6.18 and the

inductive hypothesis, t ∈ fvars(σ′). Since zσ′ = t and z ∈ dom(σ′) (by Theorem 3.15),

then

z ∈
{

z ∈ dom(σ′)
∣

∣ zσ′ ∈ fvars(σ′)
}

∪ fvars(σ′) = fvars(σ′).

Thus, it holds fvars(σ) ⊆ fvars(σ′). We now prove, for each m > 0,

fvarsm(σ′) ⊆ fvars(σ). (6.20)

The proof is by induction on m. The base case, when m = 0, is proved as above. For the

inductive step, when m > 0, assume fvarsm−1(σ
′) ⊆ fvars(σ). Assume that z ∈ fvarsm(σ′).

fvarsm(σ′) = fvarsm−1(σ
′) ∪

{

z ∈ dom(σ)
∣

∣ zσ ∈ fvarsm−1(σ
′)

}

.

If z ∈ fvarsm−1(σ
′) then, by the inductive hypothesis, z ∈ fvars(σ). Assume now that

z ∈
{

z ∈ dom(σ′)
∣

∣ zσ ∈ fvarsm−1(σ
′)

}

. If z 6= y then zσ′ = zσ so that,

{

z ∈ dom(σ′)
∣

∣ zσ′ ∈ fvarsm−1(σ
′)

}

⊆ fvars(σ) ∪
{

z ∈ dom(σ)
∣

∣ zσ ∈ fvars(σ)
}

.

Hence, by Definitions 6.2 and 6.3, we have z ∈ fvars`+1(σ) = fvars(σ).

If otherwise z = y, then s[x/t] = zσ′; since x ∈ vars(s), we have x[x/t] = s[x/t] = zσ′

and zσ′ ∈ fvarsm−1(σ
′). By Lemma 6.18 and by the inductive hypothesis, t ∈ fvars(σ).

Note that x ∈ dom(σ), xσ = t and t ∈ fvars(σ). Then, by Definitions 6.2 and 6.3, we

have x ∈ fvars(σ). In the same way, since y ∈ dom(σ), yσ = x and x ∈ fvars(σ), we can

conclude that y ∈ fvars(σ). 2

Lemma 6.20 Let σ, σ′ ∈ RSubst and σ
S

7−→ σ′. Then gvars(σ) = gvars(σ′).

Proof. By applying Definition 6.5, Theorem 3.15, Lemma 3.36 and again Definition 6.5,

we obtain

gvars(σ) =
{

x ∈ dom(σ)
∣

∣ ∀v ∈ vars(σ) : x /∈ occ(σ, v)
}

=
{

x ∈ dom(σ′)
∣

∣ ∀v ∈ vars(σ′) : x /∈ occ(σ, v)
}

=
{

x ∈ dom(σ′)
∣

∣ ∀v ∈ vars(σ′) : x /∈ occ(σ′, v)
}

= gvars(σ′).

2
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The following three simple results will be used in the proof of the invariance of ‘lvars’

under S-transformation.

Lemma 6.21 Let σ ∈ RSubst and (x 7→ t) ∈ σ. If {x,w} ⊆ occ(σ, v) then there exists

w′ ∈ vars(t) such that {w,w′} ⊆ occ(σ, v).

Proof. Assume that {x,w} ⊆ occ(σ, v), for some v. Since x ∈ dom(σ), by Definitions 3.24

and 3.26, x ∈ occ(σ, v) if and only if vars(xσ) ∩ occ(σ, v) 6= ∅. Then, since xσ = t, there

must exist w′ ∈ vars(t) such that w′ ∈ occ(σ, v). Hence, {w,w′} ⊆ occ(σ, v). 2

Lemma 6.22 Let σ ∈ RSubst and (x 7→ t) ∈ σ. If v ∈ vars(t) \ gvars(σ) then there exists

w ∈ vars(σ) such that {x, v} ⊆ occ(σ,w).

Proof. Assume v /∈ gvars(σ). We have two cases:

1. v /∈ dom(σ). In this case, by Definitions 3.24 and 3.26, v ∈ occ(σ, v). Since xσ = t,

v ∈ vars(t) and v ∈ occ(σ, v), by Definitions 3.24 and 3.26, we can conclude that

{x, v} ∈ occ(σ, v).

2. v ∈ dom(σ). Since v /∈ gvars(σ) then ∃w such that v ∈ occ(σ,w). Since xσ = t,

v ∈ vars(t) and v ∈ occ(σ,w), by Definitions 3.24 and 3.26, we can conclude that

{x, v} ∈ occ(σ,w).

2

Lemma 6.23 Let σ ∈ RSubst and (x 7→ t) ∈ σ. If {w, z} ⊆ occ(σ, v) and z ∈ vars(t),

then {w, x} ⊆ occ(σ, v).

Proof. Assume that {w, z} ⊆ occ(σ, v). Since z ∈ occ(σ, v), z ∈ vars(t) and xσ = t, by

Definitions 3.24 and 3.26, we can conclude that {x,w} ∈ occ(σ, v). 2

Lemma 6.24 Let σ, σ′ ∈ RSubst and σ
S

7−→ σ′. Then lvars(σ) = lvars(σ′).

Proof. By Definition 6.8, the thesis is equivalent to nlvars(σ) = nlvars(σ′).

Let (x 7→ t), (y 7→ s) ∈ σ, where x 6= y, such that

σ′ =
(

σ \ {y 7→ s}
)

∪
{

y 7→ s[x/t]
}

.

If x /∈ vars(s) then σ = σ′ and the result trivially holds. Thus, we assume x ∈ vars(s).

We first prove, by induction on m ≥ 0, that we have

nlvarsm(σ) ⊆ nlvarsm(σ′).

From this, by Lemma 6.18, we obtain the inclusion nlvars(σ) ⊆ nlvars(σ′).
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For the base case, when m = 0, let z ∈ nlvars0(σ). Then, by Definition 6.7, we have

z ∈
{

y ∈ dom(σ)
∣

∣ ∃v ∈ vars(yσ) \ gvars(σ) . ¬ occ lin(v, yσ)
}

∪







y ∈ dom(σ)

∣

∣

∣

∣

∣

∣

∃w1, w2 ∈ vars(yσ) . ∃v ∈ vars(σ) .

w1 6= w2 ∧ {w1, w2} ⊆ occ(σ, v)







.

We have two cases.

1. Suppose z ∈ dom(σ) and there exists v ∈ vars(zσ)\gvars(σ) such that occ lin(v, zσ)

does not hold. By Theorem 3.15 and Lemma 6.20, we have that z ∈ dom(σ′) and

v ∈ vars(zσ′) \ gvars(σ′). If z 6= y, then zσ′ = zσ. Hence occ lin(v, zσ′) does not

hold and, by Definition 6.7, we have z ∈ nlvars0(σ
′). Otherwise, if z = y, then we

have zσ = yσ = s and zσ′ = yσ′ = s[x/t]. We have two subcases.

(a) If v 6= x, then v ∈ vars(yσ′) and ¬ occ lin(v, yσ′). Thus, by Definition 6.7,

z = y ∈ nlvars0(σ
′).

(b) Otherwise, let v = x. As x /∈ gvars(σ), by Lemma 6.16, there exists w ∈ vars(t)

such that w /∈ gvars(σ). Moreover, since occ lin(x, s) does not hold, we also

have that occ lin(w, s[x/t]) does not hold. Also, by Lemma 6.20, w /∈ gvars(σ′).

Thus, by Definition 6.7, z = y ∈ nlvars0(σ
′).

2. Suppose now z ∈ dom(σ) and there exist {w1, w2} ⊆ vars(zσ), with w1 6= w2, and

v ∈ vars(σ) such that {w1, w2} ⊆ occ(σ, v). By Theorem 3.15, z ∈ dom(σ′). By

Lemma 3.36, we have occ(σ, v) = occ(σ′, v). If z 6= y then we have zσ = zσ′, so

that {w1, w2} ⊆ vars(zσ′). Hence, by Definition 6.7, z ∈ nlvars0(σ
′). Otherwise, let

z = y, so that zσ = yσ = s and zσ′ = yσ′ = s[x/t]. We have two subcases.

(a) If x 6= w1 and x 6= w2, then we have {w1, w2} ⊆ vars(yσ′). Hence, by Defini-

tion 6.7, z = y ∈ nlvars0(σ
′).

(b) Suppose now there exists an index i ∈ {1, 2} such that x = wi. Without loss

of generality, we can assume i = 1, i.e., x = w1 and x 6= w2. Since we have

{x,w2} ⊆ occ(σ, v) = occ(σ′, v) and (x 7→ t) ∈ σ, by Lemma 6.21 there exists

w′ ∈ vars(t) such that {w′, w2} ⊆ occ(σ′, v). If w′ 6= w2 then, by Definition 6.7,

we have z = y ∈ nlvars0(σ
′). Otherwise, assume w′ = w2. Hence we have

w′ ∈ vars(s) and w′ ∈ vars(t), so that occ lin(w′, yσ′) does not hold. Since

w′ ∈ occ(σ, v), by Definition 6.5 and Lemma 6.20, w′ /∈ gvars(σ) = gvars(σ′).

Therefore, by Definition 6.7, we obtain z = y ∈ nlvars0(σ
′).

Consider now the inductive case, when m > 0. Thus, let z ∈ nlvarsm(σ) and assume

that nlvarsm−1(σ) ⊆ nlvarsm−1(σ
′) holds. By Definition 6.7 we have

z ∈ nlvarsm−1(σ) ∪
{

y ∈ dom(σ)
∣

∣ vars(yσ) ∩ nlvarsm−1(σ) 6= ∅
}

.
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If z ∈ nlvarsm−1(σ) then, by the inductive hypothesis, z ∈ nlvarsm−1(σ
′). Hence, by

Lemma 6.18, z ∈ nlvarsm(σ′). Otherwise, let z ∈ dom(σ) and v ∈ vars(zσ)∩nlvarsm−1(σ).

By the inductive hypothesis, v ∈ nlvarsm−1(σ
′). If z 6= y, then we have zσ = zσ′, so that

v ∈ vars(zσ′) and, by Definition 6.7, z ∈ nlvarsm(σ′). Suppose now z = y, so that zσ = s

and zσ′ = s[x/t]. We have two cases.

1. If v 6= x, then v ∈ vars(yσ′). By Definition 6.7, z = y ∈ nlvarsm(σ′).

2. Otherwise, let v = x, so that x ∈ nlvarsm−1(σ). We have three subcases.

(a) Suppose there exists w ∈ vars(t) \ gvars(σ) such that occ lin(w, t) does not

hold. Then, by Lemma 6.20, w ∈ vars
(

s[x/t]
)

\ gvars(σ′) and occ lin
(

w, s[x/t]
)

does not hold. As a consequence, by Definition 6.7 and Lemma 6.18, we obtain

z = y ∈ nlvars0(σ
′) ⊆ nlvarsm(σ′).

(b) Suppose now there exist {w1, w2} ⊆ vars(t), with w1 6= w2, and v ∈ vars(σ)

such that {w1, w2} ⊆ occ(σ, v). By Lemma 3.36, we have occ(σ, v) = occ(σ′, v).

Also, xσ = xσ′ = t, so that {w1, w2} ⊆ vars
(

s[x/t]
)

. By Definition 6.7 and

Lemma 6.18, we have z = y ∈ nlvars0(σ
′) ⊆ nlvarsm(σ′).

(c) Finally, suppose ∃w ∈ vars(t) such that w ∈ nlvarsm−2(σ) (so that m > 1). By

the inductive hypothesis, w ∈ nlvarsm−2(σ
′). Also, w ∈ vars

(

s[x/t]
)

so that, by

Definition 6.7 and Lemma 6.18, we have z = y ∈ nlvarsm−1(σ
′) ⊆ nlvarsm(σ′).

We now prove, again by induction on m ≥ 0, that we have

nlvarsm(σ′) ⊆ nlvarsm+1(σ).

From this, by Lemma 6.18, we obtain the inclusion nlvars(σ′) ⊆ nlvars(σ), therefore

completing the proof.

For the base case, when m = 0, let z ∈ nlvars0(σ
′). Then, by Definition 6.7, we have

z ∈
{

y ∈ dom(σ′)
∣

∣ ∃v ∈ vars(yσ′) \ gvars(σ′) . ¬ occ lin(v, yσ′)
}

∪







y ∈ dom(σ′)

∣

∣

∣

∣

∣

∣

∃w1, w2 ∈ vars(yσ′) . ∃v ∈ vars(σ′) .

w1 6= w2 ∧ {w1, w2} ⊆ occ(σ′, v)







.

We have two cases.

1. Let z ∈ dom(σ′) and suppose there exists v ∈ vars(zσ′) \ gvars(σ′) such that

occ lin(v, zσ′) does not hold. By Theorem 3.15 and Lemma 6.20, z ∈ dom(σ) and

v /∈ gvars(σ). If z 6= y, then zσ = zσ′. Hence v ∈ vars(zσ) and occ lin(v, zσ) does

not hold, so that, by Definition 6.7 and Lemma 6.18, z ∈ nlvars0(σ) ⊆ nlvars1(σ).

Otherwise, suppose z = y. Then we have zσ = yσ = s, zσ′ = yσ′ = s[x/t],

v ∈ vars
(

yσ′
)

\ gvars(σ) and ¬ occ lin
(

v, yσ′
)

. We have four subcases.

(a) Suppose v /∈ vars(s) and occ lin(v, t) does not hold. Then v ∈ vars(t)\gvars(σ)

and, since t = xσ, x ∈ nlvars0(σ). By Definition 6.7, z = y ∈ nlvars1(σ).
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(b) Suppose v /∈ vars(s) and occ lin(v, t) holds. Then, it must be the case that

occ lin(x, s) does not hold. Also, since v ∈ vars(xσ) and v /∈ gvars(σ), by

Lemma 6.16 we have x /∈ gvars(σ). Thus we have x ∈ vars(yσ) \ gvars(σ), so

that, by Definition 6.7, we obtain z = y ∈ nlvars0(σ) ⊆ nlvars1(σ).

(c) Suppose now v ∈ vars(s) and occ lin(v, s) does not hold. Then, by Definition 6.7

and Lemma 6.18, z = y ∈ nlvars0(σ) ⊆ nlvars1(σ).

(d) Finally, suppose v ∈ vars(s) and occ lin(v, s) holds. Then, it must be the case

that v ∈ vars(t). If v 6= x then, by Lemma 6.22, there exists w ∈ vars(σ)

such that {v, x} ⊆ occ(σ,w). Therefore, by Definition 6.7 and Lemma 6.18,

we have z = y ∈ nlvars0(σ) ⊆ nlvars1(σ). Otherwise, let v = x, so that

x /∈ gvars(σ). Since occ lin(x, s) holds but occ lin
(

x, s[x/t]
)

does not hold, we

have x ∈ vars(t) and also ¬ occ lin(x, t). By Definition 6.7, x ∈ nlvars0(σ) and

z = y ∈ nlvars1(σ).

2. Suppose now z ∈ dom(σ′) and there exist {w1, w2} ⊆ vars(zσ′), with w1 6= w2,

and v ∈ vars(σ′) such that {w1, w2} ⊆ occ(σ′, v). By Theorem 3.15, z ∈ dom(σ).

Also, by Lemma 3.36, we have occ(σ, v) = occ(σ′, v). Now, if z 6= y then we have

zσ = zσ′, so that {w1, w2} ⊆ vars(zσ). Thus, by Definition 6.7 and Lemma 6.18, we

obtain z ∈ nlvars0(σ) ⊆ nlvars1(σ). Otherwise, let z = y, so that zσ = yσ = s and

zσ′ = yσ′ = s[x/t]. We have three subcases.

(a) Suppose {w1, w2} ⊆ vars(s). Then, since yσ = s, by Definition 6.7 and

Lemma 6.18, z = y ∈ nlvars0(σ) ⊆ nlvars1(σ).

(b) Suppose {w1, w2} ∩ vars(s) = ∅. Then {w1, w2} ⊆ vars(t). Since (x 7→ t) ∈ σ

we have x ∈ nlvars0(σ). By Definition 6.7, z = y ∈ nlvars1(σ).

(c) Finally, without loss of generality, suppose that w1 ∈ vars(s) \ vars(t) and

w2 ∈ vars(t) \ vars(s). Then, we have {w1, x} ⊆ vars(s) and, by Lemma 6.23,

{w1, x} ⊆ occ(σ, v). Note that w1 6= x. In fact, if w1 = x then we would

have w1 ∈ vars
(

s[x/t]
)

if and only if w1 ∈ vars(t), therefore contradicting

the hypothesis of this subcase. Thus, since w1 6= x, by Definition 6.7 and

Lemma 6.18, z = y ∈ nlvars0(σ) ⊆ nlvars1(σ).

For the inductive step, when m > 0, assume nlvarsm−1(σ
′) ⊆ nlvarsm(σ) and let

z ∈ nlvarsm(σ′). By Definition 6.7 we have

z ∈ nlvarsm−1(σ
′) ∪

{

y ∈ dom(σ′)
∣

∣ vars(yσ′) ∩ nlvarsm−1(σ
′) 6= ∅

}

.

We have two cases.

1. If z ∈ nlvarsm−1(σ
′) then, by the inductive hypothesis, z ∈ nlvarsm(σ). Hence, by

Lemma 6.18, z ∈ nlvarsm+1(σ).

2. Otherwise, assume z ∈ dom(σ′) and ∃v ∈ vars(zσ′) ∩ nlvarsm−1(σ
′). By Theo-

rem 3.15, z ∈ dom(σ). By the inductive hypothesis, we have v ∈ nlvarsm(σ). If



6.3. THE ABSTRACTION FUNCTION 147

z 6= y, then zσ = zσ′, so that v ∈ vars(zσ) and, by Definition 6.7, z ∈ nlvarsm+1(σ).

Suppose now z = y, so that zσ = yσ = s and zσ′ = yσ′ = s[x/t]. We have two

subcases.

(a) Suppose that v ∈ vars(t). Then, by Definition 6.7, we have x ∈ nlvarsm(σ) and

z = y ∈ nlvarsm+1(σ).

(b) Suppose that v ∈ vars(s). Then, by Definition 6.7 and Lemma 6.18, we have

z = y ∈ nlvarsm(σ) ⊆ nlvarsm+1(σ).

2

Lemma 6.25 Let σ, σ′ ∈ RSubst, where σ
S

7−→∗ σ′. Then:

fvars(σ) = fvars(σ′); (6.21)

lvars(σ) = lvars(σ′). (6.22)

Proof. If the derivation has length 0 there is nothing to prove. Suppose that σ
S

7−→ σ′.

Then the equalities (6.21) and (6.22) follow from Lemmas 6.19 and 6.24, respectively.

Suppose now that σ = σ1
S

7−→ · · ·
S

7−→ σn = σ′, where n > 1. By the first part of the

proof we have that, for each i = 2, . . . , n, the equalities hold between σi−1 and σi, and

hence the required result. 2

Proof of Proposition 6.10 on page 136. Note that, by Definition 6.5, the equiva-

lence (6.3) follows from Proposition 3.30.

We now prove the other two equivalences. By Theorem 3.16, there exists τ ∈ VSubst

such that σ
S
7−→∗ τ . By Theorem 3.15, dom(σ) = dom(τ) and T ` ∀(σ ↔ τ). By

Lemma 6.25, we have fvars(σ) = fvars(τ) and lvars(σ) = lvars(τ). From all of the above,

by Proposition 6.17, we obtain

y ∈ fvars(σ) ⇐⇒ rt(y, τ) ∈ Vars,

y ∈ lvars(σ) ⇐⇒ rt(y, τ) ∈ LTerms.

Therefore, in order to prove equivalences (6.2) and (6.4) it is sufficient to show that

rt(y, σ) ∈ Vars ⇐⇒ rt(y, τ) ∈ Vars, (6.23)

rt(y, σ) ∈ LTerms ⇐⇒ rt(y, τ) ∈ LTerms. (6.24)

Consider (6.23). We will prove only one implication, since the other one will follow

by symmetry. Suppose rt(y, σ) ∈ Vars. Then there exists an index i ≥ 0 such that

yσi ∈ Vars \ dom(σ). Thus, as y /∈ dom(σ) = dom(τ), we have rt(yσi, τ) ∈ Vars. Since

T ` ∀(τ → σ), by Lemma 3.20 we have T ` ∀
(

τ → (y = yσi)
)

. By Lemma 3.39, we obtain

rt(y, τ) = rt(yσi, τ), so that rt(y, τ) ∈ Vars.

Consider now (6.24). Again, we will prove only one implication, since the other one

will follow by symmetry. Reasoning by contraposition, suppose that rt(y, τ) /∈ LTerms,
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so that there exists v ∈ vars
(

rt(y, τ)
)

such that occ lin
(

v, rt(y, τ)
)

does not hold. By

definition of ‘rt’, there exists an index i ≥ 0 such that v ∈ vars(yτ i) and occ lin(v, yτ i)

does not hold. Thus, as v /∈ dom(τ) = dom(σ), we obtain that v ∈ vars
(

rt(yτ i, σ)
)

and

occ lin
(

v, rt(yτ i, σ)
)

does not hold, so that rt(yτ i, σ) /∈ LTerms. Since T ` ∀(σ → τ), by

Lemma 3.20 we have T ` ∀
(

σ → (y = yτ i)
)

. By Lemma 3.39, rt(y, σ) = rt(yτ i, σ), so that

rt(y, σ) /∈ LTerms. 2

Lemma 6.26 Let σ, σ′ ∈ RSubst where σ
S
7−→∗ σ′. Then αS(σ) = αS(σ′).

Proof. By Definition 6.11, this is an easy consequence of Lemmas 3.36 and 6.25. 2

Corollary 6.27 Let σ ∈ RSubst be satisfiable in the equality theory T . There exists

σ′ ∈ VSubst such that vars(σ) = vars(σ′), T ` ∀(σ ↔ σ′), y ∈ dom(σ′)∩ range(σ′) implies

y ∈ vars(yσ′) and αS(σ) = αS(σ′).

Proof. All but the last property follow by Corollary 3.17. The property αS(σ) = αS(σ′)

follows by Lemma 6.26. 2

Lemma 6.28 Let σ, τ ∈ VSubst be satisfiable in the syntactic equality theory T and sup-

pose T ` ∀(σ ↔ τ). Then fvars(σ) = fvars(τ).

Proof. We prove fvars(σ) ⊆ fvars(τ), since the other inclusion follows by symmetry.

By contraposition, suppose there exists y ∈ fvars(σ) \ fvars(τ). Then, by Proposi-

tion 6.17, rt(y, σ) ∈ Vars and rt(y, τ) /∈ Vars. Thus, there exists an index i > 0 such

that yτ i /∈ Vars and, by definition of ‘rt’, rt(yτ i, σ) /∈ Vars . Since T ` ∀(σ → τ), by

Lemma 3.20 we have T ` ∀
(

σ → (y = yτ i)
)

. By Lemma 3.39, rt(y, σ) = rt(yτ i, σ), so that

rt(y, σ) /∈ Vars, contradicting our previous assumption. 2

Lemma 6.29 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and sup-

pose that T ` ∀(σ ↔ τ). Then gvars(σ) = gvars(τ).

Proof. By Definition 6.5, this is a simple consequence of Theorem 3.35. 2

Lemma 6.30 Let σ, τ ∈ VSubst be satisfiable in the syntactic equality theory T and sup-

pose that T ` ∀(σ ↔ τ). Then lvars(σ) = lvars(τ).

Proof. We prove lvars(σ) ⊆ lvars(τ), since the other inclusion follows by symmetry.

By contraposition, suppose there exists y ∈ lvars(σ) \ lvars(τ). Then, by Proposi-

tion 6.17, rt(y, σ) ∈ LTerms and rt(y, τ) /∈ LTerms. Thus, there exists an index i > 0

such that

∃v ∈ vars(yτ i) \ dom(τ) . ¬ occ lin(v, yτ i). (6.25)

Note that v /∈ gvars(τ) so that, by Lemma 6.29, v /∈ gvars(σ). Therefore, by Proposi-

tion 6.15, there exists w ∈ vars(vσ) \ dom(σ). From this, by (6.25), we obtain

∃w ∈ vars(yτ iσ) \ dom(σ) . ¬ occ lin(w, yτ iσ). (6.26)
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By definition of ‘rt’, we have that (6.26) implies rt(yτ i, σ) /∈ LTerms. Since T ` ∀(σ → τ),

by Lemma 3.20 we have T ` ∀
(

σ → (y = yτ i)
)

. By Lemma 3.39, rt(y, σ) = rt(yτ i, σ), so

that rt(y, σ) /∈ LTerms, contradicting our previous assumption. 2

Proof of Theorem 6.12 on page 137. The equality result for the sharing components

of the two abstract descriptions is a consequence of Theorem 3.35, so that we only have

to prove the equality of the freeness and linearity components.

By Corollary 6.27, we can assume there exist τ, τ ′ ∈ VSubst such that T ` ∀(σ ↔ τ),

T ` ∀(σ′ ↔ τ ′) and αS(σ) = αS(τ), αS(σ′) = αS(τ ′). Since we have T ` ∀(τ ↔ τ ′), the

result then follows by Lemmas 6.28 and 6.30. 2

6.4 The Abstract Operators on SFL

The specification of the abstract unification operator on the domain SFL is rather complex,

since it is based on a very detailed case analysis. In the next definition we introduce several

auxiliary abstract operators.

Definition 6.31 (Auxiliary operators on SFL.) Let s, t ∈ HTerms be such that

vars(s) ∪ vars(t) ⊆ VI . For each d = 〈sh, f, l〉 ∈ SFL we define the following predicates:

s and t are independent in d if and only if indd : HTerms2 → Bool holds for (s, t), where

indd(s, t)
def
=

(

rel
(

vars(s), sh
)

∩ rel
(

vars(t), sh
)

= ∅
)

;

t is ground in d if and only if groundd : HTerms → Bool holds for t, where

groundd(t)
def
=

(

vars(t) ⊆ VI \ vars(sh)
)

;

y ∈ vars(t) occurs linearly (in t) in d if and only if occ lind : VI × HTerms → Bool holds

for (y, t), where

occ lind (y, t)
def
= groundd(y) ∨

(

occ lin(y, t) ∧ (y ∈ l)

∧ ∀z ∈ vars(t) :
(

y 6= z =⇒ indd(y, z)
)

)

;

t is free in d if and only if freed : HTerms → Bool holds for t, where

freed(t)
def
= ∃y ∈ VI . (y = t) ∧ (y ∈ f);

t is linear in d if and only if lind : HTerms → Bool holds for t, where

lind(t)
def
= ∀y ∈ vars(t) : occ lind(y, t).
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The function share withd : HTerms → ℘(VI ) yields the set of variables of interest that

may share with the given term. For each t ∈ HTerms,

share withd(t)
def
= vars

(

rel
(

vars(t), sh
)

)

.

The function cyclict
x : SH → SH strengthens the sharing set sh by forcing the coupling

of x with t. For each sh ∈ SH and each (x 7→ t) ∈ Bind,

cyclict
x(sh)

def
= rel

(

{x} ∪ vars(t), sh
)

∪ rel
(

vars(t) \ {x}, sh
)

.

These auxiliary operators correctly approximate the intended properties.

Theorem 6.32 Let d ∈ SFL and σ ∈ γS(d). Let also y ∈ VI and s, t ∈ HTerms be such

that vars(s) ∪ vars(t) ⊆ VI . Then

indd (s, t) =⇒ vars
(

rt(s, σ)
)

∩ vars
(

rt(t, σ)
)

= ∅; (6.27)

indd(y, t) ⇐⇒ y /∈ share withd(t); (6.28)

freed(t) =⇒ rt(t, σ) ∈ Vars; (6.29)

groundd(t) =⇒ rt(t, σ) ∈ GTerms; (6.30)

lind(t) =⇒ rt(t, σ) ∈ LTerms. (6.31)

We now introduce the abstract mgu operator, specifying how a single binding affects

each component of the domain SFL in the context of a syntactic equality theory T .

Definition 6.33 (amguS.) The function amguS : SFL×Bind → SFL is defined as follows.

Let d = 〈sh, f, l〉 ∈ SFL and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let also

sh ′ def
= cyclict

x(sh− ∪ sh ′′),

where

shx
def
= rel

(

{x}, sh
)

, sh−
def
= rel

(

{x} ∪ vars(t), sh
)

,

sht
def
= rel

(

vars(t), sh
)

, shxt
def
= shx ∩ sht,

sh ′′ def
=











































bin(shx, sht), if freed (x) ∨ freed (t);

bin
(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

)

, if lind(x) ∧ lind(t);

bin(sh?
x, sht), if lind(x);

bin(shx, sh
?
t ), if lind(t);

bin(sh?
x, sh

?
t ), otherwise.
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Letting Sx
def
= share withd(x) and St

def
= share withd (t), we also define

f ′
def
=































f, if freed(x) ∧ freed(t);

f \ Sx, if freed(x);

f \ St, if freed(t);

f \ (Sx ∪ St), otherwise;

l′
def
=

(

VI \ vars(sh ′)
)

∪ f ′ ∪ l′′,

where

l′′
def
=































l \ (Sx ∩ St), if lind(x) ∧ lind(t);

l \ Sx, if lind(x);

l \ St, if lind(t);

l \ (Sx ∪ St), otherwise.

Then

amguS

(

d , x 7→ t
) def

=







⊥S, if d = ⊥S ∨
(

T = FT ∧ x ∈ vars(t)
)

;

〈sh ′, f ′, l′〉 otherwise.

It is now time to highlight the similarities and differences of the operator amguS with

respect to the corresponding ones defined in the “classical” proposals for an integration

of set-sharing with freeness and linearity, such as [BCM94a, HW92, Lan90]. Note that, in

order to obtain a comparison focused on the properties encoded by SFL, we will remove

from the abstract operator specified in [BCM94a] all the enhancements depending on

properties that cannot be represented on SFL (i.e., compoundness and explicit structural

information).

• In the computation of the set-sharing component, the main difference can be ob-

served in the second, third and fourth cases of the definition of sh ′′: here we

omit one of the star-unions even when the terms x and t possibly share. In con-

trast, in [BCM94a, HW92, Lan90] the corresponding star-union is avoided only

when indd (x, t) holds. Note that when indd (x, t) holds in the second case of sh ′′,

then we have shxt = ∅; thus, the whole computation for this case reduces to

sh ′′ = bin(shx, sht), as was the case in the previous proposals.

• Another improvement on the set-sharing component can be observed in the definition

of sh ′: the cyclict
x operator allows the set-sharing description to be further enhanced

when dealing with definitely cyclic bindings, i.e., when x ∈ vars(t). This is the

rewording of a similar enhancement proposed in [Bag97a] for the domain Pos in

the context of groundness analysis. Its net effect is to recover some groundness

and sharing dependencies that would have been unnecessarily lost when using the
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standard operators. When x /∈ vars(t), we have cyclict
x(sh− ∪ sh ′′) = sh− ∪ sh ′′.

• The computation of the freeness component f ′ is the same as specified in [BCM94a,

HW92], and is more precise than the one defined in [Lan90].

• The computation of the linearity component l′ is the same as specified in [BCM94a],

and is more precise than those defined in [HW92, Lan90].

In the following examples we show that the improvements in the abstract computation

of the sharing component allow, in particular cases, the derivation of information that is

more precise than that obtainable when using the classical abstract unification operators.

Example 6.34 Let VI = {x, x1, x2, y, y1, y2, z} and σ ∈ RSubst be such that

σ
def
=

{

x 7→ f(x1, x2, z), y 7→ f(y1, z, y2)
}

.

By Definition 6.11, we have d
def
= αS

(

{σ}
)

= 〈sh, f, l〉, where

sh = {xx1, xx2, xyz, yy1, yy2},

f = VI \ {x, y},

l = VI .

Consider the binding (x 7→ y) ∈ Bind. On the concrete domain, we compute (a substitution

equivalent to) τ ∈ mgs
(

σ ∪ {x = y}
)

, where

τ =
{

x 7→ f(y1, y2, y2), y 7→ f(y1, y2, y2), x1 7→ y1, x2 7→ y2, z 7→ y2

}

.

Note that αS

(

{τ}
)

= 〈shτ , fτ , lτ 〉, where shτ = {xx1yy1, xx2yy2z}, so that the pairs of

variables Px = {x1, x2} and Py = {y1, y2} keep their independence.

When abstractly evaluating the binding, both lind (x) and lind(y) hold so that we apply

the second case of the definition of sh ′′. By using the notation of Definition 6.33, we have

shx = {xx1, xx2, xyz}, sh− = ∅,

sht = {yy1, yy2, xyz}, shxt = {xyz}.

Since we compute the star-closure of shxt only, we obtain the set-sharing component

sh ′ = {xx1yy1, xx1yy2, xx1yz, xx2yy1, xx2yy2, xx2yz, xyy1z, xyy2z, xyz}.

Thus, we precisely capture the fact that pairs Px and Py keep their independence.

In contrast, since indd (x, y) does not hold, all of the classical definitions of abstract

unification would have required the star-closure of both shx and sht, resulting in an abstract

element including, among others, the sharing group S = {x, x1, x2, y, y1, y2}. Since both

Px ⊂ S and Py ⊂ S, this independence information would have been unnecessarily lost.
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Similar examples can be devised for the third and fourth cases of the definition of sh ′′,

where only one side of the binding is known to be linear.

Example 6.34 has another interesting, unexpected consequence. By repeating the

above abstract computation on the domain ASub (e.g., using the abstract semantics op-

erators specified in [Kin00]), we discover that even this simpler domain precisely captures

the independence of pairs Px and Py. Therefore, the example provides a formal proof that

all the classical approaches based on set-sharing are not uniformly more precise than the

pair-sharing domain ASub. Such a property is enjoyed by our combination SFL with the

improved abstract unification operator.

The next example shows the precision improvements arising from the use of the cyclict
x

operator.

Example 6.35 Let VI = {x, x1, x2, y} and σ
def
=

{

x 7→ f(x1, x2)
}

. By Definition 6.11,

we have d
def
= αS

(

{σ}
)

= 〈sh, f, l〉, where

sh = {xx1, xx2, y},

f = VI \ {x},

l = VI .

Let t = f(x, y) and consider the cyclic binding (x 7→ t) ∈ Bind. In the concrete, we

compute (a substitution equivalent to) τ ∈ mgs
(

σ ∪ {x = t}
)

, where

τ =
{

x 7→ f(x1, x2), x1 7→ f(x1, x2), y 7→ x2,
}

.

Note that if we further instantiate τ by grounding y, then variables x, x1 and x2 would

become ground too. Formally, αS

(

{τ}
)

= 〈shτ , fτ , lτ 〉, where shτ = {xyx1x2}. Thus, as

observed above, y covers x, x1 and x2.

When abstractly evaluating the binding, we compute

shx = {xx1, xx2},

sht = {xx1, xx2, y},

shxt = shx,

sh− ∪ sh ′′ = {xx1, xx1x2, xx1x2y, xx1y, xx2, xx2y},

sh ′ = cyclict
x(sh− ∪ sh ′′)

= {xx1x2y, xx1y, xx2y}.

Note that, in the element sh− ∪ sh ′′ (which is the abstract element that would have been

computed when not exploiting the cyclict
x operator) variable y covers none of variables x,

x1 and x2. Thus, by applying the cyclict
x operator, this covering information is restored.

The next result states that the abstract mgu operator is a correct approximation of

the concrete one. As already discussed, this result applies to any syntactic equality theory,
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including both the finite-tree theory FT and the rational-tree theory RT . In contrast,

all the published proofs of correctness for a combination of set-sharing with freeness and

linearity information assume the occurs-check is performed.

Theorem 6.36 Let d ∈ SFL and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Then, for

all σ ∈ γS(d) and τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality theory T , we have

τ ∈ γS

(

amguS(d , x 7→ t)
)

.

The full abstract unification operator aunifyS, capturing the effect of a sequence of

bindings on an abstract element, can now be specified by a straightforward inductive

definition using the operator amguS.

Definition 6.37 (aunifyS.) The operator aunifyS : SFL × Bind? → SFL is defined, for

each d ∈ SFL and each sequence of bindings bs ∈ Bind?, by

aunifyS(d , bs)
def
=







d , if bs = ε;

aunifyS

(

amguS(d , x 7→ t), bs ′
)

, if bs = (x 7→ t) . bs ′.

It is worth stressing that the second argument of aunifyS is a sequence of bindings and not

a substitution (which is a set of bindings). This difference comes from the fact that amguS

is neither commutative nor idempotent, so that the multiplicity and the actual order of

application of the bindings can influence the overall result of the abstract computation.

Note that the correctness of the aunifyS operator is simply inherited from the cor-

rectness of the underlying amguS operator. In particular, an arbitrary reordering of the

sequence bs of bindings still result in a correct implementation of aunifyS. It is known

since [Lan90, pp. 66-67] that more precise results are obtained if aunifyS is implemented so

that the grounding bindings are considered before the others. A binding (x 7→ t) ∈ Bind

is grounding in the context of an abstract description d ∈ SFL if and only if one side

of the binding is known to be definitely ground; namely, we have share withd (x) = ∅ or

share withd(t) = ∅. In our implementation of aunifyS, we always reorder the sequences

of bindings so that the grounding ones come first.

The ‘merge-over-all-path’ operator on the domain SFL is provided by alubS and is

correct by definition. Finally, we define the abstract existential quantification operator.

Definition 6.38 (aexistsS.) The function aexistsS : SFL × ℘f(VI ) → SFL provides the

existential quantification of an abstract element with respect to a subset of the variables of

interest. For each d
def
= 〈sh, f, l〉 ∈ SFL and V ⊆ VI ,

aexistsS

(

〈sh, f, l〉, V
) def

=
〈

aexists(sh, V ), f ∪ V, l ∪ V
〉

.

The abstract projection operator for SFL, which actually modifies the set VI of variables

of interest, can be easily defined using aexistsS, as done in Definition 3.61 for the plain set-
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sharing domain SS . The statement and proof of correctness for this operator are omitted

for space reasons.

6.5 Proof of the Correctness of amgu
S

In this section we prove that the amguS operator is a correct approximation of the concrete

unification procedure. We start by proving Theorem 6.32.

Proof of Theorem 6.32 on page 150. Let d = 〈sh, f, l〉, Vs = vars(s) and Vt = vars(t).

By Definition 6.11, we have ∀v ∈ Vars : occ(σ, v) ∩ VI ∈ sh ∪ {∅}, f ⊆ fvars(σ), and

l ⊆ lvars(σ).

Consider the implication (6.27). By Definition 6.31, the hypothesis and Proposi-

tion 3.30, we have

indd(s, t) ⇐⇒ rel(Vs, sh) ∩ rel(Vt, sh) = ∅

⇐⇒ ∀S ∈ sh, w1 ∈ Vs, w2 ∈ Vt : {w1, w2} * S

=⇒ ∀v ∈ Vars, w1 ∈ Vs, w2 ∈ Vt : {w1, w2} * occ(σ, v)

⇐⇒ ∀w1 ∈ Vs, w2 ∈ Vt : vars
(

rt(w1, σ)
)

∩ vars
(

rt(w1, σ)
)

= ∅

⇐⇒ vars
(

rt(s, σ)
)

∩ vars
(

rt(t, σ)
)

= ∅.

Consider the equivalence (6.28). By Definition 6.31, we have

indd(y, t) ⇐⇒ rel
(

{y}, sh
)

∩ rel(Vt, sh) = ∅

⇐⇒ ∀S ∈ rel(Vt, sh) : y /∈ S

⇐⇒ y /∈ share withd(t).

Consider now the implication (6.29). By Definition 6.31, the hypothesis and Proposi-

tion 6.10, we have

freed (t) ⇐⇒ t ∈ f

=⇒ t ∈ fvars(σ)

⇐⇒ rt(t, σ) ∈ Vars.

Consider now the implication (6.30). By Definition 6.31, the hypothesis and Proposi-

tion 6.10, we have

groundd (t) ⇐⇒ vars(t) ⊆ VI \ vars(sh)

=⇒ ∀w ∈ Vt : w ∈ gvars(σ)

⇐⇒ ∀w ∈ Vt : vars
(

rt(w, σ)
)

= ∅

⇐⇒ rt(t, σ) ∈ GTerms.



156 CHAPTER 6. FREENESS AND LINEARITY

Finally consider the implication (6.31). By Definition 6.31, the hypothesis, the above

results and Proposition 6.10, we have

lind(t) ⇐⇒ ∀y, z ∈ vars(t) : groundd(y)

∨
(

(y ∈ l) ∧ occ lin(y, t) ∧
(

y 6= z =⇒ indd (y, z)
)

)

=⇒ ∀y, z ∈ vars(t) : groundd(y)

∨
(

(

y ∈ lvars(σ)
)

∧ occ lin(y, t) ∧
(

y 6= z =⇒ indd(y, z)
)

)

=⇒ ∀y, z ∈ vars(t) : rt(y, σ) ∈ GTerms

∨
(

(

rt(y, σ) ∈ LTerms
)

∧ occ lin(y, t)

∧
(

y 6= z =⇒ vars(rt(y, σ)) ∩ vars(rt(z, σ)) = ∅
)

)

⇐⇒ rt(t, σ) ∈ LTerms.

2

The following lemma will be systematically used in the following correctness proofs.

Lemma 6.39 Let T be an equality theory and σ ∈ RSubst. Then, for each s, t ∈ HTerms,

mgs
(

σ ∪ {s = t}
)

= mgs
(

σ ∪ {s = tσ}
)

.

Proof. By congruence axioms (2.6) and (2.7), for any terms p, q, r ∈ HTerms,

T ` ∀(p = q ∧ q = r) ↔ ∀(p = r ∧ q = r).

Also, by Lemma 3.20, for all τ ∈ RSubst and r ∈ HTerms, T ` ∀
(

τ → (r = rτ)
)

, so that

T ` ∀
(

τ ↔ τ ∪ {r = rτ}
)

.

Using these results,

T ` ∀
(

σ ∪ {s = t} ↔ σ ∪ {s = t, t = tσ}
)

,

T ` ∀
(

σ ∪ {s = t} ↔ σ ∪ {s = tσ, t = tσ}
)

,

T ` ∀
(

σ ∪ {s = t} ↔ σ ∪ {s = tσ}
)

.

The thesis follows by the definition of mgs. 2

The following Lemma, which will be used several times in the following proofs with-

out an explicit reference to it, states the well-known result that groundness is closed by

entailment.

Lemma 6.40 Let σ, τ ∈ RSubst be satisfiable in the syntactic equality theory T and such

that T ` ∀(τ → σ). Then gvars(σ) ⊆ gvars(τ).
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Proof. We prove the result by showing that x /∈ gvars(τ) implies x /∈ gvars(σ).

By Corollary 6.27, we can assume there exist σ′, τ ′ ∈ VSubst such that T ` ∀(σ ↔ σ′)

and T ` ∀(τ ↔ τ ′), so that T ` ∀(τ ′ → σ′). Also, by Lemma 6.29, gvars(σ) = gvars(σ′)

and gvars(τ) = gvars(τ ′). Therefore, it is sufficient to prove that x /∈ gvars(τ ′) implies

x /∈ gvars(σ′).

Assume x /∈ gvars(τ ′). By Definition 6.5, there exists v ∈ Vars such that x ∈ occ(τ ′, v).

By Lemma 3.28, v ∈ vars(xτ ′) \ dom(τ ′). Also, by Lemma 3.20, T ` ∀(τ ′ → xτ ′ = x).

Thus, by Lemma 3.12 (taking s = xτ ′ and t = x) there exists z ∈ vars(xσ′)\dom(σ′) such

that v ∈ vars(zτ ′). By Definition 3.26, we have x ∈ occ(σ′, z) so that, by Definition 6.5,

x /∈ gvars(σ′). 2

Another useful result is the following consequence of Theorem 6.12.

Lemma 6.41 Let e ⊆ Eqs be satisfiable and σ, τ ∈ mgs(e), in the context of the syntactic

equality theory T . Then ssets(σ) = ssets(τ), fvars(σ) = fvars(τ), gvars(σ) = gvars(τ) and

lvars(σ) = lvars(τ).

Proof. By definition of mgs, we have σ, τ ∈ RSubst and σ ⇐⇒ e ⇐⇒ τ . Thus, the

result gvars(σ) = gvars(τ) follows by applying twice Lemma 6.40. The other equivalences

follows by Theorem 6.12. 2

We now introduce a bit of terminology that will be helpful in order to simplify the

notation in the following proofs.

Given V ⊆ Vars, we say that t ∈ HTerms is V -linear if occ lin(v, t) holds for all

variables v ∈ vars(t) ∩ V . Note that if a term is V -linear, then it is also W -linear, for

all W ⊆ V . This terminology also applies to n-tuples of terms, by simply regarding the

n-tuple construction as a term functor of arity n. Moreover, if s̄, t̄ ∈ HTermsn are such

that mgs(s̄ = t̄) 6= ∅, then we write gvars(s̄ = t̄) to denote the set gvars(µ), where

µ ∈ mgs(s̄ = t̄). Note that, by Lemma 6.41, this notation is not ambiguous.

Lemma 6.42 Let s̄, t̄ ∈ HTermsn be such that mgs(s̄ = t̄) 6= ∅ and G
def
= gvars(s̄ = t̄). If

s̄ is (Vars\G)-linear, then there exists µ ∈ mgs(s̄ = t̄) such that, for each z ∈ Vars\vars(s̄),

1. zµ is (Vars \G)-linear;

2. vars(zµ) ∩ dom(µ) ⊆ G;

3. ∀z′ ∈ Vars \ vars(s̄) : z 6= z′ =⇒ vars(zµ) ∩ vars(z′µ) ⊆ G.

Proof. We assume that the congruence and identity axioms hold.

Let s̄ = (s1, . . . , sn), and t̄ = (t1, . . . , tn), W = vars(s̄)∪ vars(t̄) and V = Vars \G. We

assume that s̄ is V -linear and prove that the result holds by induction on the number of

variables in W .
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Suppose first that, for some i = 1, . . . , n, si = f(r1, . . . , rm) and ti = f(u1, . . . , um),

where m ≥ 0. Let

s̄i
def
= (s1, . . . , si−1, r1, . . . , rm, si+1, . . . , sn),

t̄i
def
= (t1, . . . , ti−1, u1, . . . , um, ti+1, . . . , tn).

Then mvars(s̄i) = mvars(s̄) and mvars(t̄i) = mvars(t̄) so that, since s̄ is V -linear, s̄i is V -

linear. Moreover, by the congruence axiom (2.8), we have mgs(s̄i = t̄i) = mgs(s̄ = t̄). Note

that in the case that si and ti are identical constants, the equation si = ti is just removed.

Thus, as s̄ and t̄ are finite sequences of finite terms, we can assume that si ∈ Vars or

ti ∈ Vars, for all i = 1, . . . , n.

Secondly, suppose that for some i = 1, . . . , n, si = ti. By the previous paragraph, we

can assume that si ∈ Vars. Let

s̄i
def
= (s1, . . . , si−1, si+1, . . . , sn),

t̄i
def
= (t1, . . . , ti−1, ti+1, . . . , tn).

Then mvars(s̄i)∪{si} = mvars(s̄) and mvars(t̄i)∪{si} = mvars(t̄) so that, as s̄ is V -linear,

s̄i is V -linear. Furthermore, by the congruence axiom (2.5), mgs(s̄i = t̄i) = mgs(s̄ = t̄).

As s̄ and t̄ are sequences of finite length n, we can assume that si 6= ti, for all i = 1, . . . , n.

Therefore, for the rest of the proof, we will assume that si 6= ti and si ∈ Vars or

ti ∈ Vars, for all i = 1, . . . , n.

The base case is when W = ∅, so that we have vars(µ) = ∅ for all µ ∈ mgs(s̄ = t̄).

Thus all three properties hold trivially.

To prove the inductive step, we assume that W 6= ∅, so that n > 0. Note that, in

the case that vars(t̄) ⊆ vars(s̄), then all three properties hold trivially. This is because

for all µ ∈ mgs(s̄ = t̄) and for all z ∈ Vars \ vars(s̄), we have z /∈ vars(µ). Similarly, the

three properties hold trivially whenever vars(t̄) ⊆ G. This is because, if z ∈ dom(µ), then

vars(zµ) ⊆ G. Therefore we can also assume that vars(ti) \
(

vars(s̄) ∪ G
)

6= ∅, for some

i = 1, . . . , n. As the order of equations is irrelevant, without loss of generality we assume

that this property holds when i = 1, so that vars(t1) \
(

vars(s̄) ∪ G
)

6= ∅. This can be

rewritten as

vars(t1) ∩
(

V \ vars(s̄)
)

6= ∅. (6.32)

Note that this implies that t1 6= s1. By Proposition 6.10, another consequence of the

above assumption is that, for all µ ∈ mgs(s̄ = t̄), we have rt(t1, µ) /∈ GTerms. Since

µ =⇒ {s1 = t1}, by Lemma 3.39, we obtain rt(s1, µ) /∈ GTerms, so that again by

Proposition 6.10, vars(s1) \G 6= ∅. This in turn can be rewritten as

vars(s1) ∩ V 6= ∅. (6.33)

By exploiting (6.32) and (6.33), we can identify three different cases:
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a. for all i = 1, . . . , n, V ∩ vars(si) ∩ vars(ti) 6= ∅;

b. s1 ∈ V \ vars(t1);

c. t1 ∈ V \ vars(s̄) and s1 /∈ Vars;

Case a. For all i = 1, . . . , n, V ∩ vars(si) ∩ vars(ti) 6= ∅.

For each i = 1, . . . , n, we are assuming that si ∈ V or ti ∈ V . Therefore, for each

i = 1, . . . , n, si ∈ vars(ti) or ti ∈ vars(si) so that, without loss of generality, we can

assume, for some k where 0 ≤ k ≤ n, si ∈ V if 1 ≤ i ≤ k and ti ∈ V if k + 1 ≤ i ≤ n.

Let µ ⊆ Eqs be defined as

µ
def
= {s1 = t1, . . . , sk = tk} ∪ {tk+1 = sk+1, . . . , tn = sn}.

We show that µ ∈ mgs(s̄ = t̄). First we must show that µ ∈ RSubst . As s̄ is V -linear,

(s1, . . . , sk) is linear; (tk+1, . . . , tn) is also linear, because s̄ is V -linear and ti ∈ V ∩vars(si)

if k + 1 ≤ i ≤ n; moreover, for the same reasons, {s1, . . . , sk} ∩ {tk+1, . . . , tn} = ∅. As

we are assuming that, for all i = 1, . . . , n, si 6= ti and V ∩ vars(si) ∩ vars(ti) 6= ∅, it

follows that ti /∈ Vars when 1 ≤ i ≤ k and si /∈ Vars when k + 1 ≤ i ≤ n, so that each

equation in µ is a binding and µ has no circular subsets. Thus µ ∈ RSubst and hence, by

the congruence axiom (2.6), µ ∈ mgs(s̄ = t̄).

As {tk+1, . . . , tn} ⊆ vars
(

(sk+1, . . . , sn)
)

, we have dom(µ) \ vars(s̄) = ∅ so that the

required result holds trivially.

Case b. Suppose s1 ∈ V \ vars(t1) Let

s̄1
def
= (s2, . . . , sn),

t̄1
def
=

(

t2[s1/t1], . . . , tn[s1/t1]
)

.

As s̄ is V -linear, s̄1 is V -linear and s1 /∈ vars(s̄1). Also, all occurrences of s1 in t̄ are replaced

in t̄1 by t1 so that, as s1 /∈ vars(t1) (by the assumption for this case), s1 /∈ vars(t̄1). Thus,

s1 /∈W1
def
= vars(s̄1) ∪ vars(t̄1), (6.34)

so that W1 ⊂ W . Let G1
def
= gvars(s̄1 = t̄1) and V1

def
= Vars \ G1. Note that G1 ⊆ G

and, by the assumption for this case, s1 ∈ V , so that s1 /∈ G. As a consequence, G1 = G,

V1 = V and s̄1 is V1-linear, so that the inductive hypothesis applies to s̄1 and t̄1. Thus,

there exists µ1 ∈ mgs(s̄1 = t̄1) such that, for each z ∈ Vars \ vars(s̄1), the three inductive

properties hold.

Let µ ⊆ Eqs be defined as

µ
def
= {s1 = t1µ1} ∪ µ1.

We show that µ ∈ mgs(s̄ = t̄). By (6.34), we have s1 /∈ vars(µ1) so that s1 /∈ dom(µ1).

Also, since µ1 ∈ RSubst , µ has no identities or circular subsets. Thus we have µ ∈ RSubst .

By Lemma 6.39, µ ∈ mgs(s̄ = t̄).
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Suppose that z ∈ Vars \vars(s̄). Then, as vars(s̄) = vars(s̄1)∪{s1}, z ∈ Vars \vars(s̄1).

Thus, the inductive properties 1, 2 and 3 using µ1 and s̄1 can be applied to zµ1. Knowing

this, we now show that the same properties using µ and s̄ can be applied to zµ. Since

dom(µ) = dom(µ1)∪{s1} and z 6= s1, we have zµ1 = zµ and s1 /∈ vars(zµ). Each property

is proved separately.

1. By the inductive property 1, we have that zµ1 is V1-linear. As zµ = zµ1 and V = V1,

zµ is V -linear.

2. By the inductive property 2, we have that vars(zµ1)∩dom(µ1) ⊆ G1. Since zµ = zµ1,

G = G1 and we have dom(µ) = dom(µ1) ∪ {s1}, where s1 /∈ vars(zµ), we obtain

vars(zµ) ∩ dom(µ) ⊆ G.

3. Let z′ ∈ Vars \ vars(s̄) be such that z 6= z′. Since z′ /∈ vars(s̄), we have z′ /∈ vars(s̄1)

and z′µ = z′µ1. By applying inductive property 3, vars(zµ1) ∩ vars(z′µ1) ⊆ G1. As

zµ = zµ1, z
′µ = z′µ1 and G = G1, we obtain vars(zµ) ∩ vars(z′µ) ⊆ G.

Case c. Assume that t1 ∈ V \ vars(s̄) and s1 /∈ Vars. Let

s̄1
def
= (s2, . . . , sn),

t̄1
def
=

(

t2[t1/s1], . . . , tn[t1/s1]
)

.

As s̄ is V -linear, s̄1 is V -linear. Also, since by the assumption for this case t1 /∈ vars(s̄),

we have t1 /∈ vars(s̄1). Moreover, all occurrences of t1 in t̄ are replaced in t̄1 by s1 so that

t1 /∈ vars(t̄1). Thus

t1 /∈W1
def
= vars(s̄1) ∪ vars(t̄1), (6.35)

so that W1 ⊂ W . Let G1
def
= gvars(s̄1 = t̄1) and V1

def
= Vars \ G1. Note that G1 ⊆ G

and, by the assumption for this case, t1 ∈ V , so that t1 /∈ G. As a consequence, G1 = G,

V1 = V and s̄1 is V1-linear, so that the inductive hypothesis applies to s̄1 and t̄1. Thus,

there exists µ1 ∈ mgs(s̄1 = t̄1) such that, for each z ∈ Vars \ vars(s̄1), the three inductive

properties hold.

Let µ ⊆ Eqs be defined as

µ
def
= {t1 = s1µ1} ∪ µ1.

Note that, by (6.35), t1 /∈ vars(µ1) and, in particular, t1 /∈ dom(µ1). Since µ1 ∈ RSubst , µ

has no identities or circular subsets so that µ ∈ RSubst . By Lemma 6.39, µ ∈ mgs(s̄ = t̄).

Suppose that z ∈ Vars \ vars(s̄). Then either z 6= t1, so that zµ = zµ1, or z = t1, so

that zµ = s1µ1. We show in each case that zµ satisfies the three required properties.

1. Suppose z 6= t1. By the inductive property 1, zµ1 is V1-linear. As zµ = zµ1 and

V = V1, zµ is V -linear.

Otherwise, let z = t1, so that zµ = s1µ1. Consider an arbitrary variable u ∈ vars(s1).

Then u ∈ Vars \vars(s̄1) and the inductive properties using µ1 and s̄1 can be applied
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to uµ1. Therefore, by property 1, uµ1 is V1-linear. Moreover, by property 3, we have

∀u′ ∈ Vars \ vars(s̄1) : u 6= u′ =⇒ vars(uµ1) ∩ vars(u′µ1) ⊆ G1.

In particular, this holds for all u′ ∈ vars(s1) such that u 6= u′. As a consequence,

zµ = s1µ1 is V1-linear. As V = V1, zµ is V -linear.

2. Suppose z 6= t1. By the inductive property 2, we have vars(zµ1) ∩ dom(µ1) ⊆ G1.

Since zµ = zµ1, G = G1, dom(µ) = dom(µ1) ∪ {t1} and t1 /∈ vars(zµ), we obtain

vars(zµ) ∩ dom(µ) ⊆ G.

Otherwise, let z = t1 so that zµ = s1µ1. Considering u ∈ vars(s1), we have that

u ∈ Vars\vars(s̄1), so that the inductive properties using µ1 and s̄1 can be applied to

uµ1. By property 2, vars(uµ1)∩dom(µ1) ⊆ G1. As this holds for all u ∈ vars(s1), we

have vars(s1µ1) ∩ dom(µ1) ⊆ G1. As zµ = s1µ1, G = G1, dom(µ) = dom(µ1) ∪ {t1}

and t1 /∈ vars(zµ), we obtain vars(zµ) ∩ dom(µ) ⊆ G.

3. Suppose z 6= t1 and let z′ ∈ Vars \ vars(s̄) be such that z 6= z′. Then, by inductive

property 3, we have vars(zµ1) ∩ vars(z′µ1) ⊆ G1. Since zµ = zµ1 and G = G1, if

also z′ 6= t1 (so that z′µ = z′µ1) we obtain vars(zµ) ∩ vars(z′µ) ⊆ G. Otherwise, let

z′ = t1 (so that z′µ = s1µ1). We will show that

∀u ∈ vars(s1) : vars(zµ1) ∩ vars(uµ1) ⊆ G1. (6.36)

In fact, in the case that u ∈ G1 then vars(uµ1) ⊆ G1. On the other hand, if

u ∈ vars(s1) \G1, then we have u 6= z. As s̄ is V -linear, u ∈ Vars \ vars(s̄1) so that

the property holds by inductive property 3 (taking z ′ = u). As (6.36) holds, we have

vars(zµ1) ∩ vars(s1µ1) ⊆ G1. Thus, by observing that zµ = zµ1, z
′µ = s1µ1 and

G = G1, we can conclude vars(zµ) ∩ vars(z′µ) ⊆ G.

Otherwise, let z = t1 so that zµ = s1µ1. Let z′ ∈ Vars \ vars(s̄) be such that z 6= z′

(note that this implies z′ 6= t1, so that z′µ = z′µ1). We will prove that, for all

u ∈ vars(s1),

vars(uµ1) ∩ vars(z′µ1) ⊆ G1. (6.37)

In fact, if u ∈ G1 then vars(uµ1) ⊆ G1. Suppose now u ∈ vars(s1) \ G1. As s̄ is

V -linear, u ∈ Vars \ vars(s̄1) so that the inductive property 3 can be applied to uµ1.

Thus, for all u′ ∈ Vars \ vars(s̄1), if u 6= u′ we have vars(uµ1) ∩ vars(u′µ1) ⊆ G1.

In particular, since u ∈ vars(s1) and z′ /∈ vars(s̄), we have u 6= z′ so that, by

taking u′ = z′, we obtain (6.37). As the choice of u ∈ vars(s1) is arbitrary, we have

vars(s1µ1) ∩ vars(z′µ1) ⊆ G1. By observing that zµ = s1µ1, z
′µ = z′µ1 and G = G1

we obtain vars(zµ) ∩ vars(z′µ) ⊆ G.

2

Corollary 6.43 There exists µ′ ∈ VSubst that (under the same hypotheses) satisfies all

the properties stated for µ ∈ RSubst in Lemma 6.42.
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Proof. We start by proving that the properties stated for µ ∈ RSubst in Lemma 6.42 are

invariant under the application of an S-step.

Suppose that µ ∈ RSubst satisfies the properties stated in Lemma 6.42 and µ
S

7−→ µ′.

First note that, by Theorem 3.15, we have µ′ ∈ mgs(s̄ = t̄) and dom(µ′) = dom(µ).

Also, by Lemma 6.20, gvars(µ′) = gvars(µ) = G. By definition of S-step, there exist

{x 7→ t, y 7→ s} ⊆ µ such that x 6= y and

µ′
def
=

(

µ \ {y 7→ s}
)

∪ {y 7→ s[x/t]}.

Let z ∈ Vars \ vars(s̄) and consider the term zµ′. If z 6= y or x /∈ vars(s) then we

have zµ′ = zµ and there is nothing to prove. Therefore, assume z = y, so that zµ = s,

and x ∈ vars(zµ), so that zµ′ = zµ[x/t]. Note that x ∈ vars(zµ) ∩ dom(µ) so that, by

property 2, we have x ∈ G. As a consequence, vars(t) ⊆ G and we obtain

vars(zµ) \G = vars(zµ′) \G.

From this, it is easy to conclude that properties 1, 2 and 3 hold for µ′.

By a simple induction, the above result generalizes to any finite sequence of S-steps.

Then, by Theorem 3.16 it follows than we can construct such a µ′ ∈ VSubst . 2

In the following three sections, we prove the correctness of the abstract unification

operator on each component of the SFL domain. A further section will join all of these

results to establish the whole correctness of amguS.

6.5.1 The Correctness for Set-Sharing

Proposition 6.44 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈ Bind,

where {x} ∪ vars(t) ⊆ VI and y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). Suppose that

{r, r′} = {x, t} and freed(r) holds. For all τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality

theory T , letting

sh− = rel
(

{x} ∪ vars(t), sh
)

,

shr = rel
(

vars(r), sh
)

,

shr′ = rel
(

vars(r′), sh
)

,

we have

sh− ∪ bin(shr, shr′) ⊇ ssets(τ). (6.38)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.38) holds.
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Since freed(r) holds, by Theorem 6.32, rt(r, σ) ∈ Vars and hence, by Proposition 6.15,

rσ ∈ Vars \ dom(σ). (6.39)

Let

R− = rel
(

{x} ∪ vars(t), ssets(σ)
)

,

Rr = rel
(

vars(r), ssets(σ)
)

,

Rr′ = rel
(

vars(r′), ssets(σ)
)

.

Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel, rel and bin,

we obtain

sh− ∪ bin(shr, shr′) ⊇ R− ∪ bin(Rr, Rr′).

Thus, in order to prove (6.38) it is sufficient to show that

R− ∪ bin(Rr, Rr′) ⊇ ssets(τ). (6.40)

Note that, by Definition 3.26 and (6.39), we obtain

Rr =
{

occ(σ, rσ)
}

. (6.41)

Suppose first xσ = tσ. Then we have σ ∈ mgs
(

σ∪{xσ = tσ}
)

, so that by Lemma 6.39,

σ ∈ mgs
(

σ ∪ {x = t}
)

. Thus, take τ
def
= σ. Moreover, by (6.41), Rr′ =

{

occ(σ, rσ)
}

= Rr,

so that Rr = bin(Rr, Rr′). As a consequence,

R− ∪ bin(Rr, Rr′) =
(

ssets(σ) \Rr

)

∪Rr

= ssets(σ)

= ssets(τ).

Otherwise, let xσ 6= tσ and let ν, µ, τ ∈ RSubst be defined as

ν
def
=

{

(y 7→ s) ∈ σ
∣

∣ y /∈ vars(xσ) ∪ vars(tσ)
}

,

µ
def
= {rσ 7→ r′σ},

τ
def
= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 3.10 we have ν ∈ VSubst ; also, µ ∈ VSubst because it has

a single binding; moreover, by construction, dom(ν) ∩ vars(µ) = ∅; thus, by Lemma 3.18

we obtain τ ∈ VSubst . By Lemma 6.39, we also have τ ∈ mgs
(

σ ∪ {x = t}
)

.

Suppose S ∈ ssets(τ). By Definition 3.43 and Theorem 3.44, we have

S ∈ R− ∪ bin(R?
r , R

?
r′).



164 CHAPTER 6. FREENESS AND LINEARITY

If S ∈ R−, then (6.40) holds trivially. Therefore suppose S ∈ bin(R?
r , R

?
r′), so that there

exist Sr ∈ R?
r and Sr′ ∈ R?

r′ such that S = Sr ∪ Sr′ . Note that, by (6.41), R?
r = Rr. Thus,

to prove (6.40) holds, it is sufficient to show that Sr′ ∈ Rr′ .

As S ∈ ssets(τ), by Lemma 3.28, there exists a variable v ∈ Vars \ dom(τ) such that

S = { y ∈ VI | v ∈ vars(yτ) }. As v /∈ dom(τ), v 6= rσ.

Let y ∈ S. We show that y ∈ occ(σ, rσ) ∪ occ(σ, v). Using Lemma 3.20, we have

T ` ∀(τ → yτ = y). Therefore, since T ` ∀(τ → σ), by Lemma 3.12 (replacing s = t by

yτ = y), there exists z ∈ vars(yσ)\dom(σ) such that v ∈ vars(zτ). If z = rσ, then y ∈ Sr.

If z 6= rσ, then z /∈ dom(τ) and zτ = z. Therefore v = z and y ∈ occ(σ, v). 2

Proposition 6.45 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈ Bind,

where {x} ∪ vars(t) ⊆ VI and y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). Suppose that

lind(x) and lind(t) hold. For all τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality theory T ,

letting

shx = rel
(

{x}, sh
)

, sh− = rel
(

{x} ∪ vars(t), sh
)

,

sht = rel
(

vars(t), sh
)

, shxt = shx ∩ sht,

we have

sh− ∪ bin
(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

)

⊇ ssets(τ). (6.42)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.42) holds.

Since, by hypothesis, lind(r) holds for each r ∈ {x, t}, by Theorem 6.32 we have

that rt(r, σ) ∈ LTerms and hence, by Proposition 6.10, vars(r) ⊆ lvars(σ). Thus, by

Proposition 6.15,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ),

vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (6.43)

By defining Vσ
def
= Vars \gvars(σ), we obtain that both terms xσ and tσ are Vσ-linear. Let

{u1, . . . , uk}
def
= dom(σ) ∩

(

vars(xσ) ∪ vars(tσ)
)

,

s̄
def
= (u1, . . . , uk, xσ),

t̄
def
= (u1σ, . . . , ukσ, tσ).

Since xσ is Vσ-linear, it follows from (6.43) (letting r = x) that s̄ is Vσ-linear. It also

follows from (6.43) (applied twice, once with r = x and once with r = t) that, for each

i = 1, . . . , k we have ui ∈ gvars(σ), so that vars(uiσ) ⊆ gvars(σ). Therefore, since tσ

is Vσ-linear, t̄ is also Vσ-linear. By applying Lemma 6.39 and the congruence axioms,
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σ ∪ {x = t} =⇒ s̄ = t̄. Thus, as σ ∪ {x = t} is satisfiable, there exists µ ∈ mgs(s̄ = t̄).

Let Vµ = Vars \ gvars(µ); since gvars(σ) ⊆ gvars(µ), then Vµ ⊆ Vσ and s̄, t̄ are also

Vµ-linear. Therefore, we can apply Lemma 6.42 and Corollary 6.43 so that, by case (3),

there exists µ ∈ mgs(s̄ = t̄) ∩ VSubst such that, for all w,w′ ∈ Vars where w 6= w′ and

either {w,w′} ∩ vars(s̄) = ∅ or {w,w′} ∩ vars(t̄) = ∅,

vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (6.44)

Since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ)∪vars(tσ) for each i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (6.45)

Let ν, τ ∈ RSubst be defined as

ν
def
=

{

(y 7→ s) ∈ σ
∣

∣ y /∈ vars(xσ) ∪ vars(tσ)
}

,

τ
def
= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 3.10 we have ν ∈ VSubst ; moreover, by (6.45), we have

dom(ν)∩ vars(µ) = ∅; thus we can apply Lemma 3.18 to obtain τ ∈ VSubst . By applying

Lemma 6.39, we also have τ ∈ mgs
(

σ ∪ {x = t}
)

.

Let

Rx = rel
(

{x}, ssets(σ)
)

, R− = rel
(

{x} ∪ vars(t), ssets(σ)
)

,

Rt = rel
(

vars(t), ssets(σ)
)

, Rxt = Rx ∩Rt.

Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel, rel, (·)? and

bin, we obtain

sh− ∪ bin
(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

)

⊇ R− ∪ bin
(

Rx ∪ bin(Rx, R
?
xt), Rt ∪ bin(Rt, R

?
xt)

)

.

It follows that, in order to prove (6.42), it is sufficient to show

R− ∪ bin
(

Rx ∪ bin(Rx, R
?
xt), Rt ∪ bin(Rt, R

?
xt)

)

⊇ ssets(τ). (6.46)

Let S be an arbitrary sharing set in ssets(τ). By Definition 3.43 and Theorem 3.44,

S ∈ R− ∪ bin(R?
x, R

?
t ).

If S ∈ R−, then (6.46) holds trivially. Therefore suppose S ∈ bin(R?
x, R

?
t ), so that there

exist Sx ∈ R?
x and St ∈ R?

t such that S = Sx ∪ St. We prove that (6.46) holds by showing

that Sx ∈ Rx ∪ bin(Rx, R
?
xt) and St ∈ Rt ∪ bin(Rt, R

?
xt).

We first show that St ∈ Rt ∪ bin(Rt, R
?
xt). As St ∈ R?

t , we have St = S1 ∪ S2 where
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S1 ∈ (Rt \ Rxt)
? ∪ {∅} and S2 ∈ R?

xt ∪ {∅}. Note that as St 6= ∅, we cannot have

S1 = S2 = ∅. Suppose first that S1 = ∅ so that St = S2 6= ∅. Then St ∈ R?
xt. However,

since Rxt ⊆ Rt, R
?
xt ⊆ bin(Rt, R

?
xt). Thus St ∈ bin(Rt, R

?
xt). Suppose next that S1 6= ∅.

As Rt \ Rxt = Rt \ Rx, we have S1 =
⋃

{

occ(σ,w)
∣

∣ w ∈ S1 \ vars(xσ)
}

. However, as

occ(σ,w) = ∅ for all w ∈ dom(σ) and vars(s̄) \ vars(xσ) ⊆ dom(σ),

S1 =
⋃

{

occ(σ,w)
∣

∣

∣
w ∈ S1 \

(

dom(σ) ∪ vars(s̄)
)

}

Let w1, w2 ∈ S1 \
(

dom(σ) ∪ vars(s̄)
)

. Then, as S1 ⊆ S, S ∈ ssets(τ) and τ ∈ VSubst , by

Lemma 3.28, there exists v ∈ Vars \dom(τ) such that v ∈ vars(w1τ)∩vars(w2τ). However,

since wi /∈ dom(σ), we have wiτ = wiµ, for i ∈ {1, 2}. Thus, noting that v /∈ dom(τ)

implies v /∈ gvars(τ), we can apply (6.44) to conclude that w1 = w2. As the choice of

w1 and w2 was arbitrary, there exists a unique variable w ∈ S1 \
(

dom(σ) ∪ vars(s̄)
)

such

that S1 = occ(σ,w). Thus S1 ∈ Rt. If S2 = ∅ then St = S1 ∈ Rt. If S2 6= ∅, then

St = S1 ∪ S2 ∈ bin(Rt, R
?
xt). Hence, in both cases, St ∈ Rt ∪ bin(Rt, R

?
xt).

By the same reasoning, (replacing x by t, t by x and s̄ by t̄ in the previous paragraph)

we obtain Sx ∈ Rx ∪ bin(Rx, R
?
xt), thus completing the proof. 2

Corollary 6.46 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d)∩VSubst and (x 7→ t) ∈ Bind, where

{x}∪vars(t) ⊆ VI and y ∈ dom(σ)∩ range(σ) implies y ∈ vars(yσ). Suppose that lind(x),

lind(t) and indd (x, t) hold. For all τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality theory

T , letting

sh− = rel
(

{x} ∪ vars(t), sh
)

,

shx = rel
(

{x}, sh
)

,

sht = rel
(

vars(t), sh
)

we have

sh− ∪ bin(shx, sht) ⊇ ssets(τ).

Proof. Since indd(x, t) holds, by Definition 6.31 we have shx ∩ sht = ∅. The result then

follows from Proposition 6.45. 2

Proposition 6.47 Let d = 〈sh, f, l〉 ∈ SFL, σ ∈ γS(d) ∩ VSubst and (x 7→ t) ∈ Bind,

where {x} ∪ vars(t) ⊆ VI and y ∈ dom(σ) ∩ range(σ) implies y ∈ vars(yσ). Suppose that

{r, r′} = {x, t} and lind (r) holds. For all τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality

theory T , letting

sh− = rel
(

{x} ∪ vars(t), sh
)

,

shr = rel
(

vars(r), sh
)

,

shr′ = rel
(

vars(r′), sh
)

,

we have

sh− ∪ bin(sh?
r, shr′) ⊇ ssets(τ). (6.47)
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Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.47) holds.

Since lind(r) holds, by Theorem 6.32, rt(r, σ) ∈ LTerms and hence, by Proposition 6.10,

vars(r) ⊆ lvars(σ). Thus, by Proposition 6.15,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ),

vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (6.48)

Therefore, by defining Vσ
def
= Vars \ gvars(σ), we obtain that the term rσ is Vσ-linear. Let

{u1, . . . , uk}
def
= dom(σ) ∩

(

vars(xσ) ∪ vars(tσ)
)

,

s̄
def
= (u1, . . . , uk, rσ),

t̄
def
= (u1σ, . . . , ukσ, r

′σ).

Since rσ is Vσ-linear it follows from (6.48) that s̄ is Vσ-linear. By Lemma 6.39 and the

congruence axioms, σ ∪ {x = t} =⇒ s̄ = t̄. Thus, as σ ∪ {x = t} is satisfiable, there

exists µ ∈ mgs(s̄ = t̄). Let Vµ = Vars \ gvars(µ); since gvars(σ) ⊆ gvars(µ), then Vµ ⊆ Vσ

and s̄ is also Vµ-linear. Therefore, we can apply Lemma 6.42 and Corollary 6.43 so that,

by case (3), there exists µ ∈ mgs(s̄ = t̄) ∩ VSubst such that, for all w,w′ ∈ Vars \ vars(s̄)

where w 6= w′,

vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (6.49)

Since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ)∪vars(tσ) for each i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (6.50)

Let ν, τ ∈ RSubst be defined as

ν
def
=

{

(y 7→ s) ∈ σ
∣

∣ y /∈ vars(xσ) ∪ vars(tσ)
}

,

τ
def
= ν ◦ µ.

As ν ⊆ σ ∈ VSubst , by Lemma 3.10 we have ν ∈ VSubst ; moreover, by (6.50), we have

dom(ν)∩ vars(µ) = ∅; thus we can apply Lemma 3.18 to obtain τ ∈ VSubst . By applying

Lemma 6.39, we also have τ ∈ mgs
(

σ ∪ {x = t}
)

.

Let

R− = rel
(

{x} ∪ vars(t), ssets(σ)
)

,

Rr = rel
(

vars(r), ssets(σ)
)

,

Rr′ = rel
(

vars(r′), ssets(σ)
)

.
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Since σ ∈ γS(d), we have sh ⊇ ssets(σ) so that, using the monotonicity of rel, rel, (·)? and

bin, we obtain

sh− ∪ bin(sh?
r, shr′) ⊇ R− ∪ bin(R?

r , Rr′).

Thus, in order to prove (6.47) it is sufficient to show that

R− ∪ bin(R?
r , Rr′) ⊇ ssets(τ). (6.51)

Suppose S ∈ ssets(τ). By Definition 3.43 and Theorem 3.44, we have

S ∈ R− ∪ bin(R?
r , R

?
r′).

If S ∈ R−, then (6.51) holds trivially. Therefore suppose S ∈ bin(R?
r , R

?
r′), so that there

exist Sr ∈ R?
r and Sr′ ∈ R?

r′ such that S = Sr ∪ Sr′ . First note that, since Sr′ ∈ R?
r′ , there

exists S′ ⊆ Sr′ such that S′ ∈ Rr′ . Moreover, if Sr′ ∈ R?
r , then we have S ∈ R?

r , so that

S = S ∪ S′ ∈ bin(R?
r , Rr′), proving (6.51). Thus, we now assume that Sr′ /∈ R?

r .

As Sr′ ∈ R?
r′ , we have Sr′ =

⋃
{

occ(σ,w)
∣

∣ w ∈ Sr′ \dom(σ)
}

. From this, as Sr′ /∈ R?
r ,

vars(s̄) ⊆ dom(σ) ∪ vars(rσ) and vars(rσ) ⊆ vars(s̄), we obtain

Sr′ =
⋃

{

occ(σ,w)
∣

∣

∣
w ∈ Sr′ \

(

dom(σ) ∪ vars(s̄)
)

}

.

Let w1, w2 ∈ Sr′ \
(

dom(σ)∪vars(s̄)
)

. Note that, as Sr′ ⊆ S, S ∈ ssets(τ) and τ ∈ VSubst ,

by Lemma 3.28 there exists v ∈ Vars \ dom(τ) such that v ∈ vars(w1τ) ∩ vars(w2τ).

However, since wi /∈ dom(σ), we have wiτ = wiµ, for i ∈ {1, 2}. Thus, noting that

v /∈ dom(τ) implies v /∈ gvars(τ), we can apply (6.49) to conclude that w1 = w2. As the

choice of w1 and w2 was arbitrary, there exists a unique variable w ∈ Sr′\
(

dom(σ)∪vars(s̄)
)

such that Sr′ = occ(σ,w). Thus Sr′ ∈ Rr′ and (6.51) holds. 2

Lemma 6.48 Let sh ∈ SH , (x 7→ t) ∈ Bind and V,W ⊆ VI , where {x} ∪ vars(t) ⊆ VI

and rel(V, sh) ⊆ rel(W, sh). If sh ′ def
= amgu(sh, x 7→ t), then rel(V, sh ′) ⊆ rel(W, sh′).

Proof. Suppose that S ∈ rel(V, sh ′). By Definition 3.43, we have two cases.

1. Suppose that S ∈ rel
(

{x} ∪ vars(t), sh
)

. Then, we have S ∈ sh and, in particular,

S ∈ rel(V, sh). Thus, by hypothesis, S ∈ rel(W, sh) and we conclude S ∈ rel(W, sh ′).

2. Otherwise, let S ∈ bin
(

rel
(

{x}, sh
)?
, rel

(

vars(t), sh
)?

)

. Then, S = S0 ∪ · · · ∪ Sn

where n ∈ N and Si ∈ sh, for each 0 ≤ i ≤ n. Moreover, since S ∈ rel(V, sh ′), there

exists an index j ∈ {0, . . . , n} such that Sj ∈ rel(V, sh). Hence, by the hypothesis,

Sj ∈ rel(W, sh) and, since Sj ⊆ S, we can conclude S ∈ rel(W, sh ′).

2

Proposition 6.49 Let sh ∈ SH , (x 7→ t) ∈ Bind, where x ∈ vars(t) ⊆ VI . Let τ ∈

RSubst be satisfiable in the syntactic equality theory T and suppose that T ` ∀(τ → x = t)

and ssets(τ) ⊆ sh. Then ssets(τ) ⊆ cyclict
x(sh).
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Proof. Take Vx = {x} and Wt = vars(t) \ {x}. Let τ = {x1 7→ t1, . . . , xn 7→ tn}, where

n = # τ . Define

τ0
def
= {x 7→ t}, sh0

def
= ssets

(

{x 7→ t}
)

,

and, for each i = 1, . . . , n,

τi ∈ mgs
(

{x1 = t1, . . . , xi = ti} ∪ {x = t}
)

, shi
def
= amgu(sh i−1, xi 7→ ti).

We show by induction on i = 0, . . . , n that ssets(τi) ⊆ shi and

rel(Vx, shi) ⊆ rel(Wt, shi). (6.52)

The base case, when i = 0, follows directly from Definition 3.26; note that (6.52) holds

because x ∈ dom(τ0), so that occ(τ0, x) = ∅.

In the inductive case, when 0 < i ≤ n, we have ssets(τi−1) ⊆ shi−1 so that, by

Theorem 3.44, ssets(τi) ⊆ shi. By the inductive hypothesis, (6.52) holds for sh i−1. Thus,

by Lemma 6.48 (taking V = Vx and W = Wt), we obtain that (6.52) also holds for sh i.

By taking i = n, we obtain rel(Vx, shn) ⊆ rel(Wt, shn). Note that, by hypothesis, we

have τ ∈ mgs
(

τ ∪ {x = t}
)

= mgs(τn), so that T ` ∀(τ ↔ τn). By Lemma 6.41, we have

ssets(τ) = ssets(τn), so that ssets(τ) ⊆ shn. As a consequence, ssets(τ) ⊆ sh ∩ shn. Thus,

by Definition 6.31, we obtain ssets(τ) ⊆ cyclict
x(sh). 2

6.5.2 The Correctness for Freeness

Proposition 6.50 Let σ ∈ VSubst and (x 7→ y) ∈ Bind, where {x, y} ⊆ VI . Suppose

also that {x, y} ⊆ fvars(σ). Then, for all τ ∈ mgs
(

σ ∪ {x = y}
)

in the syntactic equality

theory T , we have

fvars(σ) ⊆ fvars(τ). (6.53)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = y}

is not satisfiable in T , then the result is trivial. We therefore assume, for the rest of the

proof, that σ ∪ {x = y} is satisfiable in T . It follows from Lemma 6.41 that we just have

to show that there exists τ ∈ mgs
(

σ ∪ {x = y}
)

such that (6.53) holds.

As {x, y} ⊆ fvars(σ) we have, using Proposition 6.15,

{xσ, yσ} ⊆ Vars \ dom(σ). (6.54)

Suppose first xσ = yσ. Then we have σ ∈ mgs
(

σ∪{xσ = yσ}
)

, so that by Lemma 6.39,

σ ∈ mgs
(

σ ∪ {x = y}
)

. Thus, by taking τ
def
= σ, we trivially obtain fvars(σ) = fvars(τ).

Otherwise, let xσ 6= yσ and take τ
def
= σ ∪ {xσ = yσ}. Then, since σ ∈ RSubst , it

follows from (6.54) that τ ∈ Eqs has no identities or circular subsets so that τ ∈ RSubst .

Note that dom(τ) = dom(σ) ∪ {xσ}. By Lemma 6.39, τ ∈ mgs
(

σ ∪ {x = t}
)

. Suppose
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z ∈ fvars(σ), so that by Proposition 6.15, zσ ∈ Vars \ dom(σ). Then we show that

z ∈ fvars(τ). If zσ = xσ then zτ = yσ. On the other hand, if zσ 6= xσ, we have zτ = zσ.

In both cases, zτ ∈ Vars \ dom(τ), which implies z ∈ fvars(τ). 2

Lemma 6.51 Let d ∈ SFL and σ ∈ γS(d) ∩VSubst. Let also y ∈ VI and t ∈ HTerms be

such that vars(t) ⊆ VI and y /∈ share withd (t). Then vars(yσ) ∩ vars(tσ) ⊆ dom(σ).

Proof. Let d = 〈sh, f, l〉 and Vt = vars(t) so that, by Definition 6.31, y /∈ vars
(

rel(Vt, sh)
)

.

Thus

∀w ∈ Vt, S ∈ sh : {y, w} * S.

By Definition 6.11, since σ ∈ γS(d), this implies

∀v ∈ Vars, w ∈ Vt : {y, w} * occ(σ, v).

Thus, since σ ∈ VSubst , by Lemma 3.28 we obtain

∀w ∈ Vt : vars(yσ) ∩ vars(wσ) ⊆ dom(σ),

which is equivalent to the thesis. 2

Proposition 6.52 Let d ∈ SFL and σ ∈ γS(d)∩VSubst. Let also (x 7→ t) ∈ Bind, where

{x} ∪ vars(t) ⊆ VI and suppose that x ∈ fvars(σ). Then, for all τ ∈ mgs
(

σ ∪ {x = t}
)

in

the syntactic equality theory T , we have

fvars(σ) \ share withd(x) ⊆ fvars(τ). (6.55)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.55) holds.

As x ∈ fvars(σ) we have, using Proposition 6.15,

xσ ∈ Vars \ dom(σ). (6.56)

Suppose first xσ = tσ. Then we have σ ∈ mgs
(

σ∪{xσ = tσ}
)

, so that by Lemma 6.39,

σ ∈ mgs
(

σ ∪ {x = t}
)

. Thus, by taking τ
def
= σ, we trivially obtain fvars(σ) = fvars(τ),

which implies the thesis.

Otherwise, let xσ 6= tσ and take τ
def
= σ ∪ {xσ = tσ}. Then, since σ ∈ RSubst , it

follows from (6.56) that τ ∈ Eqs has no identities or circular subsets so that τ ∈ RSubst .

By Lemma 6.39, τ ∈ mgs
(

σ ∪ {x = t}
)

.

Suppose y ∈ fvars(σ) \ share withd(x). We show that y ∈ fvars(τ). Since y ∈ fvars(σ),

it follows by Proposition 6.15 that

yσ ∈ Vars \ dom(σ). (6.57)
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Since y /∈ share withd(x) and σ ∈ VSubst , by Lemma 6.51, vars(yσ)∩vars(xσ) ⊆ dom(σ).

From this, by using (6.56) and (6.57), we obtain yσ 6= xσ; from this, again by (6.56), we

derive y 6= xσ. Thus yτ = yσ, so that y ∈ fvars(τ). 2

Proposition 6.53 Let d ∈ SFL and σ ∈ γS(d)∩VSubst. Let also (x 7→ t) ∈ Bind, where

{x} ∪ vars(t) ⊆ VI . Then, for all τ ∈ mgs
(

σ ∪ {x = t}
)

in a syntactic equality theory T ,

we have

fvars(σ) \
(

share withd(x) ∪ share withd(t)
)

⊆ fvars(τ). (6.58)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.58) holds.

Let

{u1, . . . , uk}
def
= dom(σ) ∩

(

vars(xσ) ∪ vars(tσ)
)

,

s̄
def
= (u1, . . . , uk, xσ),

t̄
def
= (u1σ, . . . , ukσ, tσ).

Since σ ∈ VSubst , for each i = 1, . . . , k, vars(uiσ) ⊆ vars(xσ) ∪ vars(tσ). Therefore, for

any µ ∈ mgs(s̄ = t̄), we have

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (6.59)

Let

ν
def
=

{

z = zσµ
∣

∣

∣
z ∈ dom(σ) \

(

vars(xσ) ∪ vars(tσ)
)

}

,

τ
def
= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (6.59) that ν, τ ∈ Eqs have no identities or

circular subsets so that ν, τ ∈ RSubst . Thus, using Lemma 6.39 and the assumption that

σ ∪ {x = t} is satisfiable, τ ∈ mgs
(

σ ∪ {x = t}
)

.

Suppose y ∈ fvars(σ) \
(

share withd (x) ∪ share withd(t)
)

. We show that y ∈ fvars(τ).

As y ∈ fvars(σ), by Proposition 6.15,

yσ ∈ Vars \ dom(σ). (6.60)

As y /∈ share withd(x) ∪ share withd (t), it follows from Lemma 6.51 that

vars(yσ) ∩
(

vars(xσ) ∪ vars(tσ)
)

⊆ dom(σ).

From this, by using (6.60), we obtain

yσ /∈ vars(xσ) ∪ vars(tσ). (6.61)
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By using either (6.61), if y /∈ dom(σ), or the fact that σ ∈ VSubst , if y ∈ dom(σ), it

follows that

y /∈ vars(xσ) ∪ vars(tσ). (6.62)

Thus, by (6.62), yτ = yν and, by (6.61), yν = yσ, so that yτ = yσ and y ∈ fvars(τ). 2

6.5.3 The Correctness for Linearity

Lemma 6.54 Let σ ∈ VSubst and y ∈ dom(σ) be such that y ∈ lvars(σ) \ gvars(σ). Then

y /∈ vars(yσ).

Proof. Suppose, by contraposition, that y ∈ vars(yσ). Since σ ∈ VSubst and y ∈ lvars(σ),

by Proposition 6.15 we have vars(yσ) ∩ dom(σ) ⊆ gvars(σ). Therefore y ∈ gvars(σ),

contradicting the assumption. 2

The following simple consequence of Proposition 6.10 will be used in the sequel.

Lemma 6.55 If σ ∈ RSubst then fvars(σ) ∪ gvars(σ) ⊆ lvars(σ).

Proof. Let y ∈ fvars(σ) ∪ gvars(σ). By Proposition 6.10, rt(y, σ) ∈ Vars ∪ GTerms.

However, Vars ∪ GTerms ⊂ LTerms so that, again by Proposition 6.10, y ∈ lvars(σ). 2

Proposition 6.56 Let d ∈ SFL and σ ∈ γS(d) ∩ VSubst, where y ∈ dom(σ) ∩ range(σ)

implies y ∈ vars(yσ). Let also (x 7→ t) ∈ Bind, where {x}∪vars(t) ⊆ VI , and suppose that

{r, r′} = {x, t} and lind (r) holds. For all τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality

theory T , we have

lvars(σ) \ share withd (r) ⊆ lvars(τ). (6.63)

Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.63) holds.

Since lind(r) holds, then vars(r) ⊆ lvars(σ). Thus, by Proposition 6.15,

∀v ∈ vars(rσ) \ dom(σ) : occ lin(v, rσ), (6.64)

vars(rσ) ∩ dom(σ) ⊆ gvars(σ). (6.65)

Therefore, by defining Vσ
def
= Vars \ gvars(σ), we obtain that the term rσ is Vσ-linear. Let

{u1, . . . , uk}
def
= dom(σ) ∩

(

vars(xσ) ∪ vars(tσ)
)

,

s̄
def
= (u1, . . . , uk, rσ),

t̄
def
= (u1σ, . . . , ukσ, r

′σ).

Since rσ is Vσ-linear it follows from (6.65) that s̄ is Vσ-linear. By Lemma 6.39 and the

congruence axioms, σ∪{x = t} =⇒ s̄ = t̄. Thus, as σ∪{x = t} is satisfiable, there exists
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µ ∈ mgs(s̄ = t̄). Let Vµ = Vars \ gvars(µ); since gvars(σ) ⊆ gvars(µ), then Vµ ⊆ Vσ and s̄

is also Vµ-linear. Therefore, we can apply Lemma 6.42 so that there exists µ ∈ mgs(s̄ = t̄)

such that, for all w ∈W
def
= Vars \ vars(s̄),

wµ is Vµ-linear; (6.66)

vars(wµ) ∩ dom(µ) ⊆ gvars(µ); (6.67)

∀w′ ∈W : w 6= w′ =⇒ vars(wµ) ∩ vars(w′µ) ⊆ gvars(µ). (6.68)

Since σ ∈ VSubst , we have vars(uiσ) ⊆ vars(xσ)∪vars(tσ) for each i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (6.69)

Let ν, τ ⊆ Eqs be defined as

ν
def
=

{

z = zσµ
∣

∣

∣
z ∈ dom(σ) \

(

vars(xσ) ∪ vars(tσ)
)

}

,

τ
def
= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (6.69) that ν and τ have no identities or circular

subsets so that ν, τ ∈ RSubst . By applying Lemma 6.39, we obtain τ ∈ mgs
(

σ ∪ {x = t}
)

.

Suppose y ∈ lvars(σ) \ share withd (r). Then we show that y ∈ lvars(τ).

If y ∈ gvars(σ) then y ∈ gvars(τ). Thus, by Lemma 6.55, y ∈ lvars(τ). Therefore, for

the rest of the proof, we assume y ∈ lvars(σ) \ gvars(σ). Thus, by Lemma 6.54, we have

y ∈ dom(σ) implies y /∈ vars(yσ) so that, by the hypothesis,

y /∈ dom(σ) ∩ range(σ). (6.70)

As y ∈ lvars(σ), by Proposition 6.15,

∀v ∈ vars(yσ) \ dom(σ) : occ lin(v, yσ), (6.71)

vars(yσ) ∩ dom(σ) ⊆ gvars(σ). (6.72)

Since y /∈ share withd(r), it follows from Definition 6.31 and Theorem 6.32 that

vars(yσ) ∩ vars(rσ) ⊆ gvars(σ), so that, by (6.72), we obtain

vars(yσ) ∩ vars(s̄) ⊆ gvars(σ). (6.73)

We now prove that y ∈ lvars(τ), by showing that

∀v ∈ vars(yτ) \ dom(τ) : occ lin(v, yτ), (6.74)

vars(yτ) ∩ dom(τ) ⊆ gvars(τ). (6.75)

Since dom(τ) = dom(ν) ∪ dom(µ), we have three cases.

1. Suppose first that y /∈ dom(τ). Then (6.74) holds because occ lin(y, y) is always



174 CHAPTER 6. FREENESS AND LINEARITY

true; similarly, (6.75) is true, because vars(yτ) = {y}.

2. Next, suppose that y ∈ dom(ν), so that yτ = yν = yσµ.

To prove (6.74) we have to prove, for all w ∈ vars(yσ),

∀v ∈ vars(wµ) \ gvars(τ) : occ lin(v, wµ), (6.76)

∀w′ ∈ vars(yσ) \ {w} : vars(wµ) ∩ vars(w′µ) ⊆ gvars(τ). (6.77)

We consider two subcases. If w ∈ vars(s̄) then, by (6.73), w ∈ gvars(σ). This

implies w ∈ gvars(τ) and, as a consequence, vars(wµ) ⊆ gvars(τ). Thus, both (6.76)

and (6.77) hold. Otherwise, if w /∈ vars(s̄), then we have w ∈ W and both (6.66)

and (6.68) hold. Therefore, since gvars(µ) ⊆ gvars(τ), (6.76) follows from (6.66). As

for (6.77), this follows either from (6.68), when w′ /∈ vars(s̄), or from (6.73), when

w′ ∈ vars(s̄).

In order to prove (6.67), note that

vars(yσµ) ∩ dom(τ) =
⋃

{

vars(wµ) ∩ dom(τ)
∣

∣ w ∈ vars(yσ)
}

.

We will prove that, for all w ∈ vars(yσ), vars(wµ) ∩ dom(τ) ⊆ gvars(τ). Let

w ∈ vars(yσ). Suppose first that w ∈ gvars(σ). As a consequence, w ∈ gvars(τ),

which implies vars(wτ) ⊆ gvars(τ). In particular, vars(wτ) ∩ dom(τ) ⊆ gvars(τ).

Otherwise, let w /∈ gvars(σ) so that, by (6.72), w /∈ dom(σ). If also w /∈ dom(µ), then

w = wµ /∈ dom(τ) and there is nothing to prove. If w ∈ dom(µ), vars(wµ) ⊆ vars(µ)

so that, by (6.69) and the definition of ν, vars(wµ) ∩ dom(ν) = ∅. Moreover,

by (6.73), we have w /∈ vars(s̄). Thus (6.67) applies so that, as gvars(µ) ⊆ gvars(τ),

vars(wµ) ∩ dom(τ) ⊆ gvars(τ).

3. Finally, suppose y ∈ dom(µ), so that yτ = yµ. First, we prove that y /∈ vars(s̄).

In fact, by definition of s̄, if y ∈ vars(s̄) then y ∈ vars(rσ) ∪ vars(r′σ). Now,

if y ∈ dom(σ), then y ∈ range(σ), therefore contradicting (6.70). Otherwise, if

y /∈ dom(σ), then y ∈ vars(yσ) and, by (6.73), y ∈ gvars(σ), contradicting our

previous assumption.

Thus, we have y /∈ vars(s̄), so that y ∈W and (6.66) holds. Note that (6.74) follows

because gvars(µ) ⊆ gvars(τ) ⊆ dom(τ), so that vars(yτ) \ dom(τ) ⊆ Vµ.

Similarly, (6.67) holds and we obtain (6.75) by observing that gvars(µ) ⊆ gvars(τ).

2

Proposition 6.57 Let d ∈ SFL and σ ∈ γS(d) ∩ VSubst, where y ∈ dom(σ) ∩ range(σ)

implies y ∈ vars(yσ). Let also (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . For all

τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality theory T , we have

lvars(σ) \
(

share withd (x) ∪ share withd(t)
)

⊆ lvars(τ). (6.78)
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Proof. We assume that the congruence and identity axioms hold. Note that if σ∪{x = t}

is not satisfiable, then the result is trivial. We therefore assume, for the rest of the proof,

that σ ∪ {x = t} is satisfiable in T . It follows from Lemma 6.41 that we just have to show

that there exists τ ∈ mgs
(

σ ∪ {x = t}
)

such that (6.78) holds.

Let

{u1, . . . , uk}
def
= dom(σ) ∩

(

vars(xσ) ∪ vars(tσ)
)

,

s̄
def
= (u1, . . . , uk, xσ),

t̄
def
= (u1σ, . . . , ukσ, tσ).

By Lemma 6.39 and the congruence axioms, σ∪{x = t} =⇒ s̄ = t̄. Thus, as σ∪{x = t} is

satisfiable, there exists µ ∈ mgs(s̄ = t̄). Since σ ∈ VSubst , vars(uiσ) ⊆ vars(xσ)∪vars(tσ)

for each i = 1, . . . , k. Therefore

vars(µ) ⊆ vars(xσ) ∪ vars(tσ). (6.79)

Let ν, τ ⊆ Eqs be defined as

ν
def
=

{

z = zσµ
∣

∣

∣
z ∈ dom(σ) \

(

vars(xσ) ∪ vars(tσ)
)

}

,

τ
def
= ν ∪ µ.

Then, as σ, µ ∈ RSubst , it follows from (6.79) that ν and τ have no identities or circular

subsets so that ν, τ ∈ RSubst . By applying Lemma 6.39, we obtain τ ∈ mgs
(

σ ∪ {x = t}
)

.

Supposing y ∈ lvars(σ) \
(

share withd (x)∪ share withd (t)
)

, we show that y ∈ lvars(τ).

If y ∈ gvars(σ) then y ∈ gvars(τ). Thus, by Lemma 6.55, y ∈ lvars(τ). Therefore, for

the rest of the proof, we assume y ∈ lvars(σ) \ gvars(σ). Thus, by Lemma 6.54, we have

y ∈ dom(σ) implies y /∈ vars(yσ) so that, by the hypothesis,

y /∈ dom(σ) ∩ range(σ). (6.80)

As y ∈ lvars(σ), by Proposition 6.15,

∀v ∈ vars(yσ) \ dom(σ) : occ lin(v, yσ), (6.81)

vars(yσ) ∩ dom(σ) ⊆ gvars(σ). (6.82)

As y /∈ share withd(x)∪ share withd(t), by Definition 6.31 and Theorem 6.32, we have

vars(yσ) ∩
(

vars(xσ) ∪ vars(tσ)
)

⊆ gvars(σ). (6.83)

Moreover, by (6.79), this implies

vars(yσ) ∩ vars(µ) ⊆ gvars(σ). (6.84)
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We now prove that y ∈ lvars(τ), by showing that

∀v ∈ vars(yτ) \ dom(τ) : occ lin(v, yτ), (6.85)

vars(yτ) ∩ dom(τ) ⊆ gvars(τ). (6.86)

Since dom(τ) = dom(ν) ∪ dom(µ), we have three cases.

1. Suppose first that y /∈ dom(τ). Then (6.85) holds because occ lin(y, y) is always

true; similarly, (6.86) is true, because vars(yτ) = {y}.

2. Next, suppose that y ∈ dom(ν), so that yτ = yν = yσµ.

To prove (6.85), consider v ∈ vars(yσµ) \ dom(τ). If v ∈ vars(µ) then there exists

a variable w ∈ vars(yσ) ∩ vars(µ) such that v ∈ vars(wµ). By (6.84), we have

w ∈ gvars(σ), which implies w ∈ gvars(τ). Thus, vars(wµ) ⊆ gvars(τ) ⊆ dom(τ),

therefore contradicting our assumption that v /∈ dom(τ). Therefore, v /∈ vars(µ),

so that v ∈ vars(yσ). Since dom(σ) ⊆ dom(τ), by (6.81), we have occ lin(v, yσ).

Moreover, for all w ∈ vars(yσ)∩dom(µ), we have v /∈ vars(wµ), because v /∈ vars(µ).

Thus, we obtain occ lin(v, yσµ).

In order to prove (6.86), note that

vars(yσµ) ∩ dom(τ) =
⋃

{

vars(wµ) ∩ dom(τ)
∣

∣ w ∈ vars(yσ)
}

.

We will prove that, for all w ∈ vars(yσ), vars(wµ) ∩ dom(τ) ⊆ gvars(τ). Thus,

let w ∈ vars(yσ). If w ∈ vars(µ) then, by (6.84), w ∈ gvars(σ), which implies

w ∈ gvars(τ). Thus, we obtain vars(wµ) ⊆ gvars(τ). Otherwise, let w /∈ vars(µ),

so that w = wµ. Thus, w /∈ dom(µ). If also w /∈ dom(σ), then w /∈ dom(τ) and

there is nothing to prove. If w ∈ dom(σ), by (6.82), w ∈ gvars(σ), which implies

w ∈ gvars(τ). Thus, vars(wµ) ⊆ gvars(τ).

3. Finally, suppose y ∈ dom(µ), so that yτ = yµ. Toward a contradiction, assume that

y ∈ vars(xσ) ∪ vars(tσ). Now, if y ∈ dom(σ), then y ∈ range(σ), thus contradict-

ing (6.80). Otherwise, if y /∈ dom(σ), then y ∈ vars(yσ) and, by (6.83), y ∈ gvars(σ),

contradicting our previous assumption.

Thus, we have y /∈ vars(xσ) ∪ vars(tσ), so that, by (6.79), we obtain yµ = y.

As a consequence, (6.85) holds trivially. As for (6.86), this follows from (6.82) if

y ∈ dom(σ), while being trivial if y /∈ dom(σ).

2

6.5.4 Putting Results Together

By exploiting the correctness results regarding each of the three components of the domain

SFL, we now prove the correctness of the amguS operator. We start by proving a restricted

result that only applies to variable-idempotent substitutions.
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Lemma 6.58 Let d ∈ SFL and σ ∈ γS(d)∩VSubst, where y ∈ dom(σ)∩ range(σ) implies

y ∈ vars(yσ). Let also (x 7→ t) ∈ Bind, where {x}∪vars(t) ⊆ VI , and suppose there exists

τ ∈ mgs
(

σ ∪ {x = t}
)

in the syntactic equality theory T . Then τ ∈ γS

(

amguS(d , x 7→ t)
)

.

Proof. Let d = 〈sh, f, l〉 and d ′ = 〈sh ′, f ′, l′〉
def
= amguS(d , x 7→ t). Note that, by the

existence of σ and τ as specified in the hypotheses, we have both d 6= ⊥S and d ′ 6= ⊥S.

Since σ ∈ γS(d), it follows from Definition 6.11 that ssets(σ) ⊆ sh, fvars(σ) ⊇ f and

lvars(σ) ⊇ l. Therefore, to prove τ ∈ γS(d ′), we have to show that

ssets(τ) ⊆ sh ′, (6.87)

fvars(τ) ⊇ f ′, (6.88)

lvars(τ) ⊇ l′. (6.89)

We prove each inclusion separately.

(6.87). By Definition 6.33, we have sh ′ = cyclict
x(sh− ∪ sh ′′). We will show that

ssets(τ) ⊆ sh− ∪ sh ′′. (6.90)

From this, the thesis will follow by Proposition 6.49. To prove (6.90) we need to consider

five cases.

1. freed(x) ∨ freed(t) holds.

We can apply Proposition 6.44, taking r = x when freed(x) holds and r = t when

freed(x) does not hold, to conclude that ssets(τ) ⊆ sh ′.

2. lind (x) ∧ lind(t) holds.

We can apply Proposition 6.45, obtaining

ssets(τ) ⊆ sh− ∪ bin
(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

) def
= sh ′.

3. lind (x) holds.

We can apply Proposition 6.47, taking r = x to conclude that

ssets(τ) ⊆ sh− ∪ bin(sh?
x, sht)

def
= sh ′.

4. lind (t) holds. This case is symmetric to the previous one.

5. When nothing is known about x and t, we can apply Theorem 3.44:

ssets(τ) ⊆ sh− ∪ bin(sh?
x, sh

?
t )

def
= sh ′.

(6.88). In order to show that fvars(τ) ⊇ f ′, according to Definition 6.33, we consider

four cases.
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1. freed(x) ∧ freed(t) holds.

By Definition 6.31, {x, t} ⊆ f ⊆ fvars(σ). Therefore we can apply Proposition 6.50

(where y is replaced by t ∈ VI ) to conclude that

f ′
def
= f ⊆ fvars(σ) ⊆ fvars(τ).

2. freed(x) holds.

By Definition 6.31, x ∈ f ⊆ fvars(σ). Therefore we can apply Proposition 6.52 to

conclude that

f ′
def
= f \ share withd(x)

⊆ fvars(σ) \ share withd(x)

⊆ fvars(τ).

3. freed(t) holds.

This case is symmetric to the previous one.

4. When nothing is known about x and t, we can apply Proposition 6.53:

f ′
def
= f \

(

share withd(x) ∪ share withd (t)
)

⊆ fvars(σ) \
(

share withd(x) ∪ share withd (t)
)

⊆ fvars(τ).

(6.89). In order to show that lvars(τ) ⊇ l′, according to Definition 6.33, we start by

proving lvars(τ) ⊇ l′′. There are four cases that have to be considered.

1. lind (x) ∧ lind(t) holds.

We can apply Proposition 6.56 twice, the first time taking r = x and the second

time taking r = t, to conclude that

l′′
def
= l \

(

share withd (x) ∩ share withd(t)
)

=
(

l \ share withd(x)
)

∪
(

l \ share withd (t)
)

⊆
(

lvars(σ) \ share withd(x)
)

∪
(

lvars(σ) \ share withd(t)
)

⊆ lvars(τ).

2. lind (x) holds.

We can apply Proposition 6.56 (where we take r = x) to conclude that

l′′
def
= l \ share withd(x)

⊆ lvars(σ) \ share withd (x)

⊆ lvars(τ).
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3. lind (t) holds.

This case is symmetric to the previous one.

4. When nothing is known about x and t, we can apply Proposition 6.57:

l′′
def
= l \

(

share withd (x) ∪ share withd(t)
)

⊆ lvars(σ) \
(

share withd (x) ∪ share withd(t)
)

⊆ lvars(τ).

Therefore, we have lvars(τ) ⊇ l′′. By (6.87) proved above, ssets(τ) ⊆ sh ′. By Defini-

tion 6.5, VI \ vars(sh ′) ⊆ gvars(τ). Moreover, by (6.88) proved above, fvars(τ) ⊇ f ′.

Thus, by applying Lemma 6.55 we obtain the thesis:

lvars(τ) ⊇ gvars(τ) ∪ fvars(τ) ∪ lvars(τ)

⊇
(

VI \ vars(sh ′)
)

∪ f ′ ∪ l′′

def
= l′.

2

Finally, by exploiting the results proved in Section 6.3, we drop the assumption about

variable-idempotent substitutions, therefore completing the proof of correctness of amguS.

Proof of Theorem 6.36 on page 154. Let d ′ = amguS(d , x 7→ t).

If d = ⊥S then we have d ′ = ⊥S and the result holds trivially, since γS(d) = ∅.

Similarly, if T = FT is the theory of finite trees and x ∈ vars(t), then d ′ = ⊥S. Again,

the result holds trivially, since the equation {x = t} is not satisfiable in FT , so that

mgs
(

σ ∪ {x = t}
)

= ∅.

Therefore suppose there exists σ ∈ γS(d) and τ ∈ mgs
(

σ∪{x = t}
)

. By Corollary 3.17,

there exists σ′ ∈ VSubst such that T ` ∀(σ ↔ σ′) and y ∈ dom(σ′) ∩ range(σ′) implies

y ∈ vars(yσ′). By Theorem 6.12 and Definition 6.11, we have σ ∈ γS(d) if and only if

σ′ ∈ γS(d). Therefore, the result follows by application of Lemma 6.58. 2

6.6 Eliminating Redundancies in SFL

As done in Chapter 4 for the plain set-sharing domain, even when considering the richer

domain SFL it is natural to question whether it contains redundancies with respect to the

computation of the observable properties of the analysis.

It is worth stressing that the results presented in Chapters 4 and 5 cannot be simply

inherited by the new domain. The concept of “redundancy” depends on both the starting

domain and the given observables: in the SFL domain both of these have changed. First

of all, as can be seen by looking at the definition of amguS, freeness and linearity positively

interact in the computation of sharing information: a priori it is an open issue whether
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or not the “redundant” sharing groups can play a role in such an interaction. Secondly,

since freeness and linearity information can be themselves usefully exploited in a number of

applications of static analysis (e.g., in the optimized implementation of concrete unification

or in occurs-check reduction), these properties have to be included in the observables.

This stated, we will now show that the domain SFL can be simplified by applying the

same notion of redundancy as identified in Chapter 4. Namely, in the definition of SFL it is

possible to replace the set-sharing component SH by PSD without affecting the precision

on groundness, pair-sharing, freeness and linearity. In order to prove such a claim, we now

formalize the new observable properties.

Definition 6.59 (The observables of SFL.) For each 〈sh, f, l〉 ∈ SFL, the (overloaded)

groundness and pair-sharing observables ρCon , ρPS ∈ uco(SFL) are defined by

ρCon

(

〈sh, f, l〉
) def

=
〈

ρCon(sh),∅,∅
〉

,

ρPS

(

〈sh, f, l〉
) def

=
〈

ρPS(sh),∅,∅
〉

;

the freeness and linearity observables ρF , ρL ∈ uco(SFL) are defined by

ρF

(

〈sh, f, l〉
) def

= 〈SG, f,∅〉,

ρL

(

〈sh, f, l〉
) def

= 〈SG,∅, l〉.

The overloading of ρPSD working on the domain SFL leaves the freeness and linearity

components untouched.

Definition 6.60 (Non-redundant SFL.) The operator ρPSD : SFL → SFL is defined,

for each 〈sh, f, l〉 ∈ SFL, by

ρPSD

(

〈sh, f, l〉
) def

=
〈

ρPSD(sh), f, l
〉

.

For notational convenience, remembering that ρPSD = ρTSD2
, we will write SFL2 to denote

the induced lattice ρPSD(SFL).

By Corollary 5.13, we have that ρPSD v (ρCon u ρPS); by the above definitions, it is

also straightforward to observe that ρPSD v (ρF u ρL); thus, ρPSD is more precise than the

reduced product (ρCon u ρPS u ρF u ρL). Informally, this means that the domain SFL2 is

able to represent all of our observable properties without precision losses.

The next theorem shows that ρPSD is a congruence with respect to the aunifyS, alubS

and aexistsS operators. This means that the domain SFL2 is able to propagate the infor-

mation on the observables as precisely as SFL, therefore providing a completeness result.

Theorem 6.61 Let d1, d2 ∈ SFL be such that ρPSD(d1) = ρPSD(d2). Then, for each se-
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quence of bindings bs ∈ Bind?, for each d ′ ∈ SFL and V ∈ ℘(VI ),

ρPSD

(

aunifyS(d1, bs)
)

= ρPSD

(

aunifyS(d2, bs)
)

,

ρPSD

(

alubS(d ′, d1)
)

= ρPSD

(

alubS(d ′, d2)
)

,

ρPSD

(

aexistsS(d1, V )
)

= ρPSD

(

aexistsS(d2, V )
)

.

Finally, by providing the minimality result, we show that the domain SFL2 is indeed

the generalized quotient of SFL with respect to the reduced product (ρCon u ρPS u ρF u ρL).

Theorem 6.62 For each i ∈ {1, 2}, let di = 〈shi, fi, li〉 ∈ SFL. Moreover, suppose that

ρPSD(d1) 6= ρPSD(d2). Then there exist a sequence of bindings bs ∈ Bind? and an observable

property ρ ∈ {ρCon , ρPS , ρF , ρL} such that

ρ
(

aunifyS(d1, bs)
)

6= ρ
(

aunifyS(d2, bs)
)

.

As far as the implementation is concerned, the results proved in Section 4.5 for the

domain PSD can also be applied to SFL2. In particular, in the definition of amguS all the

calls to the star-union operator can be safely replaced by calls to the 2-self-union operator.

The following result provides another optimization that can be applied when both

terms x and t are definitely linear, but none of them is definitely free (i.e., when we

compute sh ′′ by the second case stated in Definition 6.33; for notational convenience, we

denote this sharing-set by sh�).

Theorem 6.63 Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Let

shx
def
= rel

(

{x}, sh
)

, sh−
def
= rel

(

{x} ∪ vars(t), sh
)

,

sht
def
= rel

(

vars(t), sh
)

, shxt
def
= shx ∩ sht,

W
def
= vars(t) \ {x}, shW

def
= rel(W, sh).

Then it holds

ρPSD

(

cyclict
x(sh�)

)

=







ρPSD

(

sh− ∪ bin(shx, sht)
)

, if x /∈ vars(t);

ρPSD

(

sh− ∪ bin(sh2
x, shW )

)

, otherwise;

where sh� def
= sh− ∪ bin

(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

)

.

Therefore, even when terms x and t possibly share (i.e., when shxt 6= ∅), by using SFL2

we can avoid the expensive computation of at least one of the two inner binary unions in

the expression for sh�.

6.6.1 Proofs of the Results of Section 6.6

The next three Lemmas show that the precision of the abstract evaluation of the operators

specified in Definition 6.31 is not affected by ρPSD .
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Lemma 6.64 For each V ⊆ VI and sh ∈ SH it holds

vars
(

rel(V, sh)
)

= vars
(

rel
(

V, ρPSD(sh)
)

)

.

Proof. If V = ∅, the result is trivial. Thus, assume V 6= ∅.

The first inclusion (⊆) follows from the extensivity of ρPSD and the monotonicity of

the operators rel and vars. To prove the other inclusion, let S ∈ rel
(

V, ρPSD(sh)
)

. By

instantiating Definition 5.10 for k = 2, we obtain

∀x ∈ S : S =
⋃

{

T ∈ sh
∣

∣ {x} ⊆ T ⊆ S
}

.

In particular, for all x ∈ S ∩ V , it holds

S =
⋃

{

T ∈ sh
∣

∣ {x} ⊆ T ⊆ S
}

=
⋃

{

T ∈ rel(V, sh)
∣

∣ {x} ⊆ T ⊆ S
}

⊆
⋃

rel(V, sh)

= vars
(

rel(V, sh)
)

.

Since the choice of S was arbitrary, we obtain the desired inclusion

vars
(

rel(V, sh)
)

⊇ vars
(

rel
(

V, ρPSD(sh)
)

)

.

2

Lemma 6.65 For each V,W ⊆ VI and sh ∈ SH it holds

(

rel(V, sh) ∩ rel(W, sh) = ∅
)

⇐⇒
(

rel
(

V, ρPSD(sh)
)

∩ rel
(

W,ρPSD(sh)
)

= ∅
)

.

Proof. To prove the first implication (⇒), we reason by contraposition and suppose

rel
(

V, ρPSD(sh)
)

∩ rel
(

W,ρPSD(sh)
)

6= ∅.

Thus, there exists S ∈ ρPSD(sh) such that S ∩V 6= ∅ and S ∩W 6= ∅. Consider x ∈ S ∩V

and y ∈ S ∩W , so that we have {x, y} ⊆ S.

By instantiating Definition 5.10 for k = 2, we obtain

∀v ∈ S : S =
⋃

{

T ∈ sh
∣

∣ {v} ⊆ T ⊆ S
}

.

In particular, by taking v = x, there exists T ∈ sh such that {x, y} ⊆ T , so that

T ∈ rel(V, sh) ∩ rel(W, sh) 6= ∅.

The other implication (⇐) follows by the extensivity of ρPSD and the monotonicity of

rel. 2
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Lemma 6.66 For each i ∈ {1, 2}, let di = 〈shi, f, l〉 ∈ SFL. If ρPSD(sh1) = ρPSD(sh2)

then, for all s, t ∈ HTerms and y ∈ VI ,

indd1
(s, t) ⇐⇒ indd2

(s, t); (6.91)

freed1
(t) ⇐⇒ freed2

(t); (6.92)

groundd1
(t) ⇐⇒ groundd2

(t); (6.93)

occ lind1
(y, t) ⇐⇒ occ lind2

(y, t); (6.94)

lind1
(t) ⇐⇒ lind2

(t); (6.95)

share withd1
(t) = share withd2

(t). (6.96)

Proof. Consider equivalence (6.91) and let V = vars(s), W = vars(t). By Definition 6.31,

Lemma 6.65 and the hypothesis, we obtain

indd1
(s, t) ⇐⇒ rel(V, sh1) ∩ rel(W, sh1) 6= ∅

⇐⇒ rel
(

V, ρPSD(sh1)
)

∩ rel
(

W,ρPSD(sh1)
)

6= ∅

⇐⇒ rel
(

V, ρPSD(sh2)
)

∩ rel
(

W,ρPSD(sh2)
)

6= ∅

⇐⇒ rel(V, sh2) ∩ rel(W, sh2) 6= ∅

⇐⇒ indd2
(s, t).

The proof of (6.92) follows easily from Definition 6.31, since the predicate freedi
(t)

does not depend on the sharing component sh i of di.

Consider now (6.93). By Definition 6.31, Lemma 6.64 and the hypothesis, we obtain

groundd1
(t) ⇐⇒ vars(t) ⊆ VI \ vars(sh1)

⇐⇒ vars(t) ⊆ VI \ vars
(

rel(VI , sh1)
)

⇐⇒ vars(t) ⊆ VI \ vars
(

rel
(

VI , ρPSD(sh1)
)

)

⇐⇒ vars(t) ⊆ VI \ vars
(

rel
(

VI , ρPSD(sh2)
)

)

⇐⇒ vars(t) ⊆ VI \ vars
(

rel(VI , sh2)
)

⇐⇒ vars(t) ⊆ VI \ vars(sh2)

⇐⇒ groundd2
(t).

The proof of (6.94) follows from Definition 6.31, by applying the equivalences (6.91)

and (6.93). Similarly, the proof of (6.95) follows from Definition 6.31 and (6.94). Finally,

equation (6.96) follows from Definition 6.31 and Lemma 6.64. 2

Lemma 6.67 Let sh1, sh2 ∈ SH be such that sh1 ⊆ ρPSD(sh2). For each V,W ⊆ VI and

each i ∈ {1, 2}, let also

sh−,i
def
= rel(V ∪W, sh i), shx,i

def
= rel(V, sh i), sh t,i

def
= rel(W, sh i).
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Then, we have

bin(shx,1, sht,1) ⊆ ρPSD

(

sh−,2 ∪ bin(shx,2, sht,2)
)

; (6.97)

bin(shx,1, sh
?
t,1) ⊆ ρPSD

(

sh−,2 ∪ bin(shx,2, sh
?
t,2)

)

. (6.98)

Proof. Let S
def
= Sx ∪ St ∈ bin(shx,1, sht,1) where Sx ∈ shx,1 and St ∈ sht,1. Consider an

arbitrary variable y ∈ S.

Suppose first that y ∈ Sx and let w ∈ W ∩ St. Since Sx, St ∈ sh1, by hypothesis

Sx, St ∈ ρPSD(sh2). By Definition 5.10, S =
⋃

(A ∪B), where

A
def
=

{

S′ ∈ sh2

∣

∣ {y} ⊆ S′ ⊆ Sx

}

, B
def
=

{

S′ ∈ sh2

∣

∣ {w} ⊆ S′ ⊆ St

}

.

In particular, we can write A ∪B = sh ′
− ∪ sh ′

x ∪ sh ′
t, where

sh ′
−

def
= rel(V ∪W,A), sh ′

x
def
= rel(V,A), sh ′

t
def
= rel(W,A ∪B).

As V ∩Sx 6= ∅ and v ∈W ∩St, sh ′
x 6= ∅ and sh ′

t 6= ∅. Thus
⋃

(sh ′
x∪sh ′

t) =
⋃

bin(sh ′
x, sh

′
t),

so that

S =
⋃

(

sh ′
− ∪ bin(sh ′

x, sh
′
t)

)

.

By construction, we have {y} ⊆ S ′ ⊆ S for all S′ ∈ A. Thus, it also holds {y} ⊆ S ′ ⊆ S

for all S′ ∈ sh ′
− ∪ bin(sh ′

x, sh
′
t), so that

S =
⋃

{

S′ ∈ sh ′
− ∪ bin(sh ′

x, sh
′
t)

∣

∣ {y} ⊆ S′ ⊆ S
}

.

By a symmetric argument, the same conclusion can be obtained when y ∈ St. As the

choice of y was arbitrary, by Definition 5.10,

S ∈ ρPSD

(

sh ′
− ∪ bin(sh ′

x, sh
′
t)

)

. (6.99)

Note that sh ′
− ⊆ sh−,2, sh ′

x ⊆ shx,2 and sh ′
t ⊆ sht,2, so that it holds

sh ′
− ∪ bin(sh ′

x, sh
′
t) ⊆ sh−,2 ∪ bin(shx,2, sht,2).

Then, (6.97) follows from (6.99) by the monotonicity of ρPSD .

To prove (6.98), let S
def
= Sx ∪ Tt ∈ bin(shx,1, sh

?
t,1), where Sx ∈ shx,1 and Tt ∈ sh?

t,1.

Consider an arbitrary variable y ∈ S.

Suppose that y ∈ Sx. Since Sx ∈ sh1, by hypothesis Sx ∈ ρPSD(sh2), so that by

Definition 5.10 we have S =
⋃

(

A ∪ {Tt}
)

, where

A
def
=

{

S′ ∈ sh2

∣

∣ {y} ⊆ S′ ⊆ Sx

}

.
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In particular, we can write S =
⋃

(sh ′
− ∪ sh ′

x ∪ sh ′
t), where

sh ′
−

def
= rel(V ∪W,A), sh ′

x
def
= rel(V,A), sh ′

t
def
= rel(W,A) ∪ {Tt}.

As V ∩Sx 6= ∅, sh ′
x 6= ∅. As it also holds sh ′

t 6= ∅, we have
⋃

(

sh ′
x∪sh ′

t

)

=
⋃

bin
(

sh ′
x, sh

′
t

)

,

so that

S =
⋃

(

sh ′
− ∪ bin(sh ′

x, sh
′
t)

)

.

By construction, we have {y} ⊆ S ′ ⊆ S for all S′ ∈ A. Thus, it also holds {y} ⊆ S ′ ⊆ S

for all S′ ∈ sh ′
− ∪ bin(sh ′

x, sh
′
t), so that

S =
⋃

{

S′ ∈ sh ′
− ∪ bin(sh ′

x, sh
′
t)

∣

∣ {y} ⊆ S′ ⊆ S
}

. (6.100)

Suppose now that y ∈ Tt and let v ∈ V ∩ Sx. Since Sx ∈ sh1 ⊆ ρPSD(sh2) we have, by

Definition 5.10, S =
⋃

(

B ∪ {Tt}
)

, where

B
def
=

{

S′ ∈ sh2

∣

∣ {v} ⊆ S′ ⊆ Sx

}

.

In particular, we can write S =
⋃

(sh ′
− ∪ sh ′

x ∪ sh ′
t), where

sh ′
−

def
= ∅, sh ′

x
def
= rel(V,B) = B, sh ′

t
def
= {Tt}.

As v ∈ V ∩Sx, sh ′
x 6= ∅; as it also holds sh ′

t 6= ∅, we have
⋃

(sh ′
x∪sh ′

t) =
⋃

(

bin(sh ′
x, sh

′
t)

)

.

Since y ∈ Tt and sh ′
− = ∅, we have {y} ⊆ S′ ⊆ S for all S′ ∈ sh ′

− ∪ bin(sh ′
x, sh

′
t), so

that (6.100) holds even in this case.

As the choice of y was arbitrary, by (6.100) and Definition 5.10,

S ∈ ρPSD

(

sh ′
− ∪ bin(sh ′

x, sh
′
t)

)

. (6.101)

Clearly, sh ′
− ⊆ sh−,2 and sh ′

x ⊆ shx,2; also, by Lemma 4.15, Tt ∈ sh?
t,2, so that sh ′

t ⊆ sh?
t,2.

Thus, sh ′
−∪bin(sh ′

x, sh
′
t) ⊆ sh−,2 ∪bin(shx,2, sh

?
t,2). The thesis (6.98) follows from (6.101)

by the monotonicity of ρPSD . 2

Lemma 6.68 Let sh ∈ SH and V,W ⊆ VI . Let also

shx
def
= rel(V, sh), shxt

def
= shx ∩ sht,

sht
def
= rel(W, sh), sh� def

= bin
(

shx ∪ bin(shx, sh
?
xt), sht ∪ bin(sht, sh

?
xt)

)

.

Then, ρPSD(sh�) = ρPSD

(

bin(shx, sht)
)

.

Proof. Observe that, since shxt ⊆ shx and shxt ⊆ sht,

bin
(

bin(shx, sh
?
xt),bin(sht, sh

?
xt)

)

= bin
(

bin(shx, sht), sh
?
xt

)

.



186 CHAPTER 6. FREENESS AND LINEARITY

Therefore

sh� = bin(shx, sht) ∪ bin
(

bin(shx, sht), sh
?
xt

)

. (6.102)

Thus, the inclusion ρPSD(sh�) ⊇ ρPSD

(

bin(shx, sht)
)

follows by the monotonicity of ρPSD .

We now prove the other inclusion

ρPSD(sh�) ⊆ ρPSD

(

bin(shx, sht)
)

. (6.103)

Let S ∈ sh�. Then, by (6.102), S = Sx∪St∪Txt, where Sx ∈ shx, St ∈ sht, Txt ∈ sh?
xt∪∅.

Thus, for some k ≥ 0, Txt = T1 ∪ · · · ∪ Tk, where Ti ∈ shxt for each i = 1, . . . , k.

Consider an arbitrary variable y ∈ S. We will show that

S =
⋃

{

S′ ∈ bin(shx, sht)
∣

∣ {y} ⊆ S′ ⊆ S
}

. (6.104)

Suppose first that y ∈ Sx. Then, since

S = (Sx ∪ St) ∪ (Sx ∪ T1) ∪ · · · ∪ (Sx ∪ Tk),

it follows that (6.104) holds. Similarly, (6.104) holds also when y ∈ St, by taking

S = (Sx ∪ St) ∪ (St ∪ T1) ∪ · · · ∪ (St ∪ Tk).

On the other hand, suppose now y /∈ Sx ∪St, so that k > 0 and there exists j ∈ {1, . . . , k}

such that y ∈ Tj . In this case, since Tj ∈ shxt, (6.104) holds by taking

S = (Sx ∪ Tj) ∪ (Tj ∪ St) ∪ (T1 ∪ Tj) ∪ · · · ∪ (Tk ∪ Tj),

As the choice of y ∈ S is arbitrary, by (6.104) we have S ∈ ρPSD

(

bin(shx, sht)
)

. Thus

sh� ⊆ ρPSD

(

bin(shx, sht)
)

and (6.103) follows by the monotonicity and idempotence of

ρPSD . 2

Lemma 6.69 Let sh ∈ SH and (x 7→ t) ∈ Bind, where {x} ∪ vars(t) ⊆ VI . Consider

W = vars(t) \ {x} and let

shx
def
= rel

(

{x}, sh
)

, sht
def
= rel

(

vars(t), sh
)

, shW
def
= rel(W, sh).

Then

bin(shx, shW ) = cyclict
x

(

bin(shx, sht)
)

; (6.105)

bin(sh?
x, shW ) = cyclict

x

(

bin(sh?
x, sht)

)

; (6.106)

bin(sh?
x, sh

?
W ) = cyclict

x

(

bin(sh?
x, sh

?
t )

)

. (6.107)

Proof. We start by proving equations (6.105) and (6.106) at the same time. Therefore,

let sh ′
x ∈ {shx, sh

?
x}.
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To prove the first two inclusions (⊆), we assume S ∈ bin(sh ′
x, shW ) and show that

S ∈ cyclict
x

(

bin(sh ′
x, sht)

)

. Since shW ⊆ sht, we have S ∈ bin(sh ′
x, sht). Moreover, we

have S = Sx ∪ SW , where x ∈ Sx and W ∩ SW 6= ∅. Thus W ∩ S 6= ∅ and hence, by

Definition 6.31, S ∈ cyclict
x

(

bin(sh ′
x, sht)

)

.

To prove the opposite inclusions (⊇), let S ∈ cyclict
x

(

bin(sh ′
x, sht)

)

. Then, we have

S ∈ bin(sh ′
x, sht), so that S = Sx ∪ St, where Sx ∈ sh ′

x and St ∈ sht. Thus x ∈ S

and, by Definition 6.31, S ∈ rel(W, sh). If vars(t) ∩ St 6= {x}, then St ∈ shW and

S ∈ bin(sh ′
x, shW ), so that both inclusions hold. Otherwise, let vars(t) ∩ St = {x}, so

that St ∈ sh ′
x and St /∈ shW . Since we know S ∈ rel(W, sh), there exists w ∈ W ∩ Sx,

so that Sx ∈ shW . First, consider the case when sh ′
x = shx. Then St ∈ shx and we

have S ∈ bin(shx, shW ), proving the second inclusion for (6.105). Secondly, consider the

case when sh ′
x = sh?

x. Then we can write Sx = SW ∪ Sx, where SW ∈ shW . Thus

S = (Sx ∪ St) ∪ SW ∈ bin(sh?
x, shW ), proving the second inclusion for (6.106).

Finally, we prove equation (6.107).

To prove the first inclusion (⊆), we now assume S ∈ bin(sh?
x, sh

?
W ) and show that

S ∈ cyclict
x

(

bin(sh?
x, sh

?
t )

)

. As shW ⊆ sht, we have S ∈ bin(sh?
x, sh

?
t ). Moreover, we

have S = Sx ∪ SW , where x ∈ Sx and W ∩ SW 6= ∅. Thus W ∩ S 6= ∅ and hence, by

Definition 6.31, S ∈ cyclict
x

(

bin(sh?
x, sh

?
t )

)

.

To prove the opposite inclusion (⊇), let S ∈ cyclict
x

(

bin(sh?
x, sh

?
t )

)

. Then, we have

S ∈ bin(sh?
x, sh

?
t ), so that S = Sx ∪ St, where Sx ∈ sh?

x and St ∈ sh?
t . Thus x ∈ S and, by

Definition 6.31, S ∈ rel(W, sh). Suppose first that vars(t)∩St 6= {x}. Then St = SW ∪Sxt,

where SW ∈ sh?
W and Sxt ∈ sh?

x ∪ {∅}. Thus S = (Sx ∪ Sxt) ∪ SW ∈ bin(sh?
x, sh

?
W ).

Suppose next that vars(t)∩ St = {x}, so that St ∈ sh?
x W ∩ Sx 6= ∅. Then Sx = SW ∪ Sx,

where SW ∈ sh?
W . Thus S = (Sx ∪ St) ∪ SW ∈ bin(sh?

x, sh
?
W ), completing the proof. 2

Theorem 6.70 Let d1, d2 ∈ SFL and (x 7→ t) ∈ Bind, where ρPSD(d1) = ρPSD(d2). Then

ρPSD

(

amguS(d1, x 7→ t)
)

= ρPSD

(

amguS(d2, x 7→ t)
)

.

Proof. Let d1 = 〈sh1, f, l〉. Then, by definition of ρPSD on SFL, it holds d2 = 〈sh2, f, l〉,

where ρPSD(sh1) = ρPSD(sh2).

For each i ∈ {1, 2}, let 〈sh ′
i, f

′
i , l

′
i〉 = amguS

(

di, x 7→ t
)

. We will prove the following:

ρPSD(sh ′
1) = ρPSD(sh ′

2), (6.108)

f ′1 = f ′2, (6.109)

l′1 = l′2. (6.110)

Equation (6.108). We follow the same reasoning of Lemma 4.16, proving the result

sh1 ⊆ ρPSD(sh2) =⇒ sh ′
1 ⊆ ρPSD(sh ′

2). (6.111)
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Then, by using (4.8), we obtain

ρPSD(sh1) ⊆ ρPSD(sh2) =⇒ ρPSD(sh ′
1) ⊆ ρPSD(sh ′

2),

from which the thesis follows by symmetry.

Let W = vars(t) \ {x} and, for each i ∈ {1, 2},

sh−,i = rel
(

{x} ∪ vars(t), shi

)

, shW,i = rel(W, shi),

shx,i = rel
(

{x}, shi

)

, shxt,i = shx,i ∩ sht,i,

sht,i = rel
(

vars(t), shi

)

.

To prove (6.111), assume that sh1 ⊆ ρPSD(sh2). By Definitions 6.33 and 6.31, for each

i = 1, 2 we have

sh ′
i = cyclict

x(sh−,i ∪ sh ′′
i ) = sh−,i ∪ cyclict

x(sh ′′
i ).

We first show that sh−,1 ⊆ ρPSD

(

sh−,2 ∪ cyclict
x(sh ′′

2)
)

. By the definition of sh−,1, the

assumption and the monotonicity of rel, we have

sh−,1 ⊆ rel
(

{x} ∪ vars(t), ρPSD(sh2)
)

.

Thus, by Lemma 4.14, sh−,1 ⊆ ρPSD(sh−,2), from which the required result follows by

monotonicity of ρPSD .

We next show that cyclict
x(sh ′′

1) ⊆ ρPSD

(

sh−,2∪ cyclict
x(sh ′′

2)
)

. By applying cases (6.92)

and (6.95) of Lemma 6.66, it can be seen that sh ′′
1 and sh ′′

2 are each computed by selecting

the same alternative branch of Definition 6.33. We have five cases.

1. In the first case, for each i = 1, 2, we have sh ′′
i = bin(shx,i, sht,i). By case (6.105) of

Lemma 6.69, cyclict
x(sh ′′

i ) = bin(shx,i, shW,i), for each i = 1, 2. Thus, by case (6.97)

of Lemma 6.67, where we take V = {x},

bin(shx,1, shW,1) ⊆ ρPSD

(

sh−,2 ∪ bin(shx,2, shW,2)
)

,

from which the thesis follows.

2. In the second case we have, for each i = 1, 2,

sh ′′
i = bin

(

shx,i ∪ bin(shx,i, sh
?
xt,i), sht,i ∪ bin(sht,i, sh

?
xt,i)

)

.

There are two cases.

First suppose that x /∈ vars(t), so that cyclict
x(sh ′′

i ) = sh ′′
i . Then, by Lemma 6.68,

for each i = 1, 2, we have sh ′′
i ⊆ ρPSD

(

bin(shx,i, sht,i)
)

. Therefore, by case (6.97) of

Lemma 6.67 and the monotonicity of ρPSD , we obtain

sh ′′
1 ⊆ ρPSD

(

sh−,2 ∪ bin(shx,2, sht,2)
)

,
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so that the thesis holds.

Secondly, suppose that x ∈ vars(t). Thus, for each i = 1, 2, we have shxt,i = shx,i,

so that sh ′′
i = bin(sh?

x,i, sht,i). This case is therefore equivalent to the third case,

proven below.

3. In the third case, for each i = 1, 2, we have sh ′′
i = bin(sh?

x,i, sht,i). By case (6.106) of

Lemma 6.69, cyclict
x(sh ′′

i ) = bin(sh?
x,i, shW,i). Thus, by case (6.98) of Lemma 6.67,

where we take V = {x}, we obtain

sh ′′
1 ⊆ ρPSD

(

sh−,2 ∪ bin(sh?
x,2, shW,2)

)

,

so that the thesis holds.

4. In the fourth case, for each i = 1, 2, we have sh ′′
i = bin(shx,i, sh

?
t,i). Moreover, as

lind (t) holds and lind(x) does not hold, we can assume that x /∈ vars(t), so that

cyclict
x(sh ′′

i ) = sh ′′
i . Thus, by case (6.98) of Lemma 6.67, where we exchange the

usual roles of V and W , we obtain

sh ′′
1 ⊆ ρPSD

(

sh−,2 ∪ bin(shx,2, sh
?
t,2)

)

,

so that the thesis holds.

5. In the fifth case we have, for i = 1, 2, sh ′′
i = bin(sh?

x,i, sh
?
t,i). By case (6.107) of

Lemma 6.69, cyclict
x(sh ′′

i ) = bin(sh?
x,i, sh

?
W,i). The thesis follows from Lemma 4.16,

by replacing the term t by an arbitrary term t′ ∈ HTerms such that vars(t′) = W .

Equation (6.109). Consider the computation of f ′i as specified in Definition 6.33. By

applying case (6.92) of Lemma 6.66, it can be seen that f ′1 and f ′2 are computed by

selecting the same alternative branch. The thesis f ′1 = f ′2 thus follows from case (6.96) of

Lemma 6.66.

Equation (6.110). Consider the computation of l′i as specified in Definition 6.33: for

each i ∈ {1, 2} we have

l′i =
(

VI \ vars(sh ′
i)

)

∪ f ′i ∪ l
′′
i .

Let r ∈ HTerms, where vars(r) = VI . For each i ∈ {1, 2}, vars(sh ′
i) = share withd ′

i
(r);

also, by equation (6.108), we know that ρPSD(sh ′
1) = ρPSD(sh ′

2); thus, by case (6.96) of

Lemma 6.66, we obtain vars(sh ′
1) = vars(sh ′

2). By equation (6.109), we also know that

f ′1 = f ′2. Therefore, to complete the proof, we only need to prove that l′′1 = l′′2 . Consider

the computation of l′′i as specified in Definition 6.33. By case (6.95) of Lemma 6.66, it can

be seen that, in the computations of l′′1 and l′′2 , the same alternative branch is selected.

Hence, the thesis is obtained by applying case (6.96) of Lemma 6.66. 2

Theorem 6.71 Let d1, d2 ∈ SFL and bs ∈ Bind?, where ρPSD(d1) = ρPSD(d2). Then,

ρPSD

(

aunifyS(d1, bs)
)

= ρPSD

(

aunifyS(d2, bs)
)

.
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Proof. The proof is by induction on the length of the sequence of bindings bs. The

base case, when |bs| = 0 and thus bs = ε, is obvious from the definition of aunifyS. For

the inductive case, when |bs| = m > 0, let bs = (x 7→ t) . bs ′. By the hypothesis and

Theorem 6.70, we have

ρPSD

(

amguS(d1, x 7→ t)
)

= ρPSD

(

amguS(d2, x 7→ t)
)

. (6.112)

Moreover, for each i ∈ {1, 2}, by definition of aunifyS we have

aunifyS(di, bs) = aunifyS

(

amguS(di, x 7→ t), bs ′
)

.

Thus, by (6.112), we can apply the inductive hypothesis and conclude the proof, since

|bs ′| = m− 1 < m. 2

Theorem 6.72 Let d1, d2 ∈ SH and V ⊆ VI , where ρPSD(d1) = ρPSD(d2). Then,

ρPSD

(

aexistsS(d1, V )
)

= ρPSD

(

aexistsS(d2, V )
)

.

Proof. Let di = 〈shi, fi, li〉, for each i = 1, 2. By applying Definitions 6.38 and 6.60, for

each i = 1, 2, we have

ρPSD

(

aexistsS(di, V )
)

= ρPSD

(

〈

aexists(sh i), fi ∪ V, li ∪ V
〉

)

=
〈

ρPSD

(

aexists(sh i)
)

, fi ∪ V, li ∪ V
〉

.

By the hypothesis and Definition 6.60, we also have ρPSD(sh1) = ρPSD(sh2), f1 = f2 and

l1 = l2. Thus, to complete the proof, we only need to show that

ρPSD

(

aexists(sh1)
)

= ρPSD

(

aexists(sh2)
)

.

This follows from Lemma 5.26, taking k = 2. 2

Proof of Theorem 6.61 on page 180. The congruence properties for aunifyS and

aexistsS follow from Theorems 6.71 and 6.72, respectively. The congruence property for

alubS holds, as usual, because ρPSD is an upper closure operator. 2

Proof of Theorem 6.62 on page 181. Suppose ρPSD(d1) 6= ρPSD(d2). By Definition 6.60,

we have three cases:

1. Suppose ρPSD(sh1) 6= ρPSD(sh2). The proof for this case is the same as that given for

Theorem 5.20, where we take k = 2 and we regard σ, the substitution constructed in

that proof, as the sequence bs of its bindings. Since σ binds all of its domain variables

to terms that are ground and finite, then no binary union and/or star-union needs to

be computed. As a consequence, the behavior of amguS on the sharing component

is the same as the behavior of ‘amgu’.
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2. Suppose now f1 6= f2. In this case, by taking ρ = ρF and bs = ε, we obtain

ρF

(

aunifyS(d1, ε)
)

= ρF (d1)

= 〈SG , f1,∅〉

6= 〈SG , f2,∅〉

= ρF (d2)

= ρF

(

aunifyS(d2, ε)
)

.

3. Finally, suppose l1 6= l2. Similarly to the previous case, by taking ρ = ρL and bs = ε,

we obtain

ρL

(

aunifyS(d1, ε)
)

= ρL(d1)

= 〈SG ,∅, l1〉

6= 〈SG ,∅, l2〉

= ρL(d2)

= ρL

(

aunifyS(d2, ε)
)

.

2

Proof of Theorem 6.63 on page 181. Suppose first that x /∈ vars(t). Then it holds

cyclict
x(sh− ∪ sh�) = sh− ∪ sh�,

so that the thesis is a corollary of Lemma 6.68, where V = {x} and W = vars(t).

Suppose now x ∈ vars(t). Then we have shx = shxt, so that sh� = bin(sh?
x, sht). In

this case the thesis is a corollary of Theorem 4.12. 2

6.7 Summary

In this chapter we have introduced the abstract domain SFL, combining the set-sharing

domain SH with freeness and linearity information. While the carrier of SFL can be

considered standard, we have provided the specification of a new abstract unification

operator, showing examples where this achieves more precision than the operators used

in the classical proposals. However, from both the theoretical and the practical points of

view, the main contributions are the following:

• we have defined a precise abstraction function, mapping arbitrary substitutions in

rational solved form into their most precise approximation on SFL;

• using this abstraction function, we have provided the mandatory proof of correct-

ness for the new abstract unification operator, for both finite-tree and rational-tree

languages;
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• we have shown that, in the definition of SFL, we can replace the set-sharing domain

SH by its non-redundant version PSD . As a consequence, it is possible to implement

an algorithm for abstract unification running in polynomial time and still obtain the

same precision on all the considered observables, that is groundness, independence,

freeness and linearity.



Chapter 7
Experimental Evaluation

In this chapter we describe the experimental work we have conducted in order to validate,

from a practical point of view, the theoretical results achieved in the previous chapters.

After a brief description of our implementation of the SFL domain and of the correspond-

ing non-redundant version SFL2, we present the results obtained by comparing the two

domains. These confirm that the efficiency of the analysis is greatly improved, while the

precision, as predicted by the theory, is not affected at all.

7.1 The China Analyzer

The ideas presented in this thesis have been experimentally validated in the context of the

development of the China analyzer [Bag97a]. China is a data-flow analyzer for CLP(HN )

languages (i.e., Prolog, CLP(R), clp(FD) and so forth), HN being an extended Herbrand

system where the values of a numeric domain N can occur as leaves of the terms. China,

which is written in C++, performs bottom-up analysis deriving information on both call-

patterns and success-patterns by means of program transformations and optimized fixpoint

computation techniques.

Thanks to a careful modular design, the China analyzer is a generic data-flow analy-

sis tool for constraint logic programs: besides groundness, aliasing, freeness and linearity,

there are analyses capturing compoundness, term sizes, term finiteness, polymorphic types,

numerical bounds and relations. In most cases, several abstract domains have been imple-

mented for the analysis of the same combination of observables, therefore allowing for an

homogeneous comparison of the different proposals, on both precision and performance.

This is an important point, since a fair comparison between analyses performed on dif-

ferent data-flow systems is difficult, if not impossible, to achieve. First of all, there is no

standard way of measuring the precision of the analysis. Moreover, in many cases the

prototype analyzers are based on compromising assumptions on the programs being anal-

ysed, in particular when dealing with the built-ins of the language. Sometimes the logic

program under investigation has to undergo a source-to-source translation phase before

the real analysis: it is often the case that these pre-processing phases do not preserve the

193
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semantics of the original program. Things are even worse for performance comparisons,

since in this case too many factors (hardware, operating system, compiler, . . . ) have a

direct influence on the result of the comparison.

The China analyzer keeps evolving, both by the addition of new features to the

domain-independent framework and to the currently implemented abstract domains, as

well as by the implementation and integration of new abstract domains. At the time

of writing, the complete analyzer consists of more than 2.5 MB of source code (100 K

lines): of these, 27% is pertinent to the domain-independent framework, while the mod-

ules strictly related to the implementation of the sharing analysis domains amount to

another 13%, including all the variants that will be presented in Chapters 8 and 9.

A major point of the experimental evaluation is given by the test-suite, which is prob-

ably the largest one ever reported in the literature on data-flow analysis of (constraint)

logic programs. The suite comprises all the programs we have access to, i.e., everything we

could find by systematically dredging the Internet: more than 370 programs which, once

blank lines and comments have been stripped out, amounts to more than 23 MB of code

(700 K lines), distributed over 276 K clauses. Besides classical benchmarks, several real

programs of respectable size are present: using code size as a measure, 38 programs are

above 100 KB, with four of them above 1 MB; using the number of clauses, 45 programs

are above 1 K clauses, with three of them above 10 K. The suite also includes a few syn-

thetic benchmarks, which are small, artificial programs explicitly constructed to stress the

capabilities of the analyzer and of its abstract domains with respect to precision and/or

efficiency. On average, a benchmark is made up of 63 KB of code, distributed over 742

clauses. However, due to the huge differences among the programs in the suite, averages

are not so meaningful. More insight can be obtained by computing median values: thus,

one half of the programs in our benchmark suite have a size greater than 6 KB (resp.,

have more than 74 clauses).

7.2 The Implementation of Set-Sharing

At the implementation level, each variable is identified with a non-negative integer. Thus

variables inherit from the integers the usual total ordering relation. Finite sets of variables

are represented by dynamically resizing bit-vectors. Sharing sets, that is sets of sets of

variables, are implemented by means of the set associative container provided by standard

C++. The total ordering relation employed for this purpose, < ⊆ ℘f(N0) × ℘f(N0), is an

extension of the ⊂ partial ordering. In other words, for each S1, S2 ∈ ℘f(N0), if S1 ⊂ S2

then S1 < S2. This ordering is exploited in several places in the implementation and

proved to be a very effective device.

It is important to remark that the implementation of SH we use for comparison against

PSD is a rather refined one. In particular, care was taken in the implementation of star-

union. The algorithm we used is given in Figure 7.1. The optimization implemented by

lines 2, 4, and 5 avoids the computation of redundant unions, and can give rise to efficiency

gains of an order of magnitude and more. Suppose sh = {S1, . . . , Sn}, i ∈ {1, . . . , n},
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Require: the sharing set sh
def
= {S1, . . . , Sn} such that S1 < · · · < Sn.

Ensure: on exit shstar = sh?.

1: shstar := ∅
2: shdone := ∅
3: for i := 1 to n do
4: if Si 6=

⋃

{T ∈ shdone | T ⊂ Si } then
5: shdone := shdone ∪ {Si}
6: shstar := shstar ∪ {Si} ∪ {Si ∪ U | U ∈ shstar }
7: end if
8: end for

Figure 7.1: An optimized algorithm for computing star-union.

J ⊂ {1, . . . , n} with i /∈ J , and Si =
⋃

j∈J Sj . Then sh? =
(

sh \ {Si}
)?

. Observe how

the total ordering used for representing sharing sets simplifies the task of checking the

applicability condition for this optimization (line 4 of the algorithm in Figure 7.1). In

fact, in order to have Si =
⋃

j∈J Sj and i /∈ J we must have ∀j ∈ J : Sj ⊂ Si and thus

∀j ∈ J : Sj < Si.

Theorem 7.1 On exit from the algorithm of Figure 7.1, shstar = sh?.

The proof of the above result relies on the following two lemmas.

Lemma 7.2 Let sh = sh1 ∪ {S}. Then sh? = sh?
1 ∪ {S} ∪ {S ∪ T | T ∈ sh?

1 }.

Proof. We start by proving that sh? ⊇ sh?
1 ∪ {S} ∪ {S ∪ T | T ∈ sh?

1 }. By monotonicity

of (·)? we have sh?
1 ⊆ sh?, whereas, by extensivity of (·)?, we have {S} ⊆ sh?. Let T ∈ sh?

1.

Then, by definition of (·)?, there exist S1, . . . , Sn ∈ sh1 such that T = S1 ∪ · · · ∪ Sn. As a

consequence, we obtain S ∪ T = S ∪ S1 ∪ · · · ∪ Sn ∈ sh?.

We now prove that sh? ⊆ sh?
1 ∪ {S} ∪ {S ∪ T | T ∈ sh?

1 }. Let S′ ∈ sh?. Then there

exist S1, . . . , Sn ∈ sh such that S′ = S1 ∪ · · · ∪ Sn.

Suppose first n = 1 and S1 = S. Then S′ = S.

Suppose now n > 1 and there exists i ∈ {1, . . . , n} such that Si = S. Then, if we let

T =
n
⋃

j=1

j 6=i

Sj ,

we have S′ = S ∪ T and T ∈ sh?
1, thus S′ ∈ {S ∪ T | T ∈ sh?

1 }.

Finally, if @i ∈ {1, . . . , n} . Si = S, then S′ ∈ sh?
1. 2

Lemma 7.3 Let shk = {S1, . . . , Sk} for k = 1, . . . , n. Let also shstar,k and shdone,k denote

the values of the variables shstar and shdone, respectively, just after the k-th evaluation of

the if statement (i.e., after line 7) in the algorithm of Figure 7.1. Then sh?
k ⊆ shstar,k

and shdone,k ⊆ shk.
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Proof. We reason by induction on k. For the case where k = 1 we have

shk = {S1} = sh?
k = shstar,k = shdone,k.

Next assume 1 < k ≤ n. Then shk = shk−1 ∪ {Sk}.

Suppose Sk 6=
⋃

{Sj ∈ shk−1 | Sj ⊂ Sk }. By the inductive hypothesis, since

shdone,k−1 ⊆ shk−1, this implies that the if condition in line 4 evaluates to true and lines 5

and 6 are executed. Clearly, after the execution of line 5, shdone,k ⊆ shk−1 ∪ {Sk} = shk.

Moreover, after execution of line 6, shstar,k = shstar,k−1 ∪{Sk}∪{Sk ∪T | T ∈ shstar,k−1 }.

By the inductive hypothesis, this implies

shstar,k ⊇ sh?
k−1 ∪ {Sk} ∪ {Sk ∪ T | T ∈ sh?

k−1 }.

Thus, by Lemma 7.2, sh?
k ⊆ shstar,k.

Suppose now Sk =
⋃

{Sj ∈ shk−1 | Sj ⊂ Sk }. Then, we have shdone,k = shdone,k−1.

By the inductive hypothesis, shdone,k−1 ⊆ shk−1. Hence shdone,k ⊆ shk. We now show

that sh?
k = sh?

k−1. Clearly, by monotonicity of (·)? we have sh?
k ⊇ sh?

k−1. Assume now

T ∈ sh?
k, i.e., T = T1 ∪ · · · ∪ Tm where Ti ∈ shk for i = 1, . . . , m. If for no j ∈ {1, . . . ,m}

we have Tj = Sk, then T ∈ sh?
k−1. On the other hand, if there exists j ∈ {1, . . . ,m} such

that Tj = Sk, then

T = T1 ∪ · · · ∪ Tj−1 ∪ Tj ∪ Tj+1 ∪ · · · ∪ Tm

= T1 ∪ · · · ∪ Tj−1 ∪
⋃

{Sj ∈ shk−1 | Sj ⊂ Sk } ∪ Tj+1 ∪ · · · ∪ Tm

∈ sh?
k−1.

The inductive hypothesis implies that shstar,k−1 ⊇ sh?
k−1 = sh?

k. This concludes the proof,

as the algorithm never removes elements from shstar, so that shstar,k ⊇ shstar,k−1. 2

Proof of Theorem 7.1 on the page before. An invariant of the algorithm is that if

S ∈ shstar then S =
⋃

i∈I Si for some I ⊆ {1, . . . , n} such that I 6= ∅. The invariant is

established in line 1 and preserved by any step. In particular, line 6, which is the only

one to change shstar, maintains the invariant. Thus, at the end of the algorithm, if S is

an element of shstar then S ∈ sh?, hence shstar ⊆ sh?. The reverse inclusion is trivially

satisfied for sh = ∅, while it is proven by Lemma 7.3 otherwise. 2

As far as the implementation of PSD is concerned, the code for all the abstract opera-

tions can be reused, once star-union has been replaced by 2-self-union. This does not mean

that it is not possible to produce sharing sets with less redundant sharing groups. For

instance, consider the amgu operation applied to a sharing set sh and a binding x 7→ t.1

1We consider the operator amgu: SH ×Bind → SH for presentation purposes only: the same reasoning
applies, as is, to the evaluation of the set-sharing component of amgu

S
: SFL × Bind → SFL, when the

2-self-union operations have to be computed.
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Then, Theorem 4.12 tells us that amgu(sh, x 7→ t) is equivalent to

sh− ∪ bin(sh2
x, sh

2
t ), (7.1)

where sh−, shx and sht are defined as usual. We will show that expression (7.1), even

though, in general, produces less redundant sharing groups than amgu(sh, x 7→ t), it is

not optimal in this respect. Let us define

shx−
def
= shx \ sht, sht−

def
= sht \ shx, shxt

def
= shx ∩ sht.

Thus shx = shx− ∪ shxt and sht = sht− ∪ shxt. For sh1, sh2 ∈ SH , we have

(sh1 ∪ sh2)
2 = sh2

1 ∪ sh2
2 ∪ bin(sh1, sh2).

So, the expansion of expression (7.1) looks like

· · · ∪ bin
(

sh2
x, sh

2
t

)

= · · · ∪ bin
(

(shx− ∪ shxt)
2, (sht− ∪ shxt)

2
)

= · · · ∪ bin(· · · ∪ sh2
xt, · · · ∪ sh2

xt)

= · · · ∪ · · · ∪ sh4
xt.

However, it is straightforward to show that, for each n ≥ 2, ρPSD(shn) = ρPSD(sh2) and

shn ⊇ sh2. It is thus clear that expression (7.1), by computing sh4
xt, may introduce (and,

in fact, often introduces) redundant sharing groups. It can be proved that a better way

to compute a sharing set in the same equivalence class of amgu(sh, x 7→ t) is given by the

following expression:

sh− ∪
(

bin(shx, sht−) ∪ bin(shx−, shxt)
)2

∪ sh2
xt. (7.2)

Theoretically speaking, expression (7.2) is undoubtedly better than expression (7.1). How-

ever, we were unable to obtain a competitive implementation of the amgu operation based

on expression (7.2): the implementation relying on expression (7.1) followed by the elimi-

nation of redundant sharing groups was more efficient. Thus, the question whether even

more efficient abstract operations can be obtained remains open.

For the choice of the elements representing the equivalence classes based on ρPSD , we

have adopted the dynamic approach discussed in Section 4.5. In particular, reduction is

performed after each binary union operation, at the end of each clause evaluation, and

during the equivalence check.

The algorithm for removing redundant sharing groups is fairly easy. The only impor-

tant observation is that redundant sharing groups can be removed in any order. In fact,

suppose two sharing groups S, T ∈ sh are redundant for sh and let sh1
def
= sh \ {S} and

sh2
def
= sh \ {T}. Then ρPSD(sh1) = ρPSD(sh2) = ρPSD(sh) and, by applying Theorem 4.9,

we obtain ρPSD(sh1 ∩ sh2) = ρPSD

(

sh \ {S, T}
)

= ρPSD(sh).

It turns out that reduction (i.e., the elimination of redundant sharing groups) and
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equivalence check fit together very well. Thus we present an algorithm for achieving both

at the same time in Figure 7.2.

Require: the sharing sets shnew
def
= {S1, . . . , Sn} and shold

def
= {T1, . . . , Tm} obtained at

the current and previous iteration, respectively. The set shold is guaranteed not to
contain redundant sharing groups. Moreover, S1 < · · · < Sn and T1 < · · · < Tm.

Ensure: on exit the sharing set sh is such that ρPSD(sh) = ρPSD(shnew) and is guaranteed
not to contain redundant sharing groups. Moreover, the Boolean variable changed is
set to true if and only if sh 6= shold and hence ρPSD(shnew) 6= ρPSD(shold).

1: sh := shnew

2: changed := false
3: i := 1
4: j := 1
5: while ¬changed and i ≤ n and j ≤ m do
6: if Si = Tj then
7: i := i+ 1
8: j := j + 1
9: else if redundant(Si, sh) then

10: sh := sh \ {Si}
11: i := i+ 1
12: else
13: changed := true
14: end if
15: end while
16: while i ≤ n do
17: if redundant(Si, sh) then
18: sh := sh \ {Si}
19: else
20: changed := true
21: end if
22: i := i+ 1
23: end while

Figure 7.2: An optimized algorithm for applying redundancy elimination and checking
whether a fixpoint has been reached at the same time.

The function redundant, when given a sharing set sh ∈ SH and a sharing group Si ∈ sh,

returns the Boolean value true if and only if Si is redundant in sh. Its implementation

is straightforward and matches the condition given in Definition 4.2. Notice that the

implementation of redundant benefits from the total ordering used to represent sharing

sets as ordered sequences of sharing groups.

If we assume (as we do in our implementation) that the result of the abstract evaluation

of each clause is reduced, then the algorithm of Figure 7.2 allows part of the reduction

work done at iteration k to be reused at iteration k+1, both for simplifying the reduction

and for checking equivalence (i.e., the test required to detect whether a local fixpoint has

been reached). Here, once again, the total ordering among sharing groups proves very

useful. The algorithm proceeds as follows: the sharing groups in the sharing sets obtained
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at iterations k and k+ 1 (shold and shnew, respectively) are considered in ascending order

(recall that Si ⊂ Sj implies Si < Sj and thus, by contraposition, Si ≥ Sj implies Si 6⊂ Sj).

Since a sharing group can be “made redundant” only by its proper subsets, and since

shold is reduced, as long as no difference is observed between the sharing groups in shold

and shnew, we know that the sharing groups seen so far are not redundant. Notice that,

as a consequence of the analysis process, we have shold ⊆ shnew, since shnew is always

obtained as shold ∪ sh ′ for some sh ′ ∈ SH (set theoretic union is the lub on SH ). When

two different sharing groups are observed there are two possibilities: either the sharing

group Si ∈ shnew is redundant, in which case it is eliminated and the algorithm proceeds

with the first loop, or Si is not redundant, in which case we know that the fixpoint has

not been reached (changed := true) and the algorithm continues with simple reduction

at lines 16–23. The algorithm for reduction only can be obtained by just considering lines

1, 3, 16–18, and 21–23.

7.3 The Results of the Comparison

We describe here the results obtained when comparing the abstract domain SFL with

respect to its non-redundant version SFL2. For these tests we have switched off all the

other domains currently supported by China. The reader interested in the comparison

between plain SH and PSD is referred to [BHZ97], where all the possible combinations

(with freeness only, with linearity only, with both, and with none of them) are taken into

account. As noted by several authors, from a practical point of view, sharing analysis

without freeness or linearity does not make sense. Both these properties allow, in a

significant proportion of cases, costly operations (such as star-union or 2-self-union) to be

dispensed with, thereby improving both the precision and the efficiency of the analysis.

Of course, in absence of freeness and/or linearity the analysis based on SH has to perform

more star-unions. Since star-union is much more computationally complex than 2-self-

union, the lack of freeness and/or linearity is more penalizing for SH than it is for PSD .

The comparison was performed on 372 programs for goal independent analysis and

256 programs for goal dependent analysis. This difference in the number of benchmarks

considered comes from the fact that many programs either do not have a set of entry goals

or use constructs such as call(G) where G is a term whose principal functor is not known.

In these cases, the analyzer recognizes that goal dependent analysis is pointless, since no

call-patterns can be excluded. Given the high number of benchmarks, the experimental

results can only be summarized here. More information (including a description of the

constantly growing benchmark suite and detailed results for each benchmark) can be found

at the URI http://www.cs.unipr.it/China.

For each benchmark, the precision of each analysis is measured by counting the number

of independent pairs as well as the numbers of definitely ground, free and linear variables

detected by the corresponding abstract domain. As predicted by our theoretical results,

the two considered domains achieve the same precision on all of the observed quantities,

so that no precision comparison has to be reported.
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The efficiency of each analysis is evaluated by recording, for each benchmark, the

analysis fixpoint computation time: in particular, we do not consider the time needed to

read and parse the analysed program and the time to write the final results of the analysis.

The China analyzer is endowed with a domain-independent mechanism imposing a time

limit on the analysis of a program: for all the experiments presented in this thesis, the

limit has been fixed to 1800 seconds. When this limit is reached China forces a “don’t

know” result for those call-patterns and success-patterns whose analysis is still incomplete.

All the experiments have been conducted on a GNU/Linux PC system equipped with an

AMD Athlon clocked at 700 MHz and 128 MB of RAM; the timings are in seconds of user

time, as provided by the getrusage system call.

In the first summary in Table 7.1 we provide the sums, averages, standard deviations

and median values computed over the whole benchmark suite, (denoted Sum, Avg, StDev

and Median, respectively). The computation of these values is performed twice. In the

first half of the summary, we consider all programs (note that each timed-out analysis is

given the value of the time-out threshold, i.e. 1800 seconds). In the second half, we only

consider those programs whose analysis has terminated on both domains: as a matter of

fact, all analyses terminating on SFL also terminates on SFL2.

The values reported are self-explanatory. For instance, the average time for the goal

dependent analysis using SFL2 is less than half of the average time computed when using

SFL; moreover, if we disregard the time-outs, this ratio falls further, going below one tenth.

Median values register a small, almost negligible increase: this is due to the overhead

of the process of removing redundant elements. This tiny efficiency loss, that basically

affects the smaller benchmarks only, is more than rewarded by the many consistent time

improvements registered on the larger benchmarks.

In the second and third summaries in Table 7.1 we provide more detailed views, where

the timings are summarized by partitioning the suite into equivalence classes and reporting

the cardinality of each class using percentages. In the second summary, we consider the

distribution of the absolute time differences, that is we measure the absolute slow-down

or speed-up obtained by replacing SFL with SFL2. Note that the equivalence class called

‘same time’ actually comprises the benchmarks having a time difference below a given

threshold, which is fixed at 0.1 seconds: besides the usual considerations on the potential

inaccuracy of small time measures, the ratio behind this choice is that, probably, the user

will not notice such a difference. The equivalence class called ‘both timed out’, as the

name suggests, contains those benchmarks whose analysis, for both domains, could not be

completed in the fixed time limit. In the third summary, for each analysis we show the

distribution of the total fixpoint computation times. Here the class ‘timed out’ provides

evidence for the many programs whose analyses timed out when using the SFL domain,

while terminating in the given time limit when using SFL2.

By combining the different views of the same experimental data, more insight can be

gained. For instance, in the second summary of Table 7.1, the value 10.2 that can be

found at the intersection of the row labeled ‘improvement > 1’ with the column labeled
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Programs Measure Goal Independent Goal Dependent

SFL SFL2 SFL SFL2

Sum 72071.40 19107.90 39175.90 19254.70

All Avg 193.74 51.37 153.03 75.21

Benchs StDev 584.59 261.97 508.80 348.12

Median 0.02 0.09 0.02 0.09

Sum 1871.37 234.68 4975.90 407.07

Terminated Avg 5.62 0.70 21.00 1.72

StDev 48.05 4.76 141.02 9.07

Median 0.02 0.09 0.02 0.09

Time difference class % benchmarks

Goal Ind. Goal Dep.

both timed out 1.6 3.5

degradation > 1 1.1 1.2

0.5 < degradation ≤ 1 0.5 0.4

0.2 < degradation ≤ 0.5 1.6 2.3

0.1 < degradation ≤ 0.2 4.3 5.5

same time 73.4 75.8

0.1 < improvement ≤ 0.2 0.3 —

0.2 < improvement ≤ 0.5 1.1 0.8

0.5 < improvement ≤ 1 0.5 0.4

improvement > 1 15.6 10.2

Total time class Goal Ind. Goal Dep.

SFL SFL2 SFL SFL2

timed out 10.5 1.6 7.4 3.5

t > 10 3.8 9.4 5.1 7.4

5 < t ≤ 10 0.8 1.3 1.2 1.2

1 < t ≤ 5 4.3 5.6 2.7 3.5

0.5 < t ≤ 1 1.1 3.5 1.2 2.0

0.2 < t ≤ 0.5 2.7 5.6 4.3 9.8

t ≤ 0.2 76.9 72.8 78.1 72.7

Table 7.1: SFL vs SFL2: efficiency comparison.
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Goal Independent Goal Dependent

Program SFL SFL2 Program SFL SFL2

chat80 180.89 13.36 LeanTaP 511.10 5.43

diagnoser 14.36 3.46 action 88.99 12.97

linger old 28.69 9.44 chasen-all 124.32 1.21

mfoil 200.40 2.38 circan 305.50 35.76

pappiall 29.54 2.02 ezan 453.76 24.42

protein 106.78 7.89 horgen 804.64 99.73

semigroup 223.66 81.49 puzzle 21.43 5.55

sprftp 781.36 3.77 reducer 663.19 12.77

synth 34.19 2.33 simple analyzer 51.68 4.33

trs 140.61 2.96 strips 114.23 11.77

synth 1738.94 60.21

Table 7.2: SFL vs SFL2: time improvements greater than 10 secs.

‘Goal Dep.’ is to be read as follows: “for 10.2% of the benchmarks evaluated in the goal

dependent analysis (i.e., for 26 programs), the improvement in the fixpoint computation

time when replacing SFL by SFL2 was greater than 1 second.” Looking now at the third

summary, we can see (by summing up percentages) that for the goal dependent analysis

using the domain SFL only 16.4% of the programs required more than one second to be

analysed. Thus, we can conclude that about 2/3 of these programs do benefit of significant

efficiency improvements.

Note that our choice of considering absolute time differences is deliberate, since we

believe that these provide a better picture than relative time differences. For instance,

consider a program whose analysis takes 0.1 seconds and suppose that, by using a different

abstract domain, we obtain the same precision results in 0.05 seconds (resp., 0.2 seconds).

By using relative time differences, we will conclude that the new domain halves (resp.,

doubles) the fixpoint computation time, which could be regarded as a big win (resp., loss).

However, as already noted above, the real point in such a case is that the user will not

notice the difference. In contrast, if the new abstract domain is able to improve the total

analysis time, say, from 1 minute to 50 seconds, then the user will be likely to appreciate

such a 10 seconds speed-up, even if it is much smaller than the previous one in relative

terms. Note however that this reasoning applies in our context : in particular, we do not

have to generalize our experimental results to the so-called real world programs, since our

benchmark suite already includes many of them. Relative time differences can be a better

choice when using a benchmark suite made up of small or medium sized programs.

In order to provide some hints on the raw data, we present another couple of tables

with detailed timing information. In Table 7.2 we report the set of benchmarks whose

analysis terminated for both domains and such that the time improvement obtained was

above 10 seconds. Note that these cannot be considered the best cases, since we also have

as many as 43 benchmarks whose analysis completed on SFL2 only. Finally, in Table 7.3

we report the worst cases, that is the few benchmarks on which, by using the domain
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Goal Independent Goal Dependent

Program SFL SFL2 Program SFL SFL2

XRayVer33 0.48 1.31 botworld 0.82 1.86

chartgraph 0.37 1.67 music 38.42 48.08

horgen 0.42 5.29 semigroup 0.97 1.96

map 1.10 3.58 vhdl97 parser 11.25 32.92

music 10.50 12.37

vhdl97 parser 0.35 0.92

Table 7.3: SFL vs SFL2: time degradations greater than 0.5 secs.

SFL2, we obtained a time degradation above 0.5 seconds.

In summary, experimentation shows clearly that the SFL2 domain is a good idea. By

replacing SFL with SFL2 we have a very few (noticeable) performance degradations while

obtaining remarkable speed-ups in a significant number of cases, with the average case

being definitely in favor of SFL2. Moreover, the speed-ups occur when they are most

needed, that is for the analysis of programs where SFL behaves badly. In other words,

SFL2 has a much more stable behavior: this is no surprise, since, among other things,

we have replaced an operator with exponential complexity (star-union) with a quadratic

one (2-self-union). This stability is highly desirable for practical data-flow analyzers. Of

course, analyses based on SFL2 always require less (often much less) memory than those

based on SFL. The slow-downs happen when reduction is repeatedly attempted on sharing

sets that have few or no redundant sharing groups. As pointed out in [BHZ97], the slow-

downs can be almost eliminated by not applying reduction after each binary union and

2-self-union. With this choice, SFL2 would be always more efficient than SFL but the

maximal speed-ups obtained would not be as high as reported here.

The last lesson to be learned from the above tables is that, even though ρPSD is an

important step toward a practical sharing analysis for logic programs, it is not the last

one. As a matter of fact, there still are programs whose analysis requires too much time

and/or memory space. Finding a solution to this problem will be the subject of Chapter 9.
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Chapter 8
Even More Precision

Besides the integration of set-sharing with freeness and linearity information, a number of

other proposals of refined domain combinations for sharing analysis have been circulating

for years. One feature that is common to these proposals is that they do not seem to have

undergone a thorough experimental evaluation even with respect to the expected precision

gains. In this chapter we experimentally evaluate: helping SFL2 with the definitely ground

variables found using Pos , the domain of positive Boolean formulas; the incorporation of

explicit structural information; the issue of reordering the bindings in the computation of

the abstract unification operator aunifyS; a full implementation of the reduced product

of SH and Pos; an original proposal for the addition of a new mode recording the set

of variables that are deemed to be ground or free; a refined way of using linearity to

improve the analysis; the recovery of hidden information in the combination of set-sharing

with freeness information. Finally, we discuss the issue of whether tracking compoundness

allows the computation of more sharing information.

Note: this chapter contains an extended and improved version of the results

that appeared in [BZH00].

8.1 Looking for Precision Improvements

There have been a number of proposals for more refined combinations which have the po-

tential for improving the precision of the sharing analysis over and above that obtainable

using the classical combinations of set-sharing with freeness and linearity. These include

the implementation of more powerful abstract semantic operators (since it is well-known

that the commonly used ones are sub-optimal) and/or the integration with other domains.

Not one of these proposals seem to have undergone a thorough experimental evaluation,

even with respect to the expected precision gains. The goal of this chapter is to systemat-

ically study these enhancements and provide a uniform theoretical presentation together

with an extensive experimental evaluation that will give a strong indication as to their

impact on the accuracy of the sharing information. Our investigation is primarily from

the point of view of precision. Reasonable efficiency is also clearly of interest but this has

205
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to be secondary to the question as to whether precision is significantly improved: only if

this is established, should better implementations be researched.

Clearly, the implementation of the various domain combinations was a major part of

the work presented in this chapter. However, so as to adapt these assorted proposals into

a uniform framework and provide a fair comparison of their results, a large amount of

underlying conceptual work was also required. For instance, almost all of the proposed

enhancements were designed for systems that perform the occurs-check and some of them

were developed for rather different abstract domains: besides changing the representa-

tion of the domain elements, such a situation usually requires a reconsideration of the

specification of the abstract operators.

Note that, while discussing the different enhancements, we will usually refer to the

domain combination SFL, including the plain set-sharing component SH and requiring

the evaluation of star-unions in the abstract unification computation. However, this is

done for notational convenience only. Unless otherwise stated, the experimental results

presented in this chapter have been conducted using the combination SFL2, where SH

and star-unions are replaced by PSD and 2-self-unions, respectively.

We compute the results of 36 different variations of the static analysis, which are

then used to perform 32 comparisons. For each benchmark, precision is measured by

counting the number of independent pairs (the corresponding columns are labeled ‘I’

in the tables) as well as the numbers of definitely ground (labeled ‘G’), free (‘F’) and

linear (‘L’) variables detected by each abstract domain. The results obtained for different

analyses are compared by computing the relative precision improvements (or degradations)

on each of these quantities and expressing them using percentages. The benchmark suite

is then partitioned into several precision equivalence classes: the cardinalities of these

classes are expressed again using percentages. For example, consider the first summary

in Table 8.1 on page 208; then, the value 2.7 that can be found, for goal dependent

analysis, at the intersection of the row labeled ‘0 < p ≤ 2’ with the column labeled ‘I’

is to be read as follows: “for 2.7 percent of the benchmarks there has been an increase

in the number of detected independent pairs of variables which is less than or equal to 2

percent.” The precision class labeled ‘unknown’ identifies those benchmarks for which a

precision comparison was not possible, because one or both of the analyses timed-out. In

summary, a precision table gives an approximation of the distribution of the programs in

the benchmark suite with respect to the obtained precision gains.

For a rough estimate of the efficiency of the different analyses, for each comparison we

also provide two of the views related to the fixpoint computation time that we introduced

in Chapter 7. The reader is warned that, in this case, these by no means provide a

faithful account of the intrinsic computational cost of the tested domain combinations.

The reason is that, for ease of implementation, having targeted at precision we traded

efficiency whenever possible. Therefore, these tables provide, so to speak, upper-bounds:

refined implementations can be expected to perform at least as well as those reported in

the tables. In the summaries reporting the distribution of total analysis time, the columns
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labeled ‘B’ and ‘E’ corresponds to the analyses using the base and the enhanced abstract

domain, respectively.

Note that small discrepancies can be observed when comparing the precision results

reported here with respect to those in [BZH00]. This has several reasons: first of all, the

new amguS operator introduced in Chapter 6 is uniformly more precise than the operator

used in [BZH00]; second, we now fully exploit the anticipation of the grounding bindings,

whereas in the previous SFL implementation only the syntactically grounding bindings

were anticipated: a binding x 7→ t is syntactically grounding if vars(t) = ∅; third, we are

now considering more benchmarks.

8.2 A Simple Combination with Pos

In the first enhanced combination, we improve the sharing information of SFL by exploiting

the groundness information computed by Pos , the domain of positive Boolean functions

[AMSS98]. As noted in Chapter 5, the set-sharing domain SH , and thus also SFL, already

keeps track of ground dependencies, since it contains Def , the domain of definite Boolean

functions. However, there are several good reasons to couple SFL with Pos:

1. Pos is strictly more expressive than Def , as it can represent (positive) disjunctive

groundness dependencies that arise in the analysis of logic programs [AMSS98]. The

ability to deal with disjunctive dependencies is also needed for the precise approxi-

mation of the primitive constraints of some CLP languages.

2. The increased precision on groundness propagates to the SFL component. It can be

exploited to remove redundant sharing groups and to identify more linear variables,

therefore having a positive impact on the computation of the amguS operator of the

SFL domain. Moreover, the added groundness information allows the detection of

more grounding bindings: in the computation of aunifyS, their approximation can

be anticipated, yielding better results.

3. Besides being useful for improving precision on other properties, disjunctive de-

pendencies also have a few direct applications, such as occurs-check reduction. As

observed in [CKS96], if the groundness formula x ∨ y holds, the unification x = y is

occurs-check free, even when neither x nor y are definitely linear.

4. Detecting the set of definitely ground variables through Pos and exploiting it to sim-

plify the operations on SFL can improve the efficiency of the analysis. In particular

this is true if the set of ground variables is readily available, as is the case with the

GER implementation of Pos [BS99].

5. The combination with Pos is essential for the application of a powerful widening

technique on SFL [ZBH99b], which will be the topic of Chapter 9. This is very

important, since analysis based on SFL without widenings does not scale well.
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Prec. class Goal Independent Goal Dependent

I G F L I G F L

5 < p ≤ 10 — 0.3 — — — 0.4 — —

2 < p ≤ 5 — 0.5 — 0.3 0.4 — — —

0 < p ≤ 2 0.8 0.5 — 0.5 3.1 2.0 — 2.3

same precision 97.6 97.0 98.4 97.6 93.0 94.1 96.5 94.1

unknown 1.6 1.6 1.6 1.6 3.5 3.5 3.5 3.5

Time difference class % benchmarks

Goal Ind. Goal Dep.

both timed out 1.6 3.5

degradation > 1 2.4 6.6

0.5 < degradation ≤ 1 1.1 —

0.2 < degradation ≤ 0.5 1.1 1.2

0.1 < degradation ≤ 0.2 4.3 2.7

same time 84.7 84.4

0.1 < improvement ≤ 0.2 0.5 0.8

0.2 < improvement ≤ 0.5 0.5 0.4

0.5 < improvement ≤ 1 1.1 —

improvement > 1 2.7 0.4

Total time class Goal Ind. Goal Dep.

B E B E

timed out 1.6 1.6 3.5 3.5

t > 10 9.4 9.7 7.4 7.4

5 < t ≤ 10 1.3 1.3 1.2 2.0

1 < t ≤ 5 5.6 6.5 3.5 3.1

0.5 < t ≤ 1 3.5 3.0 2.0 3.5

0.2 < t ≤ 0.5 5.6 6.5 9.8 9.8

t ≤ 0.2 72.8 71.5 72.7 70.7

Table 8.1: SFL2 vs (Pos × SFL2).
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Thus, as a first technique to enhance the precision of sharing analysis, we consider the

simple propagation of the set of definitely ground variables from the Pos component to

the SFL component (a more precise combination will be considered in Section 8.5). We

denote this domain by (Pos × SFL). As noted above, the GER implementation of [BS99],

besides being the fastest implementation of Pos known to date, is the natural candidate

for this combination, since it provides constant-time access to the set G of the definitely

ground variables. In the SFL component, the set G is used: (a) to reorder the sequence

of bindings in the abstract unification so as to handle the grounding ones first; (b) to

eliminate the sharing groups containing at least one ground variable; and (c) to recover

from previous linearity losses.

The experimental results for the domain (Pos × SFL2) are compared with those ob-

tained for the domain SFL2 considered in isolation and reported in Table 8.1. It can be

observed that a precision improvement is observed in all of the measured quantities but

freeness, affecting up to 3.5% of the programs. As for the timings, the figures in the tables

confirm that, in a significant number of cases, the costs associated to the inclusion of the

Pos domain are balanced by the the efficiency improvements described in point 4 above.

Because of the reasons detailed above, we believe Pos should be part of the global

domain employed by any “production analyzer” for (constraint) logic languages. That is

why for the remaining comparisons, unless otherwise stated, this simple combination with

the Pos domain is always included.

8.3 Tracking Explicit Structural Information

A way of increasing the precision of almost any analysis domain is by enhancing it with

explicit structural information, that is by recording in the abstract domain some part of

the concrete term structures computed by the program. This technique was proposed

by A. Cortesi et al. in [CLV94], where the generic structural domain Pat(<) was intro-

duced. A similar proposal, tailored to sharing analysis, is due to [BCM94a], where abstract

equation systems are considered.

In our experimental evaluation we adopt the Pattern(·) operator [Bag97a, Bag97b,

BHZ00], which is similar to Pat(<) and correctly supports the analysis of languages omit-

ting the occurs-check in the unification procedure as well as those that do not. The

construction Pattern(·) upgrades an abstract domain D (which must support a certain set

of basic operations) with structural information. The resulting domain, where structural

information is retained to some extent, is usually much more precise than D alone. There

are many occasions where these precision gains give rise to consistent speed-ups. The

reason for this is twofold. First, structural information has the potential of pruning some

computation paths on the grounds that they cannot be followed by the program being

analyzed. Second, maintaining a tuple of terms with many variables, each with its own

description, can be cheaper than computing a description for the whole tuple [BHZ00]. Of

course, there is also a price to be paid: when using Pattern(D), the elements of D that are

to be manipulated are often bigger (i.e., there are more variables of interest) than those
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that arise in analyses that are simply based on D.

Of course, structural information is very valuable in itself. When exploited for op-

timized compilation it allows for enhanced clause indexing and simplified unification.

Moreover, several program verification techniques are highly dependent on this kind of

information. However, the value of this extra precision can only be measured from the

point of view of the target application of the analysis.

When comparing the precision results, the difference in the number of variables tracked

by the two analyses poses a non-trivial problem. How can we provide a fair measure of

the precision gain? There is no easy answer to such a question. The approach chosen is

simple though unsatisfactory: at the end of the analysis, first throw away all the struc-

tural information computed and then compute the cardinality of the usual sets. In other

words, we only measure how the explicit structural information in Pattern(D) improves

the precision on D itself, which is only a tiny part of the real gain in accuracy. As shown

by the following example, this solution greatly underestimates the precision improvement

coming from the integration of structural information.

Consider a simple but not trivial Prolog program: mastermind.1 Consider also the

only direct query for which it has been written, ‘?- play.’, and focus the attention on

the procedure extend code/1. A standard goal dependent analysis of the program with

the (Pos × SFL) domain cannot say anything on the successes of extend code/1. If the

analysis is performed with Pattern(Pos × SFL) the situation changes radically. Here is

what such a domain allows China to derive:2

extend_code([([A|B],C,D)|E]) :-

list(B), list(E),

(functor(C,_,1);integer(C)),

(functor(D,_,1);integer(D)),

ground([C,D]), may_share([[A,B,E]]).

This has the following meaning: “during any execution of the program, whenever a call

to the predicate extend code/1 succeeds, it will have its argument bound to a term of

the form [([A|B],C,D)|E], where B and E are bound to list cells (i.e., to terms whose

principal functor is either ’.’/2 or []/0); C and D are ground and bound to a functor

of arity 1 or to an integer; and pair-sharing may only occur among A, B, and E”. Once

structural information has been discarded, we can only conclude that extend code/1 may

succeed. Thus, according to our approach to the precision comparison, explicit structural

information gives no improvements in the analysis of extend code/1 (which is far from

being a fair conclusion).

Table 8.2 reports the results obtained by comparing the domain (Pos×SFL2) with the

domain Pattern(Pos × SFL2). When performing a goal independent analysis we obtain

1A program implementing the game “Mastermind”, rewritten by H. Koenig and T. Hoppe after code
by M. H. van Emden. Available at http://www.cs.unipr.it/China/Benchmarks/Prolog/mastermind.pl.

2Some extra groundness information obtained by the analysis has been omitted for simplicity: this says
that, if A and B turn out to be ground, then E will also be ground.
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Prec. class Goal Independent Goal Dependent

I G F L I G F L

p > 20 3.0 4.3 1.9 3.0 1.2 3.5 1.6 3.1

10 < p ≤ 20 1.9 2.2 — 2.4 2.0 1.6 — 2.7

5 < p ≤ 10 1.6 3.2 2.2 2.4 0.8 2.0 0.8 1.6

2 < p ≤ 5 5.9 3.5 3.0 5.4 2.7 1.2 1.6 2.0

0 < p ≤ 2 8.9 6.7 6.7 12.4 4.3 1.6 2.0 4.3

same precision 72.8 74.2 80.4 68.5 79.3 80.5 84.4 76.6

unknown 5.9 5.9 5.9 5.9 9.8 9.8 9.8 9.8

Time diff. class % benchmarks

Goal Ind. Goal Dep.

both timed out 1.6 3.5

degradation > 1 12.1 16.4

0.5 < degradation ≤ 1 2.2 1.2

0.2 < degradation ≤ 0.5 1.9 1.6

0.1 < degradation ≤ 0.2 2.7 3.9

same time 71.5 69.9

0.1 < improvement ≤ 0.2 0.8 —

0.2 < improvement ≤ 0.5 1.9 0.4

0.5 < improvement ≤ 1 1.1 0.8

improvement > 1 4.3 2.3

Total time class Goal Ind. Goal Dep.

B E B E

timed out 1.6 5.9 3.5 9.8

t > 10 9.7 8.6 7.4 7.4

5 < t ≤ 10 1.3 1.9 2.0 2.0

1 < t ≤ 5 6.5 4.0 3.1 4.7

0.5 < t ≤ 1 3.0 4.6 3.5 2.7

0.2 < t ≤ 0.5 6.5 8.9 9.8 9.8

t ≤ 0.2 71.5 66.1 70.7 63.7

Table 8.2: (Pos × SFL2) vs Pattern(Pos × SFL2).
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a precision improvement in at least one of the measured quantities for about one third of

the benchmarks; the same happens for one sixth of the benchmarks in the case of a goal

dependent analysis. Moreover, the increases in precision can be considerable, as witnessed

by the percentages of benchmarks falling in the higher precision classes.

One issue that should be resolved is whether the improvements provided by explicit

structural information subsume those previously obtained for the simple combination with

Pos. Intuitively, it would seem that this cannot happen, since these two enhancements

are based on different kinds of information: while the Pattern(·) construction encodes

some definite structural information, the precision gain due to using Pos rather than

just Def only stems from disjunctive groundness dependencies. However, the impact of

these techniques on the overall analysis is really intricate and some overlapping cannot

be excluded a priori : for instance, both techniques affect the ordering of bindings in

the computation of abstract unification on SFL. In order to provide some experimental

evidence for this qualitative reasoning, we also computed a comparison between the simpler

domain Pattern(SFL2) and the domain Pattern(Pos × SFL2). Since the few differences

between Tables 8.1 and 8.3 can be explained by discrepancies in the numbers of programs

that timed-out, these results confirm our expectations that these two enhancements are

effectively orthogonal.

Similar experimental evaluations, based on the abstract equation systems of [BCM94a],

were reported by Mulkers et al. in [MSJB94, MSJB95]. Here a depth-k abstraction (re-

placing all subterms occurring at a depth greater than or equal to k with fresh abstract

variables) is conducted on a small benchmark suite (19 programs) for values of k between

0 and 3. The domain they employed was not suitable for the analysis of real programs

and, in fact, even the analysis of a modest-sized program like ann could only be carried

out with depth-0 abstraction (i.e., without any structural information). Such a problem in

finding practical analyzers that incorporated structural information with sharing analysis

was not unique to this work: there was at least one other previous attempt to evaluate the

impact of structural information on sharing analysis which failed because of combinato-

rial explosion [A. Cortesi, personal communication, 1996]. What makes the more realistic

experimentation now possible is the adoption of the non-redundant domain SFL2, where

the exponential star-union operation is replaced by the quadratic 2-self-union. Note that,

even if biased by the absence of widenings, the timings reported in Table 8.2 show that

the Pattern(·) construction is computationally feasible. Indeed, as demonstrated by the

results reported in [BHZ00], an analyzer that incorporates a carefully designed structural

information component, besides being more precise, can also be very efficient.

The results obtained in this section demonstrate that there is a relevant amount of

sharing information that is not detected when using the classical set-sharing domains.

Therefore, in order to provide an experimental evaluation that is as systematic as possible,

in all of the remaining experiments the comparison is performed both with and without

explicit structural information.
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Prec. class Goal Independent Goal Dependent

I G F L I G F L

5 < p ≤ 10 — 0.3 — — — 0.4 — —

2 < p ≤ 5 — 0.5 — 0.3 0.4 — — —

0 < p ≤ 2 0.3 — — — 2.7 2.3 — 2.3

same precision 93.8 93.3 94.1 93.8 87.1 87.5 90.2 87.9

unknown 5.9 5.9 5.9 5.9 9.8 9.8 9.8 9.8

Time diff. class % benchmarks

Goal Ind. Goal Dep.

both timed out 5.9 9.8

degradation > 1 5.1 7.4

0.5 < degradation ≤ 1 0.5 0.4

0.2 < degradation ≤ 0.5 2.7 0.8

0.1 < degradation ≤ 0.2 4.8 4.7

same time 79.8 76.6

0.1 < improvement ≤ 0.2 0.3 —

0.2 < improvement ≤ 0.5 — —

0.5 < improvement ≤ 1 0.3 —

improvement > 1 0.5 0.4

Total time class Goal Ind. Goal Dep.

B E B E

timed out 5.9 5.9 9.8 9.8

t > 10 8.1 8.6 7.0 7.4

5 < t ≤ 10 1.6 1.9 2.0 2.0

1 < t ≤ 5 4.0 4.0 4.7 4.7

0.5 < t ≤ 1 4.3 4.6 2.0 2.7

0.2 < t ≤ 0.5 6.7 8.9 8.6 9.8

t ≤ 0.2 69.4 66.1 66.0 63.7

Table 8.3: Pattern(SFL2) vs Pattern(Pos × SFL2).
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8.4 Reordering the Non-Grounding Bindings

As already explained in Section 8.2, the result of abstract unification on SFL may depend

on the order in which the bindings are considered and will be improved if the grounding

bindings are considered first. This heuristic, which has been used for all the experiments

in this thesis, is well-known [Lan90].

In the literature, the examples that illustrate the non-commutativity of the abstract

mgu on domain combinations such as SFL all use a grounding binding. However, the next

example shows that the problem is more general than that.

Example 8.1 Let VI = {u, v, w, x, y, z} be the set of relevant variables, and consider the

SFL element

d
def
=

〈

{vx, vz, w, x, y}, {v}, {v}
〉

,

with the bindings v 7→ w and x 7→ y. Then, applying aunifyS to these bindings in the given

ordering, we have:

d1
def
= aunifyS

(

d , 〈x 7→ y, v 7→ w〉
)

= amguS

(

amguS(d , x 7→ y), v 7→ w
)

= amguS

(

〈

{vxy, vz, w, xy},∅,∅
〉

, v 7→ w
)

=
〈

{vwxy, vwxyz, vwz, xy},∅,∅
〉

.

Using the reverse ordering, we have:

d2
def
= aunifyS

(

d , 〈v 7→ w, x 7→ y〉
)

= amguS

(

amguS(d , v 7→ w), x 7→ y
)

= amguS

(

〈

{vwx, vwz, x, y},∅,∅
〉

, x 7→ y
)

=
〈

{vwxy, vwz, xy},∅,∅
〉

.

Variables y and z possibly share in d1, while being detected as definitely independent in d2.

In principle, optimality can be obtained by adopting the brute-force approach: trying

all the possible orderings of the non-grounding bindings. However, this is clearly not

feasible. While lacking a better alternative, it is reasonable to look for heuristics that can

be applied in the context of a local search paradigm: at each step, the next binding for the

amguS procedure is chosen by evaluating the effect of its abstract execution, considered

in isolation, on the precision of the analysis.

Suppose the number of independent pairs is taken as a measure of precision. Then, at

each step, for each of the bindings under consideration, the new component sh ′, as given

by Definition 6.33, must be computed. However, because the computation of sh ′ is the

most costly operation to be performed in the computation of the amguS operator, a direct
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application of this heuristic does not appear to be feasible. As an alternative, consider

a heuristic based on the number of star-unions that have to be computed. Star-unions

are likely to cause large losses in the number of independent pairs that are found. As

only non-grounding bindings are considered, any binding requiring the computation of a

star-union will need the star-union even if it is delayed, although a binding that does not

require the star-union may require it if its computation is postponed: its variables may

lose their freeness, linearity or independence as a result of evaluating the other bindings.

It follows that one potential heuristic is:

H1: “select first the binding requiring less star-unions”.

Note that, by applying this heuristic to Example 8.1, we would have chosen the better

ordering since the second binding does not require star-unions, while the first one requires

both of them. However, if considered in isolation, this heuristic is not a general solution

and can actually lead to precision losses. The problem is that, if a binding that needs a

star-union is delayed, then, when the star-union is computed, it may be done on a larger

sharing set, forcing more (independent) pairs of variables into the same sharing group.

Example 8.2 Let VI be as in the previous example and consider the application of the

bindings u 7→ x and v 7→ w to the abstract description

d
def
=

〈

{u, uw, v, w, xy, xz}, {u, x}, {u, x}
〉

.

Since x and u are both free variables, no star-union is needed in the computation of

amguS(d , u 7→ x), while two star-unions are needed when computing amguS(d , v 7→ w).

Thus, according to the heuristic H1, we have:

d1
def
= aunifyS

(

d , 〈u 7→ x, v 7→ w〉
)

= amguS

(

amguS(d , u 7→ x), v 7→ w
)

= amguS

(

〈

{uwxy, uwxz, uxy, uxz, v, w}, {u, x}, {u, x}
〉

, v 7→ w
)

=
〈

{uvwxy, uvwxyz, uvwxz, uxy, uxz, vw},∅,∅
〉

.

Using the other ordering, we have:

d2
def
= aunifyS

(

d , 〈v 7→ w, u 7→ x〉
)

= amguS

(

amguS(d , v 7→ w), u 7→ x
)

= amguS

(

〈

{u, uvw, vw, xy, xz}, {x}, {x}
〉

, u 7→ x
)

=
〈

{uvwxy, uvwxz, uxy, uxz, vw},∅,∅
〉

.

Variables y and z possibly share in d1, while being detected as definitely independent in

d2. Thus, in this case, the adoption of the heuristic H1 decreases the number of known

independent pairs.
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Another possibility is to consider a heuristic that uses the numbers of free and linear

variables as a measure of precision for local optimization. That is, we could adopt the

following rule:

H2: “select first the binding maximizing freeness and linearity”.

However, Example 8.2 is evidence that even such a proposal may cause a precision loss:

the binding u 7→ x would be chosen first as it preserves the freeness of variable u.

In order to evaluate the effects of these two heuristics on real programs, we imple-

mented them on top of the domain combination (Pos × SFL2) and we compared the

corresponding precision results with respect to those obtained when using the “straight”

abstract computation, which considers the non-grounding bindings in the textual order,

from left to right. The results reported in Tables 8.4 and 8.5 can be summarized as follows:

1. the precision on the groundness and freeness components is never affected;

2. the precision on the independence and linearity components is rarely affected, in

particular when considering goal dependent analyses;

3. even for real programs, as was the case for the artificial examples given above, the

precision can be increased as well as decreased.

Tables 8.4 and 8.5 show that the heuristic H2, based on freeness and linearity informa-

tion, is slightly better than the use of the straight order, which, in its turn, is slightly better

than the heuristic H1, based on the number of star-unions; for the latter, no precision im-

provement is observed. As these results cannot be generalized to the other orderings, our

investigation is not conclusive. Besides designing “smarter” heuristics, it is interesting to

provide a kind of responsiveness test for the underlying domain with respect to the order

of approximation of the non-grounding bindings: a simple test consists in measuring how

much the precision can be affected, in either way, by the application of an almost arbitrary

order. This is the motivation for the comparison reported in Table 8.6, where we applied

the rule:

H3: “select first the right-most binding”.

That is, we blindly reverse the usual order of the non-grounding bindings. As for the

results given in Tables 8.4 and 8.5, the number of changes to the precision observed in

Table 8.6 is small and all the observations made above still hold. Surprisingly, this blind

heuristic provides marginally better precision results than those obtained using the others.

In contrast, the different orderings of the non-grounding bindings have a big, somehow

unpredictable impact on efficiency. A few analyses that did not complete on the base

domain now terminate in the given time limit, and the vice versa also holds. Even in this

case, the best results are obtained with heuristic H3.
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

same precision 97.6 98.4 98.4 98.4 92.2 93.8 93.8 93.8

unknown 1.6 1.6 1.6 1.6 6.2 6.2 6.2 6.2

−2 ≤ p < 0 0.8 — — — 1.6 — — —

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

same precision 96.5 96.5 96.5 96.5 90.2 90.2 90.2 90.2

unknown 3.5 3.5 3.5 3.5 9.8 9.8 9.8 9.8

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.6 5.9 3.5 9.4

degradation > 1 5.4 2.2 7.4 6.3

0.5 < degradation ≤ 1 1.3 0.3 — 0.8

0.2 < degradation ≤ 0.5 2.2 1.3 0.8 1.6

0.1 < degradation ≤ 0.2 1.1 0.5 1.2 2.0

same time 82.5 80.9 84.8 76.6

0.1 < improvement ≤ 0.2 0.8 1.9 0.8 0.4

0.2 < improvement ≤ 0.5 0.8 0.8 0.4 —

0.5 < improvement ≤ 1 0.3 1.1 — —

improvement > 1 4.0 5.1 1.2 3.1

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 1.6 5.9 6.2 3.5 3.5 9.8 9.4

t > 10 9.7 9.7 8.6 8.1 7.4 7.4 7.4 7.8

5 < t ≤ 10 1.3 0.8 1.9 1.9 2.0 2.0 2.0 2.3

1 < t ≤ 5 6.5 7.3 4.0 4.3 3.1 2.7 4.7 3.9

0.5 < t ≤ 1 3.0 2.2 4.6 4.3 3.5 3.9 2.7 3.5

0.2 < t ≤ 0.5 6.5 7.0 8.9 8.9 9.8 10.9 9.8 10.2

t ≤ 0.2 71.5 71.5 66.1 66.4 70.7 69.5 63.7 62.9

Table 8.4: The heuristic H1, based on the number of star-unions.
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

0 < p ≤ 2 — — — — 2.4 — — 0.3

same precision 97.3 97.8 97.8 97.8 90.9 94.1 94.1 93.8

unknown 2.2 2.2 2.2 2.2 5.9 5.9 5.9 5.9

−2 ≤ p < 0 0.5 — — — 0.8 — — —

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

0 < p ≤ 2 — — — 0.4 — — — —

same precision 95.3 95.3 95.3 94.9 89.5 89.5 89.5 89.5

unknown 4.7 4.7 4.7 4.7 10.5 10.5 10.5 10.5

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.6 5.9 3.5 9.8

degradation > 1 7.8 3.8 7.8 6.6

0.5 < degradation ≤ 1 1.9 0.5 1.6 —

0.2 < degradation ≤ 0.5 2.2 3.0 1.2 2.7

0.1 < degradation ≤ 0.2 1.9 2.7 3.1 2.3

same time 78.5 74.7 79.3 74.2

0.1 < improvement ≤ 0.2 0.5 0.5 — —

0.2 < improvement ≤ 0.5 0.3 1.3 0.4 0.4

0.5 < improvement ≤ 1 — 1.1 0.8 —

improvement > 1 5.4 6.5 2.3 3.9

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 2.2 5.9 5.9 3.5 4.7 9.8 10.5

t > 10 9.7 9.9 8.6 7.3 7.4 6.6 7.4 6.3

5 < t ≤ 10 1.3 1.1 1.9 2.4 2.0 1.6 2.0 2.3

1 < t ≤ 5 6.5 6.7 4.0 4.8 3.1 3.9 4.7 5.1

0.5 < t ≤ 1 3.0 2.2 4.6 4.8 3.5 3.9 2.7 3.5

0.2 < t ≤ 0.5 6.5 8.3 8.9 10.8 9.8 10.5 9.8 9.0

t ≤ 0.2 71.5 69.6 66.1 64.0 70.7 68.8 63.7 63.3

Table 8.5: The heuristic H2, based on freeness and linearity.
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

0 < p ≤ 2 0.3 — — — 2.7 — — —

same precision 97.3 98.1 98.1 98.1 90.3 94.1 94.1 94.1

unknown 1.9 1.9 1.9 1.9 5.9 5.9 5.9 5.9

−2 ≤ p < 0 0.5 — — — 1.1 — — —

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

0 < p ≤ 2 — — — 0.4 — — — —

same precision 96.1 96.1 96.1 95.7 89.8 89.8 89.8 89.8

unknown 3.9 3.9 3.9 3.9 10.2 10.2 10.2 10.2

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.3 5.6 3.5 9.4

degradation > 1 4.6 4.8 5.5 6.3

0.5 < degradation ≤ 1 0.8 0.5 — —

0.2 < degradation ≤ 0.5 0.8 1.1 0.8 0.8

0.1 < degradation ≤ 0.2 2.2 2.2 1.2 0.4

same time 79.0 77.2 82.8 75.8

0.1 < improvement ≤ 0.2 1.6 0.5 2.0 0.8

0.2 < improvement ≤ 0.5 2.2 1.3 0.8 1.2

0.5 < improvement ≤ 1 0.5 0.3 0.4 —

improvement > 1 7.0 6.5 3.1 5.5

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 1.6 5.9 5.6 3.5 3.9 9.8 9.8

t > 10 9.7 9.1 8.6 8.3 7.4 7.0 7.4 6.6

5 < t ≤ 10 1.3 1.9 1.9 1.1 2.0 1.6 2.0 2.0

1 < t ≤ 5 6.5 6.2 4.0 5.4 3.1 2.7 4.7 5.9

0.5 < t ≤ 1 3.0 2.7 4.6 3.8 3.5 3.5 2.7 2.0

0.2 < t ≤ 0.5 6.5 7.8 8.9 9.4 9.8 10.9 9.8 9.4

t ≤ 0.2 71.5 70.7 66.1 66.4 70.7 70.3 63.7 64.5

Table 8.6: The heuristic H3, reversing the ordering.
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8.5 Pos and Sharing: the Reduced Product

The overlap between the information provided by Pos and the information provided by SH

mentioned in Section 8.2 means that the Cartesian product Pos×SH contains redundancy,

that is, there is more than one element that can characterize the same set of concrete

computational states. In [BZH00], two techniques that allowed the removal of some of

these redundancies were experimentally evaluated. In contrast, we now consider the full

integration of these two domains.

The reduced product between Pos and SH , here denoted by Pos u SH , has been

elegantly characterized in [CSS99], where set-sharing à la Jacobs and Langen is expressed

in terms of elements of the Pos domain itself. The isomorphism maps each set-sharing

element sh ∈ SH into the Boolean formula φ ∈ Pos such that

[φ]VI = {VI \ S | S ∈ sh } ∪ {VI }.

The sharing information encoded by an element (φg, φsh) ∈ Pos × Pos can be improved

by replacing the second component (that is, the Boolean formula describing set-sharing

information) with the conjunction φg∧φsh . The reader is referred to [CSS99] for a complete

account of this composition and a justification of its correctness.

This specification of the reduced product can be reformulated, using the standard

set-sharing representation for the second component, to define a reduction procedure

reducePos : SH × Pos → SH such that, for all sh ∈ SH , φg ∈ Pos,

reducePos(sh, φg) =
{

S ∈ sh
∣

∣ (VI \ S) ∈ [φg]VI

}

.

When using the domain PSD in place of SH , the ‘reducePos ’ operator specified above

can interact in subtle ways with an implementation removing the ρPSD-redundant sharing

groups from the elements of PSD . The following is an example where such an interaction

provides results that are not correct.

Example 8.3 Let VI = {x, y, z} and sh = {xy, xz, yz, xyz} ∈ PSD be the current set-

sharing description. Suppose that the implementation internally represents sh by using the

ρPSD-reduced element shred = {xy, xz, yz}, so that sh = ρPSD(shred). Suppose also that the

groundness description computed on the domain Pos is φg = (x ↔ y ↔ z). Note that we

have [φg]VI =
{

∅, {x, y, z}
}

. Then we have

sh ′ = reducePos(sh, φg) = {xyz};

sh ′
red = reducePos(shred, φg) = ∅.

The two Pos-reduced elements sh ′ and sh ′
red are not equivalent, even modulo ρPSD .

Note that the above example does not mean that the reduced product Pos u PSD

yields results that are not correct; neither does it mean that it is less precise than Pos u

SH for the computation of the observables. More simply, the optimizations used in our
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

5 < p ≤ 10 — — — — 0.3 — — —

2 < p ≤ 5 0.3 — — — — — — —

0 < p ≤ 2 2.7 — — 0.5 3.5 — — 0.5

same precision 86.8 89.8 89.8 89.2 80.6 84.4 84.4 83.9

unknown 10.2 10.2 10.2 10.2 15.6 15.6 15.6 15.6

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

p > 20 0.4 — — — — — — —

10 < p ≤ 20 — — — — 0.4 — — —

5 < p ≤ 10 — — — — 0.8 — — —

0 < p ≤ 2 3.1 — — — 2.7 — — —

same precision 89.1 92.6 92.6 92.6 79.3 83.2 83.2 83.2

unknown 7.4 7.4 7.4 7.4 16.8 16.8 16.8 16.8

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.6 5.9 3.5 9.8

degradation > 1 15.9 18.5 10.2 15.2

0.5 < degradation ≤ 1 0.3 0.3 0.8 0.8

0.2 < degradation ≤ 0.5 0.8 1.9 0.8 0.8

0.1 < degradation ≤ 0.2 — 0.5 — 1.6

same time 76.3 72.6 75.8 71.1

0.1 < improvement ≤ 0.2 1.9 0.3 6.6 0.4

0.2 < improvement ≤ 0.5 1.9 — 0.8 —

0.5 < improvement ≤ 1 0.5 — 0.8 —

improvement > 1 0.8 — 0.8 0.4

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 10.2 5.9 15.6 3.5 7.4 9.8 16.8

t > 10 9.7 4.3 8.6 5.9 7.4 5.1 7.4 6.6

5 < t ≤ 10 1.3 1.3 1.9 0.8 2.0 1.2 2.0 —

1 < t ≤ 5 6.5 3.2 4.0 3.5 3.1 3.5 4.7 2.7

0.5 < t ≤ 1 3.0 2.7 4.6 2.4 3.5 1.2 2.7 2.7

0.2 < t ≤ 0.5 6.5 3.8 8.9 4.0 9.8 5.9 9.8 6.3

t ≤ 0.2 71.5 74.5 66.1 67.7 70.7 75.8 63.7 64.8

Table 8.7: (Pos × SFL2) vs (Pos ⊗ SFL).
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current implementation of PSD are not compatible with the above reduction process. A

correct, but very inefficient, implementation could be obtained by computing the closure

ρPSD(sh) before each application of the ‘reducePos ’ operator. As we are mainly interested

in precision, we simply by-pass this problem by performing our comparisons using the

plain set-sharing domain SH , with no ρPSD-redundancy elimination at all.

We thus implemented the above enhancement, denoted by Pos ⊗ SFL. From a formal

point of view, this is not the reduced product between Pos and SFL. While there is

a complete reduction between Pos and SH , the same does not necessarily hold for the

combination with freeness and linearity information. The results for the precision compar-

ison, reported in Table 8.7, show that the combination (Pos ⊗ SFL) can provide precision

improvements, in particular to the number of independent pairs. However, the efficiency

results are biased by the lack of ρPSD-redundancy elimination, so that a significant number

of analyses did not terminate in the given time limit.

8.6 Ground-or-free Variables

Most of the ideas investigated in the present work are based on earlier work by other

authors. In this section, we describe one originally proposed in [BZH00]. Consider the

analysis of the binding x 7→ t and suppose that, on a subset of all the computation paths,

this binding is evaluated with x ground while, on the remaining computation paths, the

binding is evaluated with x free. When using the usual combination (Pos × SFL), before

the evaluation of the binding, x will be detected as definitely linear. This information

is valuable: the relevant component for t does not have to be star-closed. However, the

information that is lost, that is, x being either ground or free, is equally valuable, since

this would allow the avoidance of all star-unions, even when x and t may share. This

loss has the disadvantages that CPU time is wasted by performing unnecessary but costly

operations and that the precision is potentially degraded. It is therefore useful to enrich

our sharing analysis domain by adding ‘ground-or-free’ information.

We extend the domain SFL with the component GF
def
= ℘(VI ), consisting of the set

of variables that are known to be either ground or free. As for freeness and linearity, the

approximation ordering on GF is given by reverse subset inclusion. When computing the

abstract mgu on the new domain

SGFL
def
= SH × F × GF × L,

the property of being ground-or-free is used and propagated in almost the same way as

freeness information.

Definition 8.4 (amguGF .) Let d = 〈sh, f, gf , l〉 ∈ SGFL. We define the predicate

gfreed : HTerms → Bool such that, for each term t ∈ HTerms, where vars(t) ⊆ VI ,

gfreed(t)
def
=

(

rel
(

vars(t), sh
)

= ∅
)

∨
(

∃x ∈ VI . x = t ∧ x ∈ gf
)

.
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Consider the abstract operations over SFL given in Definitions 6.31 and 6.33 (as well as

the notation introduced there). Then, the operator amguGF : SGFL × Bind → SGFL is

defined as

amguGF

(

d, x 7→ t
) def

= 〈sh ′, f ′, gf ′, l′〉,

where sh ′ is as specified in Definition 6.33, but replacing all the tests on predicate freed by

tests on predicate gfreed ; f ′ and l′′ are as specified in Definition 6.33; finally, we have

gf ′ =
(

VI \ vars(sh ′)
)

∪ gf ′′;

gf ′′ =































gf , if gfreed(x) ∧ gfreed(t);

gf \ Sx, if gfreed(x);

gf \ St, if gfreed(t);

gf \ (Sx ∪ St), otherwise;

l′ = gf ′ ∪ l′′.

The computation of the set gf ′′ is very similar to the computation of the set f ′ as

given in Definition 6.33. The new ground-or-free component gf ′ is obtained by adding to

gf ′′ the set of all the ground variables: in other words, if a variable “loses freeness” then

it also loses its ground-or-free status, unless it is known to be definitely ground.

To summarize, the incorporation of the set of ground-or-free variables is cheap, both

in terms of computational complexity and in terms of code to be written. Thus we imple-

mented the domain (Pos × SGFL2) and we compared it with respect to (Pos × SFL2): as

usual, SGFL2 denotes the domain SGFL after having replaced SH by PSD .

In the first two summaries of Table 8.8, the new columns labeled ‘GF’ report the

precision improvements measured on the ground-or-free property itself.3 Disregarding the

many improvements in these columns, few changes can be observed, and almost all of

these concern just the linearity information.4 As far as the timings are concerned, even

though efficiency improvements are rare, raw data are better than it appears by looking at

the summaries in Table 8.8: the overall slow-down, computed considering all benchmarks

and all four variations of the analysis, is less than 53 seconds of CPU time.

The results show that tracking ground-or-free variables, while being potentially useful

for improving the precision of a sharing analysis, rarely reaches such a goal. In contrast,

the precision gains on the ground-or-free property itself are remarkable, affecting from

36% to 73% of the programs in the benchmark suite. It is possible to foresee several

direct applications for this information that, together with the just mentioned negligible

computational cost, fully justify the inclusion of this enhancement in a static analyzer. In

particular, there are at least two ways in which a knowledge of ground-or-free variables

3For this comparison, in the analysis using (Pos × SFL2), the number of ground-or-free variables is
computed by summing the number of ground variables with the number of free variables.

4In fact the sole improvement to the number of independent pairs is due to a synthetic benchmark,
named gof, that was explicitly written to show that variable independence can be affected.
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Goal Independent without Struct Info with Struct Info

Prec. class I G F GF L I G F GF L

p > 20 0.3 — — 53.8 — 0.3 — — 48.7 —

10 < p ≤ 20 — — — 12.1 — — — — 15.1 —

5 < p ≤ 10 — — — 5.1 — — — — 7.5 —

2 < p ≤ 5 — — — 2.2 — — — — 1.9 —

0 < p ≤ 2 — — — 0.3 1.9 — — — 0.5 0.5

same precision 98.1 98.4 98.4 25.0 96.5 93.8 94.1 94.1 20.4 93.5

unknown 1.6 1.6 1.6 1.6 1.6 5.9 5.9 5.9 5.9 5.9

Goal Dependent without Struct Info with Struct Info

Prec. class I G F GF L I G F GF L

p > 20 — — — 5.9 — — — — 3.5 —

10 < p ≤ 20 — — — 3.9 — — — — 5.9 —

5 < p ≤ 10 0.4 — — 7.8 — 0.4 — — 4.3 —

2 < p ≤ 5 — — — 12.5 — — — — 11.3 —

0 < p ≤ 2 — — — 8.6 0.4 — — — 11.7 —

same precision 96.1 96.5 96.5 57.8 96.1 89.8 90.2 90.2 53.5 90.2

unknown 3.5 3.5 3.5 3.5 3.5 9.8 9.8 9.8 9.8 9.8

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.6 5.9 3.5 9.8

degradation > 1 0.8 1.1 2.0 0.8

0.5 < degradation ≤ 1 — 1.1 1.2 1.6

0.2 < degradation ≤ 0.5 0.5 0.8 2.0 2.0

0.1 < degradation ≤ 0.2 1.3 2.2 1.2 2.0

same time 92.2 88.4 90.2 83.2

0.1 < improvement ≤ 0.2 0.8 — — —

0.2 < improvement ≤ 0.5 1.1 0.3 — —

0.5 < improvement ≤ 1 0.3 — — —

improvement > 1 1.3 0.3 — 0.8

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 1.6 5.9 5.9 3.5 3.5 9.8 9.8

t > 10 9.7 9.7 8.6 8.6 7.4 7.4 7.4 7.4

5 < t ≤ 10 1.3 1.3 1.9 1.9 2.0 2.0 2.0 2.0

1 < t ≤ 5 6.5 6.5 4.0 4.3 3.1 3.1 4.7 4.7

0.5 < t ≤ 1 3.0 3.0 4.6 4.3 3.5 3.9 2.7 2.7

0.2 < t ≤ 0.5 6.5 7.3 8.9 8.9 9.8 9.8 9.8 9.4

t ≤ 0.2 71.5 70.7 66.1 66.1 70.7 70.3 63.7 64.1

Table 8.8: (Pos× SFL2) vs (Pos × SGFL2).
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could improve the concrete unification procedure.

The first case applies in the context of occurs-check reduction [CKS96, Søn86]. Ground-

or-freeness can be of help for this application, since a unification between two ground-or-

free variables is occurs-check free. Note that this is an improvement with respect to the

technique used in [CKS96], since it is not required that the two considered variables are

independent. As a second application, ground-or-freeness can be useful to replace the

full concrete unification procedure by a simplified version. Since a ground-or-free term is

either ground or free, a single run-time test for freeness will discriminate between the two

cases: if this test succeeds, unification can be implemented by a single assignment; if the

test fails, any specialized code for unification with a ground term can be safely invoked.

In particular, when unifying two ground-or-free variables that are not free at run-time,

the full unification procedure can be replaced by a simpler test for equivalence.

8.7 More Precise Exploitation of Linearity

In [Kin94], A. King proposes a domain for sharing analysis that performs a quite precise

tracking of linearity. Roughly speaking, each sharing group in a sharing set carries its own

linearity information. In contrast, in the approach of [Lan90], which is the one usually

followed, a set of definitely linear variables is recorded along with each sharing set. The

proposal in [Kin94] gives rise to a domain that is quite different from the ones presented

here. Since [Kin94] does not provide an experimental evaluation and we are unaware of

any subsequent work on the subject, the question whether this more precise tracking of

linearity is actually worthwhile (both in terms of precision and efficiency) seems open.

What interests us here is that some part of the theoretical work presented in [Kin94] may

be usefully applied even in the more classical treatments of linearity, such as the one being

used in the domain combination SFL. As far as we can tell, this fact was first noted

in [BZH00].

Informally, [Kin94, Lemma 5, point 3] states the following: suppose that we are going to

unify the linear term s with the (possibly non-linear) term t, where vars(s)∩ vars(t) = ∅;

then, the unification will only produce a very restricted form of sharing; namely, two

different variables occurring in s will not share the same variable with a variable occurring

only once in t.

In order to show how this result can be exploited even on the domain SFL, we need to

be more formal. Given the abstract element d = 〈sh, f, l〉, let x ∈ (l \ f) be a non-free but

linear variable and let t be such that indd(x, t) holds but lind(t) does not hold. Let also

R− = rel
(

{x} ∪ vars(t), sh
)

, Rx = rel
(

{x}, sh
)

, Rt = rel
(

vars(t), sh
)

.

In such a situation, when abstractly evaluating the binding x 7→ t, the standard amguS

operator gives the set-sharing component

sh ′ = R− ∪ bin(R?
x, Rt).
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Goal Independent Goal Dependent

Prec. class I G F L I G F L

p > 20 0.3 — — — — — — —

2 < p ≤ 5 — — — — 0.4 — — —

same precision 93.8 94.1 94.1 94.1 89.8 90.2 90.2 90.2

unknown 5.9 5.9 5.9 5.9 9.8 9.8 9.8 9.8

Time difference class % benchmarks

Goal Ind. Goal Dep.

both timed out 5.9 9.8

degradation > 1 3.0 3.1

0.5 < degradation ≤ 1 0.3 1.6

0.2 < degradation ≤ 0.5 2.2 1.2

0.1 < degradation ≤ 0.2 1.9 3.1

same time 86.0 80.1

0.1 < improvement ≤ 0.2 — —

0.2 < improvement ≤ 0.5 0.3 0.4

0.5 < improvement ≤ 1 — 0.4

improvement > 1 0.5 0.4

Total time class Goal Ind. Goal Dep.

B E B E

timed out 5.9 5.9 9.8 9.8

t > 10 8.6 8.6 7.4 7.4

5 < t ≤ 10 1.9 1.9 2.0 2.0

1 < t ≤ 5 4.0 4.6 4.7 4.7

0.5 < t ≤ 1 4.6 4.0 2.7 2.7

0.2 < t ≤ 0.5 8.9 8.3 9.8 9.4

t ≤ 0.2 66.1 66.7 63.7 64.1

Table 8.9: The effect of enhanced linearity (with structural info).
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Suppose the set vars(t) is partitioned into the two components V l
t and V nl

t , where V l
t is

the set of the “good” variables, that is, those variables that can occur only once in t.

Formally, let

V l
t

def
=



















y ∈ vars(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

y ∈ l

y A mvars(t) =⇒ y /∈ vars(sh)

∀z ∈ vars(t) :
(

y = z ∨ indd (y, z)
)



















;

V nl
t

def
= vars(t) \ V l

t ;

Rl
t

def
= rel(V l

t , sh);

Rnl
t

def
= rel(V nl

t , sh).

Note that Rnl
t 6= ∅, otherwise we would have that lind(t) holds. If also Rl

t 6= ∅ then

the standard amguS can be replaced by an improved version (that we denote by amguK)

computing the following set-sharing component:

sh ′
K = R− ∪ bin(Rx, R

l
t) ∪ bin(R?

x, R
nl
t ).

As a consequence of King’s result, only Rnl
t has to be combined with R?

x, while Rl
t (that is,

the relevant component of sh with respect to the “good” variables V l
t ) can be combined

with just Rx, without the star-union.

Example 8.5 Suppose VI = {v, w, x, y, z} is the set of variables of interest and consider

the SFL element

d
def
=

〈

{vx,wx, y, z}, {v, w, y}, {v, w, x, y}
〉

with the binding x 7→ f(y, z). Note that all the applicability conditions previously specified

are met: in particular, t = f(y, z) is possibly non-linear because z /∈ l. As Rx = {vx,wx}

and Rt = {y, z}, a standard analysis would compute

d ′ = amguS

(

d , x 7→ f(y, z)
)

=
〈

{vwxy, vwxz, vxy, vxz, wxy,wxz},∅, {y}
〉

.

On the other hand, since V l
t = {y} and V nl

t = {z}, the enhanced analysis would compute

d ′
K = amguK

(

d , x 7→ f(y, z)
)

=
〈

{vwxz, vxy, vxz, wxy,wxz},∅, {y}
〉

.

Note that d ′
K does not include the sharing group vwxy. This means that, if in the sequel

of the computation variable z is bound to a ground term, then variables v and w will

be detected as definitely independent. This independence is not captured when using the

standard amguS, since d ′ includes the sharing group vwxy and therefore the variables v
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and w will potentially share even after grounding z.

The experimental evaluation for this enhancement is reported in Table 8.9. Note that

we only report the comparison for the analyses performed with structural information

turned on. This is required in order to check the applicability conditions triggering the

enhanced abstract unification operator.

As far as the efficiency of the analysis is concerned, the situation is similar to the one

described in the previous section for the ground-or-free enhancement: the overall slow-

down, computed on the two variants of the analysis, is less than 78 seconds. Precision

improvements are observed for only one program, which is a synthetic benchmark such

as the above example. Despite its limited practical relevance, this result demonstrates

that the operator aunifyS is not optimal, even when all the possible orderings of the non-

grounding bindings are tried. Note that, in our opinion, the result stated in [Kin94, Lemma

5] can be made even stronger. In particular, we are currently investigating whether or not

a similar enhancement of the abstract unification operator can be obtained even when the

terms being unified possibly share.

8.8 Set-Sharing and Freeness

As noted by several authors, the standard combination of SH and freeness is not optimal.

G. Filé [Fil94] formally identified the reduced product of these domains and proposed an

improved abstract unification operator. This new operator exploits two properties that

hold for the most precise abstract description of a single concrete substitution:

1. each free variable occurs in exactly one sharing group;

2. two free variables occur in the same sharing group if and only if they are aliases (i.e.,

they have become the same variable).

When considering the general case, where sets of concrete substitutions come into play,

property 1 can be used to (partially) recover disjunctive information. In particular, it

is possible to decompose the overall abstract description into a set of descriptions that

necessarily come from different computation paths, each one satisfying property 1. The

abstract unification procedure can thus be computed separately on each component, and

the results of each subcomputation are then joined to give the final description. As such

components are more precise than the original description (they possibly contain more

ground variables and less sharing pairs), precision gains can be obtained.

Furthermore, by exploiting property 2 on each component, it is possible to correctly

infer that for some of them the computation will fail due to a functor clash (or even due

to the occurs-check, when considering a system working on finite trees). Note that a

similar improvement is possible even without decomposing the abstract description. As

an example, consider an abstract element such as the following:

d =
〈

{xy, u, v}, {x, y}, {x, y}
〉

,
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and suppose that the computation of the abstract semantics has to approximate the se-

quence of bindings
〈

x 7→ f(u), y 7→ g(v)
〉

. Since the sharing group xy is the only one

where the free variables x and y occur, property 2 states that x and y are indeed the

same variable in all the concrete computation states described by d ∈ SFL. Thus, it can

be safely concluded that all the corresponding concrete computations will fail due to the

functor clash. In the same situation, when considering a binding such as x 7→ f(y), all

concrete computations will fail due to the occurs-check, provided this is performed by the

concrete unification procedure.

As was the case for the reduced product between Pos and SH , the interaction between

the enhanced abstract unification operator and the elimination of ρPSD-redundant elements

can lead to results that are not correct.

Example 8.6 Let VI = {w, x, y, z} and consider the concrete element Σ ∈ D[ such that

Σ = ℘(σ), where σ = {x 7→ v, y 7→ v, z 7→ v} (note that v /∈ VI ). By Definition 6.11,

letting d = αS(Σ) = 〈sh, f, l〉 ∈ SFL, we obtain that sh = {w, x, xy, xyz, xz, y, yz, z} and

f = l = VI . Suppose that the implementation represents d by using the reduced element

dred = 〈shred, f, l〉, where shred = sh \ {xyz}, so that sh = ρPSD(shred).

According to the specification of the enhanced operator, the abstract element dred can

be decomposed into the following four components:

c1 =
〈

{w, x, y, z}, f, l
〉

, c3 =
〈

{w, xz, y}, f, l
〉

,

c2 =
〈

{w, x, yz}, f, l
〉

, c4 =
〈

{w, xy, z}, f, l
〉

.

Let
(

x 7→ f(y, w)
)

∈ Bind and, for each i ∈ {1, . . . , 4}, consider the computation of

c′i = 〈sh ′
i, f

′
i , l

′
i〉 = amguS

(

ci, x 7→ f(y, w)
)

. Since both linci
(x) and linci

(

f(y, w)
)

hold, the

new linearity component will be computed as follows:

l′i = l \
(

share withci
(x) ∩ share withci

(

f(y, w)
))

.

In all four cases, we have z ∈ l′i, so that variable z keeps its linearity even after merging

the results of the four subcomputations in a single abstract description.

In contrast, when performing the same computation with the original abstract descrip-

tion d, in the decomposition phase we also obtain a fifth component,

c5 =
〈

{w, xyz}, f, l
〉

.

It is easy to observe that, in c′5 = 〈sh ′
5, f

′
5, l

′
5〉 = amguS

(

c5, x 7→ f(y, w)
)

, we have z /∈ l′5,

so that z loses its linearity when merging the five results in a single abstract description.

Note that, in one of the concrete computation paths, we would have computed

σ′ =
{

x 7→ f(x,w), y 7→ f(y, w), z 7→ f(z, w)
}

∈ mgs
(

σ, x 7→ f(y, w)
)

.

Since z /∈ lvars(σ′), the result obtained using the abstract description dred is not correct.
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

p > 20 0.3 — — — — — — —

10 < p ≤ 20 — — — 0.3 — — — 0.3

0 < p ≤ 2 0.3 — — 0.5 3.0 — — 0.5

same precision 96.8 97.3 97.3 96.5 87.6 90.6 90.6 89.8

unknown 2.7 2.7 2.7 2.7 9.4 9.4 9.4 9.4

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

5 < p ≤ 10 — — — 0.4 — — — 0.4

same precision 96.5 96.5 96.5 96.1 89.5 89.5 89.5 89.1

unknown 3.5 3.5 3.5 3.5 10.5 10.5 10.5 10.5

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out 1.6 5.9 3.5 9.8

degradation > 1 9.9 12.1 2.0 1.6

0.5 < degradation ≤ 1 0.8 1.6 1.2 1.2

0.2 < degradation ≤ 0.5 2.4 2.4 2.7 1.2

0.1 < degradation ≤ 0.2 1.3 1.3 1.2 1.6

same time 83.3 76.1 89.5 84.0

0.1 < improvement ≤ 0.2 — — — —

0.2 < improvement ≤ 0.5 — — — —

0.5 < improvement ≤ 1 0.3 — — —

improvement > 1 0.3 0.5 — 0.8

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

B E B E B E B E

timed out 1.6 2.7 5.9 9.4 3.5 3.5 9.8 10.5

t > 10 9.7 9.9 8.6 7.3 7.4 7.4 7.4 6.6

5 < t ≤ 10 1.3 1.6 1.9 1.6 2.0 2.0 2.0 2.0

1 < t ≤ 5 6.5 5.6 4.0 5.4 3.1 3.1 4.7 4.7

0.5 < t ≤ 1 3.0 2.7 4.6 3.5 3.5 4.3 2.7 2.7

0.2 < t ≤ 0.5 6.5 7.3 8.9 8.3 9.8 9.4 9.8 9.0

t ≤ 0.2 71.5 70.2 66.1 64.5 70.7 70.3 63.7 64.5

Table 8.10: The enhanced combination with freeness.
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As already observed in Section 8.5, the above correctness problem lies not in the SFL2

domain itself, but rather in the optimized implementation which removes the redundant

elements from the set-sharing description. A correct implementation can still be obtained

by computing the closure ρPSD(dred) before the decomposition phase.

By refining Example 8.6, we show that the domain SFL is strictly more precise than

SFL2 when using the enhanced operator.

Example 8.7 Reconsider Example 8.6 and let Σ′ ∈ D[ be such that Σ′ = Σ \ {σ}. By

Definition 6.11, we have dred = αS(Σ′). Thus, as observed in Example 8.6, an analysis

using the domain SFL with the enhanced abstract semantics operator will conclude that z

is definitely linear even after the evaluation of the binding x 7→ f(y, w). Note that this is

correct, since σ /∈ Σ′, so that the substitution σ′ of Example 8.6 will not be computed.

In contrast, a correct implementation of the enhanced operator on the domain SFL2

will compute the closure ρPSD(dred) = d, before the decomposition; therefore, it will also

produce the component c5 and unnecessarily lose the linearity of variable z. Basically, the

domain SFL2 cannot distinguish between the concrete elements Σ and Σ′.

We implemented the first of the two ideas by Filé on the usual base domain (Pos ×

SFL2). As discussed above, our optimized implementation of the enhanced operator may

yield results that are not correct. However, a non-optimized implementation or even one

based on the domain (Pos × SFL) would probably result in an unbearable number of

time-outs, therefore making the overall precision comparison meaningless. Our precision

results can thus be considered an over-estimation of the actual improvements that could

be obtained by a correct implementation.

The results of the comparison, reported in Table 8.10, show that precision improve-

ments are observed on both variable independence and linearity, in particular for goal

independent analyses. As a matter of fact, for goal dependent analyses, the only precision

improvements are obtained when analysing the synthetic benchmark hvars, which sub-

stantially corresponds to Example 8.7. When looking at the time comparisons, it should

be observed that, even though we use the domain SFL2 where we should have used the

inefficient SFL, still the analysis of many programs had to be stopped because of the com-

binatorial explosion in the number of possible decompositions of the abstract description.

In principle, such an approach to the recovery of disjunctive information can be pursued

beyond the integration of sharing with freeness. In fact, by exploiting the ground-or-free

information as in Section 8.6, it is possible to obtain decompositions where each component

contains at most one occurrence (in contrast with the exactly one occurrence of Filé’s idea)

of each ground-or-free variable. In each component, the ground-or-free variable could then

be “promoted” as either a ground variable (if it does not occur in the sharing groups of

that component) or as a free variable (if it occurs in exactly one sharing group).

It would also be interesting to experiment with the second idea of Filé. However, such

a goal would require a big implementation effort, since at present there is no easy way to

incorporate this enhancement into the modular design of the China analyzer.
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8.9 Tracking Compoundness

In [BCM94a, BCM94b], M. Bruynooghe et al. consider the combination of the standard

set-sharing, freeness and linearity domains with compoundness information. A variable is

said to be definitely compound if it is always bound to a non-variable term. Note that,

according to this definition, a variable bound to a functor constant is compound. As for

freeness and linearity, compoundness is represented by the set of variables that definitely

enjoy this property.

As discussed in [BCM94a, BCM94b], compoundness information is useful in its own

right for clause indexing. Here though, the focus is on improving sharing information, so

that the question to be answered is: can the tracking of compoundness improve the sharing

analysis itself? This question is also considered in [BCM94a, BCM94b] where a technique

is proposed that exploits the combination of sharing, freeness and compoundness. This

technique relies on the presence of the occurs-check.

Informally, consider the binding x 7→ t together with an abstract description where x

is a free variable, t is a compound term and x definitely shares with t. Since x is free,

x is aliased to one of the variables occurring in t. As a consequence, the execution of

the binding x 7→ t will fail due to the occurs-check. In a more general case, when only

possible sharing information is available, the precision of the abstract description can be

safely improved by removing, just before computing the abstract binding, all the sharing

groups containing both x and a variable in t. In addition, if this reduction step removes

all the sharing groups containing a free variable, then it can be safely concluded that the

computation will fail.

To see how this works in practice, consider the binding x 7→ f(y, z) and the description

d1
def
= 〈sh1, f1, l1〉 ∈ SFL such that

sh1
def
= {wx, xy, xz, y, z},

f1
def
= {x},

l1
def
= {w, x, y, z}.

Since x is free and f(y, z) is compound, the sharing groups xy and xz can be removed so

that the amguS computation will give the set-sharing and linearity components

sh ′
1

def
= {wxy,wxz},

l′1
def
= {w, x, y, z}

instead of the less precise

sh ′
1

def
= {wxy,wxz, xy, xyz, xz},

l′1
def
= {w}.
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Note that the precision improvement of this particular example could also be obtained by

the technique introduced by Filé and discussed in the previous section. The reason is that x

is unified with the term f(y, z), which is “explicitly” compound. However, if the term was

“implicitly” compound (i.e., if it was an abstract variable known to represent compound

terms) then the technique by Filé would not be applicable. For example, consider the

binding x 7→ y and the description d2
def
= 〈sh2, f2, l2〉 ∈ SFL such that

sh2
def
= {wx, xyz, y},

f2
def
= {x},

l2
def
= {w, x, y, z}

supplemented by a compoundness component ensuring that y is compound. Then the

sharing group xyz can be removed so that the amguS will compute

sh ′
2

def
= {wxy},

l′2
def
= {w, x, y, z}

instead of

sh ′
2

def
= {wxy,wxyz, xyz},

l′2
def
= {w}.

To see how a knowledge of the compoundness can be used to identify definite failure,

consider the binding x 7→ f(y, z) and the description d3
def
= 〈sh3, f3, l3〉 ∈ SFL such that

sh3
def
= {wxy,wxz, x, y, z},

f3
def
= {w, x},

l3
def
= {w, x, y, z}.

As in the examples above, variable x is free and term t
def
= f(y, z) is compound so that, by

applying the reduction step, we can remove the sharing groups wxy and wxz. However,

this has removed all the sharing groups containing the free variable w, resulting in an

inconsistent computation state.

We did not implement this technique, since it is only correct for the analysis of systems

performing the occurs-check, whereas we are targeting at the analysis of systems possibly

omitting it. Nonetheless, an experimental evaluation would be interesting for assessing

how much this precision improvement can affect the accuracy of applications such as

occurs-check reduction.
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8.10 Summary

In this chapter we have investigated eight enhanced sharing analysis techniques that, at

least in principle, have the potential for improving the precision of the sharing informa-

tion over and above that obtainable using the domain SFL. These techniques either make

a better use of the already available sharing information, by defining more powerful ab-

stract semantic operators, or combine this sharing information with that captured by other

domains. Our work has been systematic since, to the best of our knowledge, we have con-

sidered all the proposals that have appeared in the literature: that is, better exploitation

of groundness, freeness, linearity, compoundness, and structural information.

Using the China analyzer, seven of the eight enhancements have been experimentally

evaluated. Because of the availability of a very large benchmark suite, including several

programs of respectable size, the precision results are as conclusive as possible and provide

an almost complete account of what is to be expected when analyzing any real program

using these domains.

The results demonstrate that good precision improvements can be obtained with the

inclusion of explicit structural information. For the groundness domain Pos , several good

reasons have been given as to why it should be combined with set-sharing. As for the

remaining proposals, it is hard to justify them as far as the precision of the analysis is

concerned. Regarding the efficiency of the analysis, it has been explained why the reported

time comparisons can be considered as upper bounds to the additional cost required by

the inclusion of each technique. Moreover, it has been argued that, from this point of view,

the addition of a ‘ground-or-free’ mode and the more precise exploitation of linearity are

both interesting.

No further positive indications can be derived from the precision and time comparisons

of the remaining techniques. In particular, it has not been possible to identify a good

heuristic for the reordering of the non-grounding bindings. The experimentation suggests

that sensible precision improvements cannot be expected from this technique. When

considering these negative results, the reader should be aware that the precision gains

are measured with respect to an analysis using the domain (Pos × SFL2) which, to our

knowledge, is the most accurate sharing analysis tool ever implemented.

The experimentation reported in this chapter resulted in both positive and negative

indications. We believe that all of these will provide the right focus in the design and

development of useful tools for sharing analysis.



Chapter 9
Widenings for Set-Sharing

The experimental evaluation reported in Chapter 7 has shown that, when considering

the bigger or more involved programs in our benchmark suite, both the analysis using

the domain SFL and the one using its non-redundant abstraction PSD , incur significant

efficiency problems. In this chapter, we study the problem of a scalable and precise

sharing analysis for logic programs. We define a simple domain schema for sharing analysis

that supports the implementation of several widening techniques. Using this schema,

we transform the idea underlying the sharing domain of C. Fecht [Fec96a, Fec96b] into

a widening operator on the set-sharing domain. Experimentation shows that the new

analysis scales really well: efficiency problems are solved, while the rare precision losses

registered are usually small.

Note: this chapter contains an extract of the results in [ZBH99a, ZBH99b].

9.1 The Scalability of the Analysis

By moving from the classical set-sharing domain SH to its non-redundant version PSD ,

we have achieved a significant improvement in the efficiency of the analysis. This applies

both from a theoretical point of view (the worst-case complexity of the amgu operator on

PSD is polynomial in the number of sharing groups of the input description) and from a

practical point of view (as noted in Chapter 7, speed-ups of two orders of magnitude have

been observed). However, we have not provided a fully scalable set-sharing analyzer: the

analysis of some programs still requires too much time and/or memory space.

When facing such a situation, two possible solutions can be adopted. The first one is

to revert to a simpler abstract domain, characterized by more efficient abstract seman-

tics operators. While this approach is very likely to remove all efficiency problems, it

is also possible that such a result will be obtained at the expense of precision. In par-

ticular, this solution can cause precision losses even when analysing those programs for

which the more refined abstract domain had no efficiency problem at all. This is the key

observation leading to the second solution: one only needs to avoid the negative effects

of exponential complexity when they come into play. Such a behavior can be achieved,

235



236 CHAPTER 9. WIDENINGS FOR SET-SHARING

as indicated by Cousot and Cousot [CC92b], by using the refined domains together with

widening/narrowing operators. With this technique we can try to limit precision losses to

those cases where we cannot afford the complexity implied by the refined domains.

Unfortunately, the design of widening operators tends to escape the realm of theo-

retical analysis, and thus, in our opinion, it has not been studied enough. In fact, the

development of successful widening operators requires, perhaps more than other things,

extensive experimentation.

9.1.1 Fecht’s Domain

C. Fecht [Fec96a, Fec96b] proposed a new domain for sharing analysis, denoted ↓SH ,

based on an abstraction of the usual Jacobs and Langen domain. The carrier of ↓ SH is

the same as SH , but the concretization of a set of variables in ↓ SH is equivalent to the

concretization of its power set in SH . Since the resulting approximation is rather crude,

the domain ↓ SH is combined with the groundness information encoded by Pos and with

the linearity information L (a set of linear variables, as in the case of the domain SFL).

As a matter of fact, the above combination is isomorphic to the combination of Pos with

the pair-sharing domain ASub [CKS96, Søn86]. The advantage of ↓SH with respect to

SH is twofold: first, an element of the domain can be normalized by removing all but the

maximal sets, thereby reducing its size; second, the abstract operations are more efficient

(but less precise) than those used for SH and its non-redundant version PSD .

In [ZBH99b] we compared our implementation of Pos + ↓SH + F + L (also includ-

ing freeness information) with respect to the domain Pos + SFL2: while confirming the

dramatic speed-up observed by Fecht, we found a precision loss on as many as 20% of

the benchmarks considered; moreover, the biggest loss was as high as 40% of the quantity

measured.

We note that Fecht did not present the domain ↓ SH as a widening for the set-sharing

domain and neither did he discuss how a widening based on his proposal might be achieved.

Indeed the approach of Fecht falls under the category “use a simpler domain” which, as

clearly explained in [CC92b], is both contrary and inferior to the approach “use a complex

domain with widening” that we are advocating.

9.2 A New Representation for Set-Sharing

We now introduce a new representation for set-sharing. It is made up of two components:

one represents all possible subsets of each of its elements, as was the case for ↓SH , while

the other records the set-sharing as before.

9.2.1 Clique Groups and Clique Sets

A sharing group C ∈ SG that occurs in the first component cl of an abstract element

represents all possible sharing groups between its variables: as a consequence we will call

it a clique group or, more simply, a clique and call cl , itself, a clique set.
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Definition 9.1 (Clique set.) A clique set cl is an element of CL
def
= SH .

For each clique set, the corresponding meaning in terms of sharing groups can be computed

by downward closure.

Definition 9.2 (Downward closure of clique sets.) The functions ↓ : SG → SH and

↓ : CL → SH are defined, for each C ∈ SG and each cl ∈ CL, by

↓C
def
= ℘(C) \ {∅}, ↓ cl

def
=

⋃

C∈cl

↓C.

Observe that ↓ ∈ uco(SH ). If cl ∈ CL and C ∈ SG then we say that C is down-redundant

in cl if there exists C ′ ∈ cl such that C ⊂ C ′. The addition to or removal from a clique set

of down-redundant elements makes no difference to the sharing groups that it represents.

In the implementation, as we prefer to keep the clique sets as small as possible, down-

redundant cliques are removed via a normalization function.

Definition 9.3 (Normalization.) The normalization function ||·|| : CL → CL is defined,

for each cl ∈ CL, as

||cl ||
def
= cl \ {C ∈ cl | ∃C ′ ∈ cl . C ⊂ C ′ }.

9.2.2 Combining Clique Sets with Sharing Sets

The elements of our new sharing domain have a clique set and a sharing set.

Definition 9.4 (The SH W representation.) The set SH W is given by

SH W def
=

{

(cl , sh)
∣

∣ cl ∈ CL, sh ∈ SH
}

ordered by vW defined as follows, for each (cl1, sh1), (cl2, sh2) ∈ SH W:

(cl1, sh1) vW (cl2, sh2) ⇐⇒ (cl1 ⊆ cl2) ∧ (sh1 ⊆ sh2).

With this ordering, SH W is a complete lattice.

It is possible to generalize to the elements of SH W the concept of down-redundancy intro-

duced for cliques. Thus, we define an overloading of the normalization function removing

these redundancies from a description in SH W.

Definition 9.5 (Normalization and downward closure on SH W.) The normaliza-

tion function ||·|| : SH W → SH W is defined, for each (cl , sh) ∈ SH W, as

||(cl , sh)||
def
=

(

||cl ||, sh \ ↓ cl
)

.

The downward closure function ↓(·) : SH W → SH W is defined, for each (cl , sh) ∈ SH W, as

↓(cl , sh)
def
= (↓ cl , ↓ cl ∪ sh).
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Note that ↓(·) ∈ uco(SH W) is the dual operation with respect to normalization. This

operator implicitly defines the following partial order: for any shw 1, shw2 ∈ SH W, shw1 �W

shw2 if and only if ↓(shw1) vW ↓(shw2).

The information content, in terms of sharing groups, of an element of SH W is defined

as the sharing set component of its downward closure.

Definition 9.6 (Meaning of SH W.) The function I(·) : SH W → SH is defined, for each

(cl , sh) ∈ SH W, as

I
(

(cl , sh)
) def

= ↓ cl ∪ sh.

9.3 The Abstract Operators

Many of the auxiliary abstract operators on the set-sharing domain SH can be easily

generalized to work on elements of SH W. Using these as building blocks, it is then possible

to systematically derive the specification of the abstract unification operator for the new

domain SH W.

Definition 9.7 (Operators over SH W.) Let (cl , sh), (cl i, shi) ∈ SH W, where i = 1, 2,

and V ∈ ℘(VI ). The operators relW, relW : ℘(VI ) × SH W → SH W are defined as

relW
(

V, (cl , sh)
) def

=
(

rel(V, cl), rel(V, sh)
)

,

relW
(

V, (cl , sh)
) def

=
(

relCL(V, cl), rel(V, sh)
)

,

where relCL : ℘(VI ) × CL → CL is defined as

relCL(V, cl)
def
= {C \ V | C ∈ cl } \ {∅}.

The union and binary union operators ∪W,binW : SH W × SH W → SH W are defined as

(cl1, sh1) ∪
W (cl2, sh2)

def
=

(

cl1 ∪ cl2, sh1 ∪ sh2

)

,

binW
(

(cl1, sh1), (cl2, sh2)
) def

=
(

bin(cl1, cl2) ∪ bin(cl1, sh2) ∪ bin(sh1, cl2),bin(sh1, sh2)
)

.

The star-closure operator (·)? : SH W → SH W is defined as

(cl , sh)? def
=







(∅, sh?), if cl = ∅;
(

{

vars(cl) ∪ vars(sh)
}

,∅
)

, otherwise.

The following theorem states that each operator on SH W correctly approximates the cor-

responding operator on SH .
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Theorem 9.8 If V ∈ ℘(VI ) and shw , shw 1, shw2 ∈ SH W, then

rel
(

V, I(shw)
)

⊆ I
(

relW(V, shw)
)

, (9.1)

rel
(

V, I(shw)
)

= I
(

relW(V, shw)
)

, (9.2)

I(shw1) ∪ I(shw2) = I
(

shw1 ∪
W shw2

)

, (9.3)

bin
(

I(shw1), I(shw2)
)

⊆ I
(

binW(shw1, shw2)
)

, (9.4)
(

I(shw)
)?

⊆ I
(

shw?
)

. (9.5)

By looking at the definition of the abstract operators and the corresponding correctness

result, it can be seen that clique sets and sharing sets are treated differently: when working

on the clique set component, sometimes we trade precision for efficiency; in contrast,

when working on the sharing set component, efforts are made to preserve precision. In

particular, when the clique set component is empty, the abstract operators of Definition 9.7

are equivalent to those introduced in Definition 3.42. This corresponds to the intuition

behind the definition of the domain SH W: we will move in the clique set component that

part of the abstract description on which we allow for bigger precision losses, while keeping

the other part in the sharing set component.

It is worth stressing that, thanks to the above correctness result, the specification of

a correct abstract unification procedure working on the new set-sharing representation

is straightforward. For instance, by considering the bare domain SH W (i.e., without the

addition of freeness and linearity information), we can define amguW : SH W×Bind → SH W

as follows:

amguW(shw , x 7→ t)

def
= relW

(

{x} ∪ vars(t), shw
)

∪W binW

(

relW
(

{x}, shw
)?
, relW

(

vars(t), shw
)?

)

.

It should also be clear that the above construction can be easily extended to domain

combinations including freeness and linearity information, such as the domain SFL. After

having defined SFLW def
= SH W ×F ×L, all we need to do is to provide the approximations

on SFLW of the operators introduced in Definitions 6.31 and 6.33. This is an easy task

for all but the predicate indd : HTerms2 → Bool , because this one is defined in terms of

the set intersection of sharing sets and we have not defined a set intersection operator on

SH W. However, the problem is easily solved by noting that indd(s, t) holds if and only if

rel
(

vars(s), rel
(

vars(t), sh
)

)

= ∅,

which can be easily approximated using the operator relW.

9.3.1 Proofs of Correctness

The following auxiliary lemma states the correctness of the abstract operators when they

are restricted to work on clique sets.
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Lemma 9.9 Suppose V ∈ ℘(VI ) and cl ∈ CL. Then

rel(V, ↓ cl) ⊆ ↓ rel(V, cl), (9.6)

rel(V, ↓ cl) = ↓ relCL(V, cl), (9.7)

↓ cl1 ∪ ↓ cl2 = ↓(cl1 ∪ cl2), (9.8)

bin(↓ cl1, cl2) ⊆ ↓bin(cl1, cl2), (9.9)

bin(↓ cl1, ↓ cl2) ⊆ ↓bin(cl1, cl2), (9.10)

(↓ cl)? = ↓(cl?). (9.11)

Proof. Proof of (9.6): suppose that S ∈ rel(V, ↓ cl). Then V ∩ S 6= ∅ and there exists

C ∈ cl such that S ⊆ C. Thus V ∩ C 6= ∅, so that C ∈ rel(V, cl). Hence S ∈ ↓ rel(V, cl).

Proof of (9.7): we have S ∈ rel(V, ↓ cl) if and only if S 6= ∅, V ∩ S = ∅ and there

exists C ∈ cl such that S ⊆ C. This holds if and only if S 6= ∅ and there exists C ∈ cl

such that S ∈ ↓C \ V , which is equivalent to S ∈ ↓ relCL(V, cl).

Proof of (9.8): we have S ∈ ↓ cl1∪↓ cl2 if and only if S 6= ∅ and there exists C ∈ cl1∪cl2

such that S ⊆ C. This holds if and only if S ∈ ↓(cl 1 ∪ cl2).

Proof of (9.9): suppose that S ∈ bin(↓ cl 1, cl2). Then S = S1 ∪ C2, where S1 6= ∅,

there exists C1 ∈ cl1 such that S1 ⊆ C1, and C2 ∈ cl2. Thus S ⊆ C1 ∪ C2 ∈ bin(cl1, cl2).

Hence S ∈ ↓ bin(cl1, cl2).

As ‘bin’ is symmetric on its arguments, (9.10) is a corollary of (9.9).

Proof of (9.11): suppose S ∈ (↓ cl)?. Then there exist n ≥ 1 and {S1, . . . , Sn} ⊆ ↓ cl

such that S = S1 ∪ . . . ∪ Sn. Thus, for each i ∈ {1, . . . , n}, there exists Ci ∈ cl such that

Si ⊆ Ci, so that S ⊆ C1 ∪ . . . ∪ Cn
def
= C. Since C ∈ cl?, we obtain S ∈ ↓(cl?). To prove

the other inclusion, let now S ∈ ↓(cl?). Thus S 6= ∅ and there exists C ∈ cl? such that

S ⊆ C. Then there exist n ≥ 1 and {C1, . . . , Cn} ⊆ cl such that C = C1 ∪ . . . ∪ Cn. Let

I = { i ∈ N | 1 ≤ i ≤ n,Ci ∩ S 6= ∅ }. Note that, as S 6= ∅, we have I 6= ∅. Also, for all

i ∈ I, we have Ci ∩ S ∈ ↓ cl . Since S = ∪i∈I(Ci ∩ S), we obtain S ∈ (↓ cl)?. 2

Proof of Theorem 9.8 on page 238. For the proof, let us define shw
def
= (cl , sh),

shw1
def
= (cl1, sh1), and shw2

def
= (cl2, sh2).

Proof of (9.1): by applying case (9.6) of Lemma 9.9, we obtain

rel
(

V, I(shw)
)

= rel(V, ↓ cl ∪ sh)

= rel(V, ↓ cl) ∪ rel(V, sh)

⊆ ↓ rel(V, cl) ∪ rel(V, sh)

= I
(

(

rel(V, cl), rel(V, sh)
)

)

= I
(

relW(V, shw)
)

.
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Proof of (9.2): by applying case (9.7) of Lemma 9.9, we obtain

rel
(

V, I(shw)
)

= rel(V, ↓ cl ∪ sh)

= rel(V, ↓ cl) ∪ rel(V, sh)

= ↓ relCL(V, cl) ∪ rel(V, sh)

= I
(

(

relCL(V, cl), rel(V, sh)
)

)

= I
(

relW(V, shw)
)

.

Proof of (9.3): by applying case (9.8) of Lemma 9.9, we obtain

I(shw1) ∪ I(shw2) = (↓ cl1 ∪ sh1) ∪ (↓ cl2 ∪ sh2)

= ↓(cl1 ∪ cl2) ∪ (sh1 ∪ sh2)

= I
(

(cl1 ∪ cl2, sh1 ∪ sh2)
)

= I(shw1 ∪
W shw2).

Proof of (9.4): by applying cases (9.9) and (9.10) of Lemma 9.9, we obtain

bin
(

I(shw1), I(shw2)
)

= bin
(

↓ cl1 ∪ sh1, ↓ cl2 ∪ sh2

)

= bin(↓ cl1, ↓ cl2) ∪ bin(↓ cl1, sh2) ∪ bin(sh1, ↓ cl2) ∪ bin(sh1, sh2)

⊆ ↓bin(cl1, cl2) ∪ ↓bin(cl1, sh2) ∪ ↓bin(sh1, cl2) ∪ bin(sh1, sh2)

= ↓
(

bin(cl1, cl2) ∪ bin(cl1, sh2) ∪ bin(sh1, cl2)
)

∪ bin(sh1, sh2)

= I
(

(

bin(cl1, cl2) ∪ bin(cl1, sh2) ∪ bin(sh1, cl2),bin(sh1, sh2)
)

)

= I
(

binW(shw1, shw2)
)

.

Proof of (9.5): if cl = ∅ then the two expression are easily seen to be equal to sh?.

Otherwise, if cl 6= ∅, by applying case (9.11) of Lemma 9.9, we obtain

(

I(shw)
)?

= (↓ cl ∪ sh)?

⊆
(

↓(cl ∪ sh)
)?

= ↓
(

(cl ∪ sh)?
)

= ↓
(

{

vars(cl) ∪ vars(sh)
}

)

= I(shw?).

2
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9.4 Widening Set-Sharing

The partial order �W can be interpreted as a way to compare the precision potential

of descriptions. To clarify the meaning of such a sentence suppose that, for i = 1, 2,

shw i = (cl i, shi) ∈ SH W are such that shw1 ≺W shw2 (namely, shw1 �W shw2, but

shw2 6�W shw1). According to the definition of �W , we have two cases:

1. if I(shw1) ⊂ I(shw2) then shw1 is more precise than shw2;

2. otherwise, we have I(shw1) = I(shw2) but ↓(cl1) ⊂ ↓(cl2). In this case, while now

being as precise as shw 1, the element shw2 will probably lose more precision as the

analysis goes on, because it has more cliques.

Definition 9.10 (Widening for SH W.) The function ∇ : SH W → SH W is a widening

for SH W if, for each shw ∈ SH W, we have shw �W ∇ shw.

By definition, for any shw ∈ SH W, I(shw) ⊆ I(∇ shw) holds. The obvious corollary is

that any analysis using these widenings, possibly a different widening at each step of the

analysis, is correct. Also note that it is safe to widen and normalize descriptions within

the actual computation of the whole abstract unification operator, before and/or after the

execution of the operators of Definition 9.7.

Our widenings, being unary operators, do not depend on the iterates seen so far dur-

ing the fixpoint computation; moreover, even the identity function on SH W is a widening.

Thus, Definition 9.10 looks quite different from the standard definition of widening oper-

ators, as introduced in [CC79]. Nonetheless, it is sufficient for our purposes, because SH W

is a finite domain and all of its ascending chains finitely converge.

Of course, really useful widenings are guarded by some applicability conditions. The

simplest conditions are those based on the cardinality of the sets in the SH W description.

For example, for each widening ∇ one can define

∇f,n(cl , sh)
def
=







∇(cl , sh), if f(# cl ,# sh) > n,

(cl , sh), otherwise,

for suitable choices of f : N2 → N and n ∈ N.

Note that the size of the abstract domain elements is just one of the many possibilities

for dynamically adjusting the precision/efficiency trade-off of the analysis. For instance,

by adding a time parameter to the definition of widening, one could consider the elapsed

analysis time, so that cruder approximations come into play when this quantity goes

beyond a given threshold. In China, a few widenings of this kind have been implemented

but, in the current development phase, they are all disabled: being time-dependent, they

make the precision results of the analysis non-deterministic, so that debugging becomes

almost impossible.

Widenings can be ordered in the obvious way: ∇1 �W ∇2 if, for all shw ∈ SH W,

∇1(shw) �W ∇2(shw). Near the top of this ordering, we have two panic widenings. These
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are defined by

∇p(cl , sh)
def
=

(

cl ∪
{

vars(sh)
}

,∅
)

,

∇P (cl , sh)
def
=

(

{

vars(cl) ∪ vars(sh)
}

,∅
)

.

The panic widenings are present in the China implementation, with very strict guards,

only to ensure that the analyzer will never crash, however big (or involved) the analysed

logic program is.

At the other extreme we can define very soft widenings. While referring the interested

reader to [ZBH99b] where several widenings with different properties are specified and

experimentally evaluated, we now introduce the widening based on Fecht’s idea, which we

will call Fecht’s widening. This is simply given by

∇F (cl , sh)
def
= (cl ∪ sh,∅).

Note that this widening does not introduce new sharing pairs. However, as it can introduce

new singletons, it may destroy ground dependencies. Thus, as was the case for the domain

↓SH , better precision is obtained when the sharing domain using this widening is combined

with Pos.

9.5 Experimental Evaluation

For the experimental evaluation of the Fecht’s widening ∇F , we consider the base domain

Pos × SFL2, introduced in Section 8.2. The widening is guarded by a size threshold of

100 on the sharing set component. In other words, immediately before each abstract mgu

operation the analyzer operates both normalization (to remove those cliques and sharing

groups that are redundant with respect to the downward closure of the clique set) as

well as redundancy elimination (to remove those sharing groups that are redundant with

respect to ρPSD). If after this phase the operand (cl , sh) is such that # sh > 100, then

(cl , sh) is substituted by ∇F (cl , sh). We call this guarded widening ∇F
100.

We consider goal dependent and goal independent analyses, both with and without the

structural information provided by the Pattern(·) construct. The reader is warned that

the experimental results obtained for the widened domain with structural information are

to be considered biased, because there is no widening at all on the Pattern component.

Since all the time-dependent widenings are disabled, when using structural information

the analysis time can still increase beyond the given time threshold. This is the only

reason why we still obtain one time-out, for the goal dependent analysis (with structural

information) of the program symbolic1.

In Tables 9.1 and 9.2 we provide the same kind of precision and efficiency summaries

used in Chapter 7. By only looking at the average analysis times reported in Table 9.1,

we see immediate evidence of the efficiency improvement achieved: once again, the ratios

are under one tenth. Moreover, we have to stress that this has been obtained with respect
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Goal Independent w/o Struct Info with Struct Info

Programs Measure Base ∇F
100 Base ∇F

100

Sum 19733.80 94.99 45912.30 867.07

All Avg 53.05 0.26 123.42 2.33

Benchs StDev 267.12 1.19 452.67 34.44

Median 0.10 0.03 0.11 0.04

Sum 8933.80 74.21 6312.27 100.99

Both Avg 24.41 0.20 18.04 0.29

Completed StDev 139.31 1.02 118.88 1.57

Median 0.10 0.03 0.10 0.03

Goal Dependent w/o Struct Info with Struct Info

Programs Measure Base ∇F
100 Base ∇F

100

Sum 19531.40 239.37 47985.40 4322.37

All Avg 76.29 0.94 187.44 16.88

Benchs StDev 348.58 6.81 566.95 132.70

Median 0.10 0.03 0.12 0.05

Sum 3331.36 55.95 2985.39 58.79

Both Avg 13.49 0.23 12.92 0.25

Completed StDev 88.78 0.75 74.66 0.92

Median 0.10 0.03 0.11 0.04

Table 9.1: (Pos × SFL2) with ∇F
100: time sum, average, deviation and median.

to the domain Pos × SFL2, which had already improved the analysis times by a similar

ratio thanks to the use of the non-redundant set-sharing domain PSD .

When looking at the precision of the analysis, Table 9.2 provides additional good news:

precision losses are present in a limited number of cases. In Table 9.3 we provide a detailed

view of all of them, where rows are labeled by the name of the benchmark and columns are

labeled by the measured quantity (I, G, F and L, interpreted as usual). The meaning of

table cells, which are of the form n/m, is that the analysis using (Pos × SFL2) detected n

units (variables or pairs of variables) for the given observable, while m units were detected

when using the same domain with ∇F
100. For the reader’s convenience, the differences are

highlighted by using a boldface font.

Finally, it is worth stressing that there are other differences besides those reported in

Table 9.3: namely, for the domain (Pos × SFL2) without widenings we had 62 time-outs

(spread over the four variations of the analysis). All of these analyses, but the single one

mentioned before, now complete in the given time limit, therefore providing useful results

which can be fairly regarded as precision improvements.

9.6 Summary

We have studied a new representation for set-sharing that allows for the incorporation of

a variety of widening operators. Our experimental evaluation shows that, by basing one
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Goal Independent without Struct Info with Struct Info

Prec. class I G F L I G F L

same precision 97.6 98.1 98.4 98.4 92.2 94.1 93.5 92.5

unknown 1.6 1.6 1.6 1.6 5.9 5.9 5.9 5.9

−2 ≤ p < 0 0.5 0.3 — — 0.8 — 0.3 0.8

−5 ≤ p < −2 — — — — 0.5 — — —

−10 ≤ p < −5 0.3 — — — 0.3 — — 0.5

−20 ≤ p < −10 — — — — — — — 0.3

p < −20 — — — — 0.3 — 0.3 —

Goal Dependent without Struct Info with Struct Info

Prec. class I G F L I G F L

same precision 95.3 96.5 96.5 96.5 89.1 90.2 90.2 89.8

unknown 3.5 3.5 3.5 3.5 9.8 9.8 9.8 9.8

−2 ≤ p < 0 1.2 — — — 0.8 — — —

−20 ≤ p < −10 — — — — 0.4 — — 0.4

Time diff. class Goal Ind. Goal Dep.

w/o SI with SI w/o SI with SI

both timed out — — — 0.4

degradation > 1 — — — —

0.5 < degradation ≤ 1 — — — —

0.2 < degradation ≤ 0.5 — — 0.8 —

0.1 < degradation ≤ 0.2 0.3 — — —

same time 71.0 70.2 73.4 69.5

0.1 < improvement ≤ 0.2 5.1 4.6 5.9 3.1

0.2 < improvement ≤ 0.5 4.0 2.7 5.1 3.9

0.5 < improvement ≤ 1 2.4 3.8 — 0.8

improvement > 1 17.2 18.8 14.8 22.3

Total time class Goal Independent Goal Dependent

without SI with SI without SI with SI

%1 %2 %1 %2 %1 %2 %1 %2

timed out 1.6 — 5.9 — 3.5 — 9.8 0.4

t > 10 9.7 0.5 8.6 1.6 7.4 1.6 7.4 3.9

5 < t ≤ 10 1.3 0.3 1.9 1.6 2.0 1.2 2.0 1.6

1 < t ≤ 5 6.5 3.2 4.0 3.5 3.1 4.3 4.7 7.0

0.5 < t ≤ 1 3.0 4.0 4.6 5.6 3.5 3.9 2.7 3.5

0.2 < t ≤ 0.5 6.5 7.5 8.9 9.7 9.8 9.0 9.8 12.1

t ≤ 0.2 71.5 84.4 66.1 78.0 70.7 80.1 63.7 71.5

Table 9.2: (Pos× SFL2) with ∇F
100: efficiency and precision summaries.
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Benchmark I G F L

Goal Independent, without Struct Info

back52 8752/8748 838/838 1653/1653 5582/5582

caslog 7126/6649 569/569 390/390 2115/2115

reform compiler 28357/28345 1110/1108 2311/2311 7751/7751

Goal Independent, with Struct Info

chat parser 1888/1709 149/149 166/127 604/565

chess 512/508 95/95 78/77 233/232

cselcomp 5203/5177 235/235 668/668 2013/2012

puzzle 169/114 0/0 55/55 75/62

motel 4921/4705 181/181 1216/1216 1985/1953

petsan 4024/4010 298/298 332/332 1099/1099

shopper shop 128/123 22/22 30/30 128/118

Goal Dependent, without Struct Info

ezan 2011/2009 453/453 277/277 751/751

quotan 646/639 149/149 98/98 286/286

synth 1994/1986 547/547 276/276 851/851

Goal Dependent, with Struct Info

quotan 709/701 149/149 106/106 285/285

shopper shop 3518/2932 584/584 42/42 804/668

synth 2678/2654 643/643 279/279 952/952

Table 9.3: (Pos× SFL2) with ∇F
100: detail of the precision losses.

of these widenings on an idea of C. Fecht, we obtain a data-flow analysis for groundness,

independence, freeness and linearity, with unprecedented levels of precision and efficiency.

We thus believe we have made a significant further step toward the solution of the

problem of practical, precise, and efficient sharing analysis of logic programs. By im-

plementing the widenings defined in this chapter (with the addition of a time-dependent

widening in the case that the abstract domain is enhanced by structural information), the

China analyzer is able to honor one of its most important design goals: never crash (e.g.,

by exhausting all the available memory), always terminate with a correct result and in

reasonable time.

The problem of the graceful degradation of analyses based on set-sharing was already

addressed in [Lan90]: there a new representation for sharing sets (using symbolic expres-

sions built upon a worst-case constructor wc) is intended to abstract all but the definite

ground dependency information on given subsets of the relevant variables. To the best

of our knowledge, this domain has never been implemented. We believe that such an

approach, by requiring the syntactic manipulation of complex symbolic expressions, can

still suffer from efficiency problems when dealing with big programs.



Chapter 10
Related Work

It is almost impossible to provide a complete and fair account of all the literature relevant

to sharing analysis. As we have seen throughout the thesis, in the broad area of abstract

interpretation of logic programs, sharing analysis has been a very active research topic. In

the recent past, many researchers contributed to the field by proposing new domains and

abstract operators, by formally or experimentally comparing previous proposals or even

by using sharing analysis domains as test-cases for the application of domain-independent

abstract interpretation concepts and techniques. In many cases, minor variations of the

same concepts and results have been proposed independently by different people, so that

even the attribution of a particular enhancement in the field is sometimes problematic.

Many of these proposals have been discussed in the previous chapters, even though

some of them en passant only. In the following, we will review other recent publications

on sharing analysis, trying to highlight the connections with our work.

10.1 Alternative Domains for Sharing Analysis

In this section we review the approaches to the sharing analysis of logic programs that

are, more or less, alternative with respect to the standard pair-sharing and set-sharing

domains presented in Chapter 1. All the following proposals assume a concrete do-

main of idempotent substitutions, so that the corresponding correctness results apply

to the equational theory FT only. Moreover, they enable the use of abstract compilation

[CF92, GDL95, HWD92], where the data-flow analysis is compiled directly to a general-

ized abstract machine, computing the standard semantics of the program on the domain

of abstract descriptions.

Bruynooghe et al. [BDB+96] introduce a new domain for sharing and freeness anal-

ysis based on the concept of pre-interpretation [BBD94]. The elements of the abstract

domain are sets of domain relations, where each domain relation is a set of assignments

of values from the pre-interpretation to the tuple of variables of interest. The considered

pre-interpretation has three elements, g, i and f , corresponding to ground, partially in-

stantiated and free terms, respectively. In [BDB+96] it is shown that a single domain

247
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relation can encode, besides freeness, a set of sharing groups: therefore, it can be argued

that the carrier of this abstract domain has the same expressive power of the disjunctive

completion [CC92a] of SH × F ; in particular, it subsumes the groundness domain Pos .

However, the semantic operators defined in [BDB+96] are responsible, in certain cases,

for some precision loss, thus making the analysis based on this domains not comparable

with respect to an analysis using SH ×F . Moreover, in order to obtain an efficient imple-

mentation, the prototype analyzer uses a simplified version of the abstract operators, so

that the precision of the analysis is further degraded. As a consequence, the experimental

evaluation reported a precision loss on all but the smaller benchmarks considered.

Codish et al. [CLB97, CLB00] describe an algebraic approach to the sharing analysis of

logic programs that is based on set logic programs. A set logic program is a logic program

in which the terms are sets of variables and standard unification is replaced by a suitable

unification for sets, called ACI1-unification (unification in the presence of an associative,

commutative, and idempotent equality theory with a unit element). In [CLB97, CLB00], it

is shown that the domain of set-substitutions, with a few modifications, can be used as an

abstract domain for sharing analysis. The standard operations of composition, application

and projection already defined for set-substitutions can be used for the abstract semantics

construction. However, the similarities do not carry through to all the abstract operators.

In particular, the standard ACI1-unification operator defined on set-substitutions, com-

puting the most general ACI1-unifier with respect to the standard instantiation ordering,

is not a correct approximation of concrete unification. Thus, the authors define a new pre-

order on set-substitutions, denoted �ir , and show that abstract unification corresponds to

finding the most general ACI1-unifier with respect to �ir . The abstract domain is defined

as the quotient of the domain of set-substitutions with respect to the equivalence relation

induced by this preorder. Such a quotient is shown to be isomorphic to the set-sharing

domain SH . Note that, as a consequence, as far as groundness and independence are

concerned, this domain includes all of the redundant elements identified in Chapter 4.

Levi and Spoto [LS00] study the systematic construction of a new domain for sharing

analysis by means of the linear refinement operator [GS97]. In particular, the authors

show how a powerful abstract domain can be obtained as the refinement of the simple

reduced product PS u F . By encoding the relational dependencies between pair-sharing

and freeness, the new domain is able to represent both linearity and, to a limited extent,

also structural information. However, the precision potential of this new abstract domain

is not fully exploited by the actual analysis: for instance, the given executable specification

is only an approximation of the actual abstraction function. Thus, from a formal point of

view, this analysis is not uniformly more precise than the one based on the domain SFL.

In [AS01], the new abstract domain has been implemented and experimentally evaluated

on nine benchmarks. The authors compared their goal independent analysis with respect

to a goal dependent analysis using the domain combination SH ×F . The comparison has

shown that, from a practical point of view, their prototype implementation is almost as

precise as SH × F , even though being less efficient.
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10.2 Optimal Abstract Unification Operators

Cortesi and Filé [CF99] proved that the abstract unification operator ‘amgu’ on the set-

sharing domain SH , besides being correct, is also optimal in the sense defined by equa-

tion (2.3) of Chapter 2. This means that the only way to (uniformly) increase the precision

on set-sharing is by considering a domain stronger than SH .

A similar result is obtained independently in [CLB00] for their alternative representa-

tion of SH based on set-substitutions. This highlights that the abstract operators defined

on the two representations are themselves “isomorphic”, meaning that each operator on

SH is isomorphic to a particular composition of the operators defined on set-substitutions,

and vice versa.

These optimality results only hold for the analysis of logic languages computing on the

domain of finite trees. Note that what we are saying goes beyond the trivial observation

that the operators are only defined for idempotent substitutions. What we really want

to stress is that their “natural generalization” to the domain of substitutions in rational

solved form (that is, just removing the occurs-check condition x /∈ t) is correct but not

optimal. A formal argument in this sense can be obtained by combining Proposition 6.49,

that is the correctness result for the cyclict
x operator, with Example 6.35, showing that

the cyclict
x operator can improve the precision of the analysis. Note that both [CF99]

and [CLB00] clearly state that they only consider idempotent substitutions.

In [CLB00] the approach using set logic programs is generalized to include linearity

information, by suitably annotating the set-substitutions. The abstract unification op-

erator enhanced to exploit this information, denoted lin-mguACI1, is very similar to the

classical combinations of set-sharing with linearity [BCM94a]. In particular, the precision

improvements arising from this enhancement are only exploited when the two terms being

unified are definitely independent. As we have seen in Chapter 6, this choice results in

a sub-optimal abstract unification operator. However, in [CLB00], the authors claim the

optimality of the abstract operator lin-mguACI1. This claim is formally stated, together

with a proof, as Lemma A.10 in the Appendix of [CLB00]. Such an optimality result seems

to be in direct contraposition with Propositions 6.45 and 6.47, stating that our improved

operator is correct, and Example 6.34, showing that there exists a case where our operator

provides more precision. By looking at the proof of Lemma A.10, it can be seen that the

case when the two terms possibly share a variable is dealt with by simply referring to an

example:1 this one is supposed to show that all the possible sharing groups can be gen-

erated. However, even our improved operator correctly characterizes the given example,

so that the proof of Lemma A.10 is wrong and the optimality of the abstract operator

lin-mguACI1 is not proved. In addition, assuming that the proofs of our propositions are

correct, it follows that Lemma A.10 cannot hold.

1The proof refers to Example 8, which however has nothing to do with the possibility that the two
terms share; we believe that Example 2 was intended.
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10.3 Pair-Sharing over Rational Trees

As we have seen, most of the literature on sharing analysis assumes a domain of finite trees.

For the domain of rational trees, prior to [HBZ98, HBZ02] (where the results of Chapter 3

were first presented), none of the many sharing domains proposed were proved correct. To

our knowledge, King [Kin00] provided the first proof of correctness for a sharing domain

enhanced with linearity information that applies to rational-tree languages.

In [Kin00], the abstract domain considered is the combination of the pair-sharing and

linearity components of the Søndergaard’s domain ASub. Using our notation, the domain

is thus isomorphic to (ρPS u ρL)(SFL). Groundness information, in the form of a set of

definitely ground variables (i.e., the domain Con), is used to improve the results of the

analysis. However, the groundness domain is a parameter of the domain construction

and the choice of the actual domain used to compute the groundness information is left

unspecified. In particular, it is assumed without proof that the corresponding analysis of

groundness is correct for rational-tree languages.

To formalize the abstraction and concretization function, [Kin00] borrows from [IZ96]

the concept of limit for a sequence of substitutions. This limit operator is useful when

reasoning about possibly infinite rational trees and ensures that our ‘rt’ operator is well-

defined. However, in general, the limit is not finitely computable and the same holds for the

abstraction function as specified in [Kin00]. In contrast, the abstraction functions defined

in this thesis are based on the finitely computable ‘occ’, ‘fvars’ and ‘lvars’ operators.

Finally, the proofs of correctness in [Kin00] exploit the concept of alternating paths

[Søn86], therefore having a completely different structure with respect to the corresponding

proofs presented here. It can be fairly argued that the proofs in [Kin00] are simpler: one of

the reasons is that they apply to a much weaker domain. It would be interesting to know

whether or not the alternating paths concept (or a small variation of it) could be exploited

to obtain simpler correctness proofs for analyses based on the set-sharing domain.

10.4 Generalized Quotient or Optimal Semantics?

A new domain for pair-sharing analysis has been defined in [Sco00] as

Sh
PSh = PSD+ uA,

where the PSD+ component is one of the factors obtained from PSD by complementation

(see Section 5.5.2 in Chapter 5), while the A component is a strict abstraction of the

groundness domain Pos. It can be seen from the definition that Sh
PSh is a close relative

of PSD . This new domain is obtained, just as in the case for PSD , by a construction

that starts from the set-sharing domain SH ≡ Sh and aims at deriving the pair-sharing

information encoded by PS ≡ PSh. However, instead of applying the generalized quotient

operator used to define PSD , the domain Sh
PSh is obtained by applying a new domain-

theoretic operator that is based on the concept of optimal semantics [GRS98a].
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When comparing Sh
PSh and PSD , the key point to note is that Sh

PSh is neither an

abstraction nor a concretization of the starting domain SH . On the one hand Sh
PSh is

strictly more precise for computing pair-sharing, since it contains formulas of Pos that

are not in the domain SH . On the other hand SH and PSD are strictly more precise for

computing groundness, since Sh
PSh does not contain all of Def : in particular, it does not

contain any of the elements in Con.

While these differences are correctly stated in [Sco00], the informal discussion goes

further. For instance, it is argued in [Sco00, Section 6.1] that

“in [BHZ02]2 the domain PSD is compared to its proper abstractions only,

which is a rather restrictive hypothesis. . . ”

This hypothesis was not made arbitrarily: rather, it is a distinctive feature of the gener-

alized quotient approach itself. Moreover, such an observation is not really appropriate

because, when devising the PSD domain in Chapter 4, the goal was to simplify the start-

ing domain SH without losing precision on the observable PS . This is the goal of the

generalized quotient operator and, in such a context, the “rather restrictive hypothesis”

is not restrictive at all.

The choice of the generalized quotient can also provide several advantages that have

been fully exploited throughout this thesis. Since an implementation for SH was already

available, the application of this operator resulted in an executable specification of the

simpler domain PSD . By optimizing this executable specification it was possible to arrive

at a much more efficient implementation: exponential time and space savings have been

achieved by removing the redundant sharing groups from the computed elements and by

replacing the star-union operator with the 2-self-union operator. Moreover, the executable

specification inherited all the correctness results readily available for that implementation

of SH , so that the only new result that had to be proved was the correctness of the

optimizations.

These advantages do not hold for the domain Sh
PSh. In fact, the definition of a feasible

representation for its elements and, a fortiori, the definition of an executable specification

of the corresponding abstract operators seem to be open issues.3 Most importantly, the

required correctness results cannot be inherited from those of SH . All the above reasons

indicate that the generalized quotient was a sensible choice when looking for a domain

simpler than SH while preserving precision on PS .

Things are different if the goal is to improve the precision of a given analysis with

respect to the observable, as was the case in [Sco00]. In this context the generalized

quotient is the wrong choice, since by definition it cannot help, whereas the operator

defined in [Sco00] could be useful.

2As already noted, Chapters 4 and 7 are based on the results presented in [BHZ02].
3In [Sco00], the only representation given for the elements of Sh

PSh is constituted by infinite sets of
substitutions.
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10.5 Finite-Tree Analysis

Sharing information has been shown to be important for finite-tree analysis [BGHZ01,

BZGH01]. This aims at identifying those program variables that, at a particular program

point, cannot be bound to an infinite rational tree (in other words, they are necessarily

bound to acyclic terms). This novel analysis is irrelevant for those logic languages comput-

ing over a domain of finite trees, while having several applications for those (constraint)

logic languages that are explicitly designed to compute over a domain including rational

trees, such as Prolog II and its successors [Col82, Col90], SICStus Prolog [SIC95], and Oz

[ST94].

The analysis specified in [BGHZ01] is based on a parametric abstract domain H × P ,

where the H component (the Herbrand component) is a set of variables that are known to

be bound to finite terms, while the parametric component P can be any domain capturing

aliasing, groundness, freeness and linearity information that is useful to compute finite-

tree information. An obvious choice for such a parameter is the domain SFL and we have

developed two implementations, by instantiating P to both SFL and its non-redundant

version SFL2. It is worth noting that, in [BGHZ01], the correctness of the finite-tree

analysis is proved by assuming the correctness of the underlying analysis on the parameter

P . Thus, thanks to the results proved in Chapter 6, such a proof can now be considered

complete.

While referring the reader to [BGHZ01, BZGH01] for a deeper introduction to finite-

tree analysis and its applications, we now explain how, for such an application, the com-

bination H × SFL has better precision than the combination H × SFL2.

In the computation of the finite-tree component, the information encoded in SFL is

exploited in several ways. In particular, the set-sharing component SH is more precise

than PSD when computing the following new abstract operator, which is needed for the

definition of amguH, the abstract unification operator on the H component (note that we

are intentionally skipping the definition of all the other abstract operators).

Definition 10.1 For each s, t ∈ HTerms, d
def
= 〈sh, f, l〉 ∈ SFL, let shs = rel

(

vars(s), sh
)

and sht = rel
(

vars(t), sh
)

. Then

share same vard (s, t)
def
= vars(shs ∩ sht).

Informally speaking, share same vard (s, t) returns the set of all the variables that may

share the same variable with both terms s and t. The next example witnesses that the

domain SFL2 is less precise than the domain SFL when computing with such an operator.

Example 10.2 Consider the abstract element d
def
= 〈sh, f, l〉 ∈ SFL, where

sh
def
= {xy, xz, yz}.
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Then we have

shx = rel
(

{x}, sh
)

= {xy, xz},

shy = rel
(

{y}, sh
)

= {xy, yz},

shx ∩ shy = {xy}.

Thus, by Definition 10.1, z /∈ share same vard (x, y).

In contrast, when computing on the abstract domain SFL2, the element d is equivalent

to d ′ = ρPSD(d) =
〈

sh ′, f, l
〉

, where

sh ′ def
= ρPSD(sh) = sh ∪ {xyz}.

As a consequence, we have

sh ′
x = rel

(

{x}, sh ′
)

= {xy, xz, xyz},

sh ′
y = rel

(

{y}, sh ′
)

= {xy, yz, xyz},

sh ′
x ∩ sh ′

y = {xy, xyz},

so that z ∈ share same vard ′(x, y).

Thus, in d ∈ SFL the information provided by the lack of the sharing group xyz is not

redundant for the computation of the function share same vard .

Having showed that SFL2 is less precise than SFL, it is time to question whether all of

the information encoded in SFL is useful for finite-tree analysis. It turns out that many

of the elements of the domain SFL are redundant even for finite-tree analysis. By looking

at Example 10.2 we see that, when deciding if it is the case that z ∈ share same vard (s, t),

we need to consider three objects at a time: the variable z as well as the terms s and t.

Thus, the domain PSD is not enough, since it precisely captures pair -sharing dependencies

only. The above observation already contains the solution to our problem: triple-sharing

dependencies.

Let SFL3
def
= TSD3 × F × L, where TSD3 = ρTSD3

(SH ) is the domain defined in

Chapter 5 precisely capturing the dependencies on 3-tuples. We have shown that SFL3 is

complete with respect to SFL for finite-tree analysis. Namely, the finite-tree analyses using

the domain H × SFL3 achieves the same precision results (on the finite-tree component

H) of the domain H × SFL.

As we have seen in Chapter 5, on the domain TSD3 the star-closure operator can be

safely replaced by the 3-self-union operator, whose complexity is cubic in the number of

sharing groups of the given abstract element. Thus, even in this case the amguS operator

can be implemented in polynomial time without losing precision on the observables, which

now are groundness, independence, freeness, linearity and term-finiteness.

However, it is questionable whether using SFL3 instead of SFL2 would improve the

precision from a practical point of view. Experimentation has shown that, in practice,



254 CHAPTER 10. RELATED WORK

finite-tree analysis using SFL2 always achieves the same precision as that of the corre-

sponding analysis using SFL (to be more precise, the same results are obtained on all but

the single synthetic benchmark, named hvars, that we wrote in order to show that SFL

can be more precise than SFL2).



Chapter 11
Conclusions

In this thesis we have identified and provided a solution to some of the problems related to

the specification and implementation of a practical sharing analysis tool for logic languages.

The contributions of this work relate to the correctness, the precision and the efficiency

of sharing analyses.

The starting point was the set-sharing domain of Jacobs and Langen. We have shown

that the previous correctness results, even for this domain, were inadequate, since they

assumed a computation domain of finite trees, while almost all the currently implemented

logic languages, by omitting the occurs-check in the unification procedure, actually com-

pute on a domain of possibly infinite rational trees. Thus we have generalized the standard

definitions of the abstraction function and proved the correctness of the analysis, first for

the basic set-sharing domain of Jacobs and Langen and then for its combination with

freeness and linearity information.

Regarding the precision of the analysis, we have provided the specification of a new

abstract unification operator for the combination of set-sharing with freeness and linearity.

This operator is more precise than the classical ones in that it precisely captures the

integration of aliasing with linearity as originally proposed, in a pair-sharing context, by

Søndergaard. We have provided an implementation of many variations of this domain,

most of them based on proposals that appeared in recent literature but unsupported by

an adequate experimental evaluation. The comparisons of the precision results obtained

for the different domains have provided insight into the practical impact of these proposals.

The issues pertaining to the efficiency of the static analysis have been pursued, as

with precision, from both theoretical and practical points of view. Prior to this work,

the pair-sharing domain ASub had been rightfully considered a better trade-off between

complexity and precision with respect to the set-sharing domain. A first reason was

that the time needed for the abstract unification algorithm may be exponential for the

set-sharing domain, while enjoying a polynomial bound for ASub. We have solved this

problem by identifying the weakest abstraction of the set-sharing domain that maintains

the same precision on the properties of interest. For this new domain, we have defined a

polynomial abstract unification operator. A second reason for preferring ASub was that

255
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the representation of a set-sharing element may require an exponential amount of space,

while elements of ASub can be stored in polynomial space. We have also solved this

problem by defining a new representation for set-sharing that supports the specification

of many widening operators. With these operations, time and space requirements can

be dynamically adjusted during the analysis so that all scalability problems are resolved.

These theoretical results have been validated by an extensive experimental evaluation: this

has shown that we often achieve significant efficiency improvements, while the precision

losses due to the widenings are extremely rare.

In our opinion, the above correctness, precision and efficiency results, are all significant

although correctness is regarded as the most important one, filling one of the most no-

ticeable gaps between the theory and the practice of sharing analysis for logic languages.

There are, though, other problems that need to be addressed if we aim at the develop-

ment of a static analyzer for real logic languages: one is the handling of all the built-ins

in the language; while another is the definition of a modular analysis, where each module

of the source program can be analyzed in isolation, possibly by exploiting the previously

computed results of the analysis of the other modules. In both cases, the main difficulty

is not in the approximation step, where all the well-known techniques can be used; rather,

the problem is in agreeing on the definition of the concrete operators corresponding to the

considered language constructs. For instance, when dealing with rational-tree languages,

a few of the language built-ins are not provided with a well-established concrete seman-

tics, so that implementations can happen to behave incoherently [BGHZ01]. Similarly,

each implementation typically adopts its own module system, characterized by small but

tedious differences with respect to the others, so that a uniform solution is not available.

These issues can be the target of further research.
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