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M. Köhler∗ A. Krall∗

H. Kuchen∗ J. Launchbury
J. Lloyd A. Middeldorp
D. Miller J. J. Moreno-Navarro
L. Naish M. J. O’Donnell
P. Padawitz C. Palamidessi
F. Pfenning D. Plaisted
R. Plasmeijer U. Reddy
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Abstract

Because of synchronization based on blocking ask, some of the most
important techniques for data-flow analysis of (sequential) constraint
logic programs (clp) are no longer applicable to cc languages. In par-
ticular, the generalized approach to the semantics, intended to fac-
torize the (standard) semantics so as to make explicit the domain-
dependent features (i.e., operators and semantic objects that may be
influenced by abstraction) becomes useless for relevant applications.
In the case of clp programs, abstract interpretation of a program P
is obtained by evaluating an abstract program α(P ) into an instance
of clp itself, provided with a suitable abstract constraint system. In
cc programs, a correct characterization of suspended computations
can only be obtained by replacing ask constraints with stronger con-
straints, which is not the case in abstract interpretation, where ab-
straction is usually a weakening of constraints. A possible solution
to this problem is based on a more abstract (nonstandard) semantics:
the success semantics, which models nonsuspended computations only.
With a program transformation (NoSynch) that simply ignores syn-
chronization, we obtain a clp-like program that allows us to apply
standard techniques for data-flow analysis. For suspension-free pro-
grams, the success semantics is equivalent to the standard semantics,
thus justifying the use of suspension analysis to generate sound ap-
proximations. A second transformation (Angel) is introduced, apply-
ing a different abstraction of synchronization in possibly suspending
programs. The resulting abstraction is adequate to suspension analy-
sis. Applicability and accuracy of these solutions are investigated.
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1 Introduction

Abstract interpretation is intended to formalize the idea of approximating
program properties by evaluating them on suitable nonstandard domains.
The standard domain of values is replaced by a domain of descriptions of val-
ues, and the basic operators are provided with a corresponding nonstandard
interpretation. In the classical framework of abstract interpretation [CC77],
the relation between abstract and concrete semantic objects is provided by
a pair of adjoint functions referred to as abstraction α and concretization γ.
The idea is to describe data-flow information about a program P by eval-
uating the program by means of an abstract interpreter I. The abstract
interpretation I(P ) is correct if any possible concrete computation is de-
scribed by γ(I(P )). This evaluation should provide a finite (and therefore
approximated) description of the program behavior, so as to determine (at
compile time) run-time properties of the program. The approach is general
enough to be domain independent and language independent: by formalizing
a domain abstraction, it can be applied to any semantic definition, indepen-
dently of the underlying programming language.

The definition of an abstract interpreter for a language actually corre-
sponds to a semantics abstraction. However, many aspects of the (concrete)
semantic construction are not affected by the abstraction. For instance, in
logic programming, abstract interpretation is obtained by abstracting unfold-
ing, which is basically replacement + unification. This corresponds precisely
to defining a notion of abstract unfolding, which usually implements abstract
unification, but leaves replacement unchanged. In this direction, the general-
ized approach to the semantics in [GDL95] has been introduced precisely to
factorize the semantics with respect to its domain-dependent features (i.e.,
operators and semantic objects). This makes the above distinction between
replacement and unfolding more apparent. This technique can be naturally
applied to clp programs, where the notion of constraint system provides a uni-
form framework to deal with semantic objects (constraints) and operators at
different levels of abstraction. In this case, abstract interpretation is obtained
simply by evaluating the abstract program into an instance of clp, provided
with a suitable abstract constraint system. The key issue here is that both
concrete and abstract computations are instances, at the constraint-system
level, of the clp paradigm. In general, the abstraction is characterized by
weakening constraints.

In this paper we extend the generalized semantics approach to the ab-
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stract interpretation of cc programs, and show that in general we cannot
provide any correct approximation (in the sense of abstract interpretation)
by abstractly evaluating an abstract version of the program. The ask-tell
paradigm [Mah87], which is the basis of cc languages [SR90], is an exten-
sion of constraint logic programming: in addition to satisfiability (tell),
entailment (ask) is introduced. This different view of constraint program-
ming leads to a powerful paradigm for concurrent computations in a shared
store [SRP91]. A store is a constraint representing the global state of the
computation. Synchronization is achieved through blocking ask : the process
is suspended when the store does not entail the ask constraint, and it re-
mains suspended until the store entails it. This mechanism introduces some
problems when dealing with abstraction. Intuitively, a correct approximation
of the program meaning generates weaker answers for any possible program
behavior. Thus, to correctly characterize answers associated with suspended
computations, we must guarantee that whenever a concrete computation sus-
pends, the corresponding abstract computation suspends too. This can only
be obtained by replacing ask constraints with stronger constraints, which
is usually not the case in abstract interpretation. This “negative” result,
however, can be the basis for reasoning about new correct abstractions for cc
programs. A simple solution can be obtained by considering a more abstract
semantics modeling nonsuspended computations only. A transformation that
ignores synchronization can be applied to make applicable the generalized se-
mantics approach to the static analysis of cc programs. For suspension-free
programs, the standard and success semantics are equivalent. This justifies
a possible preventive use of a suspension-analysis phase [CFM94, CFMW93]
before generating any sound approximation of the concrete semantics of ccp
agents.

A different approach to solving the above problem can be obtained by
introducing hybrid primitives to deal with ask constraints. As before, we
use a program transformation (Angel) that essentially replaces don’t care
nondeterminism with don’t know nondeterminism. Following the seman-
tic characterization of angelic cc processes given in [JSS91], we obtain the
denotational counterpart of the transition-system-based suspension analysis
in [CFMW93] (modulo the absence of the consistency check). Simple re-
sults relate the accuracy of these different solutions when the program is
suspension-free (i.e., when the success semantics and the standard semantics
are the same), showing that the first approach always gives better analysis
than the second one. Moreover, while the second solution is applicable to
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possibly non-suspension-free programs, it is usually more complex in the se-
mantics construction, and may require more-complex abstract domains to
detect suspension freeness.

The paper is structured as follows. After preliminary definitions in Sec-
tion 2, in Section 3 we introduce the notion of a constraint system for cc pro-
grams. In Section 4 we introduce the syntax and the operational semantics
of cc programs. Following [SRP91], we also provide a denotational semantics
for the subclass of angelic programs. In Section 5 we introduce the notion of
observable program properties for processes. The abstract synchronization
problem is considered in Section 6 by using the generalized approach to the
semantics. We show an abstract interpretation scheme that is correct with
regard to the success semantics of a cc program. In Section 7 we introduce
an alternative solution for synchronization abstraction.

2 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of
lattice theory (cf. [Bir67]) and abstract interpretation (cf. [CC77, CC79b]).

Given the sets A and B, A\B denotes the set A where the elements in
B have been removed. The powerset of a set S is denoted by P(S). The
class of finite (possibly empty) subsets of a set S is denoted Pf (S). Let Σ
be a possibly infinite set of symbols. The set of objects ai indexed on a set
of symbols Σ is denoted by {ai}i∈Σ. The set of n tuples of symbols in Σ
is denoted by Σn. Sequences of objects in Σ are denoted by Σ∗. Sequence
length and set cardinality are both denoted by | |. Let R be a binary tran-
sitive relation on a set A, then the transitive closure of R is denoted by R∗.
Syntactic identity is denoted by ≡. An algebraic structure [HMT71] is a pair
〈C,Q〉 where C is a nonempty set, called the universe of the structure, and
Q is a function ranging over an index set I, such that for each i ∈ I, Qi are
finitary operations or relations on C. Algebraic structures are also denoted
as 〈C,Qi〉i∈I .

A set P equipped with a partial order ≤ is said to be partially ordered,
and it is denoted 〈P,≤〉. Given a partially ordered set 〈P,≤〉 and X ⊆ P ,
y ∈ P is an upper bound for X if and only if x ≤ y for each x ∈ X. An upper
bound y for X is the least upper bound (denoted lub) if and only if for every
upper bound y′: y ≤ y′, lower bounds and greatest lower bounds (denoted
glb) are defined dually. A directed set is a partially ordered set in which any
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two elements, and hence any finite subset, have an upper bound in the set.
A complete lattice is a partially ordered set L such that every subset of L
has a least upper bound and a greatest lower bound. A complete lattice L
with partial ordering ≤, least upper bound ∨, greatest lower bound ∧, least
element ⊥ = ∨∅ = ∧L, and greatest element > = ∧∅ = ∨L, is denoted as
an algebraic structure 〈L,≤,⊥,>,∨,∧〉. In the following, we omit ⊥, >, ∨,
and ∧ when these are implicit in the definitions, and occasionally use the
partially ordered set notation to denote complete lattices. Let 〈L,≤〉 be a
lattice where x ∈ L is finite (in L) if for every directed set D in L: x ≤ ∨D
⇒ x ≤ d for some d ∈ D. If for every S ⊆ L: x ≤ ∨S ⇒ x ≤ ∨T for
T ∈ Pf (S), x is compact . Notice that finite and compact elements are the
same in complete lattices. A complete lattice 〈L,≤〉 is algebraic if for every
x ∈ L: x = ∨{d | d is finite and d ≤ x}. An algebraic lattice is ω-algebraic
if the set of its finite elements is denumerable.

We write f : A → B to mean that f is a total function of A into B.
To specify function parameters in function definitions, we will often make
use of Church’s lambda notation. Let f : A → B, for each C ⊆ A we
denote by f(C) the image of C by f : {f(x) | x ∈ C}. Functions from
a set to the same set are usually called operators . The identity operator
λx.x is often denoted by id. Given the partially ordered sets 〈A,≤A〉 and
〈B,≤B〉, a function f : A → B is monotonic if for all x, x′ ∈ A : x ≤A x′

implies f(x) ≤B f(x′). If and only if for each nonempty chain X ⊆ A:
f(
⊔
AX) =

⊔
B f(X), f is continuous . A function f is additive if and only if

the previous conditions are satisfied for each nonempty set X ⊆ A (f is also
called complete join-morphism). A retraction % on a partially ordered set
〈L,≤〉 is a monotonic and idempotent operator. An upper-closure operator
(uco) on L is a retraction ρ such that ∀x ∈ L.x ≤ ρ(x) (extensive); a lower-
closure operator (lco) on L is a retraction δ such that ∀x ∈ L.δ(x) ≤ x
(reductive). More on closure operators can be found in [CC79a, Mor60]. Let
〈L,≤,⊥,>,∨,∧〉 be a nonempty complete lattice, and f : L→ L. The upper
ordinal powers of f are defined as follows:

f ↑ 0(X) = X

f ↑ α(X) = f(f ↑ (α− 1)(X)) for every successor ordinal α; and

f ↑ α(X) = ∨
δ<α

f ↑ δ(X) for every limit ordinal α

The first limit ordinal equipotent with the set of natural numbers is denoted
by ω. We will denote by ω also the set of natural numbers. If f is a continuous
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function on a lattice, the least fixpoint lfp(f) is f ↑ ω(⊥).

3 Constraint Systems

Different formalizations of constraint systems are present in the literature [JL87,
SRP91, GDL95], depending on the properties the resulting algebra has to
satisfy.

The algebraic specification (for sequential constraint logic programs) given
in [GDL95] is of major interest for abstract interpretation, as it defines the
minimal properties such a structure has to satisfy in order to obtain a suit-
able base for the generalized semantic construction. The resulting domains
are very weak, allowing noncommutative and nonidempotent constraint com-
position operators and a wide range of (possibly nondistributive) constraint
disjunction operators, i.e., widenings. On the other hand, the denotational
semantics construction in [SRP91] for cc languages requires stronger domains
(only commutative and idempotent constraint composition operators are al-
lowed). In this case, constraint systems are not required to have a disjunc-
tion operator. Disjunctions arise only when considering different execution
paths, and they are modeled at the program semantics level (i.e., outside
the constraint-system definition) using sets of possible behaviors or a (fixed)
powerdomain construction. As a consequence, these structures can be seen
as specific instances of the previous ones (with minor modifications). Be-
cause of its specificity to the cc case, in the following we consider the latter
approach, which is more adequate to describe the basic notions of consistency
and entailment .

The construction in [SRP91] is an extension of Scott’s partial informa-
tion systems [Sco82]. Informally, we have a denumerable set D of elemen-
tary assertions (containing distinct elements 1 and 0, representing the least-
informative assertion and the contradiction, respectively) and a compact en-
tailment relation ` ⊆ Pf (D)×D. The relation ` is a pre-order. By taking
the entailment closure1 δ(u) of a set of assertions u, we obtain the equivalence
relation ∼ (u ∼ v if and only if δ(u) = δ(v)). Hence, a simple constraint sys-
tem is C = 〈 P(D),a 〉/∼, which is a complete ω-algebraic lattice [Sco82]. An

1The entailment-closed representation, when it is finite, is a domain-independent strong
normal form for constraints, and it is very useful when there are not simpler ones (e.g.,
clp(FD)). However, many domains do have a simpler strong normal form (Herbrand,
Prop, Sharing, etc.), which greatly simplifies their representation.
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arbitrary element of C is called a constraint . Compact elements are called
finite constraints, since they are equivalent to a finite subset of D. Finite con-
straints form the (denumerable) base B of the constraint system. Bases of a
constraint system C are usually denoted by BC . To treat the hiding operator
of the language, [SRP91] introduces a family of unary operations called cylin-
drifications [HMT71]. Intuitively, given a constraint c, the cylindrification
operation ∃x(c) yields the constraint obtained by “projecting out” informa-
tion about the variable x from c. Diagonal elements [HMT71] are considered
as a way to provide parameter passing. Note that special variables (not
accessible to the user) together with a suitable use of cylindrification and
diagonal elements make variable renaming no longer needed [SRP91].

Definition 1 A (cylindric) constraint system2 〈C,`, false, true,⊗, V,∃x, dxy〉
is an algebraic structure where:

• 〈C,a〉 is a simple constraint system,

• true = [1]∼ and false = [0]∼,

• ⊗ is the glb,

• V is a denumerable set of variables,

• ∀x, y ∈ V , ∀c, d ∈ C, the operator ∃x : C → C satisfies:

1. c ` ∃xc,
2. if c ` d then ∃xc ` ∃xd,

3. ∃x(c⊗ ∃xd) = ∃xc⊗ ∃xd, and

4. ∃x(∃yc) = ∃y(∃xc),

• ∀x, y, z ∈ V , ∀c ∈ C, the diagonal element dxy satisfies:

1. dxx = true,

2. if z 6= x, y then dxy = ∃z(dxz ⊗ dzy), and

3. if x 6= y then dxy ⊗ ∃x(c⊗ dxy) ` c.
2To have a standard approach when dealing with abstract interpretation, we order

constraints in a dual fashion with regard to [Sco82, SRP91], i.e., lower constraints are the
strongest ones, and the constraint composition ⊗ is the glb operator.

7
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In the following, we denote by ~x both a tuple and a set of variables. For syn-
tactic convenience, given ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn), the notation
∃~xc stands for ∃x1(. . . ∃xn(c) . . . ), while d~x~y stands for dx1y1 ⊗ · · · ⊗ dxnyn .

Example 1 (Herbrand Constraint System) Let Σ = {a/0, b/0, . . . , f/n, g/n, . . . }
be a finite set of function symbols with arity, and V be a finite set of variables.
Consider the first-order language defined over the term system induced by Σ,
by using equality as a unique predicate symbol. The constraint system CH
has atomic propositions as elementary assertions, and an entailment relation
satisfying Clark’s equality axioms. Cylindrification ∃ is the usual existential
quantification, while diagonal elements are dxy ≡ (x = y). Thus constraints
are equivalent to quantified equation systems.

The next example defines the constraint system of dependency relations
between variables, and can be used for the detection of many properties (e.g.,
definiteness).

Example 2 (Dependency Relations [CFM94]) Let V be a finite set of
variables and p be a property. The elementary assertions are tuples of sets of
variables, i.e., (A,B) ∈ P(V )×P(V ). Their interpretation is the following.
If all the variables in B satisfy property p, then all the variables in A satisfy
the property too, i.e., p(B)⇒ p(A).

The entailment relation is defined accordingly:

• if A ⊆ B, then ∅ ` (A,B),

• if R ` (A,B) and R ` (B,C), then R ` (A,C), and

• if R ` (A,C) and R ` (B,D), then R ` (A ∪B,C ∪D).

Cylindrification is defined as ∃xR = δ(R) \ {(A,B) ∈ δ(R) |x ∈ A ∪B },
while diagonal elements are dxy ≡ {({x}, {y}), ({y}, {x})}.

The disjunctive completion of this constraint system is isomorphic to the
constraint system Prop [GDL95]. We can easily associate the propositional

formula
n
∧
i=1

(∧Ai ← ∧Bi) to the dependency relation R = {(Ai, Bi) | 1 ≤ i ≤ n}.
In the following, we will use the simpler Prop representation.

8
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4 The Language

In this section we introduce concurrent constraint languages, as defined
in [SRP91]. The syntax and semantics are parametric with respect to a
given constraint system C.

4.1 Syntax

The semantic operators of concurrent constraint languages are: elementary
actions (ask and tell), hiding (∃), parallel composition (‖), guarded nonde-
terministic choice (

∑
), and recursion (see Table 1).

In the syntax defined in [SRP91], a process-definition body can contain
free variables not occurring in the head. These are a kind of “invisible” global
variables. Their presence makes the program variable-renaming dependent,
and can be a source of many programming errors. In the following, we only
consider variable-renaming independent programs.

Definition 2 (Variable-Renaming Independent Program) Let FV (t)
be the set of free variables occurring in the syntactic object t. A cc
program P is variable-renaming independent if for each process definition
p(x1, . . . , xn) :− A ∈ P , we have FV (A) ⊆ {x1, . . . , xn}.

For notational convenience, we write
n
⊕
i=1

Ai to denote the pure nondeter-

ministic choice operator (local choice), namely the agent

n∑
i=1

ask(true)→ Ai

4.2 Operational Semantics

The operational model is described by a transition system T = (Conf ,−→T

). Elements of Conf (configurations) consist of an agent and a constraint,
representing the residual computation and the global store, respectively. The
minimal relation satisfying axioms R1− R5 of Table 2 is −→T .

The execution of an elementary action tell(c) simply adds the constraint
c to the current store σ (no consistency check). A guard gi = ask(ci) in
the nondeterministic choice operator is a global test. It is enabled if the

9
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Program ::= Dec . Agent

Dec ::= ε
| p(~x) :− Agent . Dec

Agent ::= tell(c)
| ∃~x.Agent
| Agent ‖ Agent

|
n∑
i=1

(ask(ci)→ Agenti)

| p(~y)

Table 1: The syntax

current store σ is strong enough to entail the constraint c (i.e., when σ ` c).
The nondeterministic choice operator selects one enabled guard gi and then
behaves like the agent Ai. If no guards are enabled, then it suspends, wait-
ing for other agents to add more information to the store. Parallelism is
modeled as interleaving of basic actions. Processes A and B never commu-
nicate synchronously in A‖B. Axiom R4 describes the hiding operator. The
syntax is extended to deal with a local store d holding information about
the hidden variables ~x. Hence the information about ~x produced by the ex-
ternal environment does not affect the process behavior and conversely the
external environment cannot access the local store. Initially the local store
is empty, i.e., ∃~x.A ≡ ∃(~x, true).A. Finally, when executing a procedure

call, ∆~y
~xA denotes the agent ∃~ψ.(tell(d~y ~ψ)‖∃~x.(tell(d~ψ~x)‖A)) and models pa-

rameter passing without variable renaming (variables in ~x can occur in ~y).

Variables ~ψ are special, meaning that they are not allowed to occur in user
programs.

A σ-sequence s for a program D.A is a possibly infinite sequence of con-
figurations 〈Ai, ci 〉i such that A0 = A and c0 = σ and for all i < |s| there
exists a transition 〈Ai, ci 〉−→T 〈Ai+1, ci+1 〉. Let /−→T denote the absence of
admissible transitions. Sequences reaching configurations 〈An, cn 〉 such that
〈An, cn 〉 /−→T are called terminating sequences, and cn ∈ B is the (finite)

10
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R1 〈 tell(c) , σ 〉 −→T 〈 ε , σ ⊗ c 〉

R2
σ ` ci

〈
n∑
i=1

(ask(ci)→ Ai) , σ 〉 −→T 〈Ai , σ 〉

R3
〈A , σ 〉 −→T 〈A′ , σ′ 〉

〈A‖B , σ 〉 −→T 〈A′‖B , σ′ 〉
〈B‖A , σ 〉 −→T 〈B‖A′ , σ′ 〉

R4
〈A , d⊗ ∃~xσ 〉 −→T 〈B , e 〉

〈 ∃(~x, d).A , σ 〉 −→T 〈 ∃(~x, e).B , σ ⊗ ∃~xe 〉

R5
p(~x) :− A ∈ P

〈 p(~y) , σ 〉 −→T 〈∆~y
~x.A , σ 〉

Table 2: The transition system T

answer constraint. If An contains some suspended choice operators, then the
corresponding sequence is suspended ; otherwise, it is a successful sequence,
and in this case we denote An by ε.

Definition 3 The finite semantics for program P = D.A is given by the
function:

ODJA K = λσ.
{
c ∈ B

∣∣∣ 〈A, σ 〉 ∗−→T 〈B, c 〉 /−→T

}
Note that the finite semantics observes answer constraints associated with

terminating configurations, regardless of whether the associated computa-
tions are successful or suspended.

4.3 Denotational Semantics

The standard denotational semantics for concurrent constraint languages
models processes as sets of reactive sequences [dBP91] or trace operators [SRP91].
In this paragraph, we consider the simpler denotational semantics modeling
the angelic language [JSS91], i.e., the language obtained by replacing the
global choice operator by the local choice operator. This semantics is a

11
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suitable base for reasoning about synchronization approximation, since it
separates the choice operator from the synchronization operator.

In [SRP91], the finite semantics of deterministic cc languages (without
choice operators) is defined as a lower closure operator3 on BC (the set of
finite elements of the constraint system C), mapping divergent computations
to false. A lower closure operator on a complete lattice is characterized
by its image (i.e., the set of fixpoints). Furthermore, lcos form a complete
lattice [War42]. By using the fixpoint representation, we have that the point-
wise ordering is ⊆, the bottom element is {false} (i.e., λx.false), the top
element is C (i.e., id), and the glb is given by set intersection.

Since the local-choice operator introduces nondeterminism, we have to
consider sets of constraints in order to model the computational behavior,
because in general the lub of two constraints is weaker than their disjunction.
Intuitively, we want to record the minimal guarantee of a set of constraints,
i.e., the pre-order: S1 v S2 if and only if ∀c ∈ S1∃ d ∈ S2 . c ` d.

Definition 4 Given a partial order 〈C,≤C〉, the downward closure of S ⊆ C
is defined by down(S) = {d ∈ C | ∃c ∈ S.d ≤C c}. A subset S is downward
closed if and only if S = down(S). Given a function f : C → P(C ′), the
downward closure of f is the function g = Down(f) : C → P↓(C ′) such that
g(c) = down(f(c)). Upward closures up(S) and Up(f) are defined dually.

By identifying sets of constraints that are equivalent with respect to v,
we obtain a domain isomorphic to the complete lattice P↓(C) of downward-
closed subsets of C. The partial order is ≤ ≡ ⊆, and the lub and the glb
are given by set union and set intersection, respectively. Furthermore, the
immersion function ↓: C → P↓(C) is given by ↓c = down({c}).

Since for cc programs disjunction arises only when considering alternative
computations, the finite semantics of angelic processes is modeled as a linear
lower closure operator on P↓(C) [JSS91], i.e., a lower closure operator f
satisfying f(∪Si) = ∪f(Si). A linear lco f is fully characterized by the set
SF (f) ⊆ C of its singleton fixpoints, i.e., constraints c such that f(↓c) = ↓c.
By using this characterization, we easily see that llcoP↓(C) (the set of linear
lcos on P↓(C)) is a complete lattice with lub and glb given by set union and
set intersection, respectively.

3Recall that we are ordering the constraint system in a dual fashion. Lower closure
operators and downward-closed sets of constraints correspond to upper closure operators
and upward-closed sets of constraints in [SRP91] and [JSS91].
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Table 3 shows the angelic semantic functions E , D, and N , which are
monotonic and continuous with respect to their process arguments (Env
is the set of environments, i.e., the set of functions from process names
to their denotation in llco(P↓(C))). Note that the denotational seman-
tics actually extends to the cc paradigm the C-semantics of pure logic pro-
grams [FLMP89], recording the minimal guarantee of a process.

The angelic transition system T ′ is obtained by imposing n = 1 in rule R2

of Table 2 and by adding rule R6: 〈
n∑
i=1

Ai , σ 〉 −→T ′〈Ai , σ 〉. This correctly

describes the operational semantics of local choice in ccp. This is slightly
different with respect to what is done in [JSS91], where the authors consider
a rule for global choice. By defining the operational semantics O′ according
to the new transition system, we obtain the following result.

Proposition 1

ODJA K(c) ⊆ O′JA K(c) ⊆ Down(O′DJA K)(c) = N JD.A K(↓c)

Proof of Proposition 1 First inclusion is easily obtained by examining
transition systems T and T ′. All the terminating configurations of T are
terminating configurations for T ′ also, but due to the local-choice rule R6,
there can be suspended configurations for T ′ not occurring in T . The second
inclusion follows from the downward-closure definition.

The equivalence with the denotational semantics is obtained by induction
on the number of procedure-call reductions in a computation, and on the form
of the agent. In the parallel composition operator, downward closure allows
us to assume the restartability of the processes.

Proof of Proposition 1 2

5 Program Properties and Approximations

The operational semantics of a cc program associates each initial store c to
the set of all the answer constraints that we obtain by executing P = D.A
at c. In a similar way, we define a semantic property φ as a subset of the
constraint system, namely the set of constraints that satisfy the property φ.
Thus, a program satisfies a semantic property φ if and only if (for each initial
store) the observables of the program are a subset of the property, i.e., for
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E : Agent× Env → l lco(P↓(C))

EJ tell(c) Ke =↓c
EJ ask(c)→ A Ke = {d ∈ C | d ` c ⇒ d ∈ EJA Ke}
EJ∃~x.A Ke = {d ∈ C | there exists c ∈ EJA Ke s.t. ∃~xc = ∃~xd}
EJA ‖B Ke = EJA Ke ∩ EJB Ke

EJ
n
⊕
i=1

Ai Ke =
n
∪
i=1
EJAi Ke

EJ p(~y) Ke =
{
d ∈ C

∣∣∣ d = ∃~ψ(d~y ~ψ ⊗ c), c ∈ (e p)
}

D : Dec× Env → Env

DJ ε Ke = e

DJ p(~x) :− A .D Ke = DJD K
(
e
[
p 7→ EJ∃~x.(tell(d~ψ~x) ‖A) Ke

])
N : Progr → l lco(P↓(C))
N JD.A K = EJA K(lfpDJD K)

Table 3: The finite angelic semantic operators

all c ∈ C .ODJA K(c) ⊆ φ. Following this general view, we can formalize the
static analysis of cc programs as a finite construction of an approximation (a
superset) of program denotation. If the approximation satisfies the semantic
property, then we can safely say that our program satisfies the property too.

Let us define a program property to be ordering closed if and only if it is
downward closed or upward closed. Ordering-closed properties are easier to
verify, as shown by the following straightforward proposition.

Proposition 2 A program P = D.A satisfies a downward-closed (upward-
closed) property φ ⊆ C if and only if the downward closure (upward closure)
of ODJA K satisfies φ.

Simplification arises because we can base our abstract-interpretation frame-
work on a semantics that returns ordering-closed observables. An example of
a downward-closed property is definiteness . If a variable x is fully instanti-
ated in a constraint c, then it is fully instantiated in all the constraints d such
that d ` c. Similarly, freeness4 is an example of an upward-closed property.

4A variable x is free in c 6= false if and only if ∃xc 6= c. We assume no variable is free
in false.
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If x is free in c, then it is free in all the constraints d such that c ` d.
The framework of abstract interpretation, introduced by Cousot and

Cousot [CC77, CC79b], is a powerful tool for the analysis of ordering pre-
serving properties. Abstract interpretation is traditionally defined in terms
of a pair of adjoint functions, called the Galois connection, which relates
the concrete and abstract semantic domains (see [CC79b]). Galois connec-
tions here ensure the existence of the best approximations for both concrete
objects and semantic functions, and provide a powerful tool for comparing
the accuracy of different abstract semantics. In the following we consider
downward-closed properties.

Definition 5 (Upper Galois Insertion) Let 〈M,≤,t,u〉 and 〈M ′,≤′,t′,u′〉
be complete lattices. An upper Galois connection between M and M ′ is a pair
of functions 〈α, γ〉 such that

1. α : M →M ′ and γ : M ′ →M , and

2. ∀x ∈M . ∀y ∈M ′ . α(x) ≤′ y ⇔ x ≤ γ(y).

An upper Galois insertion between M and M ′ (denoted by 〈M,α, γ,M ′〉)
is an upper Galois connection such that α is surjective (equivalently, γ is
one-to-one).

This definition implies that both α (the abstraction function) and γ
(the concretization function) are monotonic. As a matter of fact, α is
a complete join-morphism and γ is a complete meet-morphism, and each
one determines the other; i.e., α(x) = u′ {y ∈M ′ |x ≤ γ(y)} and γ(y) =⊔
{x ∈M |α(x) ≤′ y}. Moreover, ρ = (γ ◦ α) is an upper-closure operator

on M , mapping each concrete object to its upper approximation [CC79b].
Upper Galois insertions are commonly used in abstract interpretation

of (constraint) logic languages. Here the approximation process returns
weaker (with regard to `) semantic objects (an example for the clp case
is in [GDL95]). Lower Galois insertions are defined dually. They induce an
approximation process returning stronger semantic objects which can be used
to approximate the “maximal” guarantee of a program. An example of lower
Galois insertions for polymorphic typing is in [Mon92]. In the following, we
will consider the more “standard” upper insertions only.
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6 Generalized Abstract Interpretation

Generalized abstract interpretation is intended to perform static analysis
using the same semantic construction for both the concrete and abstract
computations. Given an abstract constraint system A that correctly approx-
imates the concrete constraint system C, the program P computing on C
is syntactically transformed into a program P ′ computing on A. The static
analysis of P is obtained by computing the semantics of P ′.

6.1 Relating Constraint Systems

In this section we formalize the notion of correct upper approximation be-
tween constraint systems.

Definition 6 (Correctness) A constraint system

〈A,`′, false′, true′,⊗′, V,∃′x, d′xy〉

is upper correct with respect to the constraint system

〈C,`, false, true,⊗, V,∃x, dxy〉

using a surjective and monotonic function α : C → A, if and only if (for
each c ∈ C, x, y ∈ V ) α(∃xc) `′ ∃′xα(c) and α(dxy) `′ d′xy.

Proposition 3 If A is upper correct with regard to constraint system C using
α, then there exists an upper Galois insertion relating P↓(C) and P↓(A).

Proof of Proposition 3 Consider 〈P↓(C), α̃, γ,P↓(A)〉, where

α̃(S) = {α(c) ∈ A | c ∈ S } and γ(S ′) = ∪{T ∈ P↓(C) | α̃(T ) ⊆ S ′}

Linearity of α̃ implies additivity, because in this case set union is also the
lub of the lattices. Moreover α-surjectivity on A implies α̃-surjectivity on
P↓(A). The proof is complete, since any additive and surjective function
between complete lattices defines a Galois insertion [CC79b].

Proof of Proposition 3 2

The following corollary is a consequence of α monotonicity.
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Corollary 1 If A is upper correct with respect to the constraint system C
using α, then for all c, d ∈ C we have α(c⊗ d) `′ α(c)⊗′ α(d).

The following definition states a property that intuitively holds for all
meaningful upper-correct constraint systems (the same property was consid-
ered in [GDL95] for uco on constraint systems).

Definition 7 (∃-α Confluence) A constraint system A upper correct with
regard to C using α satisfies ∃-α confluence if and only if, for all x ∈ V ,
c ∈ C, ∃′xα(∃xc) = α(∃xc).

This simply means that, given a constraint having no information on the
variable x (i.e., ∃xc), the abstraction process cannot produce information on
x. As mentioned before, this is intuitively true, because abstraction corre-
sponds to weakening of constraints.

Proposition 4 If A is upper correct with regard to the constraint system C
using α and satisfying ∃-α confluence, then for all x ∈ V , c ∈ C, ∃′xα(c) =
α(∃xc).

Proof of Proposition 4 By ∃ extensivity, α and ∃′ monotonicity, and con-
fluence, we have

c ` ∃xc⇒ α(c) `′ α(∃xc)⇒ ∃′xα(c) `′ ∃′xα(∃xc) = α(∃xc)

Correctness completes the proof.

Proof of Proposition 4 2

Example 3 (Relating Herbrand and DEPg) Let DEP g be the depen-
dency relation between variables induced by groundness, and let the function
sol map an equational constraint into its (equivalent) solved form. Define
αg : CH → DEP g as follows.

αg(c) =


False if sol(c) = false
∃~y
(
∪
{
{({xi}, var(ti)), (var(ti), {xi}) }

∣∣ xi = ti ∈ E
})

if sol(c) = ∃~yE

Proposition 5 The constraint system DEP g is upper correct with regard to
CH using αg. Moreover, DEP g satisfies the ∃-αg confluence.

To guarantee the sure termination of the analysis, we consider finite ab-
stract constraint systems only.
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6.2 The Abstract Synchronization Problem

Let us consider the angelic concurrent language, and let f be a linear lower-
closure operator on P↓(C) (i.e., the concrete semantics of an agent). Let A
be an abstract constraint system upper correct with regard to C using α, and
let (α̃, γ) be the induced upper Galois insertion relating the concrete domain
P↓(C) and the abstract domain P↓(A). The best correct approximation for
f on P↓(A) is f ] = (α̃ ◦ f ◦ γ). Let f ′ : P↓(A) → P↓(A) be an abstract
semantic operator. Then f ′ is a correct upper approximation of f on P↓(A)
if and only if f ] `′ f ′ [CC79b].

Proposition 6 f ] = (α̃ ◦ f ◦ γ) is a linear lco on P↓(A).

Proof of Proposition 6 It is straightforward to see that f ] is a lower-
closure operator on P↓(A). It is also linear, since it is the composition
of three linear functions.

Proof of Proposition 6 2

The abstract and concrete semantics of angelic processes can be modeled
in the same way. However, the simple transformation considered in [GDL95]
is no longer admissible for cc programs, because the abstract synchronization
operator is not correct. The following theorem justifies this observation.

Theorem 1
∀ c ∈ C, ∀ f ∈ l lco(P↓(C)), f ′ ∈ l lco(P↓(A))

s.t. f ] `′ f ′

[ask(c)→ f ]] `′ ask(α(c))→ f ′

⇔ [
α is an isomorphism

]

Proof of Theorem 1 The left arrow is straightforward. Let ρ = (α̃ ◦ γ). α
is an isomorphism if and only if ρ is the identity function for P↓(C). Suppose
α is not an isomorphism. Thus there exists c ∈ C such that (↓c) 6= ρ(↓c).
Since ρ is a uco on P↓(C), this means ρ(↓c) 6⊆ (↓c), i.e., there exists a c̃ ∈
ρ(↓c) such that c̃ 6∈ (↓c). Consider the synchronization operator ask(c)→ f .
We have [ask(c)→ f ]](↓α(c)) =↓α(c), because (by linearity) the best correct
synchronization test for c̃ (i.e., ↓c̃ ⊆↓c) is not satisfied.

On the other hand, (ask(α(c)) → f ′)(↓α(c)) = f ′(↓α(c)), because the
abstract synchronization test (i.e., ↓α(c) ⊆↓α(c)) is always satisfied.
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Since f ′ is reductive, in the general case we have ↓α(c) 6⊆ f ′(↓α(c)). Thus
we have lost correctness.

Proof of Theorem 1 2

The above result specifies that the traditional form of abstraction of con-
straint logic languages implemented in [CF92, GDL95] is no longer applicable
to ccp programs.

6.3 An Easy Solution: Removing Synchronizations

A solution to the abstract synchronization problem can be found by consid-
ering a different (more abstract) concrete semantics which models only some
aspects of the program behavior.

Definition 8 The success semantics for program P = D.A is given by the
function:

SSDJA K = λσ ∈ C .
{
c
∣∣∣ 〈A , σ 〉 ∗−→T 〈 ε , c 〉

}
This semantics does not observe answer constraints associated with sus-

pended computations. It observes successful computations only.
The next (straightforward) proposition justifies our interest in such a

semantic definition, and motivates further research in designing accurate
suspension-freeness analyses.

Proposition 7 If P = D.A is suspension free, then ODJA K = SSDJA K.

Turning our attention to the success semantics, we easily see that to have
a correct abstract synchronization operator, we must grant the following
condition:

concrete computation proceeds ⇒ abstract computation proceeds.

Thus, whenever we cannot prove the contrary, we assume that the concrete
computation proceeds.

The simplest way to satisfy the previous correctness condition consists in
removing all synchronizations from the program. Consider the transforma-
tion N oSynch : Program → Program defined in Table 4. Let P̃ = D̃.Ã =
N oSynch[P ]. Since we have discarded every meaningful synchronization test,
processes in the transformed program P̃ always proceed, providing a correct
approximation of the success semantics of the original program P = D.A.
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N oSynch[Dec.A] = N oSynch[Dec].N oSynch[A]
N oSynch[ε] = ε
N oSynch[p(~x) :− A.Dec] = p(~x) :− N oSynch[A].N oSynch[Dec]
N oSynch[tell(c)] = tell(c)
N oSynch[∃~x.A] = ∃~x.N oSynch[A]
N oSynch[A ‖B] = N oSynch[A] ‖N oSynch[B]

N oSynch[
n∑
i=1

(ask(ci)→ Ai)] =
n
⊕
i=1

(tell(ci) ‖N oSynch[Ai])

N oSynch[p(~y)] = p(~y)

Table 4: The transformation NoSynch

Proposition 8 For all c ∈ C, we have SSDJA K(c) ⊆ SSD̃J Ã K(c).

Transformed programs are very similar to sequential constraint logic pro-
grams. Since processes do not synchronize anymore, their semantics can
easily be modeled by a single (possibly disjunctive) constraint. Follow-
ing [FLMP89, GDL95], we define a fixpoint semantics for the transformed
programs that is proved equivalent to the downward closure of the success se-
mantics.5 Diagonal elements, cylindrification operators, and special variables
ψi provide the independence from variable names.

In the following, we (re-)define the semantics of NoSynch-transformed
programs in terms of a single predicate transformer, in the style of standard
clp semantics. Clearly, closure-operator-based semantics still work for these
kinds of programs.

Definition 9 (C-Interpretation) Let C be a constraint system. A con-

strained atom has the form p(~ψ) :− S, where S ∈ P↓(C) and FV (S) ⊆ ~ψ.
Let B be the set of constrained atoms defined over an alphabet of process
identifiers ΠD. We define the partial order � on B such that p(~ψ) :− S1 �
p(~ψ) :− S2 if and only if S1 ⊆ S2. The set B is the base of interpretations.
An interpretation is any subset of B. We denote by = ⊆ Pf (B) the family
of C-interpretations, i.e., the interpretations containing at most one con-
strained atom for each process identifier. The partial order defined on B is
naturally extended to =.

5Using the S-semantics approach [FLMP89], it is also possible to give a fixpoint seman-
tics equivalent to the success semantics [GDL95]. Note, however, that for downward-closed
program properties this difference is not meaningful.
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Proposition 9 (=,�) is a complete lattice.

In the following, P is a NoSynch-closed C-program (i.e., P = N oSynch[P ]).
Moreover, we assume that a program contains a single clause for each predi-
cate. This can be easily obtained by joining all definitions for a predicate in
the body of a single clause. The fixpoint semantics is defined in terms of an
immediate-consequences operator, or predicate transformer, TCP .

Definition 10 The mapping TCP : = → = is defined as follows:

TCP (I) =
{
p(~ψ) :− S

∣∣ p(~x) :− A ∈ P , S = ∃~x((↓d~x~ψ) ∩ EJA KI)
}

where

• EJ tell(c) KI =↓c,

• EJ∃~x.A KI = ∃~xEJA KI,

• EJA ‖B KI = EJA KI ∩ EJB KI,

• EJ
n
⊕
i=1

Ai KI =
n
∪
i=1
EJAi KI, and

• EJ p(~y) KI =

{
∃~ψ(↓d~ψ~y ∩ S) if p(~ψ) :− S ∈ I
{false} otherwise.

Clearly, TCP is a continuous function on the complete lattice (=,�). Hence
we can define a fixpoint semantics FC(P ) = lfp(TCP ) = TCP ↑ ω(∅).

Theorem 2 Let P = D.A be a NoSynch-closed program. If SSDJA K 6= ∅
then Down(SSDJA K) = λc ∈ C.(↓c) ∩ EJA K(FC(P )).

Proof of Theorem 2 Since in program P there are no meaningful synchro-
nizations, the behavior of processes cannot be influenced by the external envi-
ronment. As a consequence, we only have to prove that ↓(SSDJA K(true)) =
EJA K(FC(P )). This is done by induction on the number of procedure-call
reductions in a computation, and on the agent form.

Proof of Theorem 2 2
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The abstract semantics of the transformed program (obtained by replac-
ing the concrete constraints by the corresponding abstract constraints) is a
correct approximation of its concrete semantics. For I ∈ =, let us define

α(I) =
{
p(~ψ) :− α̃(S)

∣∣∣ p(~ψ) :− S ∈ I
}

.

Theorem 3 Let P be a NoSynch-closed C-program, and let P ′ be the corre-
sponding abstract program on A = α(C). Then α(FC(P )) �′ FA(P ′).

Example 4 Consider the program D which appends two lists:
app(X,Y,Z) :- ask(X=[]) → tell(Y=Z)

+ ask(∃H,X1 X=[H—X1]) →
∃ H,X1,Z1. tell(X=[H|X1],Z=[H|Z1]) ‖ app(X1,Y,Z1)

The transformed program D̃ = N oSynch[D] (after a straightforward simpli-
fication) is

app(X,Y,Z) :- tell(X=[],Y=Z)

⊕ ∃ H,X1,Z1. tell(X=[H|X1],Z=[H|Z1]) ‖ app(X1,Y,Z1)

Let us consider the abstract constraint system A = Prop. The abstract pro-
gram P ′ on Prop corresponding to P̃ is:

app(X,Y,Z) :- tell(X∧Y↔Z)

⊕ ∃ H,X1,Z1. tell(X↔(H∧X1)∧Z ↔(H∧Z1)) ‖ app(X1,Y,Z1)

By computing the semantics of P ′, we obtain:

FA(P ′) =
{
app(ψ1, ψ2, ψ3) :− (ψ1 ∧ ψ2)↔ ψ3

}
Thus, in all the answer constraints associated to successful computations of
the original program, the third argument of app is bound to a ground term if
and only if both the first and the second argument are bound to ground terms.

7 An “Angelic” Solution

To approximate the standard semantics of a program without any suspension
freeness information, e.g., if we are trying to prove suspension freeness, the
previous approach is no longer applicable. As an alternative, we can consider
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the best correct lower approximation of the synchronization operator, that
is:

[ask(c)→ f ]] = λS ′ ∈ P↓(A).∪
{
if γ(↓a) ⊆ (↓c) then f ](↓a) else ↓a | a ∈ S ′

}
Clearly, the test is here based on the concretization function γ. It is easy
to see that, by the standard properties of Galois insertions, this test cannot
be verified by looking at the abstract values only, i.e., for any abstract and
concrete constraints, respectively a and c, γ(↓a) ⊆ γ(α(↓c)) 6⇒ γ(↓a) ⊆ (↓c).
Therefore, the above test may involve a computation over a possibly infinite
set: the concrete domain.

In practice, we have to implement a “hybrid” synchronization test that
verifies whether an abstract constraint definitely entails a concrete one:

test : (A× C)→ Bool such that test(a, c) = true ⇒ γ(↓a) ⊆ (↓c)

Note that a similar hybrid test has been introduced in [FGMP93]. Informally,
this condition means “if the abstract computation proceeds, then every con-
crete computation it approximates proceeds too.”

Remark 1
Static analysis by Angel program transformation cannot be considered as
being based on generalized semantics. This is because the abstract program
does not perform all computations on the abstract constraint system.

Now suppose we have found a meaningful (i.e., useful in practice) syn-
chronization primitive. Next, we have to choose a suitable approximation
of the nondeterministic operator. To get an efficient abstract interpretation
framework, we cannot directly abstract global choice, since the associated
denotational models are too complex [SRP91]. Local choice (i.e., angelic
languages) seems to be a good cost/precision trade-off. We call this form of
synchronization condensed .

Consider the transformation Angel, mapping arbitrary cc programs into
angelic cc programs with condensed synchronization. The denotational se-
mantics of this kind of program can be obtained by using Table 3 and by
replacing the equation for the (simple) synchronization operator with the
following equation:

EJ ask(c1; . . . ; cn)→ A Ke = {d ∈ C | ∃ i ∈ {1, . . . , n}.d ` ci ⇒ d ∈ EJA Ke}
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Angel[Def.A] = Angel[Def ].Angel[A]
Angel[ε] = ε
Angel[p(~x) :− A.Def ] = p(~x) :− Angel[A].Angel[Def ]
Angel[tell(c)] = tell(c)
Angel[∃~x.A] = ∃~x.Angel[A]
Angel[A ‖B] = Angel[A] ‖Angel[B]

Angel[
n∑
i=1

(ask(ci)→ Ai)] = ask(c1; . . . ; cn)→
n
⊕
i=1

(tell(ci) ‖Angel[Ai])

Angel[p(~x)] = p(~x)

Table 5: The transformation Angel

The meaning of the condensed synchronization test is to ask the disjunction
(on P↓(C)) of all the guard constraints

∀σ ∈ S . ∃j ∈ {1, . . . , n} . (↓σ) ⊆ (↓cj) ⇔ S ⊆
n
∪
i=1

(↓ci)

Remark 2 This is not true when we consider a widening as a disjunction
operator. As an example, consider a constraint system dealing with rational
intervals with entailment given by inclusion. Consider the following multiple
ask and its widened version:

ask(x ∈ [0, 1];x ∈ [1, 2])→ A

ask(x ∈ [0, 2])→ A

Given the initial store x ∈ [0, 2], the first computation (correctly) suspends,
while the latter proceeds, possibly providing incorrect results.

Therefore, given S] ∈ P↓(A) and c1, . . . , cn ∈ C, the condensed abstract
synchronization test is defined as:

mtest(S], c1; . . . ; cn) = true ⇒ ∀σ ∈ γ(S]) . ∃iσ ∈ {1, . . . , n} . σ ` ciσ

Note that the index iσ depends on σ. This simply means that different stores
possibly satisfy different guard constraints. Indeed, there can be suspension-
free choice operators having no definitely satisfied guards (e.g., deterministic
choice operators).
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The following example illustrates a suspension-freeness analysis for a com-
mon communication scheme.

Example 5 In the following simple program [Sha89], a producer pzaff sends
messages to different consumers (cgiaco and clevi) by using a single chan-
nel. For each input message, the distributor distr forwards the text to the
appropriate output channel:

pzaff(X) :-
ask(true) → ∃ Y,M. tell(X=[msg(levi,M)|Y]) ‖ write(M) ‖ pzaff(Y)

+
ask(true) → ∃ Y,M. tell(X=[msg(giaco,M)|Y]) ‖ write(M) ‖ pzaff(Y)

+
ask(true) → tell(X=[])

distr(X,L,G) :-
ask(∃T,X1X=[msg(levi,T)|X1]) →
∃ T,X1,L1. tell(X=[msg(levi,T)|X1],L=[T|L1]) ‖ distr(X1,L1,G)
+

ask(∃T,X1X=[msg(giaco,T)|X1]) →
∃ T,X1,G1. tell(X=[msg(giaco,T)|X1],G=[T|G1]) ‖ distr(X1,L,G1)
+

ask(X=[]) → tell(L=[],G=[])

g(X,L,G) :- pzaff(X) ‖ distr(X,L,G) ‖ clevi(L) ‖ cgiaco(G)

Assuming that write, clevi, and cgiaco are suspension-free, the suspension
freeness of g(X,L,G) may only depend on pzaff and distr. By applying the
Angel transformation, we note that the only process that can suspend is distr.
Suspension freeness can be analyzed by evaluating the following multiple ask:

(∃T,X1X=[msg(levi,T)|X1]) ; ∃T,X1X=[msg(giaco,T)|X1]) ; X=[])

For this purpose, the rigid types abstraction, discussed in [JB92] and further
used for the systematic derivation of norms for termination analysis of logic
programs in [DSF93], provides an adequate abstract domain. Intuitively, the
process pzaff binds the variable X to any of the terms described by the rigid-
type graph in Figure 1. Therefore, we have to show that all such terms
satisfy the synchronization test. In this case, this is an easy task. However,
in other cases it is necessary to extend the abstract domain of rigid types with
some kind of variable dependency information (we are currently working on
a formal solution for the general case).
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Figure 1: The rigid typegraph for X

The following theorem relates the standard, angelic, and success seman-
tics of a cc program (on the concrete constraint system). In particular, for
suspension-free programs NoSynch is always better than Angel, since the
latter can suspend when approximating synchronization.

Theorem 4 Given P = D.A, let P1 = D1.A1 = NoSynch[P ] and P2 =
D2.A2 = Angel[P ]:

• ODJA K(c) ⊆ N JD2.A2 K(↓c), and

• if P is suspension-free, then

ODJA K(c) ⊆ SSD1JA1 K(c) ⊆ (↓c)∩EJA1 K(FC(D1)) ⊆ N JD2.A2 K(↓c)

Proof of Theorem 4 To prove the first statement, we observe that every
terminating computation in the transition system of P has a correspond-
ing terminating computation in the transition system of P2, producing the
same answer constraint, i.e., ODJA K(c) ⊆ OD2JA2 K(c). Then, we apply
Proposition 1.

If P is suspension-free, by Propositions 7 and 8 we obtain first inclusion.
Second inclusion follows from Theorem 2, and the third one is obtained by
observing that P2 has the same successful computations of P1, but it can still
suspend.

Proof of Theorem 4 2
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E ′ : Agent× Env → l lco(P↓(A))
E ′J tell(α(c)) Ke =↓α(c)

E ′J ask(c1; . . . ; cn)→ A Ke =
{a ∈ A |mtest(↓a, c1; . . . ; cn) = true ⇒ a ∈ E ′JA Ke}

EJ∃~x.A Ke = {a′ ∈ A | there exists a ∈ E ′JA Ke s.t. ∃~xa = ∃~xa′}
E ′JA ‖B Ke = E ′JA Ke ∩ E ′JB Ke
E ′J

n
⊕
i=1

Ai Ke =
n
∪
i=1
E ′JAi Ke

E ′J p(~y) Ke =
{
a′ ∈ A

∣∣∣ a′ = ∃′~ψ(d′
~y ~ψ
⊗′ a), a ∈ (e p)

}
D′ : Dec× Env → Env
D′J ε Ke = e

D′J p(~x) :− A .D Ke = D′JD K
(
e
[
p 7→ E ′J∃~x.(tell(d′~ψ~x) ‖A) Ke

])
N ′ : Progr → l lco(P↓(A))
N ′JD.A K = E ′JA K(lfpD′JD K)

Table 6: The abstract angelic semantic operators

The same situation occurs when considering the abstract semantics con-
struction, provided that we have defined a specific abstract synchronization
test and proved it correct (see Table 6).

Theorem 5 Given P , let P ′1 = α(NoSynch[P ]), and let P ′2 be the program
obtained by replacing all the tell constraints in Angel[P ] by the corresponding
abstractions:

• N ′JP ′2 K is a correct abstraction of OJP K, and

• P is suspension-free ⇒ FA(D′1) is correct with regard to OJP K, and
gives better results than N ′JP ′2 K.

Proof of Theorem 5 Just modify the proof of Theorem 4 by taking into
account correctness of the abstract constraint system and the condensed
abstract synchronization test.

Proof of Theorem 5 2
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For any suspension-free program P , the abstract interpretation based on
the transformation Angelreturns the same result of the abstract interpreta-
tion based on the transformation NoSynch only when the former can “prove”
suspension freeness.

8 Related Works

In earlier concurrent logic languages, the semantics was given in operational
style, since no clear declarative reading of the synchronization mechanism
was available. Therefore the initial approaches to static analysis were based
on the operational semantics. In particular, [CCC90] defines a scheme for the
detection of suspension-free FCP(:) programs. The analysis is an abstrac-
tion of the AND-OR tree operational model defined in [CF89]. The same
problem is addressed in [CFM94], where the analysis of FCP(:) programs
is achieved by abstracting the transition-system operational semantics. It is
also shown how to obtain analyses for local suspension, deadlock, and local
deadlock. Later, this approach was extended to cc languages with consis-
tency check [CFMW93]. By using the abstract domain DEPg together with
suitable semilinear norms, it is possible to infer suspension freeness of some
producer-consumer programming scheme. However, in [CFMW93] the cor-
rectness of the abstract synchronization test lies in the consistency check.
When dealing with the language defined in [SRP91] (i.e., without the con-
sistency check), this abstract test is no longer correct. To get independence
from the scheduling policy, [CFM94] and [CFMW93] use a nonstandard (op-
erational) semantics that makes the computation confluent. This approach
has inspired our program transformation Angel, which can be seen as the
denotational translation of the confluent transition system.

To our knowledge, [FGMP93] defines the first abstract interpretation
framework for cc programs based on a denotational (and compositional) se-
mantics. Also, in this case there is a two-level approximation. The stan-
dard semantics is first abstracted by considering a semantics recording the
input/output relation between concrete constraints, and then the constraint
system is abstracted, by assuming the existence of a correct abstract synchro-
nization test. Global-choice operators are simply mapped into local-choice
operators. As the authors of [FGMP93] admit, this is a heavy approxima-
tion, because one blocked guard causes the suspension of the process, even
if there are other definitely enabled guards in the choice operator (e.g., in a
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deterministic choice we always suspend, because there can be only one en-
abled guard at a time). Clearly, in this approach, one might get additional
suspensions, but still all successful computations are preserved.

The problem of giving a generalized abstract interpretation framework
for cc languages, where only local choice is allowed, is considered in [CC93].
However, in contrast with Theorem 1, they claim that it is correct to directly
abstract the program, in the style of [CF92, GDL95], and evaluate it on the
abstract constraint system. This is clearly in contrast to our result, where we
proved that it is not sound to “translate” the approach in [CF92, GDL95]
to the analysis of ccp. In general, this approach to static analysis returns
incorrect results because of the abstract synchronization problem.

A more recent paper, [FGMP95], considers the analysis of compositionally
confluent cc programs and defines an abstract interpretation framework that
is very similar to that obtained by our transformation Angel. This approach,
based on the denotational semantics of angelic cc, maps each (nonconfluent)

guarded choice operator into the agent ask(
n
∨
i=1

ci)→
n
⊕
i=1

Ai, where ∨ denotes

the disjunction over P↓(C) (see Remark 2). The only difference is that,
once the synchronization test is passed, this transformation does not use the
guard constraints to strengthen each branch of the computation. On the
contrary, Angel tells each branch’s guard before proceeding in the abstract
computation, possibly obtaining stronger (better) results.

9 Conclusions

We have shown that the ask operators cannot be safely upper approximated
employing the traditional methods for semantics approximation used in se-
quential constraint logic programs. The interest in a solution to this problem
in the context of abstract interpretation is not only related to the analysis of
cc programs. Indeed, the basic problem in the abstraction of synchronization
for cc programs is shared by a number of different semantic constructions,
not necessarily related with the ask-based synchronization of concurrent lan-
guages. As shown in [BCGL92], the semantics of (pure) Prolog programs
(logic programs with depth-first search) can be specified in terms of implicit
ask mappings . A reduction with a clause can only be applied to a goal pro-
vided that there are no infinite branches on the left-hand side of the proof
tree for that goal, by applying any of the previous clauses in the textual
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order. A similar behavior is also shared by semantic models for built-ins in
Prolog [AMP92]. While the implicit ask-mapping-based semantic definitions
for Prolog’s search or built-ins provide a more declarative model for con-
trol features in standard Prolog interpreters, their use as semantic bases for
abstract interpretation may lead to some of the problems discussed in the
previous sections. It is interesting to note that, in the case of Prolog depth-
first search, a NoSynch-like abstraction approximates the program meaning
(the Prolog success set) by its interpretation as a pure logic program (i.e.,
without depth-first search). This, indeed, is a common practice in data-flow
analysis of Prolog programs.

We are currently investigating other kinds of approximations. In particu-
lar, we believe that the ask operators allow the use of a generalized semantics
approach when we deal with lower approximations. In this case, we obtain
information about the definite nonentailment of guard constraints, allowing
the pruning of useless branches of the computation.
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