
Sharing Revisited

Roberto Bagnara∗

bagnara@scs.leeds.ac.uk

Patricia M. Hill∗

hill@scs.leeds.ac.uk

Enea Zaffanella†

zaffanella@elektra.casa.unimo.it

Abstract

Although the usual goal of sharing analysis is to detect which pairs of variables
share, the standard choice for sharing analysis is a domain that characterizes set-
sharing. In this paper, we question, apparently for the first time, whether this
domain is over-complex for pair-sharing analysis. We show that the answer is yes.
By defining an equivalence relation over the set-sharing domain we obtain a simpler
domain, reducing the complexity of the abstract unification procedure. We present
preliminary experimental results, showing that, in practice, our domain compares
favorably with the set-sharing one over a wide range of benchmark programs.

1 Introduction

In logic programming, a knowledge of sharing between variables is important for opti-
mizations such as the exploitation of parallelism. Today, talking about sharing analysis
for logic programs is almost the same as talking about the set-sharing domain Sharing
of Jacobs and Langen [12, 13]. The adequacy of this domain is not normally questioned.
Researchers appear to be more concerned as to which add-ons are best: linearity, free-
ness, depth-k abstract substitutions and so on [3, 4, 5, 14, 15, 17] rather than whether it
is the optimal domain for the sharing information under investigation.

What is the reason for this “standard” choice? Well, the set-sharing domain is quite
accurate: when integrated with linearity information it is strictly more precise than its old
challenger, the pair-sharing domain ASub of Søndergaard [18]. Indeed, Sharing encodes
a lot of information. As a consequence, it is quite difficult to understand: taking an
abstract element and writing down its concretization (namely, the concrete substitutions
that are approximated by it) is a hard task. So the question arises: is this complexity
actually needed for an accurate sharing analysis?

Before answering this question we must agree on what the purpose of sharing analysis
is. This paper relies on the following

Assumption: The goal of sharing analysis for logic programs is to detect which pairs of
variables are definitely independent (namely, they cannot be bound to terms having one
or more variables in common).

As far as we know, this assumption is true. In the literature we can find no reference to
the “independence of a set of variables”. All the proposed applications of sharing analysis

∗School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U.K. The work of R. Bagnara
and P. M. Hill has been supported by EPSRC under grant GR/L19515.
†Servizio IX Automazione, Università degli Studi di Modena, and Dipartimento di Informatica, Uni-

versità di Pisa, Italy.



(compile-time optimizations, occur-check reduction and so on) are based on information
about the independence of pairs of variables.

We thus focus our attention on the pair-sharing property and assume that set-sharing
is just a way to compute pair-sharing with a higher degree of accuracy: there may well be
other ways. In this paper we question, apparently for the first time, whether the Sharing
domain is really the best one for detecting which pairs of variables can share. The answer
turns out to be negative: there exists a domain that is simpler than Sharing and, at the
same time, is as precise as Sharing, as far as pair-sharing is concerned. This domain is
the subject of this paper.

The paper is organized as follows. In the next section, we introduce the notation and
recall the definition of the abstract domain Sharing. In Section 3, we show that Sharing
is unnecessarily complex for capturing pair-sharing information. A new equivalence re-
lation between its elements is defined which is shown to exactly factor out the unwanted
information. Section 4 explains the practical consequences of these results and shows
that the complexity of abstract unification using our domain is polynomial compared
to the exponential complexity for Sharing. Section 5 gives the experimental results and
Section 6 concludes the paper. The proofs of the presented results can be found in [2].

2 Preliminaries

In this section we introduce some mathematical notation that will be used throughout
the paper, as well as recalling the set-sharing domain.

2.1 Notation

For a set S, #S is the cardinality of S, ℘(S) is the powerset of S, whereas ℘f(S) is
the set of all the finite subsets of S. The symbol Vars denotes a denumerable set of
variables, whereas TVars denotes the set of first-order terms over Vars . The set of variables
occurring in a syntactic object o is denoted by vars(o). A substitution σ is a total function
σ : Vars → TVars that is the identity almost everywhere; in other words, the domain of

σ, dom(σ)
def
=
{
x ∈ Vars

∣∣ σ(x) 6= x
}

, is finite. Substitutions are denoted by the set
of their bindings, thus σ is identified with

{
x 7→ σ(x)

∣∣ x ∈ dom(σ)
}

. A substitution
σ is idempotent if vars

(
σ(x)

)
∩ dom(σ) = ∅ for each x ∈ dom(σ). The set of all the

idempotent substitutions is denoted by Subst .

2.2 The Sharing Domain

The Sharing domain is due to Jacobs and Langen [12].

Definition 1 (The set-sharing lattice.) Let1

SG
def
=
{
S ∈ ℘f(Vars)

∣∣ S 6= ∅}
1The literature on Sharing is almost unanimous in defining sharing-sets so that they always contain

the empty set. We deviate from this de facto standard: in our approach sharing-sets never contain the
empty set. We do this because (1) there is no real need of having ∅ and ⊆ as the bottom element and
the ordering of the domain, respectively (the original motivation for including the empty set in each
sharing-set); (2) the definitions turn out to be easier; and (3) we describe the implementation (where
the empty set never appears in sharing-sets) more faithfully.



and let SH
def
= ℘(SG). The set-sharing lattice is given by the set

SS
def
=
{

(sh, U)
∣∣ sh ∈ SH , U ∈ ℘f(Vars),∀S ∈ sh : S ⊆ U

}
∪ {⊥,>}

ordered by �SS defined as follows, for each d, (sh1, U1), (sh2, U2) ∈ SS:

⊥ �SS d,

d �SS >,
(sh1, U1) �SS (sh2, U2) ⇐⇒ (U1 = U2) ∧ (sh1 ⊆ sh2).

It is straightforward to see that every subset of SS has a least upper bound with respect
to �SS . Hence SS is a complete lattice.

Before introducing the abstract operations over SH we need some ancillary definitions.

Definition 2 (Auxiliary functions.) The closure under union function (·)? : SH →
SH (also called star-union) is given, for each sh ∈ SH , by

sh?
def
=
{
S ∈ SG

∣∣ ∃n ≥ 1 . ∃T1, . . . , Tn ∈ sh . S = T1 ∪ · · · ∪ Tn
}
.

For each sh ∈ SH and each T ∈ ℘f(Vars), the operation of extracting the relevant
component of s with respect to T is encoded by the function rel : ℘f(Vars)× SH → SH
defined as

rel(T, sh)
def
= {S ∈ sh | S ∩ T 6= ∅ }.

For each sh1, sh2 ∈ SH , the binary union function bin: SH × SH → SH is given by

bin(sh1, sh2)
def
= {S1 ∪ S2 | S1 ∈ sh1, S2 ∈ sh2 }.

The function proj : SH×℘f(Vars)→ SH projects an element of SH onto a set of variables
of interest: if sh ∈ SH and V ∈ ℘f(Vars), then

proj(sh, V )
def
= {S ∩ V | S ∈ sh, S ∩ V 6= ∅ }.

The auxiliary function amgu captures the effects of a binding x 7→ t onto an SH element.
Let x be a variable and t a term in which x does not occur. Let also sh ∈ SH and

A
def
= rel

(
{x}, sh

)
,

B
def
= rel

(
vars(t), sh

)
.

Then

amgu(sh, x 7→ t)
def
=
(
sh \ (A ∪B)

)
∪ bin(A?, B?).

It is shown in [16] that amgu is both commutative and idempotent. Thus we can define
the extension amgu: SH × Subst → SH by

amgu(sh,∅)
def
= sh,

amgu
(
sh, {x 7→ t} ∪ σ

) def
= amgu

(
amgu(sh, x 7→ t), σ \ {x 7→ t}

)
.



The Sharing domain is given by the complete lattice SS together with the follow-
ing abstract operations needed for the analysis. Trivial operations, such as consistent
renaming of variables, are omitted.

Definition 3 (Abstract operations over SS .) The lub operation over SS is given by
the function t : SS × SS → SS defined as follows, for each d, (sh1, U1), (sh2, U2) ∈ SS:

⊥ t d def
= d t ⊥ def

= d,

> t d def
= d t > def

= >,

(sh1, U1) t (sh2, U2)
def
=

{
(sh1 ∪ sh2, U1), if U1 = U2;
>, otherwise.

The projection function Proj : SS × ℘f(Vars)→ SS is given, for each set of variables of
interest V ∈ ℘f(Vars) and each description (sh, U) ∈ SS, by

Proj(⊥, V )
def
= ⊥,

Proj(>, V )
def
= >,

Proj
(
(sh, U), V

) def
=
(
proj(sh, V ), U ∩ V

)
.

The operation Amgu: SS × Subst → SS extends the SS description it takes as an ar-
gument, to the set of variables occurring in the substitution it is given as the second
argument. Then it applies amgu:

Amgu
(
(sh, U), σ

) def
=

(
amgu

(
sh ∪

{
{x}

∣∣ x ∈ vars(σ) \ U
}
, σ
)
, U ∪ vars(σ)

)
.

For the distinguished elements ⊥ and > of SS we have2

Amgu
(
⊥, σ

) def
= ⊥,

Amgu
(
>, σ

) def
= >. (1)

3 Sharing is Redundant for Pair-Sharing

3.1 The Pair-Sharing Property

Let us define the pair-sharing property through a domain that captures it exactly. This
domain is similar to Søndergaard’s ASub (but without the groundness and linearity in-
formation) [18].

Definition 4 (The pair-sharing domain.) Let S be a set. Then

pairs(S)
def
=
{
P ∈ ℘(S)

∣∣ #P = 2
}
.

The pair-sharing domain is given by the complete lattice

PS
def
=
{

(ps , U)
∣∣ U ∈ ℘f(Vars), ps ∈ ℘

(
pairs(U)

)}
∪ {⊥,>}

2Notice that the only reason we have > ∈ SS is in order to turn SS into a lattice rather than a CPO.
As the description > is never used in the analysis, Equation 1 is only provided for completeness.



ordered by �PS , which is defined, for each d, (ps1, U1), (ps2, U2) ∈ PS, by

⊥ �PS d,

d �PS >,
(ps1, U1) �PS (ps2, U2) ⇐⇒ (U1 = U2) ∧ (ps1 ⊆ ps2).

Clearly, PS is a strict abstraction of SS through the abstraction function αPS : SS →
PS given, for each (sh, U) ∈ SS , by

αPS (⊥)
def
= ⊥,

αPS (>)
def
= >,

αPS

(
(sh, U)

) def
=
(
Down(sh) ∩ pairs(Vars), U

)
,

where

Down(sh)
def
=
{
S ∈ ℘(Vars)

∣∣ ∃T ∈ sh . S ⊆ T
}
.

An element of the pair-sharing domain is, roughly speaking, the “end-user image” of
the result of the analysis. That is, the only interest of the end-user of our analysis (e.g.,
the optimizer module of the compiler) is knowing which pairs of variables possibly share.
The PS domain will be used to measure the accuracy of the other domains in computing
pair-sharing.

3.2 What is in Sharing

We now look at the information content of the elements of the Sharing domain. We refer
the reader to, e.g., [6] for a formal definition of the concretization function γ : SS →
Subst × ℘f(Vars).

As it has been observed by several authors, the SS lattice encodes several properties,
besides pair-sharing. We present them here by means of examples that show their useful-

ness. In what follows, the set of variables of interest is fixed as U
def
= {x, y, z} and will be

omitted from elements of SS . Moreover, the elements of SH will be written in a simplified
notation, omitting the inner braces. For example,

({
{x}, {x, y}, {x, z}

}
, {x, y, z}

)
will

be written simply as {x, xy, xz}.

Groundness. Consider sh1
def
= {xy} and sh2

def
= {xy, z}. They encode the same pair-

sharing information, namely αPS (sh1) = αPS (sh2) = {xy}. In sh1 we know that
the variable z is ground. This knowledge is useful for pair-sharing detection:

αPS

(
amgu(sh1, x 7→ z)

)
= ∅,

αPS

(
amgu(sh2, x 7→ z)

)
= αPS

(
{xyz}

)
= {xy, xz, yz}.

Ground dependencies. Let sh1
def
= {xy, xyz, z} and sh2

def
= {xy, xz, yz, z}. Again, they

encode the same pair-sharing information. They also encode the same groundness
information (no variable is ground). However, in sh1 the groundness of y depends
on the groundness of x. Let us ground x and see what happens:

αPS

(
amgu(sh1, x 7→ a)

)
= ∅,

αPS

(
amgu(sh2, x 7→ a)

)
= αPS

(
{yz}

)
= {yz}.



Sharing dependencies. This example is taken from [6]. Let

sh1
def
= {x, y, z, xyz},

sh2
def
= {x, y, z, xy, xz, yz}.

They encode the same pair-sharing, groundness, and ground dependency informa-
tion. Again, let us ground x and look at the results:

αPS

(
amgu(sh1, x 7→ a)

)
= αPS

(
{y, z}

)
= ∅,

αPS

(
amgu(sh2, x 7→ a)

)
= αPS

(
{y, z, yz}

)
= {yz}.

In sh1 the sharing between y and z depends on the (non-) groundness of x, while
in sh2 this is not the case.

Given these three examples, one gets the impression that different elements in SH do
encode different information with respect to the pair-sharing property. However, this is
not always the case. Consider

sh1
def
= {x, y, z, xy, xz, yz},

sh2
def
= {x, y, z, xy, xz, yz, xyz}.

These two different elements do encode the same pair-sharing, groundness, ground de-
pendency, and sharing dependency information. Since the set of variables of interest is
U = {x, y, z}, we can observe that γ

(
(sh2, U)

)
= (Subst , U) What does γ

(
(sh1, U)

)
look

like? The only relevant information in sh1 is that the sharing group xyz is not allowed:
sh1 represents all the idempotent substitutions σ such that

vars
(
σ(x)

)
∩ vars

(
σ(y)

)
∩ vars

(
σ(z)

)
= ∅.

That is, the variables x, y, and z cannot share the same variable (but they still can
share pairwise). As observed before, this difference is irrelevant from the end-user point
of view. Therefore, we want to show that sh1 and sh2 are completely equivalent with
respect to the pair-sharing property. This is the same as saying that the sharing group
xyz is “useless” in sh2 and can be dropped.

Definition 5 (Redundancy.) Let sh ∈ SH and S ∈ SG. S is redundant for sh if and
only if #S > 2 and

pairs(S) =
⋃{

pairs(T )
∣∣ T ∈ sh, T ⊂ S

}
.

Read it this way: S is redundant for sh if and only if all its sharing pairs can be extracted
from the elements of sh that are smaller than S. As the name suggests, redundant sharing
groups can be dropped. For the moment, as we are walking on a theoretical ground, we
add them so to obtain a sort of normal form. We thus define an upper closure operator
over SH that induces an equivalence relation over the elements of SH .

Definition 6 (A closure operator on SH .) The function ρ : SH → SH is given, for
each sh ∈ SH , by

ρ(sh)
def
= sh ∪ {S ∈ SG | S is redundant for sh }.



A set S can be added to a sharing set sh without changing the pair-sharing information
only if, for each variable x in S, every pair such as xy, is already in an element in sh.
Thus S must be the union of sets in sh that contain x. This observation leads to the
following alternative definition for ρ.

Theorem 7 If sh ∈ SH then

ρ(sh) =
{
S ∈ SG

∣∣ ∀x ∈ S : S ∈ rel
(
{x}, sh

)? }
.

While the original definition refers directly to the pair-sharing concept, the alternative
definition provided by Theorem 7 is very elegant and concise, and turns out to be useful
for proving several results.

Abusing notation, we can easily define the overloading ρ : SS → SS such that

ρ(⊥)
def
= ⊥,

ρ(>)
def
= >,

ρ
(
(sh, U)

) def
=
(
ρ(sh), U

)
.

We have thus implicitly defined a new domain that, for lack of a better name, we will
call X. The domain X is the quotient of SS with respect to the equivalence relation
induced by ρ: d1 and d2 are equivalent if and only if ρ(d1) = ρ(d2). Clearly, X is a proper
abstraction of SS .

It is straightforward to prove the following

Proposition 8 For each d ∈ SS we have αPS

(
ρ(d)

)
= αPS (d).

Thus the addition of redundant elements does not cause any precision loss, as far as pair-
sharing is concerned. In other words, X is as good as SS for representing pair-sharing.
Now we show that ρ is a congruence with respect to the operations Amgu, t, and Proj.

Theorem 9 Let d1, d2 ∈ SS. If ρ(d1) = ρ(d2) then, for each σ ∈ Subst, each d′ ∈ SS,
and each V ∈ ℘f(Vars),

1. ρ
(
Amgu(d1, σ)

)
= ρ
(
Amgu(d2, σ)

)
;

2. ρ(d′ t d1) = ρ(d′ t d2); and

3. ρ
(
Proj(d1, V )

)
= ρ
(
Proj(d2, V )

)
.

As a corollary of the two results above we have that X is as good as SS for propagating
pair-sharing through the analysis process. Not only that. We show that any proper
abstraction of X is less precise than X on computing pair-sharing.

Theorem 10 For each d1, d2 ∈ SS, ρ(d1) 6= ρ(d2) implies

∃σ ∈ Subst . αPS

(
Amgu(d1, σ)

)
6= αPS

(
Amgu(d2, σ)

)
.

To summarize, the equivalence relation induced by ρ identifies two elements if and only if
their behavior in the analysis process is indistinguishable with respect to the pair-sharing
property. As a final remark, the technique we use to “extract” from SS the component
that is relevant in order to compute pair-sharing is very similar to the one introduced
by Cortesi, Filé, and Winsborough in [7], even though the formal definitions are slightly
different.



4 Star-union is not needed

The theory developed in the previous section has at least one practical consequence: in
the definition of the abstract unification for domain X, the star-union operator can be
safely replaced by the binary-union operator.

Theorem 11 For each sh ∈ SH we have sh? = ρ
(
bin(sh, sh)

)
.

In our opinion, this is a very important result of this research. In the worst-case, the
complexity of the star-union operator is exponential in the number of sharing groups of
the input, while for the binary-union operator the complexity is quadratic.

Notice that the complexity improvement provided by Theorem 11 comes at a price.
In order to test for fixpoint on X, we cannot perform a simple identity check, because two
syntactically different elements can be mapped onto the same element by ρ: a suitable
equivalence test is needed. In the worst case, the complexity of this test is bounded by the
square of the number of sharing groups, but it is our opinion that it can be implemented
quite efficiently (that is, more efficiently than in our current prototype implementation).
This brings us to the next section.

5 Experimental Evaluation

The ideas presented in this paper have been experimentally validated in the context of
the development of the China analyzer [1]. China is a data-flow analyzer for CLP(HN )
languages (i.e., Prolog, CLP(R), clp(FD) and so forth), HN being an extended Herbrand
system where the values of a numeric domain N can occur as leaves of the terms. China,
which is written in C++ and Prolog, performs bottom-up analysis deriving information
on both call- and success-patterns by means of program transformations and optimized
fixpoint computation techniques.

We have analyzed several programs using composite domains of the kind Pattern(D),
where D is one of our analysis domains and Pattern(·) [1] is a generic structural domain
similar to Pat(<) [8, 9]. The construction Pattern(·) upgrades a domain D (which must
support a certain set of basic operations) with structural information. The resulting
domain, where structural information is retained to some extent, is usually much more
precise then D alone. Of course, there is a price to be paid: in the analysis based on
Pattern(D), the elements of D that are to be manipulated are often bigger (i.e., they
consider more variables) that those that arise in analyses that are simply based on D.
The domains D that we have tried are: straight sharing à la Jacobs and Langen (SS ),
the domain X where star-union has been replaced by binary-union (X), and the same
domain where all the elements are always maximally reduced, that is, they do not contain
any redundant sharing-group (X + red), plus all the possible combinations of the three
domains above with domains for linearity and freeness. These combinations have been
performed following [4].

The experimental results are reported in Tables 1 and 2. Table 1 refers to our three
sharing domains either taken alone or in combination with the linearity domain. The
result of adding the freeness domain to such combinations is depicted in Table 2. The
tables give the analysis time of each program.3 The computation times have been taken

3The current test-suite of China comprises more than 160 programs. Here we give the results only for
those programs whose analysis time using Pattern(SS ) (without linearity) are above a certain threshold.
Notice also that Tables 1 and 2 are sorted on the analysis time with Pattern(SS ).



Without freeness

Without linearity With linearity

Program SS X X + red SS X X + red

Life 0.89 0.6 0.67 0.55 0.55 0.61

Kalah 1.28 1.08 1.09 1.15 1.16 1.19

NRev 1.41 0.67 0.54 0.05 0.05 0.04

Queens 2.22 1.21 0.87 0.06 0.06 0.07

Meta Qsort 2.97 1.35 1.08 1.47 0.95 1.27

Neural 3.37 1.99 1.21 0.99 0.99 1.01

Mastermind 3.39 2.38 2.64 2.19 2.18 2.26

Browse 3.78 2.14 2.01 1.15 0.9 1.06

Disj 6.34 5.54 5.57 7.44 7.47 7.47

DNF 7.56 6.85 6.8 11.14 11.2 11.31

Boyer 8.93 5.07 2.65 7.8 5.31 2.3

SCC 10.16 7.39 7.56 9.9 8.98 9.49

Gabriel 14.11 7.38 4.33 11.57 6.74 3.58

CS 16.64 14.03 14.33 29.13 27.74 28.31

N and C 19.63 10.9 10.3 2.02 1.98 2.45

Palindrome 22.61 12.59 4.58 0.27 0.26 0.33

Zebra 28.29 26.56 28.14 29.58 29.63 31.5

Treeorder 177.01 105.29 35.46 115.97 78.28 19.84

Peep 258.64 145.01 48.41 117.09 76.77 27.17

Parser DCG 496.3 316.87 79.75 21.33 18.88 24.57

Read 882.83 555.85 104.06 101.46 63.37 32.71

R on P ∞ ∞ ∞ 2.67 2.69 6.65

Table 1: Experimental results obtained with the China analyzer.

on a Pentium90 machine with 24 MB of RAM running Linux 2.0.29, and the timings are
in seconds of user time as provided by the getrusage system call. Many of the tested
programs have become more or less standard for the evaluation of data-flow analyzers.
Notice that for these tests we have switched off all the other domains currently supported
by China

4, as well as all the mechanisms, such as widenings, that are used to throttle
the complexity of the analysis.

First of all, the results indicate that, from a practical point of view, analyses based
on Sharing without linearity or freeness do not make any sense: while the overhead for
keeping track of these additional properties is quite small, the number of star-unions
that can be avoided thanks to the extra information obtained allow for consistent, and
sometimes huge, speedups (not to count the increased precision). Exceptions to this rule,
such as in the case of the programs Disj, N and C, and Zebra are quite rare, and the
slowdown involved is always of modest entity. This fact has already been remarked (see,
e.g., [14]).

4Numerical bounds and relations, groundness, and polymorphic types.



With freeness

Without linearity With linearity

Program SS X X + red SS X X + red

Life 0.67 0.6 0.7 0.58 0.57 0.64

Kalah 1.17 1.17 1.2 1.15 1.14 1.17

NRev 0.07 0.06 0.08 0.04 0.04 0.05

Queens 0.32 0.2 0.26 0.06 0.06 0.07

Meta Qsort 1.3 0.72 0.99 1.31 0.88 1.2

Neural 1.1 1.01 1.05 0.95 0.96 0.97

Mastermind 3.2 2.92 3.18 2.46 2.47 2.58

Browse 2.07 1.44 1.66 1.16 0.94 1.11

Disj 6.31 6.4 6.41 7.04 7.05 7.15

DNF 8.14 8.07 8.02 10.89 10.72 10.85

Boyer 8.46 5.4 2.31 6.85 4.58 2.18

SCC 7.9 7.51 8.03 8.66 8.63 9.09

Gabriel 12.87 6.79 3.6 10.4 5.87 3.32

CS 14.02 14.2 14.52 26.77 26.89 27.52

N and C 22.28 13.03 10.77 1.93 1.91 2.4

Palindrome 2.98 1.57 1.37 0.24 0.24 0.3

Zebra 29.71 29.94 32.18 27.75 28.06 29.99

Treeorder 128.5 80.51 19.83 103.58 67.64 18.87

Peep 140.02 85.15 31.65 104.19 66.08 26.19

Parser DCG 14.07 12.37 16.62 19.06 17.33 23.56

Read 118.43 68.83 35.22 90.68 55.17 30.89

R on P ∞ ∞ ∞ 2.33 2.3 6.32

Table 2: Experimental results obtained with the China analyzer (cont’d).

Experimentation also shown that the X domain is indeed a good idea. By replacing
star-union with binary-union we have, in the worst case, an almost negligible slowdown.
In the best case, instead, we obtain significant speedups. It is interesting to observe that
these speedups occur when they are most needed, that is for the analysis of programs
where SS , with or without linearity, behaves badly. In other words, X has a more
stable behavior: this is no surprise, since we have replaced an algorithm with exponential
complexity with a quadratic one. This stability is highly desirable for practical data-flow
analyzers.

The last indication we can draw from the experimental results is that eliminating
the redundant elements from sharing sets requires care. Even though on the toughest
programs systematic reduction can give rise to a threefold increase in the analysis speed
(Treeorder), it can also result in a threefold slowdown (R on P). The unfavorable case
happens when reduction is repeatedly attempted on sharing sets that have few or no
redundant elements. We have conducted some experimentation on the use of heuristics
in order to trigger the reduction process. Even though the preliminary results we have



obtained with this technique are encouraging, we do not present them here mostly because
we believe that more theoretical work is needed on the subject.

Of course, analyses based on either X or X + red require less (sometimes much less)
memory than those based on SS . Moreover, our prototype implementation of both X
and X+red is the most natural one: we believe that there is much room for improvement.

6 Conclusion

We have questioned, apparently for the first time, whether the set-sharing domain Sharing
is the most adequate for tracking pair-sharing between program variables. The answer
turned out to be negative. We have presented a new domain X that is, at the same
time, a strict abstraction of SS and as precise as SS on pair-sharing. We have also shown
that no abstract domain weaker than X can enjoy this last property. This theoretical
work has led us to an important practical result: the exponential star-union operation in
the abstract unification procedure can be safely replaced by the binary-union operation,
which has quadratic complexity. We have presented preliminary experimental results,
showing that, in practice, our new domain compares favorably with SS over a wide range
of benchmark programs.

Even though space limitations do not allow us to be more precise, it must be stressed
that our theoretical results, obtained in this paper for SS , can also be obtained for the
combination (as described in [4]) of SS with Lin, where Lin is the usual domain for
linearity: a flag for each variable that indicates definite linearity. However, the results of
Section 3, as they are, cannot be applied to the combination SS with Free and, henceforth,
to SS combined with both Free and Lin (Free is the usual domain for freeness: a flag for
each variable that indicates definite freeness [4]). Beside the need to consider accuracy
with respect to the PS×Free property (where ·×· indicates the reduced product operation
[10]), we have to reconsider the concept of redundancy. Our definition of redundancy
disregards the interactions between the sharing and the freeness components [11]: a new
definition should be given that induces a finer equivalence relation. To summarize, we
cannot claim that X combined with Free is as accurate as SS combined with Free with
respect to the PS × Free property. However, from a practical point of view, we do claim
that the results of our implementation of the combination of X with Free are as accurate
as all current implementations of SS plus Free. As a matter of fact, the abstract operators
formalized in [11] appear to be characterized by an unfavorable cost/precision ratio, and
the optimal form of these operators has not been implemented. The same observations
apply when comparing the combination X plus Free plus Lin with respect to SS plus
Free plus Lin.

References

[1] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Dipar-
timento di Informatica, Università di Pisa, Italy, March 1997. Printed as Report TD-1/97.

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. Sharing revisited. Technical Report 97.19,
School of Computer Studies, University of Leeds, 1997.

[3] M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness — All at once.
In Static Analysis, Proceedings of the Third International Workshop, volume 724 of Lecture
Notes in Computer Science, pages 153–164, Padova, Italy, 1993. Springer-Verlag.



[4] M Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a composite domain
deriving sharing and freeness properties of program variables. In Proceedings of the W2
Post-Conference Workshop, ICLP’94, pages 213–230, Santa Margherita Ligure, Italy, 1994.

[5] M. Codish, D. Dams, G. Filé, and M. Bruynooghe. Freeness analysis for logic programs-and
correctness? In Proceedings of the Tenth International Conference on Logic Programming,
pages 116–131, Budapest, Hungary, 1993. The MIT Press.

[6] A. Cortesi and G. Filé. Comparison and design of abstract domains for sharing analysis.
In Proceedings of GULP’93, pages 251–265, Gizzeria, Italy, 1993.

[7] A. Cortesi, G. Filé, and W. Winsborough. The quotient of an abstract interpretation for
comparing static analyses. In Proceedings of GULP-PRODE’94, pages 372–397, Peñ́ıscola,
Spain, September 1994.

[8] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and software support for
abstract domain design: Generic structural domain and open product. Technical Report
CS-93-13, Brown University, Providence, RI, 1993.

[9] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains for
logic programming. In Conference Record of POPL’94, pages 227–239, Portland, Oregon,
1994.

[10] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of POPL’77,
pages 238–252, 1977.

[11] G. Filé. Share× Free: Simple and correct. Technical Report 15, Dipartimento di Matem-
atica, Università di Padova, December 1994.

[12] D. Jacobs and A. Langen. Accurate and efficient approximation of variable aliasing in logic
programs. In Proceedings of the North American Conference on Logic Programming, pages
154–165. The MIT Press, 1989.

[13] D. Jacobs and A. Langen. Static analysis of logic programs for independent AND paral-
lelism. Journal of Logic Programming, 13(2&3):291–314, 1992.

[14] A. King. A synergistic analysis for sharing and groundness which traces linearity. In
Proceedings ESOP’94, volume 788 of Lecture Notes in Computer Science, pages 363–378,
Edinburgh, UK, 1994. Springer-Verlag.

[15] A. King and P. Soper. Depth-k sharing and freeness. In Proceedings of the Eleventh
International Conference on Logic Programming, pages 553–568, Santa Margherita Ligure,
Italy, 1994. The MIT Press.

[16] A. Langen. Static Analysis for Independent And-Parallelism in Logic Programs. PhD
thesis, University of Southern California, 1990.

[17] K. Muthukumar and M. Hermenegildo. Combined determination of sharing and freeness
of program variables through abstract interpretation. In Proceedings of the Eighth Inter-
national Conference on Logic Programming, pages 49–63, Paris, France, 1991. The MIT
Press.

[18] H. Søndergaard. An application of abstract interpretation of logic programs: Occur check
reduction. In Proceedings of ESOP’86, volume 213 of Lecture Notes in Computer Science,
pages 327–338. Springer-Verlag, 1986.


