
Exact Join Detection for Convex Polyhedra

and Other Numerical Abstractions✩

Roberto Bagnara, Patricia M. Hill, Enea Zaffanella

Department of Mathematics, University of Parma, Italy

Abstract

Deciding whether the union of two convex polyhedra is itself a convex polyhe-
dron is a basic problem in polyhedral computations; having important applica-
tions in the field of constrained control and in the synthesis, analysis, verification
and optimization of hardware and software systems. In such application fields
though, general convex polyhedra are just one among many, so-called, numeri-
cal abstractions, which range from restricted families of (not necessarily closed)
convex polyhedra to non-convex geometrical objects. We thus tackle the prob-
lem from an abstract point of view: for a wide range of numerical abstractions
that can be modeled as bounded join-semilattices —that is, partial orders where
any finite set of elements has a least upper bound—, we show necessary and
sufficient conditions for the equivalence between the lattice-theoretic join and
the set-theoretic union. For the case of closed convex polyhedra —which, as
far as we know, is the only one already studied in the literature— we improve
upon the state-of-the-art by providing a new algorithm with a better worst-case
complexity. The results and algorithms presented for the other numerical ab-
stractions are new to this paper. All the algorithms have been implemented,
experimentally validated, and made available in the Parma Polyhedra Library.

Key words: polyhedron, union, convexity, abstract interpretation, numerical
abstraction, powerset domain.

1. Introduction

For n ∈ N, let Dn ⊂ ℘(Rn) be a set of finitely-representable sets such that
(Dn,⊆) is a bounded join-semilattice, that is, a minimum element exists as well
as the least upper bound for all D1, D2 ∈ Dn. Such a least upper bound —let
us denote it by D1 ⊎ D2 and call it the join of D1 and D2— is, of course, not
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guaranteed to be equal to D1 ∪ D2. More generally, we refer to the problem of
deciding, for each finite set {D1, . . . , Dk} ⊆ Dn, whether

⊎k
i=1

Di =
⋃k

i=1
Di as

the exact join detection problem.
Examples of Dn include n-dimensional convex polyhedra, either topologically

closed or not necessarily so, restricted families of polyhedra characterized by in-
teresting algorithmic complexities —such as bounded-difference and octagonal
shapes—, Cartesian products of some families of intervals, and other “box-like”
geometric objects where the intervals can have “holes” (for instance, Cartesian
products of modulo intervals [38, 39] fall in this category). All these numerical
abstractions allow to conveniently represent or approximate the constraints aris-
ing in constrained control (see, e.g., [29]) and, more generally, in the synthesis,
analysis, verification and optimization of hardware and software systems (see,
e.g., [9]).

The restrictions implied by convexity and/or by the “shapes” of the geo-
metric objects in Dn are sometimes inappropriate for the application at hand.
In these cases, one possibility is to consider finite sets of elements of Dn. For
instance, many applications in the field of hardware/software verification use
constructions like the finite powerset domain of [2]: this is a special case of
disjunctive completion [25], where disjunctions are implemented by maintain-
ing an explicit (hence finite) and non-redundant collection of elements of Dn.
Non-redundancy means that a collection is made of maximal elements with re-
spect to subset inclusion, so that no element is contained in another element
in the collection. The finite powerset and similar constructions are such that
Q1 = {D1, . . . , Dh−1, Dh, . . . , Dk} and Q2 = {D1, . . . , Dh−1, D} are two differ-

ent representations for the same set, if
⋃k

i=h Di =
⊎k

i=h Di = D. The latter
representation is clearly more desirable, and not just because —being more
compact— it results in a better efficiency of all the involved algorithms. In the
field of control engineering, the ability of efficiently simplifying Q1 into Q2 can
be used to reduce the complexity of the solution to optimal control problems,
thus allowing for the synthesis of cheaper control hardware [16, 45]. Similarly,
the simplification of Q1 into Q2 can lead to improvements in loop optimiza-
tions obtained by automatic code generators such as CLooG [13]. In the same
application area, this simplification allows for a reduction in the complexity of
array data-flow analysis and for a simplification of quasi-affine selection trees
(QUASTs). In loop optimization, dependencies between program statements
are modeled by parametric linear systems, whose solutions can be represented
by QUASTs and computed by tools like PIP [26], which, however, can generate
non-simplified QUASTs. These can be simplified efficiently provided there is
an efficient procedure for deciding the exact join property. Another applica-
tion of exact join detection is the computation of under-approximations, which
are useful, in particular, for the approximation of contra-variant operators such
as set-theoretic difference. In fact, when the join is exact it is a safe under-
approximation of the union. The exact join detection procedure can also be
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used as a preprocessing step for the extended convex hull problem1 [28]. An-
other important application of exact join detection comes from the field of static
analysis via abstract interpretation [24, 25]. In abstract interpretation, static
analysis is usually conducted by performing a fixpoint computation. Suppose
we use the finite powerset domain

(

℘fn(Dn),⊑, ∅,⊔
)

: this is the bounded join-
semilattice of the finite and non-redundant subsets of Dn ordered by the relation
given, for each Q1, Q2 ∈ ℘fn(Dn), by

Q1 ⊑ Q2 ⇐⇒ ∀D1 ∈ Q1 : ∃D2 ∈ Q2 . D1 ⊆ D2,

and ‘⊔’ is the least upper bound (join) operator induced by ‘⊑’ [1, 5]. The system
under analysis is approximated by a monotonic (so called) abstract semantic
function A : ℘fn(Dn) → ℘fn(Dn), and the limit of the ascending chain given by
A’s iterates,

A0(∅),A1(∅),A2(∅), . . . , (1)

is, by construction, a sound approximation of the analyzed system’s behav-
ior. Since ℘fn(Dn) has infinite ascending chains, the standard abstract iteration
sequence (1) may converge very slowly or fail to converge altogether. For this
reason, a widening operator ∇ : ℘fn(Dn)2 → ℘fn(Dn) is introduced. This ensures
that the sequence

B0(∅),B1(∅),B2(∅), . . . . (2)

where, for each Q ∈ ℘fn(Dn), B(Q) := Q∇
(

Q⊔A(Q)
)

, is ultimately stationary
and that the (finitely computable) fixpoint of B is a post-fixpoint of A, i.e., a
sound approximation of the behavior of the system under consideration. In [5]
three generic widening methodologies are presented for finite powerset abstract
domains. A common trait of these methodologies is given by the fact that the
precision/efficiency trade-off of the resulting widening can be greatly improved
if domain elements are “pairwise merged” or even “fully merged.” Let the
cardinality of a finite set S be denoted by #S. An element Q = {D1, . . . , Dh}
of ℘fn(Dn) is said to be pairwise merged if, for each R ⊆ Q, # R = 2 implies
⋃

R 6=
⊎

R; the notion of being fully merged is obtained by replacing #R = 2
with #R ≥ 2 in the above.

In this paper, we tackle the problem of exact join detection for all the nu-
merical abstractions that are in widespread use at the time of writing.2 This
problem has been studied for convex polyhedra in [15]. We are not aware of any
work that addresses the problem for other numerical abstractions.

In [15] the authors provide theoretical results and algorithms for the exact
join detection problem applied to a pair of topologically closed convex polyhe-
dra. Three different specializations of the problem are considered, depending on
the chosen representation for the input polyhedra: H-polyhedra, described by

1This is the problem of computing a minimal set of constraints describing the convex hull
of the union of k polytopes, each described by a set of constraints.

2Since numerical abstractions are so critical in the field of hardware and software analysis
and verification, new ones are proposed on a regular basis.
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constraints (half-spaces); V-polyhedra, described by generators (vertices); and
VH-polyhedra, described by both constraints and generators.3 The algorithms
for the H and V representations, which are based on Linear Programming tech-
niques, enjoy a polynomial worst-case complexity bound; the algorithm for VH-
polyhedra achieves a better, strongly polynomial bound. For the H-polyhedra
case only, it is also shown how the algorithm can be generalized to more than
two input polyhedra. An improved theoretical result for the case of more than
two V-polytopes is stated in [12].

The first contribution of the present paper is a theoretical result for the VH-
polyhedra case, leading to the specification of a new algorithm improving upon
the worst-case complexity bound of [14].

The second contribution is constituted by original results and algorithms
concerning the exact join detection problem for the other numerical abstrac-
tions. For those abstractions that are restricted classes of topologically closed
convex polyhedra, one can of course use the same algorithms used for the gen-
eral case, but the efficiency would be poor. Consider that the applications of
finite powersets of numerical abstractions range between two extremes:

• those using small-cardinality powersets of complex abstractions such as
general polyhedra (see, for instance [18]);

• those using large-cardinality powersets of simple abstractions (for instance,
verification tasks like the one described in [27], can be tackled this way).

So, in general, the simplicity of the abstractions is countered by their average
number in the powersets. It is thus clear that specialized, efficient algorithms
are needed for all numerical abstractions. In this paper we present algorithms,
each backed with the corresponding correctness result, for the following numer-
ical abstractions: not necessarily closed convex polyhedra, “box-like” geometric
objects; rational (resp., integer) bounded difference shapes; and rational (resp.,
integer) octagonal shapes.

The plan of the paper is as follows. In Section 2, we introduce the required
technical notation and terminology used throughout the paper as well as the
particularly terminology used for convex polyhedra. In Section 3, we discuss
the results and algorithms for convex polyhedra. The specialized notation, ter-
minology and results for boxes, bounded difference shapes and octagonal shapes
are provided in Sections 4, 5 and 6, respectively. Section 7 concludes.

2. Preliminaries

The set of non-negative reals is denoted by R+. In the present paper, all
topological arguments refer to the Euclidean topological space Rn, for any pos-
itive integer n. If S ⊆ Rn, then the topological closure of S is defined as

C(S) :=
⋂

{C ⊆ Rn | S ⊆ C and C is closed }.

3The algorithms in [15] for the V and VH representations only consider the case of bounded

polyhedra, i.e., polytopes; the extension to the unbounded case can be found in [14].
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For each i ∈ {1, . . . , n}, vi denotes the i-th component of the (column) vector
v ∈ Rn; the projection on space dimension i for a set S ⊆ Rn is denoted by
πi(S) := { vi ∈ R | v ∈ S }. We denote by 0 the vector of Rn having all
components equal to zero. A vector v ∈ Rn can also be interpreted as a matrix
in Rn×1 and manipulated accordingly with the usual definitions for addition,
multiplication (both by a scalar and by another matrix), and transposition,
which is denoted by vT. The scalar product of v,w ∈ Rn, denoted 〈v,w〉, is
the real number vTw =

∑n

i=1
viwi.

For any relational operator ⊲⊳ ∈ {=,≤,≥, <, >}, we write v ⊲⊳ w to denote
the conjunctive proposition

∧n
i=1

(vi ⊲⊳ wi). Moreover, v 6= w denotes the
proposition ¬(v = w). We occasionally use the convenient notation a ⊲⊳1 b ⊲⊳2 c
to denote the conjunction a ⊲⊳1 b ∧ b ⊲⊳2 c and do not distinguish conjunctions
of propositions from sets of propositions.

2.1. Topologically Closed Convex Polyhedra

For each vector a ∈ Rn and scalar b ∈ R, where a 6= 0, the linear non-strict
inequality constraint β =

(

〈a,x〉 ≤ b
)

defines a topologically closed affine half-
space of Rn. The linear equality constraint 〈a,x〉 = b defines an affine hyper-
plane. A topologically closed convex polyhedron is usually described as a finite
system of linear equality and non-strict inequality constraints. Theoretically
speaking, it is simpler to express each equality constraint as the intersection of
the two half-spaces 〈a,x〉 ≤ b and 〈−a,x〉 ≤ −b. We do not distinguish between
syntactically different constraints defining the same affine half-space so that,
e.g., x ≤ 2 and 2x ≤ 4 are considered to be the same constraint.

We write con(C) to denote the polyhedron P ⊆ Rn described by the finite
constraint system C. Formally, we define

con(C) :=
{

p ∈ Rn
∣

∣

∣
∀β =

(

〈a,x〉 ≤ b
)

∈ C : 〈a,p〉 ≤ b
}

.

The function ‘con’ enjoys an anti-monotonicity property, meaning that C1 ⊆ C2

implies con(C1) ⊇ con(C2).
Alternatively, the definition of a topologically closed convex polyhedron can

be based on some of its geometric features. A vector r ∈ Rn such that r 6= 0 is
a ray (or direction of infinity) of a non-empty polyhedron P ⊆ Rn if, for every
point p ∈ P and every non-negative scalar ρ ∈ R+, we have p + ρr ∈ P; the set
of all the rays of a polyhedron P is denoted by rays(P). A vector l ∈ Rn is a
line of P if both l and −l are rays of P. The empty polyhedron has no rays and
no lines. As was the case for equality constraints, the theory can dispense with
the use of lines by using the corresponding pair of rays. Moreover, when vectors
are used to denote rays, no distinction is made between different vectors having
the same direction so that, e.g., r1 = (1, 3)T and r2 = (2, 6)T are considered
to be the same ray in R2. The following theorem is a simple consequence of
well-known theorems by Minkowski and Weyl [44].
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Theorem 2.1. The set P ⊆ Rn is a closed polyhedron if and only if there exist
finite sets R, P ⊆ Rn of cardinality r and p, respectively, such that 0 /∈ R and

P = gen
(

(R, P )
)

:=

{

Rρ + Pσ ∈ Rn

∣

∣

∣

∣

ρ ∈ Rr
+
, σ ∈ Rp

+
,

p
∑

i=1

σi = 1

}

.

When P 6= ∅, we say that P is described by the generator system G = (R, P ).
In particular, the vectors of R and P are rays and points of P, respectively.
Thus, each point of the generated polyhedron is obtained by adding a non-
negative combination of the rays in R and a convex combination of the points
in P . Informally speaking, if no “supporting point” is provided then an empty
polyhedron is obtained; formally, P = ∅ if and only if P = ∅. By convention,
the empty system (i.e., the system with R = ∅ and P = ∅) is the only gener-
ator system for the empty polyhedron. We define a partial order relation ‘⊑’
on generator systems, which is the component-wise extension of set inclusion.
Namely, for any generator systems G1 = (R1, P1) and G2 = (R2, P2), we have
G1 ⊑ G2 if and only if R1 ⊆ R2 and P1 ⊆ P2; if, in addition, G1 6= G2, we write
G1 ⊏ G2. The function ‘gen’ enjoys a monotonicity property, as G1 ⊑ G2 implies
gen(G1) ⊆ gen(G2).

The vector v ∈ P is an extreme point (or vertex ) of the polyhedron P if
it cannot be expressed as a convex combination of some other points of P.
Similarly, r ∈ rays(P) is an extreme ray of P if it cannot be expressed as a
non-negative combination of some other rays of P. It is worth stressing that,
in general, the vectors in R and P are not the extreme rays and the vertices of
the polyhedron: for instance, any half-space of R2 has two extreme rays and no
vertices, but any generator system describing it will contain at least three rays
and one point.

The combination of the two approaches outlined above is the basis of the
double description method due to Motzkin et al. [37], which exploits the duality
principle to compute each representation starting from the other one, possibly
minimizing both descriptions. Clever implementations of this conversion pro-
cedure, such as those based on the extension by Le Verge [32] of Chernikova’s
algorithms [19, 20, 21], are the starting points for the development of software
libraries based on the double description method. While being characterized
by a worst-case computational cost that is exponential in the size of the in-
put, these algorithms turn out to be practically useful for the purposes of many
applications in the context of static analysis.

We denote by CPn the set of all topologically closed polyhedra in Rn, which is
partially ordered by subset inclusion to form a non-complete lattice; the finitary
greatest lower bound operator corresponds to intersection; the finitary least
upper bound operator, denoted by ‘⊎’, corresponds to the convex polyhedral
hull. Observe that if, for each i ∈ {1, 2}, Pi = gen

(

(Ri, Pi)
)

, then the convex

polyhedral hull is P1 ⊎ P2 = gen
(

(R1 ∪ R2, P1 ∪ P2)
)

.
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2.2. Not Necessarily Closed Convex Polyhedra

The linear strict inequality constraint β =
(

〈a,x〉 > b
)

defines a topologically
open affine half-space of Rn. A not necessarily closed (NNC) convex polyhe-
dron is defined by a finite system of strict and non-strict inequality constraints.
Since by using lines, rays and points we can only represent topologically closed
polyhedra, the key step for a parametric description of NNC polyhedra is the
introduction of a new kind of generator called a closure point [4].

Definition 2.2. (Closure point.) A vector c ∈ Rn is a closure point of
S ⊆ Rn if and only if c ∈ C(S).

For a non-empty NNC polyhedron P ⊆ Rn, a vector c ∈ Rn is a closure point
of P if and only if σp + (1 − σ)c ∈ P for every point p ∈ P and every σ ∈ R
such that 0 < σ < 1. By excluding the case when σ = 0, c is not forced to be
in P.

The following theorem taken from [4] is a generalisation of Theorem 2.1 to
NNC polyhedra.

Theorem 2.3. The set P ⊆ Rn is an NNC polyhedron if and only if there exist
finite sets R, P, C ⊆ Rn of cardinality r, p and c, respectively, such that 0 /∈ R
and

P = gen
(

(R, P, C)
)

:=











Rρ + Pσ + Cτ ∈ Rn

∣

∣

∣

∣

∣

∣

∣

ρ ∈ Rr
+
, σ ∈ Rp

+, σ 6= 0,

τ ∈ Rc
+
,

∑p

i=1
σi +

∑c

i=1
τi = 1











.

When P 6= ∅, we say that P is described by the extended generator system
G = (R, P, C). As was the case for closed polyhedra, the vectors in R and P
are rays and points of P, respectively. The condition σ 6= 0 ensures that at
least one of the points of P plays an active role in any convex combination of
the vectors of P and C. The vectors of C are closure points of P. Since both
rays and closure points need a supporting point, we have P = ∅ if and only if
P = ∅. The partial order relation ‘⊑’ on generator systems is easily extended
to also take into account the closure points component, so that the overloading
of the function ‘gen’ still satisfies the monotonicity property.

The set of all NNC polyhedra in Rn, denoted Pn, is again a non-complete
lattice partially ordered by subset inclusion, having CPn as a sublattice. As
for the set of closed polyhedra CPn, the finitary greatest lower bound operator
corresponds to intersection; the finitary least upper bound operator, again de-
noted by ‘⊎’, corresponds to the not necessarily closed convex polyhedral hull.
Observe that if, for each i ∈ {1, 2}, Pi = gen

(

(Ri, Pi, Ci)
)

, then the convex

polyhedral hull is P1 ⊎ P2 = gen
(

(R1 ∪ R2, P1 ∪ P2, C1 ∪ C2)
)

.

2.3. Subsumption and Saturation

A point (resp., ray, closure point) v ∈ Rn is said to be subsumed by a
polyhedron P if and only if v is a point (resp., ray, closure point) of P.
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Figure 1: Pictorial representations for Lemmas 3.1 and 3.5

A (closure) point p ∈ Rn is said to saturate a constraint β =
(

〈a,x〉 ⊲⊳ b
)

,
where ⊲⊳ ∈ {=,≤,≥, <, >}, if and only if 〈a,p〉 = b; a ray r ∈ Rn is said to
saturate the same constraint β if and only if 〈a, r〉 = 0.

3. Exact Join Detection for Convex Polyhedra

In this section, we provide results for the exact join detection problem for
convex polyhedra. Here we just consider the case when a double description
representation is available; that is, in the proposed methods, we exploit both
the constraint and the generator descriptions of the polyhedra.

3.1. Exact Join Detection for Topologically Closed Polyhedra

First we consider the exact join detection problem for closed polyhedra since,
in this case, given any two closed polyhedra P1,P2 ∈ CPn, we have that P1∪P2

is convex if and only if P1 ⊎ P2 = P1 ∪ P2. Before stating and proving the
main result for this section, we present the following lemma that establishes
some simple conditions that will ensure the union of two closed polyhedra is not
convex.

Lemma 3.1. Let P1,P2 ∈ CPn be topologically closed non-empty polyhedra.
Suppose there exist a constraint β and a vector p such that (1) p saturates β,
(2) β is satisfied by P1 but violated by P2, and (3) p ∈ P1 \ P2. Then, P1 ∪ P2

is not convex.

Proof. (See also Figure 1(a).) By (2), there exists a point p2 ∈ P2 that violates
β. Consider the closed line segment s := [p,p2]; by (1), the one and only point
on this segment that satisfies β is p; by (3), p ∈ P1 so that s ⊆ P1 ⊎ P2. Also
by (3), p /∈ P2, so that there exists a non-strict constraint β2 that is satisfied by
P2 but violated by p. Since p2 ∈ P2, there exists a vector q ∈ s that saturates
β2 and q 6= p. It follows that the open line segment s1 := (p,q) is non-empty
and every point in s1 violates both β and β2; hence s1 ∩ P1 = s1 ∩ P2 = ∅.
However, by construction,

(p,q) ⊂ [p,p2] ⊆ P1 ⊎ P2,

so that P1 ⊎ P2 6= P1 ∪ P2. Therefore P1 ∪ P2 is not convex. �
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Theorem 3.2. Let P1,P2 ∈ CPn be topologically closed non-empty polyhedra,
where P1 = con(C1) = gen(G1). Then P1 ⊎ P2 6= P1 ∪ P2 if and only if there
exist a constraint β1 ∈ C1 and a generator g1 in G1 such that (1) g1 saturates
β1, (2) P2 violates β1, and (3) P2 does not subsume g1.

Proof. Suppose first that P1 ⊎ P2 6= P1 ∪P2. As ‘⊎’ is the least upper bound
operator for closed polyhedra, there exist points p1 ∈ P1 \ P2 and p2 ∈ P2 \ P1

such that
[p1,p2] * (P1 ∪ P2).

As p1 ∈ P1, there exists a point

p := (1 − σ)p1 + σp2 ∈ [p1,p2] ∩ P1

such that σ ∈ R+ is maximal (note that, by convexity, σ ≤ 1); then p must
saturate a constraint β1 ∈ C1. Moreover p /∈ P2 since then otherwise, we would
have [p1,p] ⊆ P1 and [p,p2] ⊆ P2, contradicting [p1,p2] * P1 ∪ P2. Hence
p2 does not satisfy β1 so that P2 violates β1. Let G′

1 be the generator system
containing all the points and rays in G1 that saturate β1. Then p ∈ gen(G′

1). By
Theorem 2.1, as p /∈ P2, there is a point or ray g1 in G′

1 that is not subsumed
by P2. Hence conditions (1), (2) and (3) are all satisfied.

Suppose now that there exist a constraint β1 ∈ C1 and a generator g1 in G1

such that conditions (1), (2) and (3) hold. Then, as P1 = con(C1), β1 is satisfied
by P1. If g1 := p1 is a point, then, by letting β := β1 and p := p1 in Lemma 3.1,
the required three conditions hold so that P1 ∪ P2 is not convex. Now suppose
that g1 := r1 is a ray for P1. Suppose there exists a point p′

1 ∈ P1 that saturates
the constraint β1. By condition (3), r1 is not a ray for P2; hence for some ρ ∈ R+

there exists a point p1 := p′
1 + ρr1 ∈ P1 \ P2 that also saturates β1. Hence,

letting β := β1 and p := p1 in Lemma 3.1, the required three conditions hold so
that P1 ∪ P2 is not convex. Otherwise, no point in P1 saturates β1.

4 Suppose,
for some a ∈ Rn and b ∈ R, β1 =

(

〈a,x〉 ⊲⊳ b
)

; then, since P1 6= ∅, there exist

a point p′
1 ∈ P1 and a constraint β′

1 :=
(

〈a,x〉 ⊲⊳ b′
)

such that P1 satisfies β′
1

and p′
1 saturates β′

1; note that β′
1 is also saturated by ray r1. Thus we can

construct, as done above, a point p1 := p′
1 + ρr1 ∈ P1 \ P2 that saturates β′

1.
Hence, letting β := β′

1 and p := p1 in Lemma 3.1, the required three conditions
hold so that P1 ∪P2 is not convex. Therefore, in all cases, P1 ⊎P2 6= P1 ∪P2.
�

Example 3.3. Consider the closed polyhedra

P1 = con(C1) = con
(

{x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 2}
)

= gen(G1) = gen
(

(∅, P )
)

,

P2 = con(C2) = con
(

{x1 ≤ 2, x2 ≥ 0, x1 − x2 ≥ 0}
)

,

4This may happen because we made no minimality assumption on the constraint system
C1, so that β1 may be redundant.
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Figure 2: The convex polyhedral hull of NNC polyhedra

where P =
{

(0, 0)T, (2, 0)T, (0, 2)T
}

. Then

P1 ⊎ P2 = con
(

{x1 ≥ 0, x2 ≥ 0, x1 ≤ 2, x2 ≤ 2}
)

so that (1, 1)T ∈ (P1 ⊎ P2) \ (P1 ∪ P2) and, hence, P1 ⊎ P2 6= P1 ∪ P2. In
Theorem 3.2, let β1 = (x1 + x2 ≤ 2) and g1 = (0, 2)T. Then conditions (1), (2)
and (3) are all satisfied.

For each i ∈ {1, 2}, let li and mi denote the number of constraints in Ci and
generators in Gi, respectively. Then, the worst-case complexity of an algorithm
based on Theorem 3.2, computed by summing the complexities for checking
each of the conditions (1), (2) and (3), is in O

(

n(l1m1 + l1m2 + l2m1)
)

. Notice
that the complexity bound is not symmetric so that, if l1m1 ≫ l2m2 holds, then
an efficiency improvement can be obtained by exchanging the roles of P1 and
P2 in the theorem. In all cases, an improvement is obtained with respect to the

O
(

n(l1 + l2)m1m2)
)

complexity bound of Algorithm 7.1 in [15].

3.2. Exact Join Detection for Not Necessarily Closed Polyhedra

We now consider the exact join detection problem for two NNC polyhedra
P1,P2 ∈ Pn; in this case, it can happen that P1 ⊎ P2 6= P1 ∪ P2 although the
union P1 ∪ P2 is convex.

Example 3.4. Consider the NNC polyhedra P and Q in Figure 2(a), where
P is the open rectangle ABCD and Q is the single point E. The union P ∪Q is
convex but it is not an NNC polyhedron: the convex polyhedral hull P ⊎Q (see
Figure 2(c)) also contains the line segment (B, C) and hence P⊎Q 6= P∪Q. On
the other hand, if we now consider P and Q′, as shown in Figure 2(b), where
Q′ is the line segment (B, C), then the convex polyhedral hull P ⊎ Q′ is such
that P ⊎Q′ = P ⊎Q = P ∪Q′.

Before stating and proving the main result for this section, we present a
lemma similar to Lemma 3.1 but generalized so as to apply to NNC polyhedra.

Lemma 3.5. Let P1,P2 ∈ Pn be non-empty polyhedra. Suppose that there exist
a constraint β and a vector p such that (1) p saturates β, (2) β is satisfied by
P1 but violated by P2, and (3) p ∈ C(P1) \ C(P2). Then P1 ⊎ P2 6= P1 ∪ P2.
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Proof. (See also Figures 1(a) and 1(b).) By (2), there exists a point p2 ∈ P2

that violates β. Consider the line segment s := (p,p2]; by (1), no point on s
satisfies β; by (3), p ∈ C(P1) so that s ⊆ P1 ⊎ P2. Also, by (3), p /∈ C(P2)
so that there exists a constraint β2 that is satisfied by C(P2) but violated by
p. Since p /∈ P2 and p2 ∈ P2, there exists a vector q ∈ s that saturates β2.
It follows that, as q 6= p, the open line segment s1 := (p,q) is non-empty and
every point in s1 violates both β and β2; hence s1∩P1 = s1∩P2 = ∅. However,
by construction,

(p,q) ⊂ (p,p2] ⊆ (P1 ⊎ P2),

so that P1 ⊎ P2 6= P1 ∪ P2. �

Theorem 3.6. For i ∈ {1, 2}, let Pi = con(Ci) = gen(Gi) ∈ Pn be non-empty
polyhedra. Then P1 ⊎ P2 6= P1 ∪ P2 if and only if, for some i, j ∈ {1, 2}, i 6= j,
there exists a generator gi in Gi that saturates a constraint βi ∈ Ci violated by
Pj and at least one of the following hold:

(1) gi is a ray or closure point in Gi that is not subsumed by Pj ;

(2) gi is a point in Gi, βi is non-strict and gi /∈ C(Pj);

(3) βi is strict and saturated by a point p ∈ (P1 ⊎ P2) \ Pj.

Proof. Suppose first that P1 ⊎ P2 6= P1 ∪P2. As ‘⊎’ is the least upper bound
operator for NNC polyhedra, it follows from the note following Definition 2.2
that, for some i, j ∈ {1, 2}, i 6= j, there exists a closure point pi of Pi and a
point pj ∈ Pj such that

(pi,pj ] * P1 ∪ P2.

For ease of notation, we will assume that i = 1 and j = 2; the other case follows
by a symmetrical argument. As p1 ∈ C(P1), there exists a point

p := (1 − σ)p1 + σp2 ∈ [p1,p2] ∩ C(P1)

such that σ ∈ R+ is maximal (note that, by convexity, σ < 1); then p ∈ P1 ⊎P2

and saturates a constraint β1 ∈ C1 where β1 is strict if p /∈ P1. Note that p /∈ P2

since, otherwise, we would have (p1,p) ⊆ P1 and [p,p2] ⊆ P2, contradicting
(p1,p2] * P1 ∪ P2. Moreover, if p ∈ P1, p /∈ C(P2) since, otherwise, we would
have (p1,p] ⊆ P1 and (p,p2] ⊆ P2, again contradicting (p1,p2] * P1 ∪ P2.

Let G′
1 = (R′

1, P
′
1, C

′
1) be the system of all the generators in G1 that saturate

β1 so that p ∈ gen
(

(R′
1, P

′
1∪C ′

1, ∅)
)

. Suppose condition (1) does not hold; that
is, suppose that all the rays in R′

1 are subsumed by P2 and C ′
1 ⊆ C(P2). If β1

is non-strict, p ∈ P1 so that p /∈ C(P2); hence, by Theorem 2.3, there must
exist a generator point g1 ∈ P ′

1 \C(P2) and condition (2) holds. If instead, β1 is
strict, then, since p ∈ P1 ⊎ P2, p /∈ P2 and p saturates β1, condition (3) holds.

Suppose now that, for some i, j ∈ {1, 2} i 6= j, there exists a generator gi

in Gi that saturates a constraint βi ∈ Ci violated by Pj and condition (1), (2)
or (3) holds. As before, we assume that i = 1 and j = 2, since the other case
follows by a symmetrical argument. Let β1 :=

(

〈a,x〉 ⊲⊳ b
)

, where ⊲⊳ ∈ {<,≤}.

11



Suppose condition (1) holds; so that g1 is a closure point or ray that is not
subsumed by P2, Consider first the case when g1 is a closure point in G1 so that
g1 /∈ C(P2). Then, by letting β := β1 and p := g1 in Lemma 3.5, it follows that
P1⊎P2 6= P1∪P2. Consider now the case when g1 is a ray in G1. Since P1 6= ∅,
there exist a point p′

1 ∈ C(P1) and a constraint β′
1 :=

(

〈a,x〉 ≤ 〈a,p′
1〉

)

such
that P1 satisfies β′

1; note that, by definition, β′
1 is saturated by the point p′

1

and the ray g1.
5 Therefore, for some ρ ∈ R+, the point p1 := p′

1 + ρg1 /∈ C(P2);
hence, as p1 ∈ C(P1) and saturates β′

1, by letting β := β′
1 and p := p1 in

Lemma 3.5, it follows that P1 ⊎ P2 6= P1 ∪ P2. If condition (2) holds, then g1

is a point in G1 (so that g1 ∈ P1) and g1 /∈ C(P2). Then, by letting β := β1

and p := g1 in Lemma 3.5, it follows that P1 ⊎ P2 6= P1 ∪ P2. Finally suppose
that condition (3) holds. In this case β1 is strict, so that p /∈ P1, and hence
p ∈

(

P1 ⊎ P2

)

\ (P1 ∪ P2); therefore P1 ⊎ P2 6= P1 ∪ P2. �

Observe that the conditions stated for the NNC case in Theorem 3.6 are
more involved than the conditions stated for the topologically closed case in
Theorem 3.2. In particular, a direct correspondence can only be found for con-
dition (2) of Theorem 3.6. The added complexity, which naturally propagates to
the corresponding implementation, is justified by the need to properly capture
special cases where, as said above, convexity alone is not sufficient.

In particular, the check for condition (3) in Theorem 3.6 is more expensive
than the other checks and hence should be delayed as much as possible. Writing
H(β) to denote the affine hyperplane induced by constraint β,6 condition (3)
can be implemented by checking that (P1 ⊎ P2) ∩H(βi) ⊆ Pj ∩H(βi) does not
hold. Even though it is possible to identify cases where optimizations apply,
in the general case the inclusion test above will require the application of the
(incremental) conversion procedure for NNC polyhedra representations.

In the following, we provide a few examples showing cases when condi-
tions (1) and (3) of Theorem 3.6 come into play.

Example 3.7 (Condition (1) of Theorem 3.6). We first show how condi-
tion (1) of Theorem 3.6 where g1 is a closure point can properly discriminate
between the two cases illustrated in Figures 2(a) and 2(b).

Consider the polyhedra P and Q in Figure 2(a) and assume that the line
segment (B, C) satisfies the constraint x1 = 4. In the statement of Theorem 3.6,
let P1 = P, P2 = Q, i = 1, j = 2, β1 = (x1 < 4) ∈ C1 and g1 = B be a closure
point in G1. Then β1 is violated by P2 and saturated by g1, but g1 is not
subsumed by P2. Hence condition (1) of Theorem 3.6 holds and we correctly
conclude that P ⊎Q 6= P ∪Q.

On the other hand, if we consider polyhedra P and Q′ in Figure 2(b) and
let P1 = P and P2 = Q′, then the closure point g1 = B is subsumed by P2 so
that condition (1) of Theorem 3.6 does not hold.

5The 〈a,p′

1
〉 may differ from b because we made no minimality assumption on the constraint

system C1, so that β1 may be redundant.
6Namely, if β =

`

〈a,x〉 ⊲⊳ b
´

, then H(β) = con
“

˘

〈a,x〉 = b
¯

”

.
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Figure 3: More examples for the convex polyhedral hull of NNC polyhedra

Note that such a discrimination could not be obtained by checking only
condition (2) of Theorem 3.6. If we swap the indices i and j so that i = 2,
j = 1; letting β2 = (x1 ≥ 4) ∈ C2 and g2 = E be a point in G2, then g2 ∈ C(P)
and β2 is a non-strict constraint of both Q and Q′ violated by P and saturated
by point g2; hence condition (2) does not hold for both P2 = Q and for P2 = Q′.

For an example of an application of condition (1) of Theorem 3.6 when g1 is
a ray, consider Q1 and Q2 in Figure 3(a), where Q1 = con

(

{2 ≤ x1 < 4}
)

is an
unbounded strip and Q2 = {A} is a singleton, with A = (4, 2)T. It can be seen
that Q1 ⊎ Q2, the polyhedron in Figure 3(d), contains the point B = (4, 0)T

which is not a point in Q1 or Q2, so that Q1 ⊎Q2 6= Q1 ∪Q2. In the statement
of Theorem 3.6, let P1 = Q1, P2 = Q2, i = 1, j = 2, β1 = (x1 < 4) ∈ C1 and
g1 = (0, 1)T be a ray in G1. Then β1 is violated by P2 and saturated by the ray
g1; but g1 is not subsumed by P2 so that condition (1) of Theorem 3.6 holds.

Example 3.8 (Condition (3) of Theorem 3.6). This example shows how
condition (3) of Theorem 3.6 can properly discriminate between the two cases
illustrated in Figures 3(b) and 3(c).

Consider the polyhedra Q3 and Q4 in Figure 3(b), where Q3 is the open
rectangle ABCD, with the open bound (B, C) defined by the strict constraint
x1 < 3, whereas Q4 is the open rectangle BEFC. Then B = (3, 1)T and
C = (3, 5)T are closure points for both Q3 and Q4. It can be seen that Q3⊎Q4,
the polyhedron in Figure 3(e), contains the open line segment (B, C) so that
Q3 ⊎ Q4 6= Q3 ∪ Q4. In the statement of Theorem 3.6, let P1 = Q3, P2 = Q4,
i = 1, j = 2, β1 = (x1 < 3) ∈ C1 and g1 = B be a closure point in G1. Then β1

is violated by P2 and saturated by the closure point g1. Although condition (1)
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does not hold because g1 is subsumed by P2, condition (3) does hold since β1

is strict and, taking p = G ∈ (B, C), we have p ∈ (P1 ⊎ P2) \ P2.
It is worth stressing that none of the (closure) points in the open segment

(B, C) belong to the generator systems of P1 and P2. The reader is also warned
that, even though in this particular example P1, P2 and the segment (B, C) are
pairwise disjoint (which trivially implies that the join P1 ⊎ P2 is inexact), such
a property would not generalize to higher dimensional vector spaces and hence
it cannot be used as a replacement for condition (3) in Theorem 3.6.

Consider the polyhedra Q5 and Q6 in Figure 3(c), where Q5 is the quadri-
lateral ABCD and Q6 is the quadrilateral EFGC. Then the convex polyhedral
hull Q5 ⊎ Q6 shown in Figure 3(f) is equal to their union Q5 ∪ Q6. In the
statement of Theorem 3.6, let P1 = Q5, P2 = Q6, i = 1, j = 2, β1 ∈ C1 be the
strict constraint defining the dashed line boundary (B, C) and g1 be the closure
point C in both P1 and P2. Then none of the conditions in Theorem 3.6 hold.

4. Exact Join Detection for Boxes and Other Cartesian Products

A rational interval constraint for a dimension i ∈ {1, . . . , n} has the form
xi ⊲⊳ b, where ⊲⊳ ∈ {<,≤, =,≥, >} and b ∈ Q. A finite system of rational
interval constraints defines an NNC polyhedron in Pn that we call a rational
box ; the set of all rational boxes in the n-dimensional vector space is denoted
Bn and is a meet-sublattice of Pn. The domain Bn so defined can be seen as the
Cartesian product of n possibly infinite intervals with rational, possibly open
boundaries. If we denote by I the set of such intervals and by ‘⊕’ the binary join
operator over the bounded join-semilattice (I,⊆), we have, for each B1, B2 ∈ B,

B1 ⊎ B2 =
(

π1(B1) ⊕ π1(B2)
)

× · · · ×
(

πn(B1) ⊕ πn(B2)
)

.

The following theorem defines a necessary and sufficient condition that is
only based on ‘⊕’ and on the subset ordering over I. Notice, in particular, that
convexity does not play any role, neither in the statement, nor in the proof.

Theorem 4.1. Let B1, B2 ∈ Bn. Then B1 ⊎ B2 6= B1 ∪ B2 if and only if

1. ∃i ∈ {1, . . . , n} . πi(B1) ⊕ πi(B2) 6= πi(B1) ∪ πi(B2); or

2. ∃i, j ∈ {1, . . . , n} . i 6= j ∧ πi(B1) * πi(B2) ∧ πj(B2) * πj(B1).

Proof. Suppose that B1 = ∅ so that, for each i ∈ {1, . . . , n}, πi(B1) = ∅.
Then, neither condition (1) nor condition (2) can hold, so that the lemma holds.
By a symmetric reasoning, the lemma holds if B2 = ∅. Hence, in the following
we assume that both B1 and B2 are non-empty boxes.

Suppose first that B1 ⊎B2 6= B1 ∪B2; then there exists a point p ∈ B1 ⊎B2

such that p /∈ B1 and p /∈ B2. Hence, for some i, j ∈ {1, . . . , n}, we have
that pi /∈ πi(B1) and pj /∈ πj(B2). Note that as p ∈ B1 ⊎ B2, we also have
pi ∈ πi(B1) ⊕ πi(B2) and pj ∈ πj(B1) ⊕ πj(B2). Suppose that condition (1)
does not hold. Then pi ∈ πi(B2) and pj ∈ πj(B1); hence we must have i 6= j and
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pi ∈ πi(B1) \ πi(B2) and pj ∈ πj(B2) \ πj(B1); implying that πi(B1) * πi(B2)
and πj(B2) * πj(B1), so that condition (2) holds.

Assuming that condition (1) or (2) holds, we now prove B1 ⊎B2 6= B1 ∪B2.
First, suppose that condition (1) holds. Then there exists v ∈ πi(B1 ⊎ B2)
such that v /∈ πi(B1) and v /∈ πi(B2). By definition of πi, there exist a point
p ∈ B1 ⊎ B2 such that πi(p) = v, so that p /∈ B1 and p /∈ B2; therefore
B1 ⊎ B2 6= B1 ∪ B2. Secondly, suppose that condition (2) holds. Then there
exist values vi ∈ πi(B1) \ πi(B2) and vj ∈ πj(B2) \ πj(B1); hence, there exist
points pi ∈ B1 and pj ∈ B2 such that πi(pi) = vi and πj(pj) = vj . Let p
be such that πk(p) = πk(pi), for all k ∈ {1, . . . , n} \ {j}, and πj(p) = vj ;
then p /∈ B1 ∪ B2. By definition of the ‘⊎’ operator, p ∈ B1 ⊎ B2, so that
B1 ⊎ B2 6= B1 ∪ B2. �

Example 4.2. Consider the topologically closed boxes

B1 = con
(

{0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2}
)

,

B2 = con
(

{3 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2}
)

,

B3 = con
(

{0 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 2}
)

.

Then we obtain

B1 ⊎ B2 = B1 ⊎ B3 = con
(

{0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2}
)

.

Letting p = (2, 0)T, we have p ∈ B1 ⊎ B2 although p /∈ B1 ∪ B2 ∪ B3; hence
B1 ⊎ B2 6= B1 ∪ B2 and B1 ⊎ B3 6= B1 ∪ B3, i.e., both join computations are
inexact. Observe that

π1(B1) ⊕ π1(B2) 6= π1(B1) ∪ π1(B2),

so that, for boxes B1 and B2, condition (1) holds; on the other hand we have

π1(B3) * π1(B1) and π2(B1) * π2(B3),

so that, for boxes B1 and B3, condition (2) holds.

This result has been introduced for rational boxes for simplicity only. In-
deed, it trivially generalizes to any Cartesian product of 1-dimensional numerical
abstractions, including: the well-known abstract domain of multi-dimensional,
integer-valued intervals [23]; 1-dimensional congruence equations like x = 0
(mod 2); modulo intervals [38, 39]; and circular linear progressions [41]. For
full generality, for each i ∈ {1, . . . , n}, let (A(i),⊆), with ∅ ∈ A(i) ⊆ ℘(R), be
a bounded join-semilattice where the binary join operator is denoted by ‘⊕i’.
(A(i),⊆) is thus an abstract domain suitable for approximating ℘(R). Then,
the trivial combination of the n domains A(i) by means of Cartesian product,
An := A(1) × · · · × A(n), is an abstract domain suitable for approximating
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℘(Rn).7 Theorem 4.1 immediately generalizes to any domain An so obtained.
An algorithm for the exact join detection on An based on Theorem 4.1 will

compute, in the worst case, a linear number of 1-dimensional joins (applying
the ‘⊕i’ operators) and a linear number of 1-dimensional inclusion tests. Since
these 1-dimensional operations take constant time, the worst-case complexity
bound for n-dimensional boxes is O(n).

5. Exact Join Detection for Bounded Difference Shapes

A (rational) bounded difference is a non-strict inequality constraint having
one of the forms ±xi ≤ b or xi−xj ≤ b, where i, j ∈ {1, . . . , n}, i 6= j and b ∈ Q.
A finite system of bounded differences defines a bounded difference shape (BD
shape); the set of all BD shapes in the n-dimensional vector space is denoted
BDn and it is a meet-sublattice of CPn. In this section we specialize the result on
topologically closed polyhedra to the case of BD shapes, which can be efficiently
represented and manipulated as weighted graphs.

5.1. BD Shapes and their Graph Representation

We first introduce some notation and terminology (see also [3, 10, 34, 36]).
Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that

d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A weighted directed
graph (graph, for short) G in N is a pair (N , w), where w : N ×N → Q∞ is the
weight function for G. A pair (ni, nj) ∈ N×N is an arc of G if w(ni, nj) < +∞;
the arc is proper if ni 6= nj . A path θ = n0 · · ·np in a graph G = (N , w) is a non-
empty and finite sequence of nodes such that, for all i ∈ {1, . . . , p}, (ni−1, ni) is
an arc of G; each arc (ni−1, ni) is said to be in the path θ. If θ1 = n0 · · ·nh and
θ2 = nh · · ·np are paths in G, where 0 ≤ h ≤ p, then the path concatenation
θ = n0 · · ·nh · · ·np of θ1 and θ2 is denoted by θ1 :: θ2; if θ1 = n0n1 (so that
h = 1), then θ1 :: θ2 will also be denoted by n0 ·θ2. Note that path concatenation
is not the same as sequence concatenation. The path θ is simple if each node
occurs at most once in θ; it is proper if all the arcs in it are proper; it is a proper
cycle if it is a proper path and n0 = np (so that p ≥ 2). The path θ has weight
w(θ) :=

∑p

i=1
w(ni−1, ni). A graph is consistent if it has no strictly negative

weight cycles. The set G of consistent graphs in N is partially ordered by the
relation ‘E’ defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 E G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

When augmented with a bottom element ⊥ representing inconsistency, this
partially ordered set becomes a (non-complete) lattice G⊥ =

〈

G∪{⊥}, E,⊓,⊔
〉

,
where ‘⊓’ and ‘⊔’ denote the (finitary) greatest lower bound and least upper
bound operators, respectively.

7This construction is called a direct product in the field of abstract interpretation. The
resulting domain is said to be attribute-independent, in the sense that relational information
is not captured. In other words, the constraints on space dimension i are unrelated to those
on space dimension j whenever i 6= j.
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Definition 5.1. (Graph closure/reduction.) A consistent graph G = (N , w)
is (shortest-path) closed if the following properties hold:

∀i ∈ N : w(i, i) = 0; (3)

∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (4)

The closure of a consistent graph G in N is

closure(G) :=
⊔

{

Gc ∈ G
∣

∣ Gc
E G and Gc is closed

}

.

A consistent graph R in N is (shortest-path) reduced if, for each graph G 6= R
such that R EG, closure(R) 6= closure(G). A reduction for the consistent graph
G is any reduced graph R such that closure(R) = closure(G).

Note that a reduction R for a closed graph G is a subgraph of G, meaning that
all the arcs in R are also arcs in G and have the same finite weight.

Any system of bounded differences in n dimensions defining a non-empty
element bd ∈ BDn can be represented by a consistent graph G = (N , w) where
N = {0, . . . , n} is the set of graph nodes; each node i > 0 corresponds to the
space dimension xi of the vector space, while 0 (the special node) represents a
further space dimension whose value is fixed to zero. Each arc (i, j) of G denotes
the bounded difference xi − xj ≤ w(i, j) if i, j > 0, xi ≤ w(i, 0) if j = 0 and
−xj ≤ w(0, j) if i = 0. Conversely, it can be seen that, by inverting the above
mapping, each consistent graph G = (N , w) where N = {0, . . . , n} represents
a non-empty element bd ∈ BDn. Graph closure provides a normal form for
non-empty BD shapes. Informally, a closed (resp., reduced) graph encodes a
system of bounded difference constraints which is closed by entailment (resp.,
contains no redundant constraint).

If the non-empty BD shapes bd1, bd2 ∈ BDn are represented by closed graphs
G1 = (N , w1) and G2 = (N , w2), respectively, then the BD shape join bd1⊎bd2

is represented by the graph least upper bound G1⊔G2 = (N , w), where w(i, j) :=
max

(

w1(i, j), w2(i, j))
)

for each i, j ∈ N ; G1 ⊔ G2 is also closed. Observe too
that the set intersection bd1 ∩ bd2 is represented by the graph greatest lower
bound G1 ⊓ G2.

5.2. Exact Join Detection for Rational BD Shapes

The following result can be used as the specification of an exact join decision
procedure specialized for rational BD shapes.

Theorem 5.2. For each h ∈ {1, 2}, let bdh ∈ BDn be a non-empty BD shape
represented by the closed graph Gh = (N , wh) and let Rh be a subgraph of Gh

such that closure(Rh) = Gh. Let also G1 ⊔ G2 = (N , w). Then bd1 ⊎ bd2 6=
bd1 ∪ bd2 if and only if there exist arcs (i, j) of R1 and (k, ℓ) of R2 such that

(1) w1(i, j) < w2(i, j) and w2(k, ℓ) < w1(k, ℓ); and

(2) w1(i, j) + w2(k, ℓ) < w(i, ℓ) + w(k, j).
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Proof. Suppose that bd1⊎bd2 6= bd1∪bd2, so that there exists p ∈ bd1⊎bd2

such that p /∈ bd1 and p /∈ bd2. Hence, there exist i, j, k, ℓ ∈ N such that (i, j)
is an arc of R1 satisfying8 πi(p) − πj(p) > w1(i, j) and (k, ℓ) is an arc of R2

satisfying πk(p)−πℓ(p) > w2(k, ℓ). However, as p ∈ bd1⊎bd2, πi(p)−πj(p) ≤
w(i, j) and πk(p) − πℓ(p) ≤ w(k, ℓ) so that, by definition of G1 ⊔ G2, we have
w1(i, j) < w2(i, j) and w2(k, ℓ) < w1(k, ℓ); hence condition (1) holds. Since
p ∈ bd1 ⊎ bd2,

w(i, ℓ) + w(k, j) ≥ πi(p) − πℓ(p) + πk(p) − πj(p)

= πi(p) − πj(p) + πk(p) − πℓ(p)

> w1(i, j) + w2(k, ℓ).

Therefore, condition (2) also holds.
We now suppose that there exist arcs (i, j) of R1 and (k, ℓ) of R2 such that

conditions (1) and (2) hold. As G1 and G2 are closed, w1(i, i) = w2(i, i) = 0
and w1(k, k) = w2(k, k) = 0 so that condition (1) implies i 6= j and k 6= ℓ. As
G1 ⊔ G2 is closed, w(i, i) = w(k, k) = 0 so that, if i = ℓ and j = k both hold,
condition (2) implies w1(i, j) + w2(j, i) < 0; hence, the graph greatest lower
bound G1 ⊓ G2 contains the negative weight proper cycle i · j · i and thus is
inconsistent; hence bd1∩bd2 = ∅; and hence bd1⊎bd2 6= bd1∪bd2. Therefore,
in the following we assume that i 6= ℓ or j 6= k hold. If the right hand side of the
inequalities in conditions (1) and (2) are all unbounded, let ǫ := 1; otherwise let

ǫ := min















w(i, j) − w1(i, j),

w(k, ℓ) − w2(k, ℓ),

1

2

(

w(i, ℓ) + w(k, j) − w1(i, j) − w2(k, ℓ)
)















.

Then, by conditions (1) and (2), ǫ > 0. Consider the graph G′ = (N , w′) where,
for each r, s ∈ N ,

w′(r, s) :=











−w1(i, j) − ǫ, if (r, s) = (j, i);

−w2(k, ℓ) − ǫ, if (r, s) = (ℓ, k);

w(r, s), otherwise.

We show that G′ is a consistent graph; to this end, since G := G1⊔G2 is known
to be consistent, it is sufficient to consider the proper cycles of G′ that contain
arcs (j, i) or (ℓ, k). Let θij = i · · · j and θkℓ = k · · · ℓ be arbitrary simple paths
from i to j and from k to ℓ, respectively. Then G′ is consistent if and only if
w′(θij · i) ≥ 0 and w′(θkℓ · k) ≥ 0. We only prove w′(θij · i) ≥ 0 since the proof
that w′(θkℓ ·k) ≥ 0 follows by a symmetrical argument. As θij is simple, it does
not contain the arc (j, i). Suppose first that θij does not contain the arc (ℓ, k).

8We extend notation by letting π0(v) := 0, for each vector v = (v1, . . . , vn)T.
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Then

w′(θij · i) = w′(θij) + w′(j, i)

= w(θij) − w1(i, j) − ǫ [def. of w′]

≥ w(i, j) − w1(i, j) − ǫ [G closed]

≥ 0 [def. of ǫ].

Suppose now that θij = θiℓ :: (ℓ, k) :: θkj , where θiℓ = i · · · ℓ and θkj = k · · · j do
not contain the arcs (j, i) and (k, ℓ). Then

w′(θij · i) = w′(θiℓ) + w′(ℓ, k) + w′(θkj) + w′(j, i)

= w(θiℓ) − w2(k, ℓ) − ǫ + w(θkj) − w1(i, j) − ǫ [def. of w′]

≥ w(i, ℓ) − w2(k, ℓ) − ǫ + w(k, j) − w1(i, j) − ǫ [G closed]

=
(

w(i, ℓ) + w(k, j) − w1(i, j) − w2(k, ℓ)
)

− 2ǫ

≥ 0 [def. of ǫ].

Therefore G′ is consistent. Moreover, G′ E G since

w′(j, i) = −w1(i, j) − ǫ [def. of w′]

≤ −w1(i, j) [ǫ ≥ 0]

≤ w1(j, i) [G1 consistent]

≤ w(j, i) [def. G];

similarly, w′(ℓ, k) ≤ w(ℓ, k); hence, for all r, s ∈ N , w′(r, s) ≤ w(r, s).
Let bd′ ∈ BDn be represented by G′, so that ∅ 6= bd′ ⊆ bd1 ⊎ bd2. Since

w′(j, i) + w1(i, j) < 0, we obtain bd′ ∩ bd1 = ∅; since w′(ℓ, k) + w2(k, ℓ) < 0,
we obtain bd′ ∩ bd2 = ∅. Hence, bd1 ⊎ bd2 6= bd1 ∪ bd2. �

An algorithm for the exact join detection on BDn based on Theorem 5.2 will
have a worst-case complexity bound in O(n4). Noting that the computation of
graph closure and reduction are both in O(n3) [3, 10, 31, 36], a more detailed
complexity bound is O(n3+r1r2), where rh is the number of arcs in the subgraph
Rh; hence, a good choice is to take each Rh to be a graph reduction for Gh, as
it will have a minimal number of arcs.

Example 5.3. Consider the 2-dimensional BD shapes

bd1 = con
(

{0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 2, }
)

,

bd2 = con
(

{0 ≤ x2 ≤ 2, 0 ≤ x1 − x2 ≤ 3}
)

shown in Figure 4(a). Then the join bd1 ⊎ bd2 is exact. Note that both condi-
tions (1) and (2) in Theorem 5.2 play an active role in the decision procedure.
For instance, when taking i = 1, j = 0, k = 2 and ℓ = 1, condition (1) is
satisfied but condition (2) does not hold:

w1(1, 0) = 3 < 5 = w2(1, 0), w2(2, 1) = 0 < 2 = w1(2, 1),

w1(1, 0) + w2(2, 1) = 3 + 0 > 0 + 2 = w(1, 1) + w(2, 0).
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On the other hand, taking i = 1, j = 1, k = 0 and ℓ = 2, it can be seen that
condition (2) is satisfied but condition (1) does not hold:

w1(1, 1) = 0 = w2(1, 1), w2(0, 2) = 0 = w1(0, 2),

w1(1, 1) + w2(0, 2) = 0 + 0 < 3 + 0 = w(1, 2) + w(0, 1).

5.3. Exact Join Detection for Integer BD Shapes

We now consider the case of integer BD shapes, i.e., subsets of Zn that
are delimited by BD constraints where the bounds are all integral. As for
the rational case, these numerical abstractions can be encoded using weighted
graphs, but restricting the codomain of the weight function to Z∞ := Z∪{+∞}.
Since the set of all integer graphs is a sub-lattice of the set of rational graphs,
the conditions in Theorem 5.2 can be easily strengthened so as to obtain the
corresponding result for the domain BDZ

n of integer BD shapes. The complexity
bound for the algorithm for the domain of integer BD shapes is the same as for
the rational domain.

Theorem 5.4. For each h ∈ {1, 2}, let bdh ∈ BDZ

n be a non-empty integer BD
shape represented by the closed integer graph Gh = (N , wh) and let Rh be a
subgraph of Gh such that closure(Rh) = Gh. Let also G1 ⊔ G2 = (N , w). Then
bd1 ⊎ bd2 6= bd1 ∪ bd2 if and only if there exist arcs (i, j) of R1 and (k, ℓ) of
R2 such that

(1) w1(i, j) < w2(i, j) and w2(k, ℓ) < w1(k, ℓ); and

(2) w1(i, j) + w2(k, ℓ) + 2 ≤ w(i, ℓ) + w(k, j).

Proof. Suppose first that bd1 ⊎ bd2 6= bd1 ∪ bd2, so that there exists p ∈ Zn

such that p ∈ bd1 ⊎ bd2 but p /∈ bd1 and p /∈ bd2. Hence, there exist i, j, k, ℓ ∈
N such that (i, j) is an arc of R1 satisfying πi(p) − πj(p) > w1(i, j) and (k, ℓ)
is an arc of R2 satisfying πk(p)− πℓ(p) > w2(k, ℓ). However, as p ∈ bd1 ⊎ bd2,
πi(p) − πj(p) ≤ w(i, j) and πk(p) − πℓ(p) ≤ w(k, ℓ) so that, by definition of
G1 ⊔ G2, we have w1(i, j) < w2(i, j) and w2(k, ℓ) < w1(k, ℓ); hence condition
(1) holds. Note also that w1(i, j) and w2(k, ℓ) are both finite and hence in Z so
that w1(i, j) + 1 ≤ w2(i, j) and w2(k, ℓ) + 1 ≤ w1(k, ℓ). Since p ∈ bd1 ⊎ bd2,

w(i, ℓ) + w(k, j) ≥ πi(p) − πℓ(p) + πk(p) − πj(p)

= πi(p) − πj(p) + πk(p) − πℓ(p)

≥ w1(i, j) + w2(k, ℓ) + 2.

Therefore, condition (2) also holds.
We now suppose that there exist arcs (i, j) of R1 and (k, ℓ) of R2 such that

conditions (1) and (2) hold. Let G′ = (N , w′) be a graph defined as in the proof
of Theorem 5.2, where however we just define ǫ := 1, so that G′ is an integer
graph. By using the same reasoning as in the proof of Theorem 5.2, it can be
seen that G′ is consistent and G′ E G1 ⊔ G2. Let bd′ ∈ BDZ

n be represented
by G′, so that ∅ 6= bd′ ⊆ bd1 ⊎ bd2. Since w′(j, i) + w1(i, j) < 0, we obtain
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Figure 4: Examples for the join of rational and integer BD shapes

bd′ ∩ bd1 = ∅; since w′(ℓ, k) + w2(k, ℓ) < 0, we obtain bd′ ∩ bd2 = ∅. Hence,
bd1 ⊎ bd2 6= bd1 ∪ bd2. �

Example 5.5. Consider the 2-dimensional BD shapes

bd3 = con
(

{0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 2, x1 − x2 ≤ 2}
)

,

bd4 = con
(

{3 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 2}
)

shown in Figure 4(b). Then, in the case of rational BD shapes, the join bd3⊎bd4

is not exact; for instance, letting p = (2.5, 0)T be the point highlighted in
Figure 4(b), we have p ∈ bd3 ⊎ bd4 although p /∈ bd3 ∪ bd4. Taking i = 1,
j = 2, k = 0 and ℓ = 1, it can be seen that both conditions in Theorem 5.2 are
satisfied; in particular, for the second condition we have

w1(1, 2) + w2(0, 1) = 2 − 3 ≤ 0 + 0 = w(1, 1) + w(0, 2).

By contrast, in the case of integer BD shapes, the join is exact; all the integral
points belonging to the join bd3 ⊎ bd4, denoted by small crosses in Figure 4(b),
also belong to the union bd3 ∪ bd4. In particular, with the above choice for
indices i, j, k, ℓ, the second condition of Theorem 5.4 does not hold:

w1(1, 2) + w2(0, 1) + 2 = 2 − 3 + 2 > 0 + 0 = w(1, 1) + w(0, 2).

5.4. Generalizing to k BD shapes

We conjecture that the above results for the exact join detection of two
(rational or integer) BD shapes can be generalized to any number of component
BD shapes. That is, given k BD shapes bd1, . . . , bdk ∈ BDn, it is possible to
provide a suitable set of conditions that determine whether or not bd1 ⊎ · · · ⊎
bdk = bd1∪· · ·∪bdk. Here we just present the conjecture, for the rational case,
when k = 3.

Conjecture 5.6. For each h ∈ {1, 2, 3}, let bdh ∈ BDn be a non-empty BD
shape represented by the closed graph Gh = (N , wh) and let Rh be a subgraph
of Gh such that closure(Rh) = Gh. Let also G1 ⊔ G2 ⊔ G3 = (N , w). Then
bd1 ⊎ bd2 ⊎ bd3 6= bd1 ∪ bd2 ∪ bd3 if and only if there exist arcs (i1, j1) of R1,
(i2, j2) of R2 and (i3, j3) of R3, respectively, such that

(1) for each h ∈ {1, 2, 3}, wh(ih, jh) < w(ih, jh);
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(2a) w1(i1, j1) + w2(i2, j2) < w(i1, j2) + w(i2, j1);

(2b) w2(i2, j2) + w3(i3, j3) < w(i2, j3) + w(i3, j2);

(2c) w3(i3, j3) + w1(i1, j1) < w(i3, j1) + w(i1, j3);

(3a) w1(i1, j1) + w2(i2, j2) + w3(i3, j3) < w(i1, j2) + w(i2, j3) + w(i3, j1);

(3b) w1(i1, j1) + w2(i2, j2) + w3(i3, j3) < w(i1, j3) + w(i2, j1) + w(i3, j2).

Even though the generalization is straightforward from a mathematical point
of view, for larger values of k this will result in having to check a rather involved
combinatorial combination of all the conditions.

6. Exact Join Detection for Octagonal Shapes

Octagonal constraints generalize BD constraints by also allowing for non-
strict inequalities having the form xi + xj ≤ b or −xi − xj ≤ b. This class of
constraints was first proposed in [11] and further elaborated in [35].

6.1. Octagonal Shapes and their Graph Representation

We first introduce the required notation and terminology (see also [3, 10,
36]).

Octagonal constraints can be encoded using BD constraints by splitting each
variable xi into two forms: a positive form x+

i , interpreted as +xi; and a negative
form x−

i , interpreted as −xi. For instance, an octagonal constraint such as xi +
xj ≤ b can be translated into the potential constraint x+

i −x−
j ≤ b; alternatively,

the same octagonal constraint can be translated into x+
j − x−

i ≤ b. Unary

(octagonal) constraints such as xi ≤ b and −xi ≤ b are encoded as x+
i −x−

i ≤ 2b
and x−

i − x+
i ≤ −2b, respectively.

From now on, we assume that the set of nodes is N := {0, . . . , 2n−1}. These
will denote the positive and negative forms of the vector space dimensions x1,
. . . , xn: for all i ∈ N , if i = 2k, then i represents the positive form x+

k+1
and,

if i = 2k + 1, then i represents the negative form x−

k+1
of the dimension xk+1.

To simplify the presentation, we let ı denote i + 1, if i is even, and i − 1, if i is
odd, so that, for all i ∈ N , we also have ı ∈ N and ı = i.

It follows from the above translations that any finite system of octagonal
constraints, translated into a set of potential constraints in N as above, can
be encoded by a graph G in N . In particular, any finite satisfiable system of
octagonal constraints can be encoded by a consistent graph in N . However,
the converse does not hold since in any valuation ρ of an encoding of a set of
octagonal constraints we must also have ρ(i) = −ρ(ı), so that the arcs (i, j)
and (, ı) should have the same weight. Therefore, to encode rational octagonal
constraints, we restrict attention to consistent graphs over N where the arcs in
all such pairs are coherent.
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Definition 6.1. (Octagonal graph.) A (rational) octagonal graph is any
consistent graph G = (N , w) that satisfies the coherence assumption:

∀i, j ∈ N : w(i, j) = w(, ı). (5)

The set O of all octagonal graphs (with the usual addition of the bottom ele-
ment, representing an unsatisfiable system of constraints) is a sub-lattice of G⊥,
sharing the same least upper bound and greatest lower bound operators. Note
that, at the implementation level, coherence can be automatically and efficiently
enforced by letting arc (i, j) and arc (, ı) share the same representation.

The standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs.

Definition 6.2. (Graph strong closure/reduction.) An octagonal graph
G = (N , w) is strongly closed if it is closed and the following property holds:

∀i, j ∈ N : 2w(i, j) ≤ w(i, ı) + w(, j). (6)

The strong closure of an octagonal graph G in N is

S-closure(G) :=
⊔

{

G′ ∈ O
∣

∣ G′
E G and G′ is strongly closed

}

.

An octagonal graph R is strongly reduced if, for each octagonal graph G 6= R
such that R E G, we have S-closure(R) 6= S-closure(G). A strong reduction for
the octagonal graph G is any strongly reduced octagonal graph R such that
S-closure(R) = S-closure(G).

Observe that, as was the case for shortest-path reduction, a strong reduction
for a strongly closed graph G is a subgraph of G.

We denote by OCTn the domain of octagonal shapes, whose non-empty
elements can be represented by octagonal graphs: BDn is a meet-sublattice of
OCTn, which in turn is a meet-sublattice of CPn. A strongly closed (resp.,
strongly reduced) graph encodes a system of octagonal constraints which is
closed by entailment (resp., contains no redundant constraint).

6.2. Exact Join Detection for Rational Octagonal Shapes

An exact join decision procedure specialized for rational octagonal shapes
can be based on the following result.

Theorem 6.3. For each h ∈ {1, 2}, let octh ∈ OCTn be a non-empty octagonal
shape represented by the strongly closed graph Gh = (N , wh) and let Rh be a
subgraph of Gh such that S-closure(Rh) = Gh. Let also G1⊔G2 = (N , w). Then
oct1 ⊎ oct2 6= oct1 ∪ oct2 if and only if there exist arcs (i, j) of R1 and (k, ℓ) of
R2 such that

(1a) w1(i, j) < w2(i, j);

(1b) w2(k, ℓ) < w1(k, ℓ);
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(2a) w1(i, j) + w2(k, ℓ) < w(i, ℓ) + w(k, j);

(2b) w1(i, j) + w2(k, ℓ) < w(i, k) + w(, ℓ);

(3a) 2w1(i, j) + w2(k, ℓ) < w(i, ℓ) + w(i, k) + w(, j);

(3b) 2w1(i, j) + w2(k, ℓ) < w(k, j) + w(, ℓ) + w(i, ı);

(4a) w1(i, j) + 2w2(k, ℓ) < w(i, ℓ) + w(, ℓ) + w(k, k);

(4b) w1(i, j) + 2w2(k, ℓ) < w(k, j) + w(i, k) + w(ℓ, ℓ).

Proof. For each r ∈ N = {0, . . . , 2n− 1} and each v = (v1, . . . , vn)T ∈ Rn, we
denote by π̃r(v) the projection of vector v on the space dimension corresponding
to the octagonal graph node r, defined as:

π̃r(v) :=

{

vs+1, if r = 2s;

−vs+1, if r = 2s + 1.

Suppose that oct1 ⊎ oct2 6= oct1 ∪ oct2, so that there exists p ∈ oct1 ⊎ oct2
such that p /∈ oct1 and p /∈ oct2. Hence, there exist arcs (i, j) and (k, ℓ) of R1

and R2, respectively, satisfying

w(i, j) ≥ π̃i(p) − π̃j(p) > w1(i, j),

w(k, ℓ) ≥ π̃k(p) − π̃ℓ(p) > w2(k, ℓ);

hence conditions (1a) and (1b) hold;

w(i, ℓ) + w(k, j) ≥ π̃i(p) − π̃ℓ(p) + π̃k(p) − π̃j(p)

= π̃i(p) − π̃j(p) + π̃k(p) − π̃ℓ(p)

> w1(i, j) + w2(k, ℓ)

so that condition (2a) holds and, by a symmetric argument, condition (2b)
holds;

w(i, ℓ) + w(i, k) + w(, j) ≥
(

π̃i(p) − π̃ℓ(p)
)

+
(

π̃i(p) + π̃k(p)
)

+
(

−2 π̃j(p)
)

= 2
(

π̃i(p) − π̃j(p)
)

+ π̃k(p) − π̃ℓ(p)

> 2w1(i, j) + w2(k, ℓ)

so that condition (3a) holds; conditions (3b), (4a) and (4b) follow by symmetric
arguments.

We now suppose that, for some i, j, k, ℓ ∈ N , all conditions (1a) – (4b) hold.
Note that, by (1a) and (1b), i 6= j and k 6= ℓ. Suppose first that (i, j) ∈
{

(ℓ, k), (k, ℓ)
}

; then, conditions (2a) and (2b) imply w1(i, j) + w2(j, i) < 0, so
that the graph greatest lower bound G1 ⊓ G2 is inconsistent, as it contains a
negative weight proper cycle; hence, oct1∩oct2 = ∅, which implies oct1⊎oct2 6=
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oct1 ∪ oct2. Therefore, in the following we assume that (i, j) /∈
{

(ℓ, k), (k, ℓ)
}

holds.
If the right hand sides of the inequalities in conditions (1a) – (4b) are all

unbounded, let ǫ := 1; otherwise let

ǫ := min































































































w(i, j) − w1(i, j),

w(k, ℓ) − w2(k, ℓ),

1

2

(

w(i, ℓ) + w(k, j) − w1(i, j) − w2(k, ℓ)
)

,

1

2

(

w(i, k) + w(, ℓ) − w1(i, j) − w2(k, ℓ)
)

,

1

3

(

w(i, ℓ) + w(i, k) + w(, j) − 2w1(i, j) − w2(k, ℓ)
)

,

1

3

(

w(k, j) + w(, ℓ) + w(i, ı) − 2w1(i, j) − w2(k, ℓ)
)

,

1

3

(

w(i, ℓ) + w(, ℓ) + w(k, k) − w1(i, j) − 2w2(k, ℓ)
)

,

1

3

(

w(k, j) + w(i, k) + w(ℓ, ℓ) − w1(i, j) − 2w2(k, ℓ)
)































































































.

Then, by conditions (1a) – (4b) ǫ > 0. Consider the graph G′ = (N , w′) where,
for each r, s ∈ N ,

w′(r, s) :=











−w1(i, j) − ǫ, if (r, s) ∈
{

(j, i), (ı, )
}

;

−w2(k, ℓ) − ǫ, if (r, s) ∈
{

(ℓ, k), (k, ℓ)
}

;

w(r, s), otherwise.

Let G := G1 ⊔ G2; as G is coherent, G′ is coherent too. We now show that
G′ is a consistent graph; to this end, since G is known to be consistent, it is
sufficient to consider the proper cycles of G′ that contain arc (j, i) or arc (ℓ, k).9

Let θij = i · · · j and θkℓ = k · · · ℓ be any simple paths from i to j and from
k to ℓ, respectively. Then G′ is consistent if and only if w′(θij · i) ≥ 0 and
w′(θkℓ · k) ≥ 0. We only prove w′(θij · i) ≥ 0 since the proof that w′(θkℓ · k) ≥ 0
follows by a symmetrical argument. Since θij is simple, it does not contain the
arc (j, i). In the following we consider in detail five cases, again noting that all
the other cases can be proved by symmetrical arguments:

1. θij contains none of the arcs (ℓ, k), (k, ℓ) and (ı, );

2. θij = θiı :: (ı, ) :: θj ;

3. θij = θiℓ :: (ℓ, k) :: θkj ;

4. θij = θiℓ :: (ℓ, k) :: θkk :: (k, ℓ) :: θℓj ;

9Any cycle containing arc (ı, ) (resp., (k, ℓ)) can be transformed to the corresponding
coherent cycle containing arc (j, i) (resp., (ℓ, k)), having the same weight.
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5. θij = θiℓ :: (ℓ, k) :: θkk :: (k, ℓ) :: θℓı :: (ı, ) :: θj ,

where the simple paths θiı, θiℓ, θkj , θkk, θℓj , θℓı and θj contain none of the arcs

(ℓ, k), (k, ℓ) and (ı, ).

• Case (1).

w′(θij · i) = w′(θij) + w′(j, i)

= w(θij) − w1(i, j) − ǫ [def. of w′]

≥ w(i, j) − w1(i, j) − ǫ [G closed]

≥ 0 [def. of ǫ].

• Case (2).

w′(θij · i) = w′(θiı) + w′(ı, ) + w′(θj) + w′(j, i)

= w′(θiı) + w′(θj) + 2w′(j, i) [G′ coherent]

= w(θiı) + w(θj) − 2w1(i, j) − 2ǫ [def. of w′]

≥ w(i, ı) + w(, j) − 2w1(i, j) − 2ǫ [G closed]

≥ 2w(i, j) − 2w1(i, j) − 2ǫ [G strongly closed]

= 2
(

w(i, j) − w1(i, j)
)

− 2ǫ

≥ 0 [def. of ǫ].

• Case (3).

w′(θij · i) = w′(θiℓ) + w′(ℓ, k) + w′(θkj) + w′(j, i)

= w(θiℓ) − w2(k, ℓ) − ǫ + w(θkj) − w1(i, j) − ǫ [def. of w′]

≥ w(i, ℓ) − w2(k, ℓ) − ǫ + w(k, j) − w1(i, j) − ǫ [G closed]

=
(

w(i, ℓ) + w(k, j) − w1(i, j) − w2(k, ℓ)
)

− 2ǫ

≥ 0 [def. of ǫ].

• Case (4).

w′(θij · i)

= w′(θiℓ) + w′(ℓ, k) + w′(θkk) + w′(k, ℓ) + w′(θℓj) + w′(j, i)

= w′(θiℓ) + 2w′(ℓ, k) + w′(θkk) + w′(θℓ) + w′(j, i) [G′ coherent]

= w(θiℓ) − 2w2(k, ℓ) − 2ǫ + w(θkk) + w(θℓ) − w1(i, j) − ǫ [def. of w′]

≥ w(i, ℓ) − 2w2(k, ℓ) − 2ǫ + w(k, k) + w(, ℓ) − w1(i, j) − ǫ [G closed]

=
(

w(i, ℓ) + w(, ℓ) + w(k, k) − w1(i, j) − 2w2(k, ℓ)
)

− 3ǫ

≥ 0 [def. of ǫ].
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• Case (5).

w′(θij · i) = w′(θiℓ) + w′(ℓ, k) + w′(θkk) + w′(k, ℓ)

+ w′(θℓı) + w′(ı, ) + w′(θj) + w′(j, i)

= 2w′(θiℓ) + 2w′(j, i)

+ w′(θkk) + w′(θj) + 2w′(ℓ, k) [G′ coherent]

= 2w(θiℓ) − 2w1(i, j) − 2ǫ

+ w(θkk) + w(θj) − 2w2(k, ℓ) − 2ǫ [def. of w′]

≥ 2w(i, ℓ) − 2w1(i, j) − 2ǫ

+ w(k, k) + w(, j) − 2w2(k, ℓ) − 2ǫ [G closed]

≥ 2w(i, ℓ) − 2w1(i, j) − 2ǫ

+ 2w(k, j) − 2w2(k, ℓ) − 2ǫ [G strongly closed]

= 2
(

w(i, ℓ) + w(k, j) − w1(i, j) − w2(k, ℓ)
)

− 4ǫ

≥ 0 [def. of ǫ].

Therefore G′ is consistent. Moreover, G′ E G since

w′(j, i) = −w1(i, j) − ǫ [def. of w′]

≤ −w1(i, j) [ǫ ≥ 0]

≤ w1(j, i) [G1 consistent]

≤ w(j, i) [def. G];

similarly, w′(ℓ, k) ≤ w(ℓ, k); hence, for all r, s ∈ N , w′(r, s) ≤ w(r, s).
Let oct′ ∈ OCTn be represented by G′, so that ∅ 6= oct′ ⊆ oct1⊎oct2. Since

w′(j, i) + w1(i, j) < 0, we obtain oct′ ∩ oct1 = ∅; since w′(ℓ, k) + w2(k, ℓ) < 0,
we obtain oct′ ∩ oct2 = ∅. Hence, oct1 ⊎ oct2 6= oct1 ∪ oct2. �

Since the computation of the strong closure and strong reduction of an oc-
tagonal graph are both in O(n3) [3, 10, 36], an algorithm for the exact join
detection on OCTn based on Theorem 6.3 has the same asymptotic worst-case
complexity as the corresponding algorithm for BDn.

Example 6.4. Consider the 2-dimensional octagonal shapes

oct1 = con
(

{x1 + x2 ≤ 0}
)

,

oct2 = con
(

{x1 ≤ 2}
}

.

Then the join oct1 ⊎ oct2 = R2 is not exact. Taking the nodes i = 0, j = 3,
k = 0 and ℓ = 1 (which represent the signed form variables x+

1 , x−
2 , x+

1 and
x−

1 , respectively), we have w1(i, j) = 0 (encoding x1 + x2 ≤ 0) and w2(k, ℓ) = 4
(encoding x1 +x1 ≤ 4, i.e., x1 ≤ 2). So all the left hand sides in conditions (1a)
– (4b) are finite while all the corresponding right hand sides are infinite; and
hence all the conditions will hold.
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6.3. Exact Join Detection for Integer Octagonal Shapes

We now consider the case of integer octagonal constraints, i.e., octagonal
constraints where the bounds are all integral and the variables are only al-
lowed to take integral values. These can be encoded by suitably restricting the
codomain of the weight function of octagonal graphs.

Definition 6.5. (Integer octagonal graph.) An integer octagonal graph is
an octagonal graph G = (N , w) having an integral weight function:

∀i, j ∈ N : w(i, j) ∈ Z ∪ {+∞}.

As an integer octagonal graph is also a rational octagonal graph, the con-
straint system that it encodes will be satisfiable when interpreted to take values
in Q. However, when interpreted to take values in Z, this system may be unsat-
isfiable since the arcs encoding unary constraints can have an odd weight; we say
that an octagonal graph is Z-consistent if its encoded integer constraint system
is satisfiable. For the same reason, the strong closure of an integer octagonal
graph does not provide a canonical form for the integer constraint system.

Definition 6.6. (Graph tight closure/reduction.) An octagonal graph
G = (N , w) is tightly closed if it is a strongly closed integer octagonal graph
and the following property holds:

∀i ∈ N : w(i, ı) is even. (7)

The tight closure of an octagonal graph G in N is

T-closure(G) :=
⊔

{

G′ ∈ O
∣

∣ G′
E G and G′ is tightly closed

}

.

A Z-consistent integer octagonal graph R is tightly reduced if, for each integer
octagonal graph G 6= R such that REG, we have T-closure(R) 6= T-closure(G).
A tight reduction for the Z-consistent integer octagonal graph G is any tightly
reduced graph R such that T-closure(R) = T-closure(G).

It follows from these definitions that any tightly closed integer octagonal graph
encodes a satisfiable integer constraint system if and only if it is Z-consistent [7,
10]. Therefore, tight closure is a kernel operator on the lattice of octagonal
graphs, as was the case for strong closure. Observe also that a tight reduction
for a tightly closed graph G is a subgraph of G [10]. We denote by OCTZ

n the
domain of integer octagonal shapes.

To prove the Theorem 6.8 below, we will also use the following result proved
in [30, Lemma 4].

Lemma 6.7. Let G = (N , w) be an integer octagonal graph with no negative
weight cycles and Gt = (N , wt) be a graph having a negative weight cycle and
such that wt satisfies

wt(i, j) :=

{

2⌊w(i, j)/2⌋, if j = ı;

w(i, j), otherwise.
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Then there exist i, ı ∈ N and a cycle π = (i · π1 · ı) :: (ı · π2 · i) in G such that
w(π) = 0 and the weight of the shortest path in G from i to ı is odd.

We are now ready to state the condition for exact join detection for integer
octagonal shapes.

Theorem 6.8. For each h ∈ {1, 2}, let octh ∈ OCTZ

n be a non-empty integer
octagonal shape represented by the tightly closed graph Gh = (N , wh) and let Rh

be a subgraph of Gh such that T-closure(Rh) = Gh. Let also G1 ⊔G2 = (N , w).
Then oct1 ⊎ oct2 6= oct1 ∪ oct2 if and only if there exists arcs (i, j) of R1 and
(k, ℓ) of R2 such that, letting ǫij = 2 if j = ı and ǫij = 1 otherwise and ǫkℓ = 2
if ℓ = k and ǫkℓ = 1 otherwise, the following hold:

(1a) w1(i, j) + ǫij ≤ w2(i, j);

(1b) w2(k, ℓ) + ǫkℓ ≤ w1(k, ℓ);

(2a) w1(i, j) + w2(k, ℓ) + ǫij + ǫkℓ ≤ w(i, ℓ) + w(k, j);

(2b) w1(i, j) + w2(k, ℓ) + ǫij + ǫkℓ ≤ w(i, k) + w(ℓ, j);

(3a) 2w1(i, j) + w2(k, ℓ) + 2ǫij + ǫkℓ ≤ w(i, ℓ) + w(k, ı) + w(, j);

(3b) 2w1(i, j) + w2(k, ℓ) + 2ǫij + ǫkℓ ≤ w(k, j) + w(, ℓ) + w(i, ı);

(4a) w1(i, j) + 2w2(k, ℓ) + ǫij + 2ǫkℓ ≤ w(k, j) + w(i, k) + w(ℓ, ℓ);

(4b) w1(i, j) + 2w2(k, ℓ) + ǫij + 2ǫkℓ ≤ w(i, ℓ) + w(ℓ, j) + w(k, k).

Proof. We will use the notation π̃ as defined in the proof of Theorem 6.3.
Suppose that oct1 ⊎ oct2 6= oct1 ∪ oct2, so that there exists p ∈ oct1 ⊎ oct2
such that p /∈ oct1 and p /∈ oct2. Hence, letting p̃ij := π̃i(p) − π̃j(p) and
p̃kℓ := π̃k(p)− π̃ℓ(p), there exist arcs (i, j) and (k, ℓ) of R1 and R2, respectively,
satisfying p̃ij > w1(i, j) and p̃kℓ > w2(k, ℓ); as p ∈ oct1 ⊎ oct2, we also have
w2(i, j) ≥ p̃ij and w1(k, ℓ) ≥ p̃kℓ. Note that w1(i, j) and w2(k, ℓ) are both finite
and hence in Z so that p̃ij ≥ w1(i, j)+1 and p̃kℓ ≥ w2(k, ℓ)+1; also, by the tight
coherence rule (7), if j = ı, p̃ij ≥ w1(i, j) + 2 and, if k = ℓ, p̃kℓ ≥ w2(k, ℓ) + 2.
Therefore, by definition of ǫij and ǫkℓ, we have

w2(i, j) ≥ π̃i(p) − π̃j(p)

≥ w1(i, j) + ǫij ,

w1(k, ℓ) ≥ π̃k(p) − π̃ℓ(p)

≥ w2(k, ℓ) + ǫkℓ

so that conditions (1a) and (1b) hold. Moreover,

w(i, ℓ) + w(k, j) ≥ π̃i(p) − π̃ℓ(p) + π̃k(p) − π̃j(p)

= π̃i(p) − π̃j(p) + π̃k(p) − π̃ℓ(p)

≥ w1(i, j) + w2(k, ℓ) + ǫij + ǫkℓ
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so that condition (2a) holds and, by a symmetrical argument, condition (2b)
holds. Similarly,

w(i, ℓ) + w(k, ı) + w(, j) ≥
(

π̃i(p) − π̃ℓ(p)
)

+
(

π̃k(p) + π̃i(p)
)

+
(

−2 π̃j(p)
)

= 2
(

π̃i(p) − π̃j(p)
)

+ π̃k(p) − π̃ℓ(p)

≥ 2w1(i, j) + w2(k, ℓ) + 2ǫij + ǫkℓ

so that condition (3a) holds; conditions (3b), (4a) and (4b) follow by a symmet-
rical argument.

We now suppose that, for some i, j, k, ℓ ∈ N , conditions (1a) – (4b) hold.
Consider the graph G′ = (N , w′) where, for each r, s ∈ N ,

w′(r, s) :=











−w1(i, j) − ǫij , if (r, s) ∈
{

(j, i), (ı, )
}

;

−w2(k, ℓ) − ǫkℓ, if (r, s) ∈
{

(ℓ, k), (k, ℓ)
}

;

w(r, s), otherwise.

Let G := G1⊔G2; as G is coherent, G′ is coherent too; as G is tightly closed, G′

satisfies property (7). Hence it follows from Lemma 6.7 that G′ is Z-consistent
if it has no negative weight cycles. By using a reasoning similar to that in the
proof of Theorem 6.3, it can be seen that there are no negative weight cycles in
G′ so that G′ is Z-consistent and G′EG1⊔G2. Let oct′ ∈ OCTZ

n be represented
by G′, so that ∅ 6= oct′ ⊆ oct1 ⊎ oct2. Since w′(j, i) + w1(i, j) < 0, we obtain
oct′ ∩ oct1 = ∅; since w′(ℓ, k) + w2(k, ℓ) < 0, we obtain oct′ ∩ oct2 = ∅. Hence,
oct1 ⊎ oct2 6= oct1 ∪ oct2. �

Since the tight closure and tight reduction procedures are both in O(n3) [10],
the exact join detection algorithm for integer octagonal shapes has the same
asymptotic worst-case complexity of all the corresponding algorithms for the
other weakly relational shapes.

7. Conclusion and Future Work

Several applications dealing with the synthesis, analysis, verification and op-
timization of hardware and software systems make use of numerical abstractions.
These are sets of geometrical objects —with the structure of a bounded join-
semilattice— that are used to approximate the numerical quantities occurring
in such systems. In order to improve the precision of the approximation, sets of
such objects are often considered and, to limit redundancy and its negative ef-
fects, it is important to “merge” objects whose lattice-theoretic join corresponds
to their set-theoretic union.

For a wide range of numerical abstractions, we have presented results that
state the necessity and sufficiency of relatively simple conditions for the equiva-
lence between join and union. These conditions immediately suggest algorithms
that solve the corresponding decision problem. For the case of convex polyhe-
dra, we improve upon one of the algorithms presented in [14, 15] by defining
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an algorithm with better worst-case complexity. For all the other considered
numerical abstractions, we believe the present paper is breaking new ground.
In particular, for the case of NNC convex polyhedra, we show that dealing with
non-closedness brings significant extra complications. For the other abstrac-
tions, the algorithms we propose have worst-case complexities that, in a sense,
match the complexity of the abstraction, something that cannot be obtained,
e.g., by applying an algorithm for general convex polyhedra to octagonal shapes.

All the above mentioned algorithms have been implemented in the Parma
Polyhedra Library [8].10 Besides being made directly available to the client
applications, they are used internally in order to implement widening operators
over powerset domains [5]. Our preliminary experimental evaluation, though
not extensive, showed the efficiency of the algorithms is good, also thanks to a
careful coding following the “first fail” principle.11

In this paper we have studied exact join detection for the most popular
abstract domains. However, due to the importance numerical domains have
in the synthesis, analysis, verification and optimization of hardware and soft-
ware systems, due to the need to face the complexity/precision trade-off in an
application-dependent way, new domains are proposed on a regular basis. The
fact that they may be not so popular today does not impede that they can prove
their strength tomorrow. These domains include: the two variables per linear
inequality abstract domain [42, 43], octahedra [22], template polyhedra [40], and
pentagons [33]. It will be interesting to study exact join detection for these
and other domains, the objective being the one of finding specializations with a
complexity that matches the “inherent complexity” of the domain.

Even though preliminary experimentation suggests that —in practice, at
least for some applications [5, 18]— pairwise joins allow the removal of most
redundancies, work is still needed in the definition of efficient algorithms to
decide the exactness of join for k > 2 objects. Moreover, it would be useful
to develop heuristics to mitigate the combinatorial explosion when attempting
full redundancy removal from a set of m objects, as it is clearly impractical to
invoke 2m − m − 1 times the decision algorithm on k = 2, . . . , m objects.

Acknowledgments. We are grateful to the participants of the Graphite Workshop
(AMD’s Lone Star Campus, Austin, Texas, November 16–17, 2008) for stimu-
lating us to add efficient exact join detection algorithms to the Parma Polyhedra
Library, something that led us to the research described in this paper.

We are also indebted to the anonymous referees for their careful and detailed
reviews, which allowed us to significantly improve the paper.

10The Parma Polyhedra Library is free software distributed under the terms of the GNU
General Public License. See http://www.cs.unipr.it/ppl/ for further details.

11This is a heuristics whereby, in the implementation of a predicate whose success depends
on the success of many tests, those that are most likely to fail are tried first.
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