
The AND-compositionality of CLP
computed answer constraints.

Roberto Bagnara, Marco Comini,
Francesca Scozzari and Enea Zaffanella

Dipartimento di Informatica,
Università di Pisa,

Corso Italia 40, 56125 Pisa, Italy
{bagnara,comini,scozzari,zaffanel}@di.unipi.it

Abstract

We present a semantic characterization of CLP languages for the class of
quick-checking systems. We define a semantics of computed answer constraints
which is AND-compositional, does not loose the distinction between active and
passive constraints in the answers and has both a top-down and a bottom-up
characterization. We also show that an incrementality property we impose on
the constraint solver is essential in order to define an AND-compositional atom-
based semantics.

1 Introduction

The semantics of CLP languages presented in [6] is (at least in its intentions) very
general. Real CLP systems, in fact, are often equipped with incomplete constraint
solvers and delay mechanisms. For instance, the arithmetic solver employed in the
CLP(R) system [7] deals only with linear constraints, whereas non-linear ones are de-
layed. The languages truly implemented by these “real systems” are not captured by
standard semantics constructions such as the original one of [5] and its refinements [4].
These semantics, indeed, refer to the ideal domain of computation, thus pretending
that the system is endowed with a complete solver.

The idea of [6] consists in parameterizing the semantics construction with respect
to the constraint system and two functions modeling the inferential power of the
system’s constraint solver and the delay mechanisms employed. The infer function
models the solver’s ability of deriving new information from the constraint store (i.e.,
the set of active constraints) and from the delayed constraints (which are termed as
passive). The consistent function models the solver’s ability of detecting the unsatis-
fiability of the constraint store. Despite this nice idea, the semantics of [6] has several
drawbacks:

• The semantics is defined only for most-general atomic goals. However, it is not
clear how it can be used to recover the computed answers for general goals.
Indeed, this is not possible in the setting of [6] since the constraint solver is
not assumed to be incremental. This property (which we define precisely in
Section 3) amounts to say, roughly speaking, that feeding the solver with a set
of constraints all-in-one-shot, or giving them to it one-at-a-time does not change
the solver’s results (namely, the sets of active and passive constraints will be
the same).

• The distinction between active and passive constraints is taken into account
only in the transition system used to define the operational semantics. In the
end they are merged together so that everything is lost. This way, the two
CLP(R) programs {p(X) :- X = 2} and {p(X) :- X*X = 4} are assigned the
same semantics. Indeed, they exhibit a quite different behavior: in response to
the query ?- p(Y) the first one yields the answer Y = 2 whereas, for the second
one, the system’s answer is Y*Y =4 Maybe, indicating that the constraint is
still passive. Moreover, the operational semantics of [6] makes use also of the
logical-truth relation on the (idealized) constraint domain, which is undesirable.

• The bottom-up characterization of computed answers is given only for the ideal
systems (i.e., those endowed with a complete constraint solver).

In this work we present a semantic characterization of CLP languages which over-
comes the limitations of the one given in [6]. In particular, for the important class
of quick-checking systems (i.e., those in which every resolution step is followed by a
satisfiability check, or, in other words, most if not all the existing CLP systems), we
define a semantics of computed answer constraints which:

• under the very reasonable hypothesis of incrementality of the constraint solver,
is AND-compositional, that is, the answers to general goals can be reconstructed
from the answers to most-general atomic goals;

• does not loose the distinction between active and passive constraints in the
answers;

• has both a top-down and a bottom-up characterization.

We also show that the incrementality assumption on the constraint solver is so rea-
sonable that it is impossible, without it, to define an atom-based semantics which is
both AND-compositional and independent from the computation rule.

2 Preliminaries

In this section, following [6], we briefly review the basic syntax and semantics of
constraint systems and CLP languages.

A signature is a set of function and predicate symbols with arities. A Σ-formula
is built from variables, function and predicate symbols in Σ by using the classical first

order logical connectives and quantifiers. In a closed formula each occurrence of a
variable lies in the scope of a quantifier for that variable; ∃(φ) denotes the existential
closure of all the free variables occurring in formula φ. A Σ-structure D is a set D
together with an assignment of functions and relations on D to the symbols of Σ. We
assume that Σ always contains the predicate symbol = which is interpreted as the
identity over D. A Σ-theory is a collection of closed Σ-formulas and a model of a
Σ-theory T is a Σ-structure D such that all the formulas of T evaluate to True under
the interpretation D. We write T,D |= φ to denote that the formula φ is valid in all
the models of T extending D. The set of constraints L is a subset of the set of Σ-
formulas closed under variable renaming, conjunction and existential quantification.
A pair (D, L) is a constraint domain and will be often denoted by D.

A CLP program is a collection of rules of the form A←B where A is an atom and
B is a (finite) multiset of atoms and constraints. A goal G is a (finite) multiset of
constraints and atoms, representing their conjunction. atoms(G) denotes the multiset
of all the atoms in G and constr(G) denotes the multiset of all the constraints in
G. Multiset union is denoted by], whereas {|e|} denotes the singleton multiset
containing e. As usual, without any loss of generality, we assume that rules and goals
are in standard form, meaning that all the arguments in atoms are variables and each
variable occurs in at most one atom.

The operational semantics is given by defining a transition system on states. A
state is a triple 〈G, C, S〉 where G is a goal and C,S are finite (conjunctive) multisets
of constraints, called the active and the passive constraints respectively. There is one
additional state denoted fail. The initial state corresponding a goal G is 〈G, ∅, ∅〉.
The transition system is parametric with respect to the functions consistent and
infer. Given a set of constraints C, the function consistent(C) is a consistency check
such that D |= ∃(C) implies consistent(C). The function infer applied to a pair of
finite multisets of constraints (C, S) yields a new pair of finite multisets of constraints
(C ′, S′) such that D |= (C ∧ S) ↔ (C ′ ∧ S′).

The transition rules are the following:

〈G] {|A|}, C, S〉 r−→ 〈G]B, C, S] {|A = H|}〉

where A is the selected atom1, H←B is a renamed apart rule of P 2, H and A have
the same predicate symbol and {|A = H|} is an abbreviation for the conjunction of
equations between the corresponding arguments.

〈G] {|A|}, C, S〉 r−→ fail

where A is the selected atom and for every rule H←B of P , H and A have different
predicate symbols.

〈G] {|c|}, C, S〉 c−→ 〈G, C, S] {|c|}〉
1We assume as given a computation rule which selects a transition rule and an element of G, if

necessary.
2The program P is fixed in −→.

if c is the selected constraint.

〈G, C, S〉 i−→ 〈G, C ′, S′〉 if (C ′, S′) = infer (C, S)

〈G, C, S〉 s−→ 〈G, C, S〉 if consistent(C)

〈G, C, S〉 s−→ fail if ¬ consistent(C)

A CLP system is thus defined by giving the constraint domain, the computation
rule and definitions for consistent and infer.

Given states s0, . . . , sn and transitions si
xi−→ si+1 we will often write s0

x0···xn−1−−−−−−→
sn to denote the derivation s0

x0−→ . . .
xn−1−−−→ sn. Similarly, we write s

x|y−−→ s′ if s x−→ s′

or s
y−→ s′ holds (according to the computation rule).

A CLP system is called quick-checking if its operational semantics can be described
in terms of ris−−→ and cis−−→ (composite) rules only. A successful derivation starting from
initial state 〈G, ∅, ∅〉 is a finite derivation having 〈∅, C, S〉 as the final state; (C, S)
is an answer constraint for the initial goal G.

As usual, the syntactic equivalence modulo variance is denoted by ≡. For the sake
of simplicity given the syntactic object E, E′, F , we write E ≈F E′ for (F, E) ≡
(F, E′), namely to denote that E can be obtained from E′ by possibly renaming all
the variables but those contained in F .

3 From AND-compositionality to incrementality

In this paper we are interested in computed answer constraints of quick-checking
transition systems. Formally the set of computed answer constraints with respect to
program P and goal G is defined as

Cac(P, G) = { 〈G, C, S〉 | 〈G, ∅, ∅〉 (r|c)is−−−−→∗ 〈∅, C, S〉 }

As usual computed answer constraints must not depend upon variable names, i.e.,
computed answer constraints of variant goals must be variant themselves. In the logic
programming case this property is a consequence of the renaming apart condition used
in SLD-resolution. In the CLP case to ensure this property the infer and consistent
operations must compute their results independently upon variable names too, i.e.,

(C, S) ≡ (C ′, S′) =⇒ (C,S, infer (C, S)) ≡ (C ′, S′, infer (C ′, S′)) (3.1)

C ≡ C ′ =⇒ consistent(C) ↔ consistent(C ′) (3.2)

An atom-based semantics S is a set of triples of the form 〈A, C, S〉 where A is an
atom and C, S are finite multisets of constraints. An atom-based semantics differs
from the Cac operational behavior defined above in that it gathers the computed
answers constraints of atomic goals only. The lower complexity of atom-based seman-
tics make them more suitable for the development of semantics based analysis tools.
However, to be really useful, these semantics have to be provided with a mechanism to
reconstruct the computed answer constraints of a general goal from the semantics of

its components (atoms and constraints). The availability of such a mechanism is the
well-known AND-compositionality property of the semantics. Hence, the top-down
semantics can be defined using the s-semantics atom-based style [2].

Definition 3.1 Let P be a fixed program, p range over the set of predicate symbols
and x be a tuple of distinct variables. Then the top-down semantics of P with respect
to the computation rule R is

SSR
P = { 〈p(x), C, S〉/≡ | 〈p(x), ∅, ∅〉 (r|c)is−−−−→

R

∗ 〈∅, C, S〉 }

When it is clear from the context, we will omit the computation rule index R.

Definition 3.2 An atom-based semantics S is AND-compositional w.r.t. computed
answer constraints if

〈G, C, S〉 ∈ Cac(P, G) ⇐⇒
∀Gi ∈ atoms(G) ∃〈G′i, Ci, Si〉 renamed apart versions of elements in S
and ∃ρ variables substitution s.t. Gi = G′iρ and
(C ′, S′) = infer (∅,

⊎

i(Ci] Si)ρ] constr(G)) and consistent(C ′)

where (C, S) ≈G (C ′, S′).

In the general case, both the Cac set and the atom-based semantics S depend upon the
choice of computation rule. When defining the AND-compositional property we are
faced to the following choice: either the AND-compositionality mechanism depends
on the computation rule, or the same AND-compositionality mechanism has to be
used for all computation rules. Due to its greater formal and computational simplicity,
in this paper we will opt for the latter. Moreover this mechanism has to be defined
by means of the tools available inside the constraint system, namely in terms of the
infer and consistent functions. In this way we avoid using the |= relation, which is
only weakly related to the real computation power of the constraint system.

From a technical point of view, all the active and passive constraints coming from
the atoms of the composite goal are collapsed into a multiset of passive constraints.
The alternative choice of keeping distinct the active and passive parts would fail
in that, in general, the union of several consistent active constraints can yield an
inconsistency.

Definition 3.3 The operations infer and consistent are incremental if

infer (∅, S) = (C1, S1), consistent(C1), infer (C1, S1] {| c |}) = (C2, S2),
consistent(C2) ⇐⇒ infer (∅, S] {| c |}) = (C ′2, S′2), consistent(C ′2)

(3.3)

where (C2, S2) ≈S]{| c |} (C ′2, S′2) and

infer (∅, ∅) = (∅, ∅), consistent(∅) (3.4)

Moreover the transition system is incremental if the operations infer and consis-
tent are incremental.

The following Lemma shows that, given an incremental transition system, every
quick checking computation rule R1 can be simulated by a corresponding computation
rule R2 which omits all the non final i and s transitions. We call such a computation
rule late checking.

Lemma 3.4 Consider an incremental transition system. Then ∀G, n ≥ 0

〈G, ∅, ∅〉 (r|c)is−−−−→n 〈∅, Cq, Sq〉 ⇐⇒ 〈G, ∅, ∅〉 r|c−−→n is−→ 〈∅, C`, S`〉

where (Cq, Sq) ≈G (C`, S`).

Proof. We prove a stronger result for induction on n ≥ 0, namely

〈G, ∅, ∅〉 (r|c)is−−−−→n 〈Gq, Cq, Sq〉 ⇐⇒ 〈G, ∅, ∅〉 r|c−−→n is−→ 〈G`, C`, S`〉

where (G]Gq, Cq, Sq) ≡ (G]G`, C`, S`). The n = 0 base case by (3.4) is triv-

ial, while for the inductive case we have 〈G, ∅, ∅〉 (r|c)is−−−−→n 〈Gq, Cq, Sq〉 which is
equivalent to

〈G, ∅, ∅〉 (r|c)is−−−−→n−1 〈G1, C1, S1〉
(r|c)is−−−−→ 〈Gq, Cq, Sq〉.

By applying the inductive hypotheses this is equivalent to

〈G, ∅, ∅〉 r|c−−→n−1 is−→ 〈G2, C2, S2〉
(r|c)is−−−−→ 〈G`, C3, S3〉

where (G] G1, C1, S1) ≡ (G] G2, C2, S2) and by (3.1) and (3.2) (G] Gq, Cq,
Sq) ≡ (G]G`, C3, S3). This in turn is equivalent to

〈G, ∅, ∅〉 r|c−−→n−1 〈G2, ∅, S4〉
is−→ 〈G2, C2, S2〉

r|c−−→

〈G`, C2, S2] {| c |}〉
is−→ 〈G`, C3, S3〉

where infer (∅, S4) = (C2, S2), consistent(C2) and infer (C2, S2] {| c |}) = (C3, S3),
consistent(C3). The constraint {| c |} is the one introduced by the r or c rule in the
last derivation step.

Because of the incrementality of the transition system we obtain

infer (∅, S4] {| c |}) = (C`, S`)

and consistent(C`) where (C3, S3) ≈S4]{| c |} (C`, S`). Because of the renaming apart
property of infer we have that (C3, S3) ≈G]G` (C`, S`). Thus we can construct the
following derivation

〈G, ∅, ∅〉 r|c−−→n−1 〈G2, ∅, S4〉
r|c−−→ 〈G`, ∅, S4] {| c |}〉

is−→ 〈G`, C`, S`〉

By the transitivity of ≡ the proof is so concluded.

Next Lemma follows from the commutativity of multisets’ union.

Lemma 3.5 Let R1 and R2 be two late checking computation rules.

〈G, ∅, ∅〉 r|c−−→
R1

n is−→ 〈∅, C1, S1〉 ⇐⇒ 〈G, ∅, ∅〉 r|c−−→
R2

n is−→ 〈∅, C2, S2〉

where (C1, S1) ≈G (C2, S2).

An immediate consequence of the two previous lemmata is the independence of the
semantics upon quick checking computation rules.

Theorem 3.6 Consider an incremental transition system and let R1 and R2 be two
quick checking computation rules. Then SSR1

P = SSR2
P .

Lemma 3.7 Consider an incremental transition system. Then ∀G, S0, n ≥ 0

〈G, ∅, S0〉
r|c−−→n is−→ 〈∅, C, S〉 ⇐⇒

∀Gi ∈ atoms(G) ∃〈G′i, Ci, Si〉 renamed apart versions of
elements in SSP and ∃ρ variables substitution s.t. Gi = G′iρ and
(C ′, S′) = infer (∅, S0]

⊎

i(Ci] Si)ρ] constr(G)) and
consistent(C ′)

where (C, S) ≈G]S0 (C ′, S′).

Proof. The proof is by induction on n. The n = 0 base case is trivial, while for n > 0
we have two sub-cases, depending on the rule applied first

c rule
]

Let c be the selected constraint and G = G0] {| c |}.

〈G, ∅, S0〉
c−→ 〈G0, ∅, S0] {| c |}〉

r|c−−→n−1 is−→ 〈∅, C, S〉

For IH we have ∀Gi ∈ atoms(G0) ∃〈G′i, Ci, Si〉 renamed apart versions of elements
in SSP and ∃ρ s.t. Gi = G′iρ and

(C ′, S′) = infer (∅, S0] {| c |}]
⊎

i

(Ci] Si)ρ] constr(G0))

and consistent(C ′), where (C, S) ≈G0]S0]{| c |} (C ′, S′). The thesis follows immedi-
ately from atoms(G0) = atoms(G) and constr(G0)] {| c |} = constr(G).

r rule
]

Let A be the selected atom, G = G0]{|A |} and H←B be the used (renamed
apart) clause of P . Then

〈G, ∅, S0〉
r−→ 〈G0]B, ∅, S0] {|A = H |}〉 r|c−−→n is−→ 〈∅, C, S〉

For IH we have ∀Gi ∈ atoms(G0), ∀Bj ∈ atoms(B) ∃〈G′i, Ci, Si〉, ∃〈B′
j , Cj , Sj〉

renamed apart versions of elements in SSP and ∃ρ s.t. Gi = G′iρ, Bj = B′
jρ and

(C1, S1) = infer (∅, S0] {|A = H |}]
⊎

i

(Ci] Si)ρ]

⊎

j

(Cj] Sj)ρ] constr(G0)] constr(B))
(Prf.1)

where consistent(C1) and (C, S) ≈G0]B]S0]{|A=H |} (C1, S1). Now, let S′ = S0]
{|A = H |}]

⊎

i(Ci] Si)ρ]
⊎

j(Cj] Sj)ρ] constr(G0)] constr(B) and S′′ = {|A =
H |}]

⊎

j(Cj] Sj)ρ] constr(B). Moreover let (C2, S2) = infer (∅, S′′). Because
S′′ ⊆ S′ by (3.3) we have consistent(C2). By IH again on B, for some m < n we can

construct the derivation 〈B, ∅, {|A = H |}〉(r|c−−→)m is−→ 〈∅, C3, S3〉 where

(C3, S3) ≈B]{|A=H |} (C2, S2). (Prf.2)

Hence 〈A, C3, S3〉/≡ ∈ SSP because we can build the derivation

〈A, ∅, ∅〉 r−→ 〈B, ∅, {|A = H |}〉(r|c−−→)m is−→ 〈∅, C3, S3〉

Then we can choose a renamed apart 〈A′, Cq, Sq〉 and a suitable variables substitution
ρ′ s.t. (Prf.1) holds for ρ′ instead of ρ and

〈A′, Cq, Sq〉ρ′ = 〈A, C3, S3〉. (Prf.3)

Now let S′′′ be S′ − S′′ with ρ′ instead of ρ and let

(C4, S4) = infer (∅, (S′′′)] C3] S3). (Prf.4)

Because of the renaming apart property of 〈A′, Cq, Sq〉 and from (Prf.3) follows
(C2, S2) ≈G]A]S0 (Cq, Sq). Now by Lemma 3.7, (Prf.1), (Prf.2), (Prf.4) and (3.3)
several times on S′ − S′′ we obtain (C4, S4) ≈G]S0 (C, S) This and (3.2) implies
consistent(C4). The (3.3) property can be iteratively applied because consistent(C1).

The proof is so concluded.

Theorem 3.8 If the transition system is incremental and R is quick checking then
the SSR

P semantics is AND-compositional w.r.t. computed answer constraints.

Proof. We can apply Lemma 3.4 and prove the equivalent result

〈G, ∅, ∅〉 r|c−−→n is−→ 〈∅, C, S〉 ⇐⇒
∀Gi ∈ atoms(G) ∃〈G′i, Ci, Si〉 renamed apart versions of elements in
SSP and ∃ρ variables substitution s.t. Gi = G′iρ,
(C ′, S′) = infer (∅,

⊎

i(Ci] Si)ρ] constr(G)) and consistent(C ′)

where (C, S) ≈G (C ′, S′). The thesis follows immediately from Lemma 3.7.

Theorem 3.9 Let R be a quick checking computation rule. Suppose that SSR
P is

AND-compositional w.r.t. computed answer constraints and independent with respect
to all quick checking computation rules. Then the transition system is incremental.

Proof. Let S = {| c1 . . . , cn |}. For proving (3.4) simply apply the AND-composition-
ality of SSP on G = ∅. To prove (3.3) let c be a constraint, infer (∅, S] {| c |}) =
(C1, S1) and consistent(C1). By applying the AND-compositionality of SSP on

G = S] {| c |} this is equivalent to 〈G, C2, S2〉 ∈ Cac(P, G) where (C1, S1) ≈G
(C2, S2). For the independence of computed answer constraints upon the selection
rule this is equivalent to 〈S] {| c |}, ∅, ∅〉 cis−−→n 〈{| c |}, C3, S3〉

cis−−→ 〈∅, C4, S4〉 where
(C2, S2) ≈G (C4, S4). This is equivalent to

〈S, ∅, ∅〉 cis−−→n 〈∅, C5, S5〉 (Prf.1)

and 〈{| c |}, C5, S5〉
cis−−→ 〈∅, C6, S6〉 where (C3, S3) ≈S (C5, S5) and (C4, S4) ≈{| c |}

(C6, S6). By applying the AND-compositionality of SSP on (Prf.1) this is equivalent
to

(C7, S7) = infer (∅, S), consistent(C7)

where (C5, S5) ≈S (C7, S7). Hence for cis rule definition

(C6, S6) = infer (C5, S5] {| c |}), consistent(C6).

Now let (C8, S8) = infer (C7, S7] {| c |}), then for (3.1) we have

(C7, S7, C8] S8) ≡ (C5, S5, C6] S6)

and by (3.2) consistent(C8). By ≡ transitivity (C8, S8) ≈G (C1, S1). Finally from
(3.2) we have that consistent(C1) which is the claim.

Note that, from Theorem 3.8 and Theorem 3.9 it follows that, under the hypothesis of
independence upon the computation rule, the incrementality condition is equivalent
to the AND-compositionality of SSR

P . However, it is possible to relax our notion
of AND-compositionality, by combining the atoms according to a fixed computation
rule, thus obtaining a weaker incrementality condition.

4 Bottom-up semantics

In this section we show a bottom-up characterization of our semantics and prove
that, for every incremental transition system, it is equivalemnt to the top-down con-
struction.

The immediate consequences operator is defined by exploiting the properties of
incremental transition system, namely Lemma 3.4 and 3.7.

Definition 4.1 The immediate consequences operator of the program P is

TP (I) = { 〈p(x), C, S〉/≡ |

x are new variables, H←B ∈ P , ∀Bi ∈ atoms(B)
∃〈B′

i, Ci, Si〉 renamed apart versions of elements of I and a
variables substitution ρ s.t. Bi = B′

iρ,
(C, S) = infer (∅, {|p(x) = H|}] constr(B)]

⊎

i(Ci] Si)ρ)
and consistent(C) }

The following lemma can be proved using standard techniques.

Lemma 4.2 The TP operator is continuous.

Proof. It is easy to see that TP is monotone. We have to prove that is also finitary,
i.e., TP (

⋃∞In) ⊆
⋃∞TP (In).

Let I0 ⊆ I1 ⊆ . . . In ⊆ . . . be a chain. If g ∈ TP (
⋃∞In) then for TP definition

there must exist a finite number of goals g1, . . . , gn ∈
⋃∞In from which g is built. In

particular it must exist a finite k s.t. g1, . . . , gn ∈ Ik and then, applying TP definition
again g ∈ TP (Ik) which implies g ∈

⋃∞TP (In).

Definition 4.3 Let P be a program. The bottom-up semantics of P is FP = TP ↑ ω.

Theorem 4.4 Consider an incremental transition system. For any quick checking
computation rule R we have SSR

P = FP

Proof. Let’s prove the two inclusions separately.

SSP ⊆ FP
]

Let 〈p(x), Cq, Sq〉 ∈ SSP , that is, for some n there exists the quick

checking derivation 〈p(x), ∅, ∅〉 (r|c)is−−−−→n 〈∅, Cq, Sq〉. From Lemma 3.4 there exists

the late checking derivation 〈p(x), ∅, ∅〉 r|c−−→n is−→ 〈∅, C`, S`〉 where (Cq, Sq) ≈p(x)

(C`, S`).
We prove the inclusion by induction on the number of r or c transitions of the late

checking system. Note that the first rule is always an r rule. For n = 1 there exists
a renamed apart clause H. of P such that

〈p(x), ∅, ∅〉 r−→ 〈∅, ∅, {|p(x) = H|}〉 is−→ 〈∅, C`, S`〉

By definition of TP we have that 〈p(x), C`, S`〉/∼ ∈ TP ↑ 1.
For n > 1 without loss of generality consider the following derivation where H←B

is a renamed apart version of clause of P .

〈p(x), ∅, ∅〉 r−→ 〈B, ∅, {|p(x) = H|}〉 r|c−−→n−1 〈∅, ∅, S0〉
is−→ 〈∅, C`, S`〉

Note that for n = 1 the body B is empty and most of the following formulas became
trivial. The derivation

〈B, ∅, {|p(x) = H|}〉 r|c−−→n−1 〈∅, ∅, S0〉

does not depend on the accumulated constraints because no i and s transitions are
applied. So we can build the derivation

〈B, ∅, ∅〉 r|c−−→n−1 〈∅, ∅, S0 − {|p(x) = H|}〉 is−→ 〈∅, C1, S1〉

where, if we let (C2, S2) = infer (∅, {|p(x) = H|}] C1] S1), (C`, S`) ≈B (C2, S2) by
(3.3). Then, by Theorem 3.8, for each atom Bi ∈ atoms(B) there exists 〈B′

i, Ci, Si〉
renamed apart versions of elements in SSP and ρ such that Bi = B′

iρ and

(C3, S3) = infer (∅, constr(B)]
⊎

i

(Ci] Si)ρ)

where consistent(C3) and (C1, S1) ≈B (C3, S3). All the previous derivations are
smaller than n so applying the IH we obtain 〈B′

i, Ci, Si〉 ∈ TP ↑ ω. In particular,
because of the finiteness of B, there exists some k such that for each i 〈B′

i, Ci, Si〉 ∈
TP ↑ k. Moreover

infer (∅, {|p(x) = H|}] (constr(B)]
⊎

i

(Ci] Si)ρ)) ≈p(x) [by (3.3)]

infer (∅, {|p(x) = H|}] C3] S3) ≈p(x) [by (3.1)]

infer (∅, {|p(x) = H|}] C1] S1) ≈p(x)

(C`, S`) ≈p(x)

(Cq, Sq)

and consistent(Cq). Hence by TP definition 〈p(x), Cq, Sq〉/∼ ∈ TP ↑ (k + 1). The
thesis then follows by TP monotonicity.

SSP ⊇ FP
]

We prove by induction on n that TP ↑ n ⊆ SSP .
The n = 0 case is trivial, because TP ↑ 0 = ∅ ⊆ SSP . For n ≥ 1 let 〈p(x), C, S〉 ∈

TP ↑ n. Then for some clause H←B ∈ P ∀Bi ∈ atoms(B) ∃〈B′
i, Ci, Si〉 renamed

apart versions of elements of TP ↑ (n − 1) and ρ s.t. consistent(C) and (C, S) =
infer (∅, U] constr(B)]

⊎

i Ki) where U = {|p(x) = H|} and Ki = (Ci] Si)ρ. Note
that for n = 1 the body B is empty and most of the following formulas become trivial.

By applying Lemma 3.7 with S0 = U we have that 〈B, ∅, U〉 −→∗ 〈∅, C ′, S′〉
where (C, S) ≈B]U (C ′, S′). Then 〈p(x), ∅, ∅〉 −→∗ 〈∅, C ′, S′〉 which is the thesis.

5 Conclusions

In this paper we have presented a semantic characterization of “real” CLP lan-
guages. This is made possible by parameterizing the semantic construction with
respect to functions which model the behavior of the actual constraint solver em-
ployed. This idea is due to [6]. However, the semantics presented in [6] suffers from
several drawbacks. We have overcome these limitations, presenting a semantics for
quick-checking systems which is AND-compositional (under the assumption of incre-
mentality of the constraint solver), captures both active and passive constraints, and
has natural top-down and bottom-up construction processes. Our incrementality as-
sumption (which is missing in [6]) does not exclude any reasonable system. Moreover,
we have shown that if the incrementality assumption does not hold then no atom-based
semantics can be both AND-compositional and independent from the computation
rule.

The semantic treatment presented in this paper is not the only way to charac-
terize CLP systems employing incomplete constraint solvers. For instance, the delay
mechanism can be captured at the constraint system level, instead of carrying over a
distinguished set of delayed (or passive) constraints in the semantics. In [1] a class of

constraint systems is introduced, where constraints are cc agents [8]. In this approach,
the CLP(R) constraint X = Y ∗ Z is considered as a shorthand for

ask
(

ground(Y) ∨ ground(Z)
)

→ tell(X = Y ∗ Z),

expressing the fact that X = Y ∗ Z (being non-linear) is delayed until it becomes
linear, namely, until either Y or Z are constrained to take a single value.

If we are interested in complete constraint solvers only, then the semantics defined
in [6] boils down to the CLP version of the s-semantics [4]. In this case the AND-
compositionality problem has been deeply studied, even with respect to a much more
concrete semantics, yielding stronger results [3].

References
[1] R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint logic-

based languages. Technical Report TR-96-10, Dipartimento di Informatica, Università
di Pisa, 1996. To appear on a special issue of “Science of Computer Programming”.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory
and applications. Journal of Logic Programming, 19-20:149–197, 1994.

[3] M. Comini and G. Levi. An algebraic theory of observables. In M. Bruynooghe, editor,
Proceedings of the 1994 Int’l Symposium on Logic Programming, pages 172–186. The
MIT Press, Cambridge, Mass., 1994.

[4] M. Gabbrielli, G. M. Dore, and G. Levi. Observable semantics for constraint logic
programs. J. Logic Computation, 5(2):133–171, 1995.

[5] J. Jaffar and J. L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual
ACM Symp. on Principles of Programming Languages, pages 111–119. ACM, 1987.

[6] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19-20:503–581, 1994.

[7] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

[8] V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge, Mass.,
1993.

