
Boolean Functions for Finite-Tree Dependencies?

Roberto Bagnara1, Enea Zaffanella1, Roberta Gori2, and Patricia M. Hill3

1 Department of Mathematics, University of Parma, Italy.
{bagnara,zaffanella}@cs.unipr.it

2 Department of Computer Science, University of Pisa, Italy.
gori@di.unipi.it

3 School of Computing, University of Leeds, United Kingdom.
hill@comp.leeds.ac.uk

Abstract. Several logic-based languages, such as Prolog II and its suc-
cessors, SICStus Prolog and Oz, offer a computation domain including
rational trees that allow for increased expressivity and faster unification.
Unfortunately, the use of infinite rational trees has problems. For in-
stance, many of the built-in and library predicates are ill-defined for such
trees and need to be supplemented by run-time checks whose cost may be
significant. In a recent paper [3], we have proposed a data-flow analysis
called finite-tree analysis aimed at identifying those program variables
(the finite variables) that are not currently bound to infinite terms. Here
we present a domain of Boolean functions, called finite-tree dependencies
that precisely captures how the finiteness of some variables influences the
finiteness of other variables. We also summarize our experimental results
showing how finite-tree analysis, enhanced with finite-tree dependencies
is a practical means of obtaining precise finiteness information.

1 Introduction

Many logic-based languages refer to a computation domain of rational trees.
While rational trees allow for increased expressivity, they also have a surprising
number of problems. (See [4] for a survey of known applications of rational trees
and a detailed account of many of the problems caused by their use.) Some of
these problems are so serious that rational trees must be used in a very controlled
way, disallowing infinite trees in any context where they are “dangerous”. This,
in turn, causes a secondary problem: in order to disallow infinite trees in selected
contexts, one must first detect them, an operation that may be expensive.

In [4], we have introduced a composite abstract domain, H × P , for finite-
tree analysis. The H domain, written with the initial of Herbrand and called the
finiteness component, is the direct representation of the property of interest: a set
of variables guaranteed to be bound to finite terms. The generic domain P (the
parameter of the construction) provides sharing information that can include,
? The MURST project, “Certificazione automatica di programmi mediante interpre-

tazione astratta”, partly supported the work of the first two authors and EPSRC
grant M05645 partly supported the work of the second and fourth authors.



apart from variable aliasing, groundness, linearity, freeness and any other kind
of information that can improve the precision on these components, such as
explicit structural information. Sharing information is exploited in H × P for
two purposes: detecting when new infinite terms are possibly created (this is
done along the lines of [22]) and confining the propagation of those terms as
much as possible. As shown in [3, 4], by giving a generic specification for this
parameter component in terms of the abstract queries it supports (in the style
of the open product construct [12]), it is possible to define and establish the
correctness of the abstract operators on the finite-tree domain independently
from any particular domain for sharing analysis.

The domain H×P captures the negative aspect of term-finiteness, that is, the
circumstances under which finiteness can be lost. However, term-finiteness has
also a positive aspect: there are cases where a variable is granted to be bound to a
finite term and this knowledge can be propagated to other variables. Guarantees
of finiteness are provided by several built-ins like unify_with_occurs_check/2,
var/1, name/2, all the arithmetic predicates, besides those explicitly provided to
test for term-finiteness such as the acyclic_term/1 predicate of SICStus Prolog.
The information encoded by H is attribute independent [14], which means that
each variable is considered in isolation. What is missing is information concerning
how finiteness of one variable affects the finiteness of other variables. This kind
of information, usually called relational information, is not captured at all by H
and is only partially captured by the composite domain H × P of [4].

Here we present a domain of Boolean functions that precisely captures how
the finiteness of some variables influences the finiteness of other variables. This
domain of finite-tree dependencies provides relational information that is impor-
tant for the precision of the overall finite-tree analysis. It also combines obvious
similarities, interesting differences and somewhat unexpected connections with
classical domains for groundness dependencies.

Finite-tree and groundness dependencies are similar in that they both track
covering information (a term s covers t if all the variables in t also occur in s) and
share several abstract operations. However, they are different because covering
does not tell the whole story. Suppose x and y are free variables before either
the unification x = f(y) or the unification x = f(x, y) are executed. In both
cases, x will be ground if and only if y will be so. However, when x = f(y)
is the performed unification, this equivalence will also carry over to finiteness.
In contrast, when the unification is x = f(x, y), x will never be finite and will
be totally independent, as far as finiteness is concerned, from y. Among the
unexpected connections is the fact that finite-tree dependencies can improve the
groundness information obtained by the usual approaches to groundness analysis.

The paper is structured as follows: the required notations and preliminary
concepts are given in Section 2; the concrete domain for the analysis is presented
in Section 3; Section 4 introduces the use of Boolean functions for tracking
finite-tree dependencies, whereas Section 5 illustrates the interaction between
groundness and finite-tree dependencies. Our experimental results are presented
in Section 6. The paper concludes in Section 7.



2 Preliminaries

2.1 Infinite Terms and Substitutions

For a set S, ℘(S) is the powerset of S, ℘f(S) is the set of all the finite subsets of
S, whereas #S denotes the cardinality of S. Let Sig denote a possibly infinite
set of function symbols, ranked over the set of natural numbers and Vars a
denumerable set of variable symbols, disjoint from Sig. Then Terms denotes the
free algebra of all (possibly infinite) terms in the signature Sig having variables
in Vars. It is assumed that Sig contains at least two distinct function symbols,
one having rank 0 and one with rank greater than 0 (so that there exist finite
and infinite terms both with and without variables). If t ∈ Terms then vars(t)
denotes the set of variables occurring in t. If vars(t) = ∅ then t is said to be
ground ; t is a finite term (or Herbrand term) if it contains a finite number of
occurrences of function symbols. The sets of all ground and finite terms are
denoted by GTerms and HTerms, respectively.

A substitution is a total function σ : Vars → HTerms that is the iden-
tity almost everywhere; in other words, the domain of σ, which is defined as
dom(σ) def=

{
x ∈ Vars

∣∣ σ(x) 6= x
}

, is a finite set of variables. If x ∈ Vars
and t ∈ HTerms \ {x}, then x 7→ t is called a binding. The set of all bind-
ings is denoted by Bind. Substitutions are conveniently denoted by the set of
their bindings. Accordingly, a substitution σ is identified with the (finite) set{
x 7→ σ(x)

∣∣ x ∈ dom(σ)
}
. We denote by vars(σ) the set of all variables

occurring in the bindings of σ.
A substitution of the form {x1 7→ x2, . . . , xn−1 7→ xn, xn 7→ x1} is circular

if and only if n > 1 and x1, . . . , xn are distinct variables. A substitution is in
rational solved form if it has no circular subset. The set of all substitutions in
rational solved form is denoted by RSubst .

Given a substitution σ : Vars → HTerms, the symbol ‘σ’ also denotes the
function σ : HTerms→ HTerms defined as usual. That is, for each t ∈ HTerms,
σ(t) is the term obtained by replacing each occurrence of each variable x in t by
the term σ(x). If t ∈ HTerms, we write tσ to denote σ(t). Let s ∈ HTerms and
σ ∈ RSubst . Then σ0(s) def= s and σi(s) def= σ

(
σi−1(s)

)
for all i ∈ N, i > 0. Thus

the sequence of finite terms σ0(s), σ1(s), . . . converges to a (possibly infinite)
term, denoted by σ∞(s) [17, 18].

2.2 Equations

An equation has the form s = t where s, t ∈ HTerms. Eqs denotes the set of all
equations. A substitution σ may be regarded as a finite set of equations, that is,
as the set {x = t | x 7→ t ∈ σ }. We say that a set of equations e is in rational
solved form if

{
s 7→ t

∣∣ (s = t) ∈ e
}
∈ RSubst . In the rest of the paper, we will

often write a substitution σ ∈ RSubst to denote a set of equations in rational
solved form (and vice versa).

Some logic-based languages, such as Prolog II, SICStus and Oz, are based
on RT , the theory of rational trees [9, 10]. This is a syntactic equality theory



(i.e., a theory where the function symbols are uninterpreted), augmented with a
uniqueness axiom for each substitution in rational solved form. It is worth noting
that any set of equations in rational solved form is, by definition, satisfiable in
RT .

Given a set of equations e ∈ ℘f(Eqs) that is satisfiable in RT , a substitution
σ ∈ RSubst is called a solution for e in RT if RT ` ∀(σ → e), i.e., if every
model of the theory RT is also a model of the first order formula ∀(σ → e). If
in addition vars(σ) ⊆ vars(e), then σ is said to be a relevant solution for e. If
RT ` ∀(σ ↔ e), then σ is a most general solution for e in RT . The set of all
the relevant most general solution for e in RT will be denoted by mgs(e).

The function ↓(·) : RSubst → ℘(RSubst) is defined, for each σ ∈ RSubst , by
↓σ def=

{
τ ∈ RSubst

∣∣ ∃σ′ ∈ RSubst . τ ∈ mgs(σ ∪ σ′)
}

. The next result shows
that ↓(·) corresponds to the closure by entailment in RT .

Proposition 1. Let σ ∈ RSubst. Then ↓σ =
{
τ ∈ RSubst

∣∣ RT ` ∀(τ → σ)
}

.

2.3 Boolean Functions

Boolean functions have already been extensively used for data-flow analysis of
logic-based languages. An important class of these functions used for tracking
groundness dependencies is Pos [1]. This domain was introduced in [19] under
the name Prop and further refined and studied in [11, 20].

Boolean functions are based on the notion of Boolean valuation.

Definition 2. (Boolean valuations.) Let VI ∈ ℘f(Vars) and B def= {0, 1}. The
set of Boolean valuations over VI is Bval def= VI→ B. For each a ∈ Bval, each
x ∈ VI, and each c ∈ B the valuation a[c/x] ∈ Bval is given, for each y ∈ VI, by

a[c/x](y) def=

{
c, if x = y;
a(y), otherwise.

If X = {x1, . . . , xk} ⊆ VI, then a[c/X] denotes a[c/x1] · · · [c/xk].

Bval contains the distinguished elements 0 def= λx ∈ VI . 0 and 1 def= λx ∈ VI . 1.

Definition 3. (Boolean functions.) The set of Boolean functions over VI is
Bfun def= Bval → B. Bfun is partially ordered by the relation |= where, for each
φ, ψ ∈ Bfun,

φ |= ψ
def⇐⇒

(
∀a ∈ Bval : φ(a) = 1 =⇒ ψ(a) = 1

)
.

The distinguished elements >,⊥ ∈ Bfun are defined by ⊥ def= λa ∈ Bval . 0 and
> def= λa ∈ Bval . 1. respectively. For each φ ∈ Bfun, x ∈ VI, and c ∈ B, the
function φ[c/x] ∈ Bfun is given, for each a ∈ Bval, by φ[c/x](a) def= φ

(
a[c/x]

)
.

When X ⊆ VI, φ[c/X] is defined in the expected way. If φ ∈ Bfun and x, y ∈ VI
the function φ[y/x] ∈ Bfun is given by φ[y/x](a) def= φ

(
a
[
a(y)/x

])
, for each



a ∈ Bval. Boolean functions are constructed from the elementary functions
corresponding to variables and by means of the usual logical connectives. Thus
x denotes the Boolean function φ such that, for each a ∈ Bval, φ(a) = 1 if and
only if a(x) = 1. For φ1, φ2 ∈ Bfun, we write φ1 ∧ φ2 to denote the function
φ such that, for each a ∈ Bval, φ(a) = 1 if and only if both φ1(a) = 1 and
φ2(a) = 1. A variable is restricted away using Schröder’s elimination principle
[21]: ∃x . φ

def= φ[1/x] ∨ φ[0/x]. Note that existential quantification is both
monotonic and extensive on Bfun. The other Boolean connectives and quantifiers
are handled similarly.

Pos ⊂ Bfun consists precisely of those functions assuming the true value
under the everything-is-true assignment, i.e., Pos def=

{
φ ∈ Bfun

∣∣ φ(1) = 1
}

.
For each φ ∈ Bfun, the positive part of φ, denoted pos(φ), is the strongest Pos
formula that is entailed by φ. Formally, pos(φ) def= φ ∨

∧
VI.

For each φ ∈ Bfun, the set of variables necessarily true for φ and the set of
variables necessarily false for φ are given, respectively, by

true(φ) def=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 1
}
,

false(φ) def=
{
x ∈ VI

∣∣ ∀a ∈ Bval : φ(a) = 1 =⇒ a(x) = 0
}
.

3 The Concrete Domain

A knowledge of the basic concepts of abstract interpretation theory [13, 15] is
assumed. In this paper, the concrete domain consists of pairs of the form (Σ, V ),
where V is a finite set of variables of interest and Σ is a (possibly infinite) set
of substitutions in rational solved form.

Definition 4. (The concrete domain.) Let D[ def= ℘(RSubst) × ℘f(Vars).
If (Σ, V ) ∈ D[, then (Σ, V ) represents the (possibly infinite) set of first-order
formulas

{
∃∆ . σ

∣∣ σ ∈ Σ, ∆ = vars(σ) \ V
}

where σ is interpreted as the
logical conjunction of the equations corresponding to its bindings. The operation
of projecting x ∈ Vars away from (Σ,V ) ∈ D[ is defined as follows:

∃∃x . (Σ, V ) def=

{
σ′ ∈ RSubst

∣∣∣∣∣σ ∈ Σ, V = Vars \ V,
RT ` ∀

(
∃V . (σ′ ↔ ∃x . σ)

) }.
The concrete element

({
{x 7→ f(y)}

}
, {x, y}

)
expresses a dependency be-

tween x and y. In contrast,
({
{x 7→ f(y)}

}
, {x}

)
only constrains x. The same

concept can be expressed by saying that the variable name ‘y’ matters in the
first case but not in the second. Thus the set of variables of interest is crucial
for defining the meaning of the concrete and abstract descriptions. Despite this,
always specifying the set of variables of interest would significantly clutter the
presentation. Moreover, most of the needed functions on concrete and abstract
descriptions preserve the set of variables of interest. For these reasons, we as-
sume there exists a set VI ∈ ℘f(Vars) containing, at each stage of the analysis,
the current variables of interest. As a consequence, when the context makes it
clear, we will write Σ ∈ D[ as a shorthand for (Σ,VI) ∈ D[.



3.1 Operators on Substitutions in Rational Solved Form

There are cases when an analysis tries to capture properties of the particular
substitutions computed by a specific rational unification algorithm. This is the
case, for example, when the analysis needs to track structure sharing for the pur-
pose of compile-time garbage collection, or provide upper bounds to the amount
of memory needed to perform a given computation. More often the interest is
on properties of the rational trees themselves. In these cases it is possible to
define abstraction and concretization functions that are independent from the
finite representations actually considered. Moreover, it is important that these
functions precisely capture the properties under investigation so as to avoid any
unnecessary precision loss.

Pursuing this goal requires the ability to observe properties of (infinite) ra-
tional trees while just dealing with one of their finite representations. This is not
always an easy task since even simple properties can be “hidden” when using
non-idempotent substitutions. For instance, when σ∞(x) ∈ GTerms \ HTerms
is an infinite and ground rational tree, all of its finite representations in RSubst
will map the variable x into a finite term that is not ground.

These are the motivations behind the introduction of two computable opera-
tors on substitutions that will be used later to define the concretization functions
for the considered abstract domains. First, the groundness operator ‘gvars’ cap-
tures the set of variables that are mapped to ground rational trees by ‘σ∞’. We
define it by means of the occurrence operator ‘occ’ introduced in [16].

Definition 5. (Occurrence and groundness operators.) For each n ∈ N,
the occurrence function occn : RSubst × Vars → ℘f(Vars) is defined, for each
σ ∈ RSubst and each v ∈ Vars, by

occn(σ, v) def=

{
{v} \ dom(σ), if n = 0;{
y ∈ Vars

∣∣ vars(yσ) ∩ occn−1(σ, v) 6= ∅

}
, if n > 0.

The occurrence operator occ : RSubst×Vars→ ℘f(Vars) is given, for each sub-
stitution σ ∈ RSubst and v ∈ Vars, by occ(σ, v) def= occ`(σ, v), where ` = #σ.

The groundness operator gvars : RSubst → ℘f(Vars) is given, for each sub-
stitution σ ∈ RSubst, by

gvars(σ) def=
{
y ∈ dom(σ)

∣∣ ∀v ∈ vars(σ) : y /∈ occ(σ, v)
}
.

The finiteness operator ‘hvars’, introduced in [4], captures the set of variables
that ‘σ∞’ maps to finite terms.

Definition 6. (Finiteness operator.) For each n ∈ N, the finiteness function
hvarsn : RSubst→ ℘(Vars) is defined, for each σ ∈ RSubst, by

hvarsn(σ)

def=

{
Vars \ dom(σ), if n = 0;
hvarsn−1(σ) ∪

{
y ∈ dom(σ)

∣∣ vars(yσ) ⊆ hvarsn−1(σ)
}
, if n > 0.



The finiteness operator hvars : RSubst→ ℘(Vars) is given, for each substitution
σ ∈ RSubst, by hvars(σ) def= hvars`(σ), where ` def= #σ.

Example 7. Let

σ =
{
x 7→ f(y, z), y 7→ g(z, x), z 7→ f(a)

}
,

τ =
{
v 7→ g(z, w), x 7→ f(y), y 7→ g(w), z 7→ f(v)

}
,

where vars(σ)∪vars(τ) = {v, w, x, y, z}. Then gvars(σ)∩vars(σ) = {x, y, z} and
hvars(τ) ∩ vars(τ) = {w, x, y}.

The following proposition states how ‘gvars’ and ‘hvars’ behave with respect
to the further instantiation of variables.

Proposition 8. Let σ, τ ∈ RSubst, where τ ∈ ↓σ. Then

hvars(σ) ⊇ hvars(τ), (8a)
gvars(σ) ∩ hvars(σ) ⊆ gvars(τ) ∩ hvars(τ). (8b)

4 Finite-Tree Dependencies

Any finite-tree domain must keep track of those variables that are definitely
bound to finite terms, since this is the final information delivered by the analysis.
In [4] we have introduced the composite abstract domain H × P , where the set
of such variables is explicitly represented in the finiteness component H.

Definition 9. (The finiteness component H.) The set H def= ℘(VI), par-
tially ordered by reverse subset inclusion, is called finiteness component. The
concretization function γH : H → ℘(RSubst) is given, for each h ∈ H, by

γH(h) def=
{
σ ∈ RSubst

∣∣ hvars(σ) ⊇ h
}
.

As proven in [3], equivalent substitutions in rational solved form have the
same finiteness abstraction.

Proposition 10. Let σ, τ ∈ RSubst, where σ ∈ γH(h) and RT ` ∀(σ ↔ τ).
Then τ ∈ γH(h).

The precision of the finite-tree analysis of [4] is highly dependent on the preci-
sion of the generic component P . As explained before, the information provided
by P on groundness, freeness, linearity, and sharing of variables is exploited, in
the combination H × P , to circumscribe as much as possible the creation and
propagation of cyclic terms. However, finite-tree analysis can also benefit from
other kinds of relational information. In particular, we now show how finite-tree
dependencies allow to obtain a positive propagation of finiteness information.

Let us consider the finite terms t1 = f(x), t2 = g(y), and t3 = h(x, y):
it is clear that, for each assignment of rational terms to x and y, t3 is finite



if and only if t1 and t2 are so. We can capture this by the Boolean formula
t3 ↔ (t1 ∧ t2). The important point to notice is that this dependency will
keep holding for any further simultaneous instantiation of t1, t2, and t3. In other
words, such dependencies are preserved by forward computations (which proceed
by consistently instantiating program variables).

Consider x 7→ t ∈ Bind where t ∈ HTerms and vars(t) = {y1, . . . , yn}. After
this binding has been successfully applied, the destinies of x and t concerning
term-finiteness are tied together: forever. This tie can be described by the de-
pendency formula

x↔ (y1 ∧ · · · ∧ yn), (2)

meaning that x will be bound to a finite term if and only if yi is bound to a
finite term, for each i = 1, . . . , n. While the dependency expressed by (2) is
a correct description of any computation state following the application of the
binding x 7→ t, it is not as precise as it could be. Suppose that x and yk are
indeed the same variable. Then (2) is logically equivalent to

x→ (y1 ∧ · · · ∧ yk−1 ∧ yk+1 ∧ · · · ∧ yn). (3)

Correct: whenever x is bound to a finite term, all the other variables will be
bound to finite terms. The point is that x has just been bound to a non-finite
term, irrevocably: no forward computation can change this. Thus, the implication
(3) holds vacuously. A more precise and correct description for the state of affairs
caused by the cyclic binding is, instead, the negated atom ¬x, whose intuitive
reading is “x is not (and never will be) finite.”

We are building an abstract domain for finite-tree dependencies where we
are making the deliberate choice of including only information that cannot be
withdrawn by forward computations. The reason for this choice is that we want
the concrete constraint accumulation process to be paralleled, at the abstract
level, by another constraint accumulation process: logical conjunction of Boolean
formulas. For this reason, it is important to distinguish between permanent and
contingent information. Permanent information, once established for a program
point p, maintains its validity in all points that follow p in any forward compu-
tation. Contingent information, instead, does not carry its validity beyond the
point where it is established. An example of contingent information is given by
the h component of H × P : having x ∈ h in the description of some program
point means that x is definitely bound to a finite term at that point ; nothing is
claimed about the finiteness of x at later program points and, in fact, unless x is
ground, x can still be bound to a non-finite term. However, if at some program
point x is finite and ground, then x will remain finite. In this case we will ensure
our Boolean dependency formula entails the positive atom x.

At this stage, we already know something about the abstract domain we are
designing. In particular, we have positive and negated atoms, the requirement of
describing program predicates of any arity implies that arbitrary conjunctions of
these atomic formulas must be allowed and, finally, it is not difficult to observe
that the merge-over-all-paths operations [13] will be logical disjunction, so that
the domain will have to be closed under this operation. This means that the



carrier of our domain must be able to express any Boolean function: Bfun is the
carrier.

Definition 11. (γF : Bfun → ℘(RSubst).) The function hval : RSubst → Bval
is defined, for each σ ∈ RSubst and each x ∈ VI, by

hval(σ)(x) = 1 def⇐⇒ x ∈ hvars(σ).

The concretization function γF : Bfun→ ℘(RSubst) is defined, for φ ∈ Bfun, by

γF (φ) def=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : φ
(
hval(τ)

)
= 1

}
.

The following theorem shows how most of the operators needed to compute
the concrete semantics of a logic program can be correctly approximated on the
abstract domain Bfun.

Theorem 12. Let Σ,Σ1, Σ2 ∈ ℘(RSubst) and φ, φ1, φ2 ∈ Bfun be such that
γF (φ) ⊇ Σ, γF (φ1) ⊇ Σ1, and γF (φ2) ⊇ Σ2. Let also (x 7→ t) ∈ Bind, where
{x} ∪ vars(t) ⊆ VI. Then the following hold:

γF

(
x↔

∧
vars(t)

)
⊇
{
{x 7→ t}

}
; (12a)

γF (¬x) ⊇
{
{x 7→ t}

}
, if x ∈ vars(t); (12b)

γF (x) ⊇
{
σ ∈ RSubst

∣∣ x ∈ gvars(σ) ∩ hvars(σ)
}

; (12c)

γF (φ1 ∧ φ2) ⊇
{

mgs(σ1 ∪ σ2)
∣∣ σ1 ∈ Σ1, σ2 ∈ Σ2

}
; (12d)

γF (φ1 ∨ φ2) ⊇ Σ1 ∪Σ2; (12e)
γF (∃x . φ) ⊇ ∃∃x . Σ. (12f)

Cases (12a), (12b), and (12d) of Theorem 12 ensure that the following definition
of amguF provides a correct approximation on Bfun of the concrete unification
of rational trees.

Definition 13. The function amguF : Bfun×Bind→ Bfun captures the effects
of a binding on a finite-tree dependency formula. Let φ ∈ Bfun and (x 7→ t) ∈
Bind be such that {x} ∪ vars(t) ⊆ VI. Then

amguF (φ, x 7→ t) def=

{
φ ∧

(
x↔

∧
vars(t)

)
, if x /∈ vars(t);

φ ∧ ¬x, otherwise.

Other semantic operators, such as the consistent renaming of variables, are very
simple and, as usual, their approximation does not pose any problem.

The next result shows how finite-tree dependencies may improve the finite-
ness information encoded in the h component of the domain H × P .

Theorem 14. Let h ∈ H and φ ∈ Bfun. Let also h′ def= true
(
φ ∧

∧
h
)

. Then

γH(h) ∩ γF (φ) = γH(h′) ∩ γF (φ).



Example 15. Consider the following program, where it is assumed that the only
“external” query is ‘?- r(X, Y)’:

p(X, Y) :- X = f(Y, ).
q(X, Y) :- X = f( , Y).
r(X, Y) :- p(X, Y), q(X, Y), acyclic term(X).

Then the predicate p/2 in the clause defining r/2 will called with X and Y both
unbound. Computing on the abstract domain H × P gives us the finiteness
description hp = {x, y}, expressing the fact that both X and Y are bound to
finite terms. Computing on the finite-tree dependencies domain Bfun, gives us
the Boolean formula φp = x→ y (Y is finite if X is so).

Considering now the call to the predicate q/2, we note that, since variable
X is already bound to a non-variable term sharing with Y, all the finiteness
information encoded by H will be lost (i.e., hq = ∅). So, both X and Y are
detected as possibly cyclic. However, the finite-tree dependency information is
preserved, because φq = (x→ y) ∧ (x→ y) = x→ y.

Finally, consider the effect of the abstract evaluation of acyclic_term(X).
On the H × P domain we can only infer that variable X cannot be bound to an
infinite term, while Y will be still considered as possibly cyclic, so that hr = {x}.
On the domain Bfun we can just confirm that the finite-tree dependency com-
puted so far still holds, so that φr = x→ y (no stronger finite-tree dependency
can be inferred, since the finiteness of X is only contingent). Thus, by applying
the result of Theorem 14, we can recover the finiteness of Y:

h′r = true
(
φr ∧

∧
hr

)
= true

(
(x→ y) ∧ x

)
= {x, y}.

Information encoded in H × P and Bfun is not completely orthogonal and
the following result provides a kind of consistency check.

Theorem 16. Let h ∈ H and φ ∈ Bfun. Then

γH(h) ∩ γF (φ) 6= ∅ =⇒ h ∩ false(φ) = ∅.

Note however that, provided the abstract operators are correct, the computed
descriptions will always be mutually consistent, unless φ = ⊥.

5 Groundness Dependencies

Since information about the groundness of variables is crucial for many applica-
tions, it is natural to consider a static analysis domain including both a finite-tree
and a groundness component. In fact, any reasonably precise implementation of
the parameter component P of the abstract domain specified in [4] will include
some kind of groundness information. We highlight similarities, differences and
connections relating the domain Bfun for finite-tree dependencies to the abstract
domain Pos for groundness dependencies. Note that these results also hold when
considering a combination of Bfun with the groundness domain Def [1].



Definition 17. (γG : Pos → ℘(RSubst).) The function gval : RSubst→ Bval is
defined as follows, for each σ ∈ RSubst and each x ∈ VI:

gval(σ)(x) = 1 def⇐⇒ x ∈ gvars(σ).

The concretization function γG : Pos→ ℘(RSubst) is defined, for each ψ ∈ Pos,

γG(ψ) def=
{
σ ∈ RSubst

∣∣ ∀τ ∈ ↓σ : ψ
(
gval(τ)

)
= 1

}
.

Definition 18. The function amguG : Pos×Bind→ Pos captures the effects of
a binding on a groundness dependency formula. Let ψ ∈ Pos and (x 7→ t) ∈ Bind
be such that {x} ∪ vars(t) ⊆ VI. Then

amguG(ψ, x 7→ t) def= ψ ∧
(
x↔

∧(
vars(t) \ {x}

))
.

Note that this is a simple variant of the standard abstract unification operator
for groundness analysis over finite-tree domains: the only difference concerns the
case of cyclic bindings [2].

The next result shows how, by exploiting the finiteness component H, the
finite-tree dependencies (Bfun) component and the groundness dependencies
(Pos) component can improve each other.

Theorem 19. Let h ∈ H, φ ∈ Bfun and ψ ∈ Pos. Let also φ′ ∈ Bfun and
ψ′ ∈ Pos be defined as φ′ = ∃VI \ h . ψ and ψ′ = ∃VI \ h . pos(φ). Then

γH(h) ∩ γF (φ) ∩ γG(ψ) = γH(h) ∩ γF (φ) ∩ γG(ψ ∧ ψ′); (19a)
γH(h) ∩ γF (φ) ∩ γG(ψ) = γH(h) ∩ γF (φ ∧ φ′) ∩ γG(ψ). (19b)

Moreover, even without any knowledge of the H component, combining Theo-
rem 14 and Eq. (19a), the groundness dependencies component can be improved.

Corollary 20. Let φ ∈ Bfun and ψ ∈ Pos. Then

γF (φ) ∩ γG(ψ) = γF (φ) ∩ γG
(
ψ ∧ true(φ)

)
.

The following example shows that, when computing on rational trees, finite-
tree dependencies may provide groundness information that is not captured by
the usual approaches.

Example 21. Consider the program:

p(a, Y).
p(X, a).
q(X, Y) :- p(X, Y), X = f(X, Z).

The abstract semantics of p/2, for both finite-tree and groundness dependencies,
is φp = ψp = x∨y. The finite-tree dependency for q/2 is φq = (x∨y)∧¬x = ¬x∧y.
Using Definition 18, the groundness dependency for q/2 is

ψq = ∃z .
(
(x ∨ y) ∧ (x↔ z)

)
= x ∨ y.



This can be improved, using Corollary 20, to

ψ′q = ψq ∧
∧

true(φq) = y.

Since better groundness information, besides being useful in itself, may also
improve the precision of many other analyses such as sharing [7, 8], the reduction
steps given by Theorem 19 and Corollary 20 can trigger improvements to the
precision of other components. Theorem 19 can also be exploited to recover
precision after the application of a widening operator on either the groundness
dependencies or the finite-tree dependencies component.

6 Experimental Results

The work described here and in [4] has been experimentally evaluated in the
framework provided by the China analyzer [2]. We implemented and compared
the three domains Pattern(P ), Pattern(H × P ) and Pattern(Bfun × H × P ),1

where the parameter component P has been instantiated to the domain Pos ×
SFL [7] for tracking groundness, freeness, linearity and (non-redundant) set-
sharing information. The Pattern(·) operator [5] further upgrades the precision
of its argument by adding explicit structural information.

Concerning the Bfun component, the implementation was straightforward,
since all the techniques described in [6] (and almost all the code, including the
widenings) has been reused unchanged, obtaining comparable efficiency. As a
consequence, most of the implementation effort was in the coding of the ab-
stract operators on the H component and of the reduction processes between
the different components. A key choice, in this sense, is ‘when’ the reduction
steps given in Theorems 14 and 19 should be applied. When striving for maxi-
mum precision, a trivial strategy is to immediately perform reductions after any
application of any abstract operator. For instance, this is how predicates like
acyclic_term/1 should be handled: after adding the variables of the argument
to the H component, the reduction process is applied to propagate the new in-
formation to all domain components. However, such an approach turns out to be
unnecessarily inefficient. In fact, the next result shows that Theorems 14 and 19
cannot lead to a precision improvement if applied just after the abstract eval-
uation of the merge-over-all-paths or the existential quantification operations
(provided the initial descriptions are already reduced).

Theorem 22. Let x ∈ VI, h, h′ ∈ H φ, φ′ ∈ Bfun and ψ,ψ′ ∈ Pos. Let

h1
def= h ∩ h′, φ1

def= φ ∨ φ′, ψ1
def= ψ ∨ ψ′,

h2
def= h ∪ {x}, φ2

def= ∃x . φ, ψ2
def= ∃x . ψ.

Let also

h ⊇ true
(
φ ∧

∧
h
)
, φ |= (∃VI \ h . ψ), ψ |=

(
∃VI \ h . pos(φ)

)
,

h′ ⊇ true
(
φ′ ∧

∧
h′
)
, φ′ |= (∃VI \ h′ . ψ′), ψ′ |=

(
∃VI \ h′ . pos(φ′)

)
.

1 For ease of notation, the domain names are shortened to P, H and Bfun, respectively.



Prec. class P H Bfun

p = 100 2 84 86

80 ≤ p < 100 1 31 36

60 ≤ p < 80 7 26 23

40 ≤ p < 60 6 41 40

20 ≤ p < 40 47 47 46

0 ≤ p < 20 185 19 17

Prec. improvement P→ H H→ Bfun

i > 20 185 4

10 < i ≤ 20 31 3

5 < i ≤ 10 11 6

2 < i ≤ 5 4 10

0 < i ≤ 2 2 24

no improvement 15 201

Table 1. The precision on finite variables when using P, H and Bfun.

Then, for i = 1, 2,

hi ⊇ true
(
φi ∧

∧
hi
)
, φi |= (∃VI \ hi . ψi), ψi |=

(
∃VI \ hi . pos(φi)

)
.

We conjecture that Theorem 22 can be strengthened: the reduction process af-
fecting the Bfun component, corresponding to Eq. (19b) of Theorem 19, seems
to be useless also after the application of an abstract unification. In any case,
this reduction process can be usefully exploited to recover precision after the
application of a widening operator on the Bfun component.

A goal-dependent analysis was run for all the programs in our benchmark
suite and the results (with respect to the precision) are summarized in Table 1.
Here, the precision is measured as the percentage of the total number of variables
that the analyser can show to be Herbrand. Two alternative views are provided.

In the first view, each column is labeled by an analysis domain and each row
is labeled by a precision interval. For instance, the value ‘31’ at the intersection
of column ‘H’ and row ‘80 ≤ p < 100’ is to be read as “for 31 benchmarks, the
percentage p of the total number of variables that the analyser can show to be
Herbrand using the domain H is between 80% and 100%.”

The second view provides a better picture of the precision improvements
obtained when moving from P to H (in the column ‘P → H’) and from H to
Bfun (in the column ‘H→ Bfun’). For instance, the value ‘10’ at the intersection
of column ‘H → Bfun’ and row ‘2 < i ≤ 5’ is to be read as “when moving from
H to Bfun, for 10 benchmarks the improvement i in the percentage of the total
number of variables shown to be Herbrand was between 2% and 5%.”

It can be seen from Table 1 that, even though the H domain is remarkably
precise, the inclusion of the Bfun component allows for a further, and sometimes
significant, precision improvement for a number of benchmarks. It is worth not-
ing that the current implementation of China does not yet fully exploit the
finite-tree dependencies arising when evaluating many of the built-in predicates,
therefore incurring an avoidable precision loss. We are working on this issue and
we expect that the specialised implementation of the abstract evaluation of some
built-ins will result in more and better precision improvements. The experimen-
tation has also shown that, in practice, the Bfun domain does not improve the
groundness information.



7 Conclusion

Several modern logic-based languages offer a computation domain based on ra-
tional trees. On the one hand, the use of such trees is encouraged by the pos-
sibility of using efficient and correct unification algorithms and by an increase
in expressivity. On the other hand, these gains are countered by the extra prob-
lems rational trees bring with themselves As a consequence, those applications
that exploit rational trees tend to do so in a very controlled way, that is, most
program variables can only be bound to finite terms. By detecting the program
variables that may be bound to infinite terms with a good degree of accuracy,
we can significantly reduce the disadvantages of using rational trees.

In [4], an initial solution to the problem was proposed where the composite
abstract domain H × P allows to track the creation and propagation of infi-
nite terms. Even though this information is crucial to any finite-tree analysis,
propagating the guarantees of finiteness that come from several built-ins (includ-
ing those that are explicitly provided to test term-finiteness) is also important.
Therefore, in this paper we have introduced a domain of Boolean functions Bfun
for finite-tree dependencies which, when coupled to the domain H × P , can en-
hance its expressive power. Since Bfun has many similarities with the domain
Pos used for groundness analysis, we have investigated how these two domains
relate to each other and, in particular, the synergy arising from their combination
in the “global” domain of analysis.

References

1. T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Two classes of
Boolean functions for dependency analysis. Science of Computer Programming,
31(1):3–45, 1998.

2. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Pisa, Italy, 1997. Printed
as Report TD-1/97.

3. R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for con-
straint logic-based languages. Quaderno 251, Dipartimento di Matematica, Uni-
versità di Parma, 2001. Available at http://www.cs.unipr.it/ bagnara/.

4. R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for con-
straint logic-based languages. In P. Cousot, editor, Static Analysis: 8th Interna-
tional Symposium, SAS 2001, volume 2126 of Lecture Notes in Computer Science,
pages 165–184, Paris, France, 2001. Springer-Verlag, Berlin.

5. R. Bagnara, P. M. Hill, and E. Zaffanella. Efficient structural information analysis
for real CLP languages. In M. Parigot and A. Voronkov, editors, Proceedings of the
7th International Conference on Logic for Programming and Automated Reasoning
(LPAR 2000), volume 1955 of Lecture Notes in Computer Science, pages 189–206,
Réunion Island, France, 2000. Springer-Verlag, Berlin.

6. R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of the “Sev-
enth International Conference on Algebraic Methodology and Software Technology
(AMAST’98)”, volume 1548 of Lecture Notes in Computer Science, pages 471–485,
Amazonia, Brazil, 1999. Springer-Verlag, Berlin.



7. R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis techniques: A
comprehensive evaluation. In M. Gabbrielli and F. Pfenning, editors, Proceedings
of the 2nd International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, pages 103–114, Montreal, Canada, 2000. Association
for Computing Machinery.

8. M. Codish, H. Søndergaard, and P. J. Stuckey. Sharing and groundness depen-
dencies in logic programs. ACM Transactions on Programming Languages and
Systems, 21(5):948–976, 1999.

9. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. Å. Tärnlund,
editors, Logic Programming, APIC Studies in Data Processing, volume 16, pages
231–251. Academic Press, New York, 1982.

10. A. Colmerauer. Equations and inequations on finite and infinite trees. In Pro-
ceedings of the International Conference on Fifth Generation Computer Systems
(FGCS’84), pages 85–99, Tokyo, Japan, 1984. ICOT.

11. A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: Propositional formula as
abstract domain for groundness analysis. In Proceedings, Sixth Annual IEEE Sym-
posium on Logic in Computer Science, pages 322–327, Amsterdam, The Nether-
lands, 1991. IEEE Computer Society Press.

12. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: Open product and generic pattern construction.
Science of Computer Programming, 38(1–3), 2000.

13. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 238–252, 1977.

14. P. Cousot and R. Cousot. Abstract interpretation and applications to logic pro-
grams. Journal of Logic Programming, 13(2&3):103–179, 1992.

15. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

16. P. M. Hill, R. Bagnara, and E. Zaffanella. Soundness, idempotence and commuta-
tivity of set-sharing. Theory and Practice of Logic Programming, 2001. To appear.
Available at http://arXiv.org/abs/cs.PL/0102030.

17. B. Intrigila and M. Venturini Zilli. A remark on infinite matching vs infinite
unification. Journal of Symbolic Computation, 21(3):2289–2292, 1996.

18. A. King. Pair-sharing over rational trees. Journal of Logic Programming, 46(1–
2):139–155, 2000.

19. K. Marriott and H. Søndergaard. Notes for a tutorial on abstract interpretation
of logic programs. North American Conference on Logic Programming, Cleveland,
Ohio, USA, 1989.

20. K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic
programs. ACM Letters on Programming Languages and Systems, 2(1–4):181–196,
1993.

21. E. Schröder. Der Operationskreis des Logikkalkuls. B. G. Teubner, Leibzig, 1877.
22. H. Søndergaard. An application of abstract interpretation of logic programs: Occur

check reduction. In B. Robinet and R. Wilhelm, editors, Proceedings of the 1986
European Symposium on Programming, volume 213 of Lecture Notes in Computer
Science, pages 327–338. Springer-Verlag, Berlin, 1986.


