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Abstract

Regarding the precision of combined domains including Jacobs and Lan-
gen’s Sharing there is a core of techniques, such as the standard integration
with freeness and linearity information, that are widely used and well ac-
cepted. However, a number of other proposals for refined domain combina-
tions have been circulating more or less clandestinely for years. One feature
that is common to these proposals is that they do not seem to have undergone
experimental evaluation. We question whether significantly more precision is
obtainable thanks to these techniques. In particular, we discuss and/or exper-
imentally evaluate: helping Sharing with definitely ground variables computed
with Pos; the incorporation of explicit structural information into the domain
of analysis; more sophisticated ways of integrating Sharing and Pos; the issue
of reordering the bindings in the computation of the abstract mgu; an original
proposal concerning the addition of a domain recording the set of variables
that are deemed to be ground or free; a more refined way of using linearity to
improve the analysis; the issue of whether tracking compoundness allows to
compute more precise sharing information; and, finally, the recovery of hidden
information in the combination of Sharing with the usual domain for freeness.

Keywords: Mode Analysis, Sharing Analysis, Abstract Interpretation.

1 Introduction

In this paper, we present one of the final steps in our revamp of the set-sharing
domain, Sharing, of Jacobs and Langen [17]. We have first questioned the adequacy
of Sharing with respect to the property of interest, that is, pair-sharing. In [4]
we have proved that Sharing is redundant for pair-sharing and we have identified
the weakest abstraction of Sharing that can capture pair-sharing with the same
degree of precision. One notable advantage of this abstraction is that the costly
star-union operator is no longer necessary. In [16] we have proved the soundness,
idempotence, and commutativity of Sharing. Most importantly, these results have
been established, for the first time, without assuming that the analyzed language
perform the occur-check in the unification procedure. This closed a long-standing
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gap, as all the works on the use of Sharing for the analysis of Prolog programs had
always disregarded this problem. The problem of scalability of Sharing still retaining
as much precision as possible was tackled in [23], where a family of widenings is
presented that allows to achieve the desired goal. Finally, in [24] we have studied
the decomposition of Sharing and its redundant counterpart via complementation.
This work has shed new light on the relation between these domains and PS (the
usual domain for pair-sharing) and Def (the domain of definite Boolean functions),
and on the use of complementation to obtain (minimal) decompositions.

Here we try to answer the following question: how much more precision is attain-
able by combining Sharing with other domains? A first positive answer was already
given in the PhD thesis of A. Langen [21]: linearity (the property of all variables
that can only be bound to terms without multiple occurrences of variables) can
greatly improve the accuracy of sharing analysis. The synergy attainable from the
integration between aliasing and freeness information has been pointed out, for the
first time, by Muthukumar and Hermenegildo [22]. These standard combinations
(see [6] for details) are now widely accepted and nobody would seriously think to
perform sharing analysis without them.

However, a number of other proposals for refined domain combinations have been
circulating more or less clandestinely for years. One feature that is common to these
proposals is that they do not seem to have undergone experimental evaluation. Thus
our curiosity is justified, since nobody seems to know whether these techniques
enable more precision to be obtained or not.

In this paper we analyze the problem from the point of view of precision only.
Although reasonable efficiency is also clearly of interest, this has to be secondary
to the question as to whether precision is significantly improved. Only when this is
established, should better implementations be researched.

The experimental part of this work has been conducted with the China an-
alyzer [2]. China is a data-flow analyzer for CLP(HN ) languages (i.e., Prolog,
CLP(R), clp(FD) and so forth), HN being an extended Herbrand system where
the values of a numeric domain N can occur as leaves of the terms. China, which
is written in C++, performs bottom-up analysis deriving information on both call-
patterns and success-patterns by means of program transformations and optimized
fixpoint computation techniques.

Because of the exponential complexity of Sharing, stable behavior can only be
achieved by means of widening operators [14]. However, widenings also affect the
precision of the results and would add unwanted noise to the results reported here.
Thus, for an unbiased assessment of the different domain combination enhancements
we disabled all the widenings available to China. Unfortunately, the consequence
of this is that the analysis of some programs did not terminate in reasonable time or
absorbed memory beyond acceptable limits. Thus, when a program does not appear
in a comparison table, this can mean one of two things: one or both the analyses
required excessive time or exhausted the available memory and had to be stopped,
or both completed but with identical results.

The comparison involved all the 160 programs in our current test-suite. This
includes several real programs of respectable size. While this test-suite is probably
the biggest one reported in the literature on data-flow analysis of (constraint) logic
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programs, we cannot fail to mention, in good conscience, that we believe a ten times
bigger suite would be highly desirable for the obtained results to be conclusive or
nearly so. Nonetheless, we believe that from the experimentation presented in this
paper some qualitative consideration can safely follow.

The paper is structured as follows. In Section 2, we define some notation and
briefly recall the definitions associated with Sharing. In each of the next eight sec-
tions, we discuss different enhancements and precision optimizations for Sharing.
Section 3 considers the combination of Pos with Sharing; Section 4, investigates the
effect of including explicit structural information by means of the Pattern(·) con-
struction; Section 5 discusses possible heuristics for the ordering of bindings so as
to maximize the precision of Sharing + Lin;1 Section 6 studies further optimizations
with respect to the combination of Sharing and Pos; Section 7 describes a new mode
‘ground or free’ for propagation with Sharing, Free and Lin and discusses the pre-
cision improvements obtained; Section 8 researches a simple idea for improving the
efficiency and precision of Sharing + Lin; Section 9 looks at the question of whether
compoundness information would be useful for precision gains; and Section 10 stud-
ies the possible exploitation of hidden information available in the Sharing plus Free
domain. Section 11 concludes with some final remarks.

2 Preliminaries

For any set S, ℘(S) denotes the powerset of S and #S is the cardinality of S. We
assume there is a fixed and finite set of variables of interest denoted by VI . If t is a
first-order term over VI , then vars(t) denotes the set of variables in t. Bind denotes
the set of equations of the form x = t where x ∈ VI and t is a first-order term
over VI . Note that we do not impose the occur-check condition x /∈ vars(t), since
we have proved in [16] that this is not required to ensure correctness of the operations
of Sharing and its derivatives. The following definitions are a simplification of the
standard definitions for the Sharing domain [10, 16, 18] and assume that the set of
variables of interest is fixed and finite.

Definition 1 (The set-sharing domain SH .) The set SH is defined as the

powerset SH
def
= ℘(SG), where SG

def
=
{
S ∈ ℘(VI )

∣∣ S 6= ∅}.

SH is ordered by subset inclusion. Thus the lub and glb of the domain are given by
set union and intersection, respectively.

Definition 2 (Abstract operations over SH .) Projection an element of SH
onto a subset of VI is encoded by the binary function proj : SH × ℘(VI ) → SH : if

sh ∈ SH and V ∈ ℘(VI ), then proj(sh, V )
def
= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }.

For each sh ∈ SH and each V ∈ ℘(VI ), the extraction of the relevant component
of sh with respect to V is encoded by the function rel : ℘(VI ) × SH → SH defined

as rel(V, sh)
def
= {S ∈ sh | S ∩ V 6= ∅ }.

1We denote by Lin and Free the usual domains for linearity and freeness.
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For each sh ∈ SH and each V ∈ ℘(VI ), the exclusion of the irrelevant component
of sh with respect to V is encoded by the function rel : ℘(VI ) × SH → SH defined

as rel(V, sh)
def
= sh \ rel(V, sh).

The function (·)? : SH → SH , also called star-union, is given, for each sh ∈ SH ,

by sh?
def
=
{
S ∈ SG

∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S = T1 ∪ · · · ∪ Tn
}

.
For each sh1, sh2 ∈ SH , the binary union function bin: SH × SH → SH is given

by bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

We also use the self-bin-union function sbin : SH → SH , which is given, for each

sh ∈ SH , by sbin(sh)
def
= bin(sh, sh).

The function amgu captures the effects of a binding on an SH element. Let
(x = t) ∈ Bind, sh ∈ SH , Vx = {x}, Vt = vars(t), Vxt = Vx ∪ Vt. Then

amgu(sh, x = t)
def
= rel(Vxt, sh) ∪ bin

(
rel(Vx, sh)?, rel(Vt, sh)?

)
.

The domain SH captures set-sharing. However, the property we wish to detect
is pair-sharing and, for this, it has been shown in [4] that SH includes unwanted
redundancy. The same paper introduces an operator ρ on SH and the domain

SH ρ def
= ρ(SH ), which is the weakest non-redundant abstraction of SH that is as

precise as SH on tracking groundness and pair-sharing. A notable advantage of
SH ρ is that we can replace the star union operation in the definition of the amgu
by self-bin-union without loss of precision. In particular, in [4] it is shown that

amgu(sh, x = t) =ρ rel(Vxt, sh) ∪ bin
(

sbin
(
rel(Vx, sh)

)
, sbin

(
rel(Vt, sh)

))
,

where we use the notation sh1 =ρ sh2 to denote ρ(sh1) = ρ(sh2).

3 Combining with Pos

It is well known that Sharing keeps track of ground dependencies. More precisely,
Sharing contains Def , the domain of definite Boolean functions [1], as a proper sub-
domain [11, 24]. However, there are several good reasons to couple Sharing with
Pos: (1) this combination is essential for a powerful widening technique on Sharing
to be applied [23]. This is very important, since analysis based on Sharing with-
out a widening is not practical. (2) Def is not expressive enough to capture all
the ground dependencies of Prolog programs [1]. Moreover, Def cannot even cap-
ture the dependencies induced by the primitive constraints of some CLP languages,
and we target the analysis at Prolog and CLP programs. (3) In the context of
the analysis of CLP programs, the notions of “ground variable” and the notion of
“variable that cannot share a common variable with other variables” are distinct.
A numeric variable in, say, CLP(R), cannot share with other variables but is not
ground unless it has been constrained to a unique value. Thus the analysis of CLP
programs with Sharing alone either will lose precision on pair-sharing (if numerical
variables are allowed to “share” in order to compute their groundness) or will not
be able to compute the groundness of numerical variables (if numerical variables are
excluded from the sharing-sets). In the first alternative, as we have already noted,
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the precision with which groundness of numerical variables can be tracked will also
be limited. Since groundness of numerical variables is important for a number of
applications (e.g., compiling equality constraints down to assignments or tests in
some circumstances), we advocate the use of Pos and Sharing at the same time.
(4) Detecting definitely ground variables through Pos and exploiting them to sim-
plify the operations on Sharing is very worthwhile as far as efficiency is concerned if
the set of ground variables is readily available. This is the case, for instance, with
the GER implementation of Pos [5], the fastest Pos implementation known to date.
This technique alone allows to obtain speedups of up to two orders of magnitude.
(5) Knowing the set of ground variables in advance, not only reduces the complexity
of Sharing operations. It also improves precision when the domain keeps track of
linearity information by incorporating Lin. In fact, while it has been proved that
Sharing alone is commutative, meaning that the result of the analysis does not de-
pend on the ordering in which the bindings are executed [16], Sharing plus Lin does
not enjoy this property. In particular, it is known since [21, pp. 66-67] that best
results are obtained if the grounding unifications are considered before the others.2

Again, the combination with Pos, since it allows the analyzer to know the set of all
definitely ground variables in advance, is clearly advantageous in this respect.

We have thus compared the combination of Sharing with Free and Lin in isolation
and with the addition of Pos. The combination with Pos considered here is the
simplest one: definitely ground variables are propagated from the Pos component
to the sharing domain. (More precise combinations will be considered in Section 6.)
The results are reported in Table 1.

For the tables reported in this paper, P is the number of possibly sharing pairs,
V is the number of variables, that is, the number of argument positions of the
predicates, I is the number of pairs of independent variables, G, L, and F , are the
number of ground, linear, and free variables, respectively.

While for goal-independent analysis the only differences we have observed concern
linearity, for goal dependent analysis there are differences also as far as the numbers
of ground variables and of independent pairs are concerned. It is important to notice
that our implementation of Sharing with Free and Lin (whether combined with Pos
or not) always reorders the bindings so as to handle the grounding ones first. For the
remaining comparisons of the different enhancements and precision optimizations,
the Pos domain is always included unless otherwise stated.

4 Explicit Structural Information

A way of increasing the precision of almost any analysis domain is by incrementing
it with structural information. This technique was introduced by A. Cortesi et al. in
[12], where the generic structural domain Pat(<) was introduced. Instead of Pat(<)
we use the Pattern(·) construction [2, 3], which is similar to Pat(<) and correctly
supports the analysis of languages omitting the occur-check in the unification proce-
dure as well as those that do not. The construction Pattern(·) upgrades a domain D

2As an example, consider the sequences of unifications f(X, X, Y) = A, X = a and X = a,
f(X, X, Y) = A [21, p. 66].
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Goal-independent analysis Without Pos / With Pos
Program P V I G L F
bmtp 3091 1681 1759/1759 146/146 1148/1151 295/295
bp0-6 264 115 215/215 31/31 88/90 21/21
bryant 1252 330 1112/1112 32/32 124/210 4/4
cg parser 257 274 138/138 31/31 192/193 58/58
km-all 28898 14046 18379/18379 1929/1929 9887/9900 2943/2943
knight 58 45 37/37 14/14 37/38 3/3
oldchina 3584 2178 2266/2266 309/309 1451/1457 281/281
sax 3284 1993 1697/1697 269/269 970/974 202/202
tsp 251 110 219/219 26/26 95/98 19/19

Goal-dependent analysis
chat parser 4070 1484 3321/3332 505/505 906/908 357/357
dpos an 324 366 187/188 78/79 131/132 44/44
knight 117 92 102/103 44/45 62/63 16/16
sim v5-2 459 535 456/457 415/417 535/535 106/106
sim 3004 923 1561/2540 222/366 331/508 101/116
tsp 502 220 488/488 122/122 206/220 38/38

Table 1: The effect of integrating Pos.

(which must support a certain set of basic operations) with structural information.
The resulting domain, where structural information is retained to some extent, is
usually much more precise then D alone. Of course, there is a price to be paid: in
the analysis based on Pattern(D), the elements of D that are to be manipulated
are often bigger (i.e., they consider more variables) than those that arise in analyses
that are simply based on D. There are also rare occasions where retaining structural
information gives rise to a speedup. The reason for this is that maintaining a tuple
of terms with many variables, each with its own description, can be cheaper than
computing a description for the whole tuple.

We have compared the precision gain made possible by Pattern(·) applied to the
combination of Pos, Sharing, Lin, and Free. The results are reported in Tables 2
and 3. As far as we know, this is the first time that such a comparison is performed
on a realistic benchmark suite. Previous attempts failed because of combinatorial
explosion in the analysis [9]. What makes this possible now is the adoption of
the non-redundant domain in [4], where the exponential star-union operation is
replaced by quadratic binary-union, and the integration of this domain with the
GER implementation of Pos [5].

Tables 2 and 3 indicate that, in many cases, enhancing Sharing with structural
information can make useful improvements to precision. Moreover, occasionally
(such as for lc in Table 3), this improvement is considerable. The integration of
structural information is so effective that it seemed worthwhile to conduct all the
following experiments both with and without it.
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Without s. i. / With s. i.
Program P V I G L F
8puzzle 20 18 10/10 7/7 14/16 2/2
action 80 90 36/38 1/2 48/49 22/22
aircraft 391 588 344/346 208/234 570/582 58/58
ann 416 239 216/225 15/18 129/132 41/45
arch1 437 285 167/182 9/9 113/120 33/33
bmtp 3091 1681 1759/1761 146/148 1151/1152 295/297
bup-all 177 168 68/70 16/16 95/99 34/34
cg parser 257 274 138/138 31/31 193/194 58/58
chat80 3722 1646 2628/2660 342/342 1296/1303 308/308
cobweb 782 361 444/482 30/33 115/130 33/35
cs2 166 94 115/119 31/35 66/71 4/4
cugini ut 372 407 153/166 71/74 219/226 40/40
difflists 33 40 16/16 8/9 22/32 2/2
dpos an 164 192 98/100 42/45 118/120 21/23
files 98 131 57/59 59/59 112/113 20/20
ftfsg2 384 404 255/260 94/95 282/286 73/73
ftfsg 254 263 124/129 17/18 149/153 57/57
ga 433 147 364/366 55/60 123/128 15/15
grammar 16 17 11/11 4/5 17/17 4/4
km-all 28898 14046 18379/18535 1929/1986 9900/9979 2943/2962
knight 58 45 37/43 14/14 38/44 3/3
ljt 256 140 29/35 5/9 42/46 19/23
llprover 307 333 191/191 84/86 256/253 24/24
log interp 261 254 66/88 14/14 97/98 28/28
metutor 534 494 324/326 138/139 326/327 43/47
mixtus-all 3874 2186 2344/2364 161/163 1308/1319 419/423
nbody 300 173 265/265 64/64 160/164 8/8
oldchina 3584 2178 2266/2284 309/309 1457/1462 281/281
parser 218 182 117/117 28/28 148/182 61/61
petsan 3838 1461 2603/2603 278/281 934/934 217/219
plaiclp 2453 1296 1760/1760 158/165 947/957 230/240
quot an 563 400 289/292 38/41 199/203 46/46
reg 1600 693 814/1212 49/61 336/419 63/63
sax 3284 1993 1697/1772 269/327 974/1034 202/232
sdda 96 80 27/27 4/5 31/35 13/13
sim v5-2 242 281 104/104 53/54 190/190 25/25
sim 1502 459 911/1100 76/80 254/273 25/25
slice-all 833 800 438/444 135/137 582/619 119/119
spsys 1582 1093 805/988 88/123 483/551 103/104
tictactoe 101 56 93/93 13/13 46/54 4/5
trees1 71 62 50/62 29/40 50/61 4/12
trs 109 73 53/56 6/8 28/34 4/4

Table 2: The effect of explicit structural information: goal-independent analysis.

5 Reordering the Bindings

While the non-commutativity of Sharing plus Lin is well-known, all the examples we
found in the literature use a grounding binding to show the existence of the problem.
However, we have seen in Section 3 that for grounding bindings the solution is easy:
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Without s. i. / With s. i.
Program P V I G L F
action 160 180 15/17 4/5 10/11 6/6
ann 832 479 563/575 110/117 192/202 78/91
astar 59 66 56/57 50/51 63/66 11/12
chasen 158 185 71/72 55/58 89/92 33/35
dpos an 324 366 188/212 79/105 132/170 44/50
eliza 224 208 115/116 69/71 106/109 33/36
ftfsg2 223 238 144/156 45/57 105/117 42/42
ftfsg 134 122 91/95 22/24 60/62 26/26
grammar 32 34 28/28 7/9 34/34 16/16
jugs 71 68 33/34 8/8 22/24 13/13
knight 117 92 103/110 45/45 63/92 16/17
lc 106 112 32/105 11/91 28/112 17/18
ljt 513 285 513/513 270/270 285/285 13/17
llprover 616 670 434/435 180/190 284/294 101/111
log interp 455 477 178/182 43/43 118/118 72/72
loops 66 86 63/63 66/66 82/86 13/15
nbody 600 347 478/478 155/155 196/200 40/40
parser 436 365 336/344 60/60 278/365 202/202
press 294 266 174/178 44/44 77/79 30/30
quot an 1132 817 639/664 144/167 266/289 95/95
read 437 281 359/359 118/118 198/201 64/64
reg 334 387 208/208 69/78 121/130 49/49
sdda 195 172 69/79 24/28 49/54 25/25
sim v5-2 459 535 457/457 417/417 535/535 106/111
tictactoe 274 130 270/270 88/88 104/108 11/13
tsp 502 220 488/489 122/126 220/220 38/38
yasmm 78 60 49/51 21/21 27/41 6/6

Table 3: The effect of explicit structural information: goal-dependent analysis.

perform them first. Unfortunately, the problem is more general than that.
Let us consider {v, w, x, y, z} as the set of relevant variables, and the Sharing×Lin

element sh =
〈
{vy, wy, xy, yz}, {x, z}

〉
, i.e., x and z are the only linear variables and

no variable is ground. We now apply the bindings v = w and x = y. Using the first
ordering we have:

sh1 = amgu(v = w, sh) =
〈
{vwy, xy, yz}, {x, z}

〉
,

sh1,2 = amgu(x = y, sh1) =
〈
{vwxy, vwxyz, xyz, xy}, {z}

〉
.

Using the other ordering we have:

sh2 = amgu(x = y, sh) =
〈
{vwxy, vwxyz, vxy, wxy, wxyz, xyz, xy}, {z}

〉
,

sh2,1 = amgu(v = w, sh2) =
〈
{vwxy, vwxyz, xyz, xy},∅

〉
,

therefore losing the linearity of z (which in turn could cause bigger precision losses
later in the analysis).

Note that in both cases we need to compute the star-closures (even if in the
first case the star-closure does not introduce new sharings). This means that even
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enhancing the known heuristics to “compute first the grounding binding, then the
non star-closing bindings and only then the star-closing ones” would not be enough.

Work on this problem is still in progress. We are currently investigating the
behavior of an even more enhanced heuristics that says “if the star-union has to be
done, choose a binding x = t that minimizes the number of linear variables involved”.
More formally, if sh is the current sharing-set and L is the set of linear variables,
then, given a set of bindings, the quantity to be minimized is the cardinality of(⋃

rel
(
{x} ∪ vars(t), sh

))
∩ L for each binding x = t in this set.

6 More Precise Combinations with Pos

Since there is an overlap between the information provided by Pos and the infor-
mation provided by Sharing, it is clear that the Cartesian product Pos × Sharing
contains redundant elements, i.e., different pairs that characterize the same set of
concrete computational states. The reduced product [13] between Pos and Sharing
has been elegantly characterized in [8], where set-sharing à la Jacobs and Langen is
expressed in Pos itself. Without aiming at the full power of the reduced product we
illustrate here two ways (besides the propagation of definitely ground variables) in
which the information contained in the Pos component can be used to improve the
description provided by the Sharing component.

Suppose the Pos component (a Boolean formula) implies a binary disjunction
x∨ y. This means that either x is ground or y is ground or both are so. In any case,
x and y cannot share a common variable. It is consequently safe to remove from the
Sharing component all the sharing groups containing both x and y.

Suppose now that the Pos component implies
∧
x,y∈X(x ↔ y) for some set of

variables X. In this case, the groundness of any variable in X implies the groundness
of all the variables in X. Stated differently, all the variables in X share the same
(possibly empty) set of variables. Thus, after the same set of abstract bindings has
been performed on both the Pos and Sharing components, we can remove from the
Sharing component each sharing group S such that S ∩X 6= ∅ and X * S.

The few differences we observed in the experiments concerned only the number
of independent variable pairs, even though, in principle, also the accuracy of both
freeness and linearity can be affected. More precisely, for goal-independent analysis,
one more independent pair of variables was discovered in the program bmtp both
without and with explicit structural information. In the latter case, two more inde-
pendent pairs were also obtained for the sim program. For goal-dependent analysis
one more independent pair is detected in the program knight if explicit structural
information is not part of the analysis domain, while no difference was observed in
the analysis with structural information.

7 Ground or Free Variables

Most of the ideas investigated in the present work are based on earlier work by other
authors. In contrast, in this section, we describe one that is, to our knowledge, new
to this paper. Consider the analysis of the binding x = t and suppose that, on a set
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of computation paths, this binding is reached with x ground while, on the remaining
computation paths, the binding is reached with x free. In both cases x will be linear
and this is all what will be recorded in the usual combination of Sharing with Free
and Lin. This information is valuable, since, in case x and t are independent, it
allows to dispense with the self-bin-union of the relevant component for t. However,
the information that is lost, i.e., x being ground or free, is equally valuable, since this
would allow to avoid the self-bin-union of both the relevant components for x and t,
and this independently from whether x and t may share or not. The disadvantage
caused by this loss is twofold: CPU time is wasted by performing a costly operation
and precision is degraded. In fact, in these cases the extra self-bin-unions are useless
to ensure correctness and, moreover, they may introduce unneeded sharing groups
to the detriment of accuracy.

It is therefore natural to extend the analysis domain with a component consisting
of the set of variables that are ground or free, thus adding an additional mode to
the picture. These sets are populated by the join operation of the domain: if Gi,
Fi, and Si, for i = 1, 2, are the sets of ground, free, and ‘ground or free’ variables of
two abstract descriptions to be joined, the set S of ‘ground or free’ variables in the
join is given by S = (G1∪F1∪S1)∩ (G2∪F2∪S2). The ‘ground or free’ property is
then propagated in the abstract mgu operation the same way as freeness. In other
words, if a variable “loses freeness” then it also loses its ‘ground or free’ status,
unless it is known to be definitely ground. In synthesis, the incorporation of the set
of ‘ground or free’ variables can be done cheaply, both in terms of computational
complexity and in terms of code to be written. As far as computationally complexity
is concerned this extension is particularly promising, since the possibility of avoiding
self-bin-unions has the potential of absorbing its overhead if not of giving rise to a
speedup.

We have thus implemented the combination of Pos (in order to maximize the
number of definitely ground variables detected), Sharing, Free, Lin, and ‘ground
or free’ variables and tried it on our benchmark suite. The experimentation has
been performed both with and without added structural information, and both in a
goal-dependent and goal-independent way. Unfortunately, the results are rather dis-
couraging. The only difference we have observed is for the goal-independent analysis
of knight without structural information. In this case, the ‘ground or free’ exten-
sion is worth 6 more definitely independent pairs of variables and 6 more variables
detected as definitely linear. In all the other cases no difference was observed on
any benchmark program.

8 More Precise Exploitation of Linearity

In [20] A. King proposes a domain for sharing analysis that performs a quite precise
tracking of linearity. Roughly speaking, each sharing group in a sharing-set carries
its own linearity information. In contrast, in the approach of [6], which is the
one usually followed, a set of definitely linear variables is recorded along with each
sharing-set. The proposal in [20] gives rise to a domain that is quite different from
the ones presented here. Since [20] does not provide an experimental evaluation, and
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we are unaware of any subsequent work on the subject, the question whether this
more precise tracking of linearity is actually worthwhile (both in terms of precision
and efficiency) seems open. What interests us here is that a piece of theoretical work
presented in [20] can be exploited even in the more classical treatment of linearity.
As far as we can tell, this fact has gone unnoticed up to now.

In [20], point 3 of Lemma 5 (which is reported to be proven in [19]) states formally
that, if s is a linear term and t is a (possibly) non-linear term then, after computing
the unification s = t, a variable occurring only once in t can only be aliased to one
variable in s. This result can be applied even when using the standard domain for
linearity-enhanced sharing analysis, i.e., Sharing plus Lin.

Let x be a linear variable and t be a non-linear term. Let Vx = {x} and Vt =
vars(t). Let V l

t be the set of variables that can occur only once in term t. These are
exactly the variables y ∈ Vt such that: y is linear, y occurs once in t, and y does not
share with other variables in t. Let V nl

t = Vt \ V l
t . Note that V nl

t 6= ∅, because t is
a non-linear term. If also V l

t 6= ∅ (and, obviously, if x and t do not share) then we
can use the following improved version of the amgu operator:3

amgu(sh, x = t) = rel(Vxt, sh)

∪ bin
(
rel(Vx, sh), rel(V l

t , sh)
)

∪ bin
(
rel(Vx, sh)?, rel(V nl

t , sh)
)
.

Note that precision is improved because, thanks to the Lemma, the star-closure of
relx is only combined with the non-linear part of relt.

The experimental evaluation of this new technique is quite disappointing: the only
programs for which we observed an improvement in the accuracy of the analysis were
the synthetic benchmarks we wrote in order to show that a precision gain is indeed
possible.

9 Tracking Compoundness

In [6, 7], Bruynooghe et al. considered the combination of sharing, freeness, and
linearity with compoundness. Compoundness here means ‘non-variable’; that is, a
variable is compound if it is bound to a term that is definitely not free. The authors
represent sharing with the standard set-sharing domain, while freeness, linearity,
and compoundness are each represented by the set of variables that definitely have
the respective property.

As discussed in [6, 7], compoundness information is useful in its own right for
clause indexing. We are interested here though in the question: can the tracking of
compoundness improve the sharing analysis itself? This question is also considered
in [6, 7] where two improvements are proposed that exploit the combination of
freeness and compoundness. The first one relies on the presence of the occur-check
(and thus it cannot be applied when analyzing systems that omit it). Informally, if
x is free and t is compound then, just before computing the binding x = t, we can

3Even in this case, when using the non-redundant sharing domain SH ρ star-union can be safely
replaced by self-bin-union.
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safely say that x and t cannot share. Thus we can improve our sharing description by
removing all the sharing groups containing both x and a variable in t. In particular,
if in this case there also exists another free variable definitely sharing with both x and
t, then the computation is guaranteed to fail. The second improvement is proposed
inside the specification of the function Reduce, which is intended to remove from an
abstract description some spurious information that is redundant. In particular, it is
shown that compoundness can be safely inferred for all the variables that definitely
share with a pair of independent free variables.4 It should be noted that such a
Reduce function is not part of the abstract unification algorithm presented in [6]
and it is unclear whether and when it should be applied. The authors suggest that
their algorithm should start from reduced abstract descriptions. One could then
imagine that reduction is preserved by the algorithm, but theoretical results (or,
for that matter, even simple claims) are not presented. It is our opinion that the
second improvement proposed in [7] may well never apply because (1) the initial
descriptions, computed by the abstraction function, are always reduced, and (2) it
seems very unlikely that a well-designed compoundness analysis can lose this kind
of information, which stems from bindings of the form x = f(y, z).

10 Recovering Hidden Information

As noted by several authors (see, e.g., [6]) the standard combination of Sharing and
Free is not optimal. G. Filé [15] formally identified the reduced product of these
domains and proposed an improved abstract unification operator. This new operator
exploits two properties holding for the abstract description of a single concrete
substitution: (1) each free variable occurs in exactly one sharing group; and (2) two
free variables occur in the same sharing group if and only if they are aliased (i.e.,
they have become the same variable). When considering the general case, where
sets of concrete substitutions come into play, the first of the above observations
allows to (partially) recover disjunctive information. An abstract description can
thus be decomposed into a set of (maximal) descriptions that necessarily come from
different computation paths, each one satisfying point (1) above. The abstract
unification procedure can thus be computed separately on each component, and the
results of each subcomputation are then joined to give the final description. As such
components are more precise than the original description (they possibly contain
more ground variables and less sharing pairs), some precision gains can be obtained.
Also, by exploiting point (2) on each component, it is possible to correctly infer
that for some of them the computation will fail due to a functor clash or to the
occur-check.5

The experimental results we obtained for the first of the two ideas by G. Filé
presented above are independent from the fact that structural information and/or

4The function Reduce also deals with some hidden interactions between sharing and freeness
information: as these improvements are subsumed by the work of Filé [15], we discuss them in
Section 10.

5This is possible even without decomposing the abstract description: as examples, consider the
substitutions σ1 = {x = f(u), y = g(v)} and σ2 = {x = f(y)} together with an abstract description
saying that x and y are both free and the only sharing group allowed is {xy}.
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Pos is included or not in the combined domain used (we have tried all possible
combinations). While no difference was observed for goal-dependent analysis, the
goal-independent analyses of petsan and cobweb gave rise to 3 and 2 more pairs of
independent variables exposed, respectively. It must be observed that the analysis
of several programs had to be stopped because of the combinatorial explosion in the
decomposition. Indeed, among the proposals described in this paper, this one is the
most expensive in computational terms.

We note on passing that such an approach to the recovery of disjunctive infor-
mation can be pursued beyond the integration of sharing with freeness. Indeed, by
exploiting ‘ground or free’ information as in Section 7, it could be possible to obtain
decompositions where each component contains at most one occurrence (in contrast
with the exactly one occurrence of Filé’s idea) of each ‘ground or free’ variable.

We plan to experiment with the exploitation of the concrete structural informa-
tion contained in a sharing description with freeness. At present, the problem is how
to incorporate this into the China analyzer without destroying its modular design.

11 Conclusion

In this paper, we have investigated enhanced sharing analysis techniques which have
the potential for improving the precision of the sharing information over and above
that obtainable using the classical combination of Sharing with Lin and Free. To do
this, we have considered including other domains and using more powerful abstract
semantic operators. We have evaluated, using the China analyzer, most of the
proposals that have appeared in the literature together with a few ideas that, to the
best of our knowledge, are new to this paper. For the combinations with Pos (for
groundness) and Pattern(·) (for structural information), the results were positive,
while, for the other cases, few improvements were observed.

The key issue is whether it is worthwhile including any particular enhancement
in a sharing analyzer. The problem is that although the enhancement may add to
the precision or even provide useful information in its own right, it may increase
the cost, and possibly the complexity, of the computation. Thus, we believe, it is
best to spend time developing the implementation of those enhancements that have
real potential for achieving non-trivial improvements to the generated information
together with manageable increases in the computational cost.
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