Efficient Structural Information Analysis
for Real CLP Languages*

Roberto Bagnara!, Patricia M. Hill?, and Enea Zaffanella'

! Department of Mathematics, University of Parma, Italy.
{bagnara,zaffanella}@cs.unipr.it
2 School of Computing, University of Leeds, U. K.
hill@comp.leeds.ac.uk

Abstract. We present the rational construction of a generic domain
for structural information analysis of CLP languages called Pattern(D*),
where the parameter D¥ is an abstract domain satisfying certain prop-
erties. Our domain builds on the parameterized domain for the analysis
of logic programs Pat (R), which is due to Cortesi et al. However, the
formalization of our CLP abstract domain is independent from specific
implementation techniques: Pat () (suitably extended in order to deal
with CLP systems omitting the occur-check) is one of the possible im-
plementations. Reasoning at a higher level of abstraction we are able
to appeal to familiar notions of unification theory. This higher level of
abstraction also gives considerable more latitude for the implementer. In-
deed, as demonstrated by the results summarized here, an analyzer that
incorporates structural information analysis based on our approach can
be highly competitive both from the precision and, contrary to popular
belief, from the efficiency point of view.

1 Introduction

Most interesting CLP languages [16] offer a constraint domain that is an amal-
gamation of a domain of syntactic trees — like the classical domain of finite
trees (also called the Herbrand domain) or the domain of rational trees [9] —
with a set of “non-syntactic” domains, like finite domains, the domain of rational
numbers and so forth. The inclusion of uninterpreted functors is essential for pre-
serving Prolog programming techniques. Moreover, the availability of syntactic
constraints greatly contributes to the expressive power of the overall language.
When syntactic structures can be used to build aggregates of interpreted terms
one can express, for instance, “records” or “unbounded containers” of numerical
quantities.

From the experience gained with the first prototype version of the CHINA
data-flow analyzer [1] it was clear that, in order to attain a significant precision

* This work has been partly supported by MURST project “Certificazione automatica
di programmi mediante interpretazione astratta.” Some of this work was done during
a visit of the first and third authors to Leeds, funded by EPSRC under grant M05645.

in the analysis of numerical constraints in CLP languages, one must keep at least
part of the uninterpreted terms in concrete form. Note that almost any analysis
is more precise when this kind of structural information is retained to some ex-
tent: in the case mentioned here the precision loss was just particularly acute.
Of course, structural information is very valuable in itself. When exploited for
optimized compilation it allows for enhanced clause indexing and simplified uni-
fication. Moreover, several program verification techniques are highly dependent
on this kind of information.

Cortesi et al. [10,11], after the work of Musumbu [21], put forward a very
nice proposal for dealing with structural information in the analysis of logic pro-
grams. Using their terminology, they defined a generic abstract domain Pat ()
that automatically upgrades a domain R (which must support a certain set of
elementary operations) with structural information.

As far as the overall approach is concerned, we extend the work described
in [11] by allowing for the analysis of any CLP language [16]. Most impor-
tantly, we do not assume that the analyzed language performs the occur-check
in the unification procedure. This is an important contribution, since the vast
majority of real (i.e., implemented) CLP languages (in particular, almost all
Prolog systems) do omit the occur-check, either as a mere efficiency measure
or because they are based upon a theory of extended rational trees [9]. We de-
scribe a generic construction for structural analysis of CLP languages. Given an
abstract domain DF satisfying a small set of very reasonable and weak proper-
ties, the structural abstract domain Pattern(D*) is obtained automatically by
means of this construction. In contrast to [11], where the authors define a spe-
cific implementation of the generic structural domain (e.g., of the representation
of term-tuples), the formalization of Pattern(-) is implementation-independent:
Pat (R) (suitably extended in order to deal with CLP languages and with the
occur-check problem) is a possible base for the implementation. Reasoning at a
higher level of abstraction we are able to appeal to familiar notions of unifica-
tion theory [18]. One advantage is that we can identify an important parameter
(a common anti-instance function) that gives some control over the precision
and computational cost of the resulting structural domain. In addition, we be-
lieve our implementation-independent treatment can be more easily adapted to
different analysis frameworks/systems.

One of the merits of Pat () is to define a generic implementation that works
on any domain R that provides a certain set of elementary, fine-grained oper-
ations. Because of the simplicity of these operations it is particularly easy to
extend an existing domain in order to accommodate them. However, this sim-
plicity has a high cost in terms of efficiency: the execution of many isolated small
operations over the underlying domain is much more expensive than performing
few macro-operations where global effects can be taken into account. The opera-
tions that the underlying domain must provide are thus more complicated in our
approach. However, this extra complication and the higher level of abstraction
give considerable more latitude for the implementer. Indeed, as demonstrated
by the results summarized here, an analyzer that incorporates structural infor-

mation analysis based on our approach can be highly competitive both from the
precision and the efficiency point of view. One of the contributions of this paper
is that it disproves the common belief (now reinforced by [8]) whereby abstract
domains enhanced with structural information are inherently inefficient.

The paper is structured as follows: Section 2 introduces some basic concepts
and the notation that will be used in the paper; Section 3 presents the main ideas
behind the tracking of explicit structural information for the analysis of CLP
languages; Section 4 introduces the D# and Pattern(D¥) domains and explains
how an abstract semantics based on D! can systematically be upgraded to one
on Pattern(D*); Section 5 summarizes the extensive experimental evaluation
that has been conducted to validate the ideas presented in this paper; Section 6
presents a brief discussion of related work and, finally, Section 7 concludes with
some final remarks.

2 Preliminaries

Let U be a set. The cardinality of U is denoted by |U|. We will denote by
U™ the set of n-tuples of elements drawn from U, whereas U* denotes (J,, .y U™
Elements of U* will be referred to as tuples or as sequences. The empty sequence,
i.e., the only element of U, is denoted by e. Throughout the paper all variables
denoting sequences will be written with a “bar accent” like in 5. For § € U™, the
length of 5 will be denoted by |5|. The concatenation of the sequences 31,55 € U*
is denoted by 51 ::55. For each 5 € U* and each set X € p¢(U), the sequence §\ X
is obtained by removing from § all the elements that appear in X. The projection
mappings m;: U™ — U are defined, fori =1, ... ,n, by m—((eh . ,en)) = e;. We
will also use the liftings m;: p(U™) — p(U) given by m;(S) = {m(5) | 5€ S }.
If a sequence 3 is such that || > 4, we let prefix;(5) denote the sequence of the
first i elements of 5.

Let Vars denote a denumerable and totally ordered set of variable symbols.
We assume that Vars contains (among others) two infinite, disjoint subsets: z
and z’. Since Vars is totally ordered, z and z’ are as well. Thus we assume
z=(21,25,7Z3,...and 2’ = (21,25, Z%,.... U W C Vars we will denote by Ty
the set of terms with variables in W. For any term or a tuple of terms ¢ we will
denote the set of variables occurring in ¢ by vars(t). We will also denote by vseq(t)
the sequence of first occurrences of variables that are found on a depth-first, left-
to-right traversal of ¢. For instance, vseq((f(g(X),Y),h(X))) = (X,Y).

We implement the “renaming apart” mechanism by making use of two strong
normal forms for tuples of terms. Specifically, the set of n-tuples in z-form is
given by Ty = {f € TV s | vseq(t) = (Zl,Zg,... ,Z‘Mm(g”) } The set of
all the tuples in z-form is denoted by T}. The definitions for T}, and T, are
obtained in a similar way, by replacing z with z’. There is a useful device for
toggling between z- and z'-forms. Let ¢ € T2 U TZ, and }vars(f) = m. Then
t =1tZ1)Z,...,Z,/]Zy), if t € T2, and t[Z1/2},...,Zm/Z],), if t € TL.
Notice that ¢ = (f’)/ =1.

_ “Vars
stitution [my(£)/m(V), ... ,7m(t)/mm(V)], if m > 0, and to denote the empty
substitution if m = 0. If vars(t) NV = @, then [t/V] is idempotent. Suppose
that § = (s1,...,8m) € T{,, and t = (t1,... ,) € T{2, ,, then, § = ¢ denotes

(s1 = t1,... ,8m = tm). It is also useful to sometimes regard a substitution
[t/V] as the finite set of equations V = #. A couple of observations are useful for
what follows. If § € T% and @ € Ty then & [a/vseq(s')] € Tj. Moreover
vseq(5' [u/vseq(s')]) = vseq(u).

The logical theory underlying a CLP constraint system [16] is denoted by
¥. To simplify the notation, we drop the outermost universal quantifiers from
(closed) formulas so that if F is a formula with free variables Z, then we write
T = F to denote the expression T =VZ : F.

The notation f: A — B signifies that f is a partial function from A to B.

When V € Vars™ and t € T{7,, we use [t/V] as a shorthand for the sub-

3 Making the Herbrand Information Explicit

A quite general picture for the analysis of a CLP language is as follows. We
want to describe a (possibly infinite) set of constraint stores over a tuple of
variables of interest V.= (Vi, ..., V). Each constraint store can be represented,
at some level of abstraction, by a formula of the kind 3, . ((\7 =1) A C’),
where (V = t), with t € T, {ﬁars, is a system of Herbrand equations in solved
form, C' € C” is a constraint on the concrete constraint domain C, and the set
A = wars(C) U vars(f) is such that ANV = @. Roughly speaking, C limits
the values that the quantified variables occurring in ¢ can take. Notice that this
treatment does not exclude the possibility of dealing with domains of rational
trees: the non-Herbrand constraints will simply live in the constraint component.
For example, the constraint store resulting from execution of the SICStus goal
‘?- X = £(a, X)’ may be captured by 3X . ({V; = X}AX = f(a, X)) but also
by 3X . ({V1 = f(a_,X)} ANX = f(a,X)).

Once variables V have been fixed, the Herbrand part of the constraint store
can be represented as a k-tuple of terms. We are thus assuming a concrete domain
where the Herbrand information is explicit and other kinds of information are
captured by some given constraint domain C”. For instance, if the target language
of the analysis is CLP(R) [17], C° may encode conjunctions of equations and
inequations over arithmetic expressions, the mechanisms for delaying non-linear
constraints, and other peculiarities of the arithmetic part of the language. We
assume constraints are modeled by logical formulas, so that it makes sense to
talkk about the free variables of C* € C°, denoted by FV(C”). These are the
variables that the constraint solver makes visible to the Herbrand engine, all the
other variables being restricted in scope to the solver itself. Since we want to
characterize any set of constraint stores, our concrete domain is

D= Jo({(.C") 5Ty C e FV(C) Cvars(s) })
neN

partially ordered by subset inclusion.

a

o(T; x €*) ——— pt

A
¢¢1¢1 Caf
¢ Pa

T; x p(Tj x C") WT; « Dt

Fig. 1. Upgrading a domain with structural information.

An abstract interpretation [12] of D’ can be specified by choosing an ab-
stract domain D! and a suitable abstraction function a: D> — D!, If DF is not
able to encode enough structural information from C” so as to achieve the de-
sired precision, it is possible to improve the situation by keeping some Herbrand
information explicit. One way of doing that is to perform a change of representa-
tion for D” and use the new representation as the basis for abstraction. The new
representation is obtained by factoring out some common Herbrand information.
The meaning of ‘some’ is encoded by a function.

Definition 1. (Common anti-instance function.) For each n € N, a func-
tion ¢: p(T}) — T2 is called a common anti-instance function if and only if
the following holds: whenever T € p(T3), if §(T) = 7 and |vars(F)| = m with
m > 0, then Vt € T : 3u € T . ¥ [a/vseq(')] = t. In words, ¢(T) is an
anti-instance [18], in z’'-form, of eacht € T.

Any choice of ¢ induces a function ®4: D — T, x D, which is given,
for each E* € D, by &4(E”) = (5,{ (4, G") | (1,G") € E*,§' [u/vseq(5')] =1}),
where §' = ¢(m (E”)). The corestriction to the image of @, that is the function
Dy D — Dy (Db), is an isomorphism, the inverse being given, for each F* € D”,
by @;1((5, F*) = {(5'[a/vseq(5)],G") | (u,G") € F’ }.

So far, we have just chosen a different representation for D°, that is Dy (Db).
The idea behind structural information analysis is to leave the first component
of the new representation (the pattern component) untouched, while abstracting
the second component by means of «, as illustrated in Figure 1. The dotted
arrow indicates a residual abstraction function o’. As we will see in Section 4.2,
such a function is implicitly required in order to define an important operation
over the new abstract domain T} x D¥. Notice that, in general, o’ does not make
the diagram of Figure 1 commute.

This approach has several advantages. First, factoring out common structural
information improves the analysis precision, since part of the approximated k-
tuples of terms is recorded, in concrete form, into the first component of T} x DF.
Secondly, the above construction is adjustable by means of the parameter ¢. The
most precise choice consists in taking ¢ to be a least common anti-instance (lca)
function. For example, the set E° = {{(s(0),Z1),C1),{(s(s(0)), Z1),C2)}, is
mapped onto (151C3(Eb) = ((S(Zl), Zg), {<(07 Z1), Cl>, <(8(0), Zl>,02>}), where
C1,Cy € C°. At the other end of the spectrum is the possibility of choosing

¢ so that it returns a k-tuple of distinct variables for each set of k-tuples of
terms. This corresponds to a framework where structural information is simply
discarded. With this choice, E* would be mapped onto ((Zl, Zs), Eb). In-between
these two extremes there are a number of possibilities that help to manage the
complexity /precision tradeoff. The tuples returned by ¢ can be limited in depth,
for instance. Another possibility is to limit them in size, that is, limiting the
number of occurrences of symbols or the number of variables. This flexibility
enables the analysis’ domains to be designed without considering the structural
information: the problem for the domain designers is to approximate the elements
of p(T’zC X Cb) with respect to the property of interest. It does not really matter
whether k is fixed by the arity of a predicate or k is the number of variables
occurring in a pattern.

4 Parametric Structural Information Analysis

In this section we describe how a complete abstract semantics — which includes
an abstract domain plus all the operations needed to approximate the concrete
semantics — can be turned into one keeping track of structural information.

We first need some assumptions on the domain C”, which represents the non-
Herbrand part of constraint stores. Following [14], it is not at all restrictive to
assume that, in order to define the concrete semantics of programs, four opera-
tions over C* need to be characterized. These model the constraint accumulation
process, parameter passing, projection, and renaming apart (see also [1,2] on
this subject).

Constraint accumulation is modeled by the binary operator ‘®@’: C* xC> — C”
and the unsatisfiability condition in the constraint solver is modeled by the
special value 1° € C°. Notice that, while ‘®’ may be reasonably expected to
satisfy certain properties, such as VC? € C* : 1> ® C” = 1, these are not really
required for what follows. The same applies to all the other operators we will
introduce: only properties that are actually used will be singled out.

Parameter passing requires, roughly speaking, the ability of adding equality
constraints to a constraint store. Notice that we assume C” and its operations
encode both the proper constraint solver and the so called interface between the
Herbrand engine and the solver [16]. In particular, the interface is responsible for
type-checking of the equations it receives. For example in CLP(R) the interface is
responsible for the fact that X = a cannot be consistently added to a constraint
store where X was previously classified as numeric.

Another ingredient for defining the concrete semantics of any CLP system
is the projection of a satisfiable constraint store onto a set of variables. This is
modeled by the family of operators {T’A: c’ - | A € p(Vars) } If Ais a
finite set of variables and C” € C° represents a satisfiable constraint store (i.e.,
C* # 1°), then ﬁ]"A C” represents the projection of C” onto the variables in A.

For each 5, € T}, we write p5(t) (read “rename t away from 57) to de-
note t[Zn+1/21, - s Zntm/Zm), where n = ’vars(g)’ and m = |vars(f)’. The
o operator is useful for concatenating normalized term-tuples, still obtaining a

normalized term-tuple, since we have 5:: g5(t) € T;. The renaming apart has to
be extended to elements of D°. Let C” € C” such that FV(C*) C vars(f). Then
05((£,C")) denotes the pair (os(¢),C}), where C} € C’ is obtained from C” by
applying the same renaming applied to ¢ in order to obtain gz(t).

Term tuples are normalized by a normalization function n: Ty, — Tj such
that, for each @ € 7,,,, the resulting tuple n(a) € T} is a variant of @. As for
o, the normalization function has to be extended to elements of D°. Suppose
that G* € C” where FV(G”) C vars(a). then n((a, G”)) denotes (n(z), G}) € D°
where it is assumed that G can be obtained from G” by applying the same
renaming applied to @ in order to obtain n(a).

We will now show how any abstract domain can be upgraded so as to capture
structural information by means of the Pattern(-) construction. Then we will
focus our attention on the abstract semantic operators.

4.1 From D* to Pattern(D*)

Since one of the driving aims of this work is maximum generality, we refer to a
very weak abstract interpretation framework [12]. To start with, we assume very
little on abstract domains.

Definition 2. (Abstract domain for D".) An abstract domain for D° is a set
Pt equipped with a preorder relation ‘<’ C P* x P, an order preserving function
v: Pt — D, and a least element 1* such that v(L*) = @. Moreover, 7 is such

that if (p1,C*) € y(E*), and T |= C° — p1 = P, then n((pg,Cb)) € y(E%).

Informally, P* is a set of abstract properties on which the notion of “relative
precision” is captured by the preorder ‘<’. Moreover, P is related to the concrete
domain D by means of a concretization function v that specifies the soundness
correspondence between D° and P?. The distinguished element L* models an
impossible state of affairs. In this framework, d! € P! is a safe approximation of
d” € D’ if and only if d”> C ~(d?).

Suppose we are given an abstract domain complying with Definition 2. Here
is how it can be upgraded with explicit structural information.

Definition 3. (The Pattern(-) construction.) Let D be an abstract domain
for D* and let vy be its concretization function. Then

Pattern(Df) = {14} U { (5, B%) € T} x D ‘ (B C Tes@)l ¢? }

The meaning of each element (5, E*) € Pattern(D*) is given by the concretization
function v, : Pattern(D*) — D” such that ’yp(J_E,) =& and

(a,C") € Y(E?) }

Y ((5, Eﬁ)) = {77((7“7 Cb» TEC" — 7 =5[u/vseq(5)]

We also define the binary relation ‘<,,’ C Pattern(D?) x Pattern(D*) given, for
each d*,d% € Pattern(D?), by d* <, db = ~,(d}) C ’yp(dﬁz).

It can be seen that Pattern(D*) is an abstract domain in the sense of Definition 2
provided D is. Thus Pattern(D?) can constitute the basis for designing an ab-
stract semantics for CLP. This will usually require selecting an abstract semantic
function on Pattern(D*), an effective convergence criterion for the abstract itera-
tion sequence (notice that the ‘<’ and ‘<, relations are not required to be com-
putable), and perhaps a convergence acceleration method ensuring rapid termi-
nation of the abstract interpreter [12]. The last ingredient to complete the recipe
is a computable way to associate an abstract description d* € Pattern(D?) to
each concrete property d’ € D°. For this purpose, the existence of a computable
function ay,: D* — Pattern(D?) such that, for each d’ € D°, d” C v, (o (d)) is
assumed.

While one option is to design an abstract semantics based on Pattern(D*)
from scratch, it is more interesting to start with an abstract semantics cen-
tered around D!. In this case, it is possible to systematically lift the semantic
construction to Pattern(D¥).

4.2 Operations over D* and Pattern(D*)

We now present the abstract operations we assume on D! and the derived oper-
ations over Pattern(D*). Each operator on D is introduced by means of safety
conditions that ensure the safety of the derived operators over Pattern(D?).

Given the abstract domain, there are still many degrees of freedom for the
design of a constructive abstract semantics. Thus, choices have to be made in
order to give a precise characterization. In what follows we continue to strive for
maximum generality. Where this is not possible we detail the design choices we
have made in the development of the CHINA analyzer [1]. While some things may
need adjustments for other analysis frameworks, the general principles should
be clear enough for anyone to make the necessary changes.

Meet with Renaming Apart We call meet with renaming apart (denoted
by ‘") the operation of taking two descriptions in D! and, roughly speaking,
juxtaposing them. This is needed when “solving” a clause body with respect to
the current interpretation and corresponds, at the concrete level, to a renaming
followed by an application of the ‘®’ operator. Its counterpart on Pattern(D¥)
is denoted by ‘rmeet’ and defined as follows.

Definition 4. (‘>’ and ‘rmeet’) Let ©": D* x D¥ — D* be such that, for each
E}, Ef € DY,

(’Fl, C?) € ’V(Eg)
T2, 4 g
Y(Ef > E) = { (7. CY © GY)) E’lzjg Cg;)eygE()(@ C3)

Then, we define rmeet((gl,Eg)7 (Eg,Eg)
(51, BY), (52, E%) € Pattern(D?).

A consequence of this definition is that there is no precision loss in ‘rmeet’ [3].

Parameter Passing Concrete parameter passing is realized by an extended
unification procedure. Unification is extended because it must involve the con-
straint solver(s). Remember that our notion of “constraint solver” includes also
the interface between the Herbrand engine and the proper solver [16]. The in-
terface needs to be notified about all the bindings performed by the Herbrand
engine in order to maintain consistency between the solver and the Herbrand
part. We also assume that CLP programs are normalized in such a way that
interpreted function symbols only occur in explicit constraints (note that this
is either required by the language syntax itself, as in the case of the clp(Q, R)
libraries of SICStus Prolog, or is performed automatically by the CLP system).

At the abstract level we do not prescribe the use of any particular algorithm.
This is to keep our approach as general as possible. For instance, an implemen-
tor is not forced to use any particular representation for term-tuples (as in [11]).
Similarly, one can choose any sound unification procedure that works well with
the selected representation. Of particular interest is the possibility of choosing
a representation and procedure that closely match the ones employed in the
concrete language being analyzed. In this case, all the easy steps typical of any
unification procedure (functor name/arity checks, peeling, and so on) will be
handled, at the abstract level, exactly as they are at the concrete level. The only
crucial operation in abstract parameter passing over Pattern(D*) is the binding
of an abstract variable to an abstract term. This is performed by first apply-
ing a non-cyclic approximation of the binding to the pattern component and
then notifying the original (possibly cyclic) binding to the abstract constraint
component. The correctness of this approach can be proved [3] by assuming
the existence of a bind operator on the underlying abstract constraint system
satisfying the following condition.

Definition 5. (bind) Let E* € D be a description such that y(E*) C T x C°.
Let Z = (Zy,... ,Zp), u € Tz, vseq(u) = (Z;,,...,Z;,) and let 1 < h < m.
Then, define (k... km,) = ((1,... ;h—1) = (Gry-e s i) \ {10 s — 1)) =
(h+ 1, ,m)\ g1y, 0}). If EY = bind(E*, u, Z),), then,

(7, C°) € 4(EY)

p= (p17"' apm)

q= (pklv"' 7pkm1)

_ b . . o
Y(E7) 2 < n((@0,C1)) |0 is an idempotent substitution
FV(C}) C vars(gh)

T (2 =)p/Z]

TEC « (2, =u)[p/Z'|NC")0

Note that my = m — 1 if Z, ¢ vars(u), and my = m, otherwise.

To motivate and explain the above condition on E% = bind(E*, u, Z), sup-
pose that p is the pattern component and C” the constraint component of an

element in the concretization of Ef. Now, the pattern components of elements of
the abstract domain Pattern(D*) are always in normal form and thus, after ap-
plying the binding [v//Z}] to an element of E¥, we must apply the normalization
function so that the result is also in Pattern(D*). This will first remove the h-th
term Zj, in the case that Z; does not occur in u and then permute the remaining
elements of Z. A corresponding operation is applied to the pattern p. That is,
q is constructed from p first by removing the h-th term p; in the case that Zj,
does not occur in u and then by applying the same permutation as before on the
remaining elements of p. As a most general solution ¢ to (Z], = u’)[p/Z'] may
be cyclic, only an approximation of ¢, the idempotent substitution 6, is applied
to . The actual solution ¢ together with C”6 is captured by the constraint C"l’.
Finally, note that the new pattern component gf may not be in normal form, so
that in the condition for bind it is the normalized variant of (g, C?) that must
be in the concretization of E?

We refer the reader to [3] for a description of how any correct unification
algorithm can be transformed into a correct (abstract) unification algorithm for
Pattern(D*?) using the bind operator and the normalization function 7.

Projection When all the goals in a clause body have been solved, projection is
used to restrict the abstract description to the tuple of arguments of the clause’s
head. The projection operations on D’ consist simply in dropping a suffix of
the term-tuple component, with the consequent projection on the underlying
constraint domain.

Definition 6. (‘project'L’) {projecti: D’ — Db ’ ke N} is a family of opera-
tions such that, for each k € N and each (u,C?) € D* with |u| > k, if we define
A = vars(prefix, (@), then project’, ((w,C")) = (prefix, (), 9, C*).

We now introduce the corresponding projection operations on Pattern(D*?)
and, in order to establish their correctness, we impose a safety condition on the
projection operations of DF.

Definition 7. (ﬂi and projectﬁk) Assume we are given a family of operations
{ﬂi: D! — D* | k € N} such that, for each E* € D* with v(E*) C T x C°
and each k < m, 'y(ﬂi E%) D {projecti((a,Cb)) | (@,C") € y(E*)}. Then,
for each (3, E¥) € Pattern(D*) such that 5 € TZ and each k < m, we define
projectﬂk((g, E%)) = (preﬁxk(§),ﬂ§- E*), where j = }vars(preﬁxk(g))}.

9

With these definitions ‘project}’ is correct with respect to ‘project?c’ [3].

Remapping The operation of remapping is used to adapt a description in
Pattern(D*) to a different, less precise, pattern component. Remapping is essen-
tial to the definition of various join and widening operators. Consider a descrip-
tion (5, EY) € Pattern(D?) and a pattern 7 € T}, such that 7 is an anti-instance
of 5. We want to obtain Ef € D! such that Y ((7, ETQ)) 2 ((5, Eg)) This is

what we call remapping (5, E) to 7.

Definition 8. (‘remap’) Let (5, EY) € Pattern(D?) be a description with s € T*
and let 7' € T¥, be an anti-instance of 5. Assume also }vars(f)| = m and let
u € TJ be the unique tuple such that 7' |u/vseq(7')] = 5. Then the operation

remap(s, B2,) yields EY such that v(E?%) D 'yp((ﬂ,Eg)).

Observe that the remap function is closely related to the residual abstraction
function o/ of Figure 1.! With this definition, the specification of ‘remap’ meets
our original requirement [3].

Upper Bound Operators A concrete (collecting) semantics for CLP will typ-
ically use set union to gather results coming from different computation paths.
We assume that our base domain D! captures this operation by means of an
upper bound operator ‘@’. Namely, for each E%,Eg € DY and each i = 1, 2,
we have that Ef = E? <) Eg This is used to merge descriptions arising from the
different computation paths explored during the analysis.

The operation of merging two descriptions in Pattern(D?) is defined in terms
of ‘remap’. Let (51,E§) and (§2,Eg) be two descriptions with 51,5, € TX. The
resulting description is (7, E% @Eg), where 7 € T¥, is an anti-instance of both 5
and 59, and Ef = remap(3;, Ef, 7), for i = 1, 2. We note again that # might be
the least common anti-instance of §; and $», or it can be a further approximation
of lca(8y, 32): this is one of the degrees of freedom of the framework. Thus, the
family of operations we are about to present is parameterized with respect to a
common anti-instance function and the analyzer may dynamically choose which
anti-instance function is used at each step.

Definition 9. (‘join,’) Let ¢ be any common anti-instance function. The op-
eration (partial function) joiny: p¢(Pattern(D?)) — Pattern(D?) is defined as
follows. For each k € N and each finite family F = {(E,,Ef) | 1€ I} of el-
ements of Pattern(D*) such that 5; € Tk for each i € I, join,(F) = (¥, E*),
where 7 = ¢({5; | i € I'}) and E¥ = @,; remap(5;, B, 7).

)

If ¢ is any common anti-instance function then ‘join,’ is an upper bound

operator [3].

Widenings It is possible to devise a (completely unnatural) abstract domain
D* that enjoys the ascending chain condition? still preventing Pattern(D?) from
possessing the same property. This despite the fact that any element of T} has
a finite number of distinct anti-instances in TJ,. However, this problem is of
no practical interest if the analysis applies ‘join,’ at each step of the iteration

sequence. In this case, if we denote by (5;, Eﬁ) € Pattern(D*) the description at
step j € N, we have (5,41, E"i+1) = join¢)({(§i7 Ef), e }), assuming no widening

(3

! Indeed, one can define o/ = A(5, E*) € TE x D . remap (s, E(Z4,... . Z1))-
2 Namely, each strictly increasing chain is finite.

is employed. This implies that 5}, is an anti-instance of 5;. As any ascending
chain in T? is finite, the iteration sequence will eventually stabilize if D enjoys
the ascending chain condition.

In some cases, however, rapid termination of the analysis on D! can only be
ensured by using one or more widening operators V: D# x Df — D* [13]. These
can be lifted to work on Pattern(D*). As an example, we show the default lifting
used by the CHINA analyzer:

' 59, B3, if 51 # 82
widen((s1, Ef), (52, E§)) = {(ey f e

This operator refrains from widening unless the pattern component has stabi-
lized. A more drastic choice for a widening is given by

Widen (51, E}), (52, B3)) = (52, remap(51, B}, 5,) V E}). (2)

Widening operators only need to be evaluated over (51,E§) and (Sa, Eg) when
5, is an anti-instance of 5;. Thus, as T7 satisfies the ascending chain condition,
‘widen’ and ‘Widen’ are well-defined widening operators on Pattern(D*) [3].
Besides ensuring termination, widening operators are also used to accelerate
convergence of the analysis. It is therefore important to be able to define widen-
ing operators on Pattern(D?) without relying on the existence of corresponding
widenings on D¥. There are many possibilities in this direction and some of them
are currently under experimental evaluation. Just note that any upper bound op-
erator ‘join,’ can be regarded as a widening as soon as the common anti-instance
function ¢ is different from the lca. In order to ensure the convergence of the
abstract computation, we will only consider widening operators on Pattern(D*)
satisfying the following (very reasonable) condition: if (5, E*) is the result of the
widening applied to (51, Eii) and (32, Eg), where 8} is an anti-instance of 51, then
§' is an anti-instance of 53. Both widen and Widen comply with this restriction.

Comparing Descriptions The comparison operation on Pattern(D*) is used
by the analyzer in order to check whether a local fixpoint has been reached.

Definition 10. (‘compare’) Let ‘3’ C D x D* be a computable preorder that
correctly approzimates ‘<’, that is, for each E%, Eg € D, we have E% =< Eg when-
ever E? = Eg The approximated ordering relation over Pattern(DF), denoted by
‘compare’ C Pattern(D?) x Pattern(D?), is defined, for each (51, E{), (55, E%) €
Pattern(D*), by compare((51, EY), (§2,Eg)) = (51 =5A Ef < Eg)

It must be stressed that the above ordering is “approximate” since it does not
take into account the peculiarities of D¥. More refined orderings can be obtained
in a domain-dependent way, namely, when D! has been fixed. It is easy to show
that compare is a preorder over Pattern(D*) that correctly approximates the ap-
proximation ordering ‘=<,’ [3]. The ability of comparing descriptions only when
they have the same pattern is not restrictive in our setting. Indeed, the definition

of joiny and the condition we imposed on widenings ensure that any two descrip-
tions arising from consecutive steps of the iteration sequence are ordered by the
anti-instance relation. When combined with the ascending chain condition of
the pattern component, this allows to inherit termination from the underlying
domain DF.

5 Experimental Evaluation

We have conducted an extensive experimentation on the analysis using the
Pattern(-) construction: this allowed us to tune the implementation and gain
insight on the implications of keeping track of explicit structural information.
To put ourselves in a realistic situation, we assessed the impact of the Pattern(:)
construction on Modes, a very precise and complex domain for mode analy-
sis. This captures information on simple types, groundness, boundedness, pair-
sharing, freeness, and linearity. It is a combination of, among other things, two
copies of the GER representation for Pos [5] — one for groundness and one
for boundedness — and the non-redundant pair-sharing domain PSD [4] with
widening as described in [22]. Each of these domains has been suitably extended
to ensure correctness and precision of the analysis even for systems that omit
the occur-check [1,15]. Some details on how the domains are combined can be
found in [6].

The benchmark suite used for the development and tuning of the CHINA
analyzer is probably the largest one ever employed for this purpose. The suite
comprises all the programs we have access to (i.e., everything we could find by
systematically dredging the Internet): 300 programs, 16 MB of code, 500 K lines,
the largest program containing 10063 clauses in 45658 lines of code.

The comparison between Modes and Pattern(Modes) involves the two usual
things: precision and efficiency. However, how are we going to compare the
precision of the domain with explicit structural information with one without
it? That is something that should be established in advance. Let us consider a
simple but not trivial Prolog program: mastermind.pl.? Consider also the only
direct query for which it has been written, ‘?- play.’, and focus the attention
on the procedure extend code/1. A standard goal-dependent analysis of the
program with the Modes domain is only able to tell something like

extend_code(A) :- list(A).

This means: “during any execution of the program, whenever extend_code/1
succeeds it will have its argument bound to a list cell (i.e., a term whose principal
functor is either ’.?/2 or [1/0)”. Not much indeed. Especially because this can
be established instantly by visual inspection: extend_code/1 is always called
with a list argument and this completes the proof. If we perform the analysis
with Pattern(Modes) the situation changes radically. Here is what such a domain
allows CHINA to derive:*

3 Available at http://www.cs.unipr.it/China/Benchmarks/Prolog/mastermind.pl.
4 Some extra groundness information obtained by the analysis has been omitted.

“ x = %inc. |[indep |[ground][linear || free |[bound |
[GI|GD|[GI|GD][GI[GD][GI|GD][GI|GD]

z <0 0] 1 of 0 0] 1 0o 0 0] O

x =0 [|222]211(|228]223({213|205{244|245||230|220
O<ax <2 36| 35| 24| 26| 46| 44| 26| 21|| 49| 45
2<z<H 22| 27| 17| 17| 17| 18| 11| 13 9] 15
5 <z <10 7 8| 10| 11 9| 11|} 10| 8 9] 8
x > 10| 13| 18| 21| 23|| 15| 21 9| 13 3| 12

Table 1. A summary of the Modes precision gained using structural information.

extend_code([([A|B],C,D) |E]) :- list(B), list(E),
(functor(C,_,1);integer(C)), (functor(D,_,1);integer(D)),
ground([C,D]), may_share([[A,B,E]]).

Under the circumstances mentioned above, this means: “the argument of pro-
cedure extend_code/1 will be bound to a term of the form [([AIB],C,D) |E],
where B and E are bound to list cells; C is either bound to a functor of arity 1 or
to an integer, and likewise for D; both C and D are ground, and (consequently)
pair-sharing may only occur between A, B, and E”.

It is clear that the analysis with Pattern(Modes) yields much more informa-
tion. However, it is not clear at all how to define a fair measure for this precision
gain. The approach we have chosen is simple though unsatisfactory: throw away
all the structural information at the end of the analysis and compare the usual
numbers (i.e., number of ground variables, number of free variables and so on).
With reference to the above example, this metric pretends that explicit structural
information gives no precision improvements on the analysis of extend_code/1
in mastermind.pl. In fact, once all the structural information has been dis-
carded, the analysis with Pattern(Modes) only specifies that, upon success, the
argument of extend_code/1 will be a list cell. In other words, we are measuring
how the explicit structural information present in Pattern(Modes) improves the
precision on Modes itself, which is only a tiny part of the real gain in accuracy.
The value of this extra precision can only be measured from the point of view
of the target application of the analysis.

It is important to note that the experimental results we are about to report
have been obtained without using any widening on the pattern component. The
widening operations are only propagated to the underlying Modes domain by
means of the ‘widen’ operator given in Eq. (1). Moreover, the merge operation
employed is always ‘join,,, . For space limitations, here we can only summarize
the results of the experimentation. The interested reader can find all the details
at http://www.cs.unipr.it/China. As far as precision is concerned, we mea-
sure five different quantities: the total number of independent argument pairs
(indep); the total number of ground argument positions; the total number of
linear argument positions; the total number of free argument positions; and the
total number of bound (or nonvar) argument positions.

“time difference in seconds|[# prog.|[% prog.]
[GI[GD|[GI [GD |

degradation > 1 9| 20{{100.0 {100.0

0.5 < degradation < 1 2| 4| 97.0 | 93.3
0.2 < degradation < 0.5 || 15| 18|| 96.3 | 92.0
degradation < 0.2 (/105|106 91.3 | 86.0

same time 90| 77|| 56.3 | 50.7
improvement < 0.2 || 34| 31| 26.3 | 25.0

0.2 < improvement < 0.5|| 11| 11|| 15.0 | 14.7
0.5 < improvement < 1 9] 5| 11.3 11.0
improvement > 1 25| 28|| 8.3 9.3

Table 2. A summary on efficiency: the distribution of analysis time differences.

Since we are completely disregarding the precision gains coming from struc-
tural information in itself, our results give a (very pessimistic) lower bound on
the overall precision improvement. The results are summarized by partitioning
the benchmark suite into six classes of programs, identified by the percentage
increase in precision due to the Pattern(:) construction. Table 1 gives the car-
dinalities of these classes for both goal-independent (GI) and goal-dependent
(GD) analyses. A precision increase, on at least one of the measured quanti-
ties, is observed on more than one third of the benchmarks. The only precision
decrease is due to the interaction between the Pattern(:) construction and the
widenings used in the Modes domain. It is also worth observing that, on average,
goal-dependent analysis is more likely to benefit from the addition of structural
information.

In order to evaluate the impact on efficiency of the Pattern(-) transformation
we computed the fixpoint evaluation time for all the programs, both with the
Modes and with the Pattern(Modes) domains. Results are summarized by parti-
tioning the benchmark suite into a number of classes and giving the cardinality
of each class. As a first parameter, we considered the absolute time difference
observed for each program.® Table 2 gives the cardinality of 9 classes, distin-
guishing between GI and GD analyses. The numbers show that the full range of
possible behaviors is indeed observable. Quite surprisingly, it is not uncommon,
although inherently more precise and complex, for the case with the Pattern(:)
construction to result in significant time improvements. The reason for this is
only partly due to the enhanced ability of the Pattern component to be able to
detect and hence prune failed computation paths. Most importantly, the descrip-
tion of a set of tuples of terms in Pattern(Modes) is often much more efficient

5 As the benchmark suite comprises several real programs of very respectable size, we
believe that absolute time comparison is what really matters to assess the feasibility
of the Pattern(-) construction with respect to the underlying domain. A time dif-
ference less than one second is an approximation of “the user will not notice.” The
experiments were conducted on a PC equipped with an AMD Athlon clocked at 700
MHz, 256 MB of RAM, and running Linux 2.2.16.

“T = time in secs.” GI ” GD |
|[w/o SI]w SI|diff.|[w/o SI[w SI|diff.]

T >10 15| 11| —4 22| 17 -5

5<T <10 9] 5| -4 10| 11| +1
1<T<5H 32| 35| +3 35| 43| +8
05<T <1 11| 21(4+10 20| 23| +3
02<T<05 27| 38|+11 37| 46| +9
01<T<0.2 164| 158| —6 155| 146| —9
T<0.1 42| 32|-10 21| 14| -7

Table 3. A summary on efficiency: the distribution of analysis times.

than the corresponding description in Modes. Percentages in the columns on the
right show how many programs are at least as good as the corresponding class.
For instance, more than 85% of the benchmarks either reduce the analysis time
or increase it by at most 0.2 secs. Since the occasional bad-behaving cases can be
dealt with by defining a suitable widening operator on the pattern component,
these results disprove the common belief that structural information has a heavy
impact on the efficiency of the analysis.

As a second criterion, Table 3 partitions the benchmark suite into 7 classes
based on their total fixpoint computation time, again distinguishing between
GI and GD analysis. The columns labeled ‘diff.” show how each class grows
or shrinks because of the addition of structural information. It can be seen
that the Pattern(-) construction causes only a minor change to the distribution,
decreasing the number of benchmarks in both the fastest and the slowest classes.

6 Related Work

The use of explicit structural information has also been studied in [7], where
abstract equation systems are integrated into an analysis domain tracking set-
sharing, freeness, linearity and compoundness. While allowing for an implemen-
tation independent definition, this proposal still assumes the occur-check, there-
fore resulting in an unsound analysis for implemented CLP languages. An exper-
imental evaluation on a small benchmark suite (19 programs) was reported by
Mulkers et al. in [19, 20]. Here the investigation mainly focused on the compari-
son between different instances of the underlying domain, showing the positive
impact of freeness and linearity information on both the precision and perfor-
mance of the classical set-sharing analysis. The experiments on the integration
of structural information, by means of a depth-k abstraction (replacing all sub-
terms occurring at a depth greater or equal to k with fresh abstract variables)
for values of k between 0 and 3, showed that the domain they employed was
not suitable to the analysis of real programs and, in fact, even the analysis of a
modest-sized program like ‘ann’ could only be carried out with depth-0 abstrac-
tion (i.e., with no structural information at all).

In [8], an alternative technique is proposed for augmenting a data-flow anal-
ysis with structural information. Instead of upgrading the analysis domain, this
technique relies on program transformations. In this approach, called untupling,
the data-flow analysis of a given program would be performed in four distinct
phases. This new analysis technique is advocated for its simplicity and efficiency.
Comparing their limited experimental evaluation to the one conducted in [11],
the authors of [8] claim that the untupling approach is inherently more efficient
than abstract domain enhancement. Our new performance results suggest that
this conclusion may need reconsidering. On the other hand, the proposal in [8]
may be simpler to implement despite the four phases required, especially if one
has to start from scratch. However, the Pattern(-) construction, besides being
more precise and particularly efficient, is already implemented and has been
thoroughly tested on a large number of benchmarks using the very expressive
abstract domain Modes. Furthermore, as the implementation is in the form of a
C++ template, only a very limited effort is required to upgrade any other abstract
domain with structural information.

7 Conclusion

We have presented the rational construction of a generic domain for structural
analysis of real CLP languages: Pattern(D*), where the parameter D¥ is an
abstract domain satisfying certain properties. We build on the parameterized
Pat (R) domain of Cortesi et al. [10, 11], which is restricted to logic programs and
requires the occur-check to be performed. However, while Pat () is presented
as a specific implementation of a generic structural domain, our formalization is
implementation-independent. Reasoning at a higher level of abstraction we are
able to appeal to familiar notions of unification theory, while leaving considerable
more latitude for the implementer. Indeed our results show that, contrary to
popular belief, an analyzer incorporating structural information analysis based
on our approach can be highly competitive even from the efficiency point of view.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Italy, March 1997.

2. R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint
logic-based languages. Science of Computer Programming, 30(1-2):119-155, 1998.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. Efficient structural information analysis
for real CLP languages. Quaderno 229, Dipartimento di Matematica, Universita
di Parma, 2000. Available at http://www.cs.unipr.it/ bagnara.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 2000. To appear.

5. R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-based
implementations of Pos. In A. M. Haeberer, editor, Proc. of the “7th Int’l Conf.
on Algebraic Methodology and Software Technology”, vol. 1548 of Lecture Notes in
Computer Science, pages 471-485, Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Bagnara, E. Zaffanella, and P. M. Hill. Enhancing Sharing for precision. In
M. C. Meo and M. Vilares Ferro, editors, Proc. of the “AGP’99 Joint Conf. on
Declarative Programming”, pages 213-227, L’Aquila, Italy, 1999.

M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a composite
domain deriving sharing and freeness properties of program variables. In F. S.
de Boer and M. Gabbrielli, editors, Verification and Analysis of Logic Languages,
Proc. of the W2 Post-Conference Workshop, Int’l Conf. on Logic Programming,
pages 213-230, Santa Margherita Ligure, Italy, 1994.

M. Codish, K. Marriott, and C. Taboch. Improving program analyses by structure
untupling. Journal of Logic Programming, 43(3):251-263, 2000.

A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. A. Térnlund,
editors, Logic Programming, APIC Studies in Data Processing, vol. 16, pages 231—
251. Academic Press, New York, 1982.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and software
support for abstract domain design: Generic structural domain and open product.
Technical Report CS-93-13, Brown University, Providence, RI, 1993.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: Open product and generic pattern construction.
Science of Computer Programming, 38(1-3), 2000.

P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511-547, 1992.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proc. of the 4th Int’l Symp. on Programming Language Imple-
mentation and Logic Programming, vol. 631 of Lecture Notes in Computer Science,
pages 269-295, Leuven, Belgium, 1992. Springer-Verlag, Berlin.

R. Giacobazzi, S. K. Debray, and G. Levi. Generalized semantics and abstract inter-
pretation for constraint logic programs. Journal of Logic Programming, 25(3):191—
247, 1995.

P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In G. Levi,
editor, Static Analysis: Proc. of the 5th Int’l Symp., vol. 1503 of Lecture Notes in
Computer Science, pages 99114, Pisa, Italy, 1998. Springer-Verlag, Berlin.

J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19&20:503-582, 1994.

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems, 14(3):339-395, 1992.
J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587—
625. Morgan Kaufmann, Los Altos, Ca., 1988.

A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the practicality
of abstract equation systems. Report CW 198, Department of Computer Science,
K. U. Leuven, Belgium, 1994.

A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the practicality of
abstract equation systems. In L. Sterling, editor, Logic Programming: Proc. of the
12th Int’l Conf. on Logic Programming, MIT Press Series in Logic Programming,
pages 781-795, Kanagawa, Japan, 1995. The MIT Press.

K. Musumbu. Interprétation Abstraite des Programmes Prolog. PhD thesis, Institut
d’Informatique, Facultés Univ. Notre-Dame de la Paix, Namur, Belgium, 1990.
E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Nadathur,
editor, Principles and Practice of Declarative Programming, vol. 1702 of Lecture
Notes in Computer Science, pages 414-431, Paris, 1999. Springer-Verlag, Berlin.

