
Efficient Structural Information Analysis
for Real CLP Languages?

Roberto Bagnara1, Patricia M. Hill2, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy.
{bagnara,zaffanella}@cs.unipr.it

2 School of Computer Studies, University of Leeds, U. K.
hill@scs.leeds.ac.uk

Abstract. We present the rational construction of a generic domain for
structural information analysis of real CLP languages called Pattern(D]),
where the parameter D] is an abstract domain satisfying certain prop-
erties. Our domain builds on the parameterized domain for the analysis
of logic programs Pat(<), which is due to Cortesi et al. However, the
formalization of our CLP abstract domain is independent from specific
implementation techniques: Pat(<) (suitably extended in order to deal
with CLP systems omitting the occurs-check) is one of the possible im-
plementations. Reasoning at a higher level of abstraction we are able
to appeal to familiar notions of unification theory. This higher level of
abstraction also gives considerable more latitude for the implementer. In-
deed, as demonstrated by the results summarized here, an analyzer that
incorporates structural information analysis based on our approach can
be highly competitive both from the precision and, contrary to popular
belief, from the efficiency point of view.

1 Introduction

Most interesting CLP languages [16] offer a constraint domain that is an amal-
gamation of a domain of syntactic trees — like the classical domain of finite
trees (a.k.a. Herbrand domain) or the domain of rational trees [8] — with a set
of “non-syntactic” domains, like finite domains, the domain of rational num-
bers and so forth. The inclusion of uninterpreted functors is essential for pre-
serving Prolog programming techniques. Moreover, the availability of syntactic
constraints greatly contributes to the expressive power of the overall language.
When syntactic structures can be used to build aggregates of interpreted terms
one can express, for instance, “records” or “unbounded containers” of numerical
quantities.

From the experience gained with the first prototype version of the China

data-flow analyzer [2] it was clear that, in order to attain a significant precision
? This work has been partly supported by MURST project “Certificazione automatica

di programmi mediante interpretazione astratta.” Some of this work was done during
a visit of the first and third authors to Leeds, funded by EPSRC under grant M05645.

in the analysis of numerical constraints in CLP languages, one must keep at least
part of the uninterpreted terms in concrete form. Note that almost any analysis
is more precise when this kind of structural information is retained to some ex-
tent: in the case mentioned here the precision loss was just particularly acute.
Of course, structural information is very valuable in itself. When exploited for
optimized compilation it allows for enhanced clause indexing and simplified uni-
fication. Moreover, several program verification techniques are highly dependent
on this kind of information.

Cortesi et al. [9, 10], after the work of Musumbu [21], put forward a very
nice proposal for dealing with structural information in the analysis of logic pro-
grams. Using their terminology, they defined a generic abstract domain Pat(<)
that automatically upgrades a domain < (which must support a certain set of
elementary operations) with structural information.

As far as the overall approach is concerned, we extend the work described in
[10] by allowing for the analysis of any CLP language [16]. Most importantly, we
do not assume that the analyzed language performs the occurs-check in the uni-
fication procedure. This is an important contribution, since the vast majority of
implemented CLP languages (in particular, almost all Prolog systems) do omit
the occurs-check, either as a mere efficiency measure or because they are based
upon a theory of extended rational trees [8]. We describe a generic construction
for structural analysis of CLP languages. Given an abstract domain D] satisfy-
ing a small set of very reasonable and weak properties, the structural abstract
domain Pattern(D]) is obtained automatically by means of this construction.
In contrast to [10], where the authors define a specific implementation of the
generic structural domain (e.g., of the representation of term-tuples), the formal-
ization of Pattern(·) is implementation-independent: Pat(<) (suitably extended
in order to deal with CLP languages and with the occurs-check problem) is a
possible base for the implementation. Reasoning at a higher level of abstraction
we are able to appeal to familiar notions of unification theory. One advantage is
that we can identify an important parameter (a common anti-instance function)
that gives some control over the precision and computational cost of the result-
ing structural domain. In addition, we believe our implementation-independent
treatment can be more easily adapted to different analysis frameworks/systems.

One of the merits of Pat(<) is to define a generic implementation that works
on any domain < that provides a certain set of elementary, fine-grained oper-
ations. Because of the simplicity of these operations it is particularly easy to
extend an existing domain in order to accommodate them. However, this sim-
plicity has a high cost in terms of efficiency: the execution of many isolated small
operations over the underlying domain is much more expensive than performing
few macro-operations where global effects can be taken into account. The opera-
tions that the underlying domain must provide are thus more complicated in our
approach. However, this extra complication and the higher level of abstraction
give considerable more latitude for the implementer. Indeed, as demonstrated
by the results summarized here, an analyzer that incorporates structural infor-
mation analysis based on our approach can be highly competitive both from the

2

precision and the efficiency point of view. One of the contributions of this paper
is that it disproves the common belief (now reinforced by [7]) whereby abstract
domains enhanced with structural information are inherently inefficient.

The paper is structured as follows: Section 2 introduces some basic concepts
and the notation that will be used in the paper; Section 3 presents the main ideas
behind the tracking of explicit structural information for the analysis of CLP
languages; Section 4 introduces the D] and Pattern(D]) domains and explains
how an abstract semantics based on D] can systematically be upgraded to one
on Pattern(D]); Section 5 summarizes the extensive experimental evaluation
that has been conducted to validate the ideas presented in this paper; Section 6
discusses recent related work and, finally, Section 7 concludes with some final
remarks.

2 Preliminaries

Let U be a set. The cardinality of U is denoted by |U |. We will denote by
Un the set of n-tuples of elements drawn from U , whereas U∗ denotes

⋃
n∈N U

n.
Elements of U∗ will be referred to as tuples or as sequences. The empty sequence,
i.e., the only element of U0, is denoted by ε. Throughout the paper all variables
denoting sequences will be written with a “bar accent” like in s̄. For s̄ ∈ U∗, the
length of s̄ will be denoted by |s̄|. The concatenation of the sequences s̄1, s̄2 ∈ U∗
is denoted by s̄1 :: s̄2. We define the operation · \ · : U?×℘f(U)→ U? as follows.
For each s̄ ∈ U? and each set X ∈ ℘f(U), the sequence s̄ \ X is obtained by
removing from s̄ all the elements that appear in X. Formally,

ε \X def= ε;(
(x) :: s̄

)
\X def=

{
s̄ \X, if x ∈ X;
(x) :: (s̄ \X), if x /∈ X.

The projection mappings πi : Un → U are defined, for i = 1, . . . , n, by

πi
(
(e1, . . . , en)

) def= ei.

We will also use the liftings πi : ℘(Un)→ ℘(U) given by

πi(S) def=
{
πi(s̄)

∣∣ s̄ ∈ S }.
If a sequence s̄ is such that |s̄| ≥ i, we let prefixi(s̄) denote the sequence of the
first i elements of s̄.

Let Vars denote a denumerable and totally ordered set of variable symbols.
We assume that Vars contains (among others) two infinite, disjoint subsets:
z and z′. Since Vars is totally ordered, z and z′ are as well. Thus we assume
z def= (Z1, Z2, Z3, . . . and z′ def= (Z ′1, Z

′
2, Z

′
3, If W ⊆ Vars we will denote by TW

the set of terms with variables in W . For any term or a tuple of terms t we will

3

denote the set of variables occurring in t by vars(t). We will also denote by vseq(t)
the sequence of first occurrences of variables that are found on a depth-first, left-
to-right traversal of t. For instance, vseq

((
f(g(X), Y), h(X)

))
= (X,Y).

We implement the “renaming apart” mechanism by making use of two strong
normal forms for tuples of terms. Specifically, the set of n-tuples in z-form is
given by

Tn
z

def=
{
t̄ ∈ T nVars

∣∣∣ vseq(t̄) =
(
Z1, Z2, . . . , Z|vars(t̄)|

)}
.

The set of all the tuples in z-form is denoted by T∗z. The definitions for Tn
z′ and

T∗z′ are obtained in a similar way, by replacing z with z′.
There is a useful device for toggling between z- and z′-forms. Let t̄ ∈ Tn

z ∪Tn
z′

and
∣∣vars(t̄)

∣∣ = m. Then

t̄′
def=

{
t̄[Z ′1/Z1, . . . , Z

′
m/Zm], if t̄ ∈ Tn

z ;
t̄[Z1/Z

′
1, . . . , Zm/Z

′
m], if t̄ ∈ Tn

z′ .

Notice that t̄′′ def=
(
t̄′
)′ = t̄.

We will make use of a normalization function η : T ∗Vars → T∗z such that, for
each t̄ ∈ T ∗Vars , the resulting tuple η(t̄) ∈ T∗z is a variant of t̄.

For each s̄ ∈ T ∗Vars and each syntactic object o such that FV (o) ⊂ z, we write
%s̄(o) (read “rename o away from s̄”) to denote o[Zn+i1/Zi1 , . . . , Zn+im/Zim],
where n =

∣∣vars(s̄)
∣∣ and {Zi1 , . . . , Zim} = vars(o). This device will be useful for

concatenating normalized term-tuples, still obtaining a normalized term-tuple.
In fact, for each s̄1, s̄2 ∈ T∗z we have s̄1 :: %s̄1(s̄2) ∈ T∗z.

When V̄ ∈ Varsm is a finite sequence of distinct variables and t̄ ∈ T mVars we
use [t̄/V̄] as a shorthand for the substitution[

π1(t̄)/π1(V̄), . . . , πm(t̄)/πm(V̄)
]
,

if m > 0, and to denote the empty substitution if m = 0. The substitution [t̄/V̄]
is said idempotent if vars(t̄) ∩ V̄ = ∅. Suppose that s̄ = (s1, . . . , sm) ∈ T mVars

and t̄ = (t1, . . . , tm) ∈ T mVars , then, s̄ = t̄ denotes {s̄1 = t̄1, . . . , s̄m = t̄m}. It is
also useful to sometimes regard a substitution [t̄/V̄] as the finite set of equations
V̄ = t̄. A couple of observations are useful for what follows. If s̄ ∈ T∗z and ū ∈
T|vars(s̄)|

z , then s̄′
[
ū/vseq(s̄′)

]
∈ T∗z. Moreover vseq

(
s̄′
[
ū/vseq(s̄′)

])
= vseq(ū).

The logical theory underlying a CLP constraint system [16] is denoted by
T. To simplify the notation, we drop the outermost universal quantifiers from
(closed) formulas so that if F is a formula with free variables Z̄, then we write
T |= F to denote the expression T |= ∀Z̄ : F .

3 Making the Herbrand Information Explicit

A quite general picture for the analysis of a CLP language is as follows. We want
to describe a (possibly infinite) set of constraint stores over a tuple of distinct

4

variables of interest (V1, . . . , Vk). Each constraint store can be represented, at
some level of abstraction, by a formula of the kind

∃∆ .
(
{V1 = t1, . . . , Vk = tk} ∧ C

)
, (1)

such that

{V1 = t1, . . . , Vk = tk}, with t1, . . . , tk ∈ TVars , (2)

is a system of Herbrand equations in solved form, C ∈ C[is a constraint, and
∆

def= vars(C) ∪ vars(t1) ∪ · · · ∪ vars(tk) is such that ∆ ∩ {V1, . . . , Vk} = ∅.
Roughly speaking, C limits the values that the quantified variables occurring in
t1, . . . , tk can take. Notice that this treatment does not exclude the possibility of
dealing with domains of rational trees: the non-Herbrand constraints will simply
live in the constraint component. For example, the constraint store resulting
from execution of the SICStus goal ‘?- X = f(a, X)’ may be captured by

∃X .
(
{V1 = X} ∧X = f(a,X)

)
but also by

∃X .
({
V1 = f(a,X)

}
∧X = f(a,X)

)
.

Once variables V1, . . . , Vk have been fixed, the Herbrand part of the con-
straint store (1), the system of equations (2), can be represented as a k-tuple of
terms. We are thus assuming a concrete domain where the Herbrand information
is explicit and other kinds of information are captured by some given constraint
domain C[. For instance, if the target language of the analysis is CLP(R) [17], C[
may encode, in addition to the cyclic bindings due to the omission of the occurs-
check, conjunctions of equations and inequations over arithmetic expressions,
the mechanisms for delaying non-linear constraints, and other peculiarities of
the arithmetic part of the language. We assume constraints are modeled by log-
ical formulas, so that it makes sense to talk about the free variables of C[∈ C[,
denoted by FV (C[). These are the variables that the constraint solver makes
visible to the Herbrand engine, all the other variables being restricted in scope
to the solver itself. Since we want to characterize any set of constraint stores,
our concrete domain is

D[def=
⋃
n∈N

℘
({

(s̄, C[)
∣∣ s̄ ∈ Tn

z , C
[∈ C[,FV (C[) ⊆ vars(s̄)

})
partially ordered by subset inclusion.

An abstract interpretation [11] of D[can be specified by choosing an ab-
stract domain D] and a suitable abstraction function α : D[→ D]. If D] is not
able to encode enough structural information from C[so as to achieve the de-
sired precision, it is possible to improve the situation by keeping some Herbrand
information explicit. One way of doing that is to perform a change of representa-
tion for D[and use the new representation as the basis for abstraction. The new
representation is obtained by factoring out some common Herbrand information.
The meaning of ‘some’ is encoded by a function.

5

Definition 1. (Common anti-instance function.) For each n ∈ N, a func-
tion φ : ℘(Tn

z) → Tn
z′ is called a common anti-instance function if and only if

the following holds: whenever T ∈ ℘(Tn
z), if φ(T) = r̄′ and

∣∣vars(r̄′)
∣∣ = m with

m ≥ 0, then

∀t̄ ∈ T : ∃ū ∈ Tm
z . r̄′

[
ū/vseq(r̄′)

]
= t̄.

In words, φ(T) is an anti-instance [18], in z′-form, of each t̄ ∈ T .

Any choice of φ induces a function Φφ : D[→ T∗z × D[, which is given, for
each E[∈ D[, by

Φφ(E[) def=
(
s̄,
{

(ū, G[)
∣∣∣ (t̄, G[) ∈ E[, s̄′

[
ū/vseq(s̄′)

]
= t̄
})

,

where s̄′ def= φ
(
π1(E[)

)
. The corestriction to the image of Φφ, that is the function

Φφ : D[→ Φφ
(
D[
)
, is an isomorphism, the inverse being given, for each F [∈ D[,

by

Φ−1
φ

(
(s̄, F [)

) def=
{(

s̄′
[
ū/vseq(s̄′)

]
, G[

) ∣∣∣ (ū, G[) ∈ F [
}
.

So far, we have just chosen a different representation for D[, that is Φφ
(
D[
)
.

℘
(
T∗z × C[

) α //

Φφ

��

D]

T∗z × ℘
(
T∗z × C[

)
(id,α)

//

Φ−1
φ

OO

T∗z ×D]

α′

OO

Fig. 1. Upgrading a domain with structural information.

The idea behind structural information analysis is to leave the first component
of the new representation (the pattern component) untouched, while abstracting
the second component by means of α, as illustrated in Figure 1. The dotted
arrow indicates a residual abstraction function α′. As we will see in Section 4.2,
such a function is implicitly required in order to define an important operation
over the new abstract domain T∗z×D]. Notice that, in general, α′ does not make
the diagram of Figure 1 commute.

This approach has several advantages. First, factoring out common structural
information improves the analysis precision, since part of the approximated k-
tuples of terms is recorded, in concrete form, into the first component of T∗z×D].
Secondly, the above construction is adjustable by means of the parameter φ. The
most precise choice consists in taking φ to be a least common anti-instance (lca)
function. For example, the set

E[
def=
{〈(

s(0), c(Z1, nil)
)
, C1

〉
,
〈(
s(s(0)), c(Z1, c(Z2, nil))

)
, C2

〉}
,

6

where C1, C2 ∈ C[, is mapped by the Φlca function onto

Φlca(E[) =
((
s(Z1), c(Z2, Z3)

)
,{〈

(0, Z1, nil), C1

〉
,
〈(
s(0), Z1, c(Z2, nil)

)
, C2

〉})
.

At the other end of the spectrum is the possibility of choosing φ so that it returns
a k-tuple of distinct variables for each set of k-tuples of terms. This corresponds
to a framework where structural information is simply discarded. With this
choice, E[would be mapped onto

(
(Z1, Z2), E[

)
. In-between these two extremes

there are a number of possibilities that help to manage the complexity/precision
tradeoff. The tuples returned by φ can be limited in depth [20, 22], for instance.
Another possibility is to limit them in size, that is, limiting the number of
occurrences of symbols or the number of variables. This flexibility enables the
analysis’ domains to be designed without considering the structural information:
the problem for the domain designers is always to approximate the elements of
℘
(
Tk

z × C[
)

with respect to the property of interest. It does not really matter
whether k is fixed by the arity of a predicate or k is the number of variables
occurring in a pattern.

It must be stressed that the abstract interpretation framework we are outlin-
ing — the concrete semantics in particular — while providing an adequate basis
for most data-flow analyses, is “too abstract” when the properties of interest
concern the internal workings of the Herbrand constraint solver. An example is
structure-sharing analysis [23], whose aim is to determine those structure cells
(elementary objects used to represent terms) that are possibly shared by more
than one term representation. For example, the system

{V1 = f(a), V2 = f(a)} (3)

does not say anything about structure sharing: we might have a shared f/1 cell,
or two distinct ones. In the second case we might have a shared a/0 cell, or two
distinct ones. Thus, there are a total of 3 cases that cannot be distinguished by
looking at (3), the obvious consequence being that we cannot base structure-
sharing analysis on a concrete domain made up of representations of the form
(1). We thus assume that we are dealing with properties that are insensible to
the internal representation of terms.

4 Parametric Structural Information Analysis

In this section we describe how a complete abstract semantics — which includes
an abstract domain plus all the operations needed to approximate the concrete
semantics — can be turned into one keeping track of structural information.

We first need some assumptions on the domain C[, which represents the non-
Herbrand part of constraint stores. Following [13], it is not at all restrictive to

7

assume that, in order to define the concrete semantics of programs, four opera-
tions over C[need to be characterized. These model the constraint accumulation
process, parameter passing, projection, and renaming apart (see also [2, 3] on
this subject).

Constraint accumulation is modeled by the binary operator ‘⊗’ : C[×C[→ C[
and the unsatisfiability condition in the constraint solver is modeled by the
special value ⊥[∈ C[. Notice that, while ‘⊗’ may be reasonably expected to
satisfy certain properties, such as ∀C[∈ C[: ⊥[⊗ C[= ⊥[, these are not really
required for what follows. The same applies to all the other operators we will
introduce: only properties that are actually used will be singled out.

Parameter passing requires, roughly speaking, the ability of adding equality
constraints to a constraint store. Notice that we assume C[and its operations
encode both the proper constraint solver and the so called interface between the
Herbrand engine and the solver [16]. In particular, the interface is responsible for
type-checking of the equations it receives. For example in CLP(R) the interface is
responsible for the fact that X = a cannot be consistently added to a constraint
store where X was previously classified as numeric.

Another ingredient for defining the concrete semantics of any CLP system
is the projection of a satisfiable constraint store onto a set of variables. This is
modeled by the family of operators

{
¶[∆ : C[→ C[

∣∣ ∆ ∈ ℘f(Vars)
}

. If ∆ is a
finite set of variables and C[∈ C[represents a satisfiable constraint store (i.e.,
C[6= ⊥[), then ¶[∆ C[represents the projection of C[onto the variables in ∆.

Let s̄, t̄, ū ∈ T∗z be normalized term tuples and C[, G[∈ C[such that
FV (C[) ⊆ vars(t̄). We use the notation (ū, G[) = %s̄

(
(t̄, C[)

)
meaning that

ū = %s̄(t̄) and that G[has been obtained from C[by applying the same re-
naming applied to t̄ in order to obtain ū. This device is needed in order to
ensure renaming apart. Similarly, we will write (ū, G[) = η

(
(t̄, C[)

)
meaning

that ū = η(t̄) and that G[has been obtained from C[by applying the same
renaming applied to t̄ in order to obtain ū.

It is often helpful to think of C[as made up of first-order formulas [3]: in
this view, ‘· ⊗ ·’ is logical conjunction, parameter passing amounts to conjunc-
tion of a formula with an equality formula, and ‘¶[∆ ·’ corresponds to existential
quantification on the variables in Vars \ ∆. While this is exactly how the “in-
tended semantics” of CLP languages is captured, more concrete, non-standard
semantics are often useful for the purpose of data-flow analysis. For instance, if
the analysis must be sensible to the order in which constraints are posted to the
solver, ‘· ⊗ ·’ cannot be interpreted as logical conjunction (it will not even be
commutative, for that matter) [13].

We will now show how any abstract domain can be upgraded so as to capture
structural information by means of the Pattern(·) construction. Then we will
focus our attention on the abstract semantic operators.

8

4.1 From D] to Pattern(D])

Since one of the driving aims of this work is maximum generality, we refer to a
very weak abstract interpretation framework [11]. To start with, we assume very
little on abstract domains.

Definition 2. (Abstract domain for D[.) An abstract domain for D[is a set
P] equipped with a preorder relation ‘�’ ⊆ P]×P], an order preserving function
γ : P] → D[, and a least element ⊥] such that γ(⊥]) = ∅. Moreover, γ is such
that if (p̄1, C

[) ∈ γ(E]), and T |= C[→ p̄1 = p̄2, then η
(
(p̄2, C

[)
)
∈ γ(E]).

Informally, P] is a set of abstract properties on which the notion of “relative
precision” is captured by the preorder ‘�’. Moreover, P] is related to the concrete
domain D[by means of a concretization function γ that specifies the soundness
correspondence between D[and P]. The distinguished element ⊥] models an
impossible state of affairs.1 In this framework, d] ∈ P] is a safe approximation
of d[∈ D[if and only if d[⊆ γ(d]).

Suppose we are given an abstract domain complying with Definition 2. Here
is how it can be upgraded with explicit structural information.

Definition 3. (The Pattern(·) construction.) Let D] be an abstract domain
for D[and let γ be its concretization function. Then

Pattern(D]) def= {⊥]p} ∪
{

(s̄, E]) ∈ T∗z ×D]
∣∣∣ γ(E]) ⊆ T|vars(s̄)|

z × C[
}
.

The meaning of each element (s̄, E]) ∈ Pattern(D]) is given by the concretization
function γp : Pattern(D])→ D[such that γp(⊥]p)

def= ∅ and

γp
(
(s̄, E])

) def=

{
η
(
(r̄, C[)

) ∣∣∣∣∣ (ū, C[) ∈ γ(E])
T |= C[→ r̄ = s̄′

[
ū/vseq(s̄′)

] }.
The binary relation ‘�p’ ⊆ Pattern(D])×Pattern(D]) is given, for each d]1, d

]
2 ∈

Pattern(D]), by

d]1 �p d
]
2

def⇐⇒ γp(d
]
1) ⊆ γp(d]2),

It is easily seen that Pattern(D]) is an abstract domain in the sense of Defini-
tion 2 provided D] is so. The ordering on the underlying domain is preserved by
the Pattern(D]) domain.

Proposition 1. If (s̄, E]1), (s̄, E]2) ∈ Pattern(D]), then

γ(E]1) ⊆ γ(E]2) =⇒ γp
(
(s̄, E]1)

)
⊆ γp

(
(s̄, E]2)

)
.

1 At this stage of the presentation, ⊥] is not really required and could be dispensed
with. However, it is simplest to postulate its existence and properties now.

9

Proof. Suppose that γ(E]1) ⊆ γ(E]2). Then, by Definition 3, we have

γp
(
(s̄, E]1)

)
=

{
η
(
(t̄, C[)

) ∣∣∣∣∣ (ū, C[) ∈ γ(E]1)
T |= C[→ t̄ = s̄′

[
ū/vseq(s̄′)

] }

⊆

{
η
(
(t̄, C[)

) ∣∣∣∣∣ (ū, C[) ∈ γ(E]2)
T |= C[→ t̄ = s̄′

[
ū/vseq(s̄′)

] }
= γp

(
(s̄, E]2)

)
.

ut

Up to now we have obtained from D] a new abstract domain Pattern(D])
that can constitute the basis for designing an abstract semantics for CLP. This
will usually require selecting an abstract semantic function on Pattern(D]), an
effective convergence criterion for the abstract iteration sequence (notice that
the ‘�’ and ‘�p’ relations are not required to be computable), and perhaps
a convergence acceleration method ensuring rapid termination of the abstract
interpreter [11]. The last ingredient to complete the recipe is a computable way
to associate an abstract description d] ∈ Pattern(D]) to each concrete property
d[∈ D[.2 For this purpose, we assume the existence of a computable function
αp : D[→ Pattern(D]) such that, for each d[∈ D[, we have d[⊆ γp

(
αp(d[)

)
.

While one option is to design from scratch an abstract semantics based on
Pattern(D]), it is more interesting to start with an abstract semantics centered
around D]. In this case, it is possible to systematically lift the semantic con-
struction to Pattern(D]).

4.2 Operations over D] and Pattern(D])

We now present the abstract operations we assume on D] and the derived oper-
ations over Pattern(D]). Each operator on D] is introduced by means of safety
conditions that ensure the soundness of the derived operators over Pattern(D]).

Given the abstract domain, there are still many degrees of freedom for the
design of a constructive abstract semantics. Thus, choices have to be made in
order to give a precise characterization. In what follows we continue to strive for
maximum generality. Where this is not possible we detail the design choices we
have made in the development of the China analyzer [2]. While some things may
need adjustments for other analysis frameworks, the general principles should
be clear enough for anyone to make the necessary changes.

Meet with Renaming Apart We call meet with renaming apart (denoted
by ‘B’) the operation of taking two descriptions in D] and, roughly speaking,
2 Strictly speaking, one could require computability of the method to hold only for

a strict subset of D[(e.g., depending on the kind of abstract iteration sequence
employed, only the elements of D[describing initial and/or final states need to be
effectively associated with an abstract counterpart).

10

juxtaposing them. This is needed when “solving” a clause body with respect to
the current interpretation and corresponds, at the concrete level, to a renaming
followed by an application of the ‘⊗’ operator. Its counterpart on Pattern(D])
is denoted by ‘rmeet’ and defined as follows.

Definition 4. (‘B’ and ‘rmeet’) Let ‘B’ : D]×D] → D] be such that, for each
E]1, E

]
2 ∈ D],

γ(E]1 B E
]
2) =

 η
(
(r̄, C[1 ⊗G[2)

)
∣∣∣∣∣∣∣∣∣
(r̄1, C

[
1) ∈ γ(E]1)

(r̄2, C
[
2) ∈ γ(E]2)

(w̄2, G
[
2) = %r̄1

(
(r̄2, C

[
2)
)

T |= (C[1 ⊗G[2)→ r̄ = r̄1 :: w̄2

.
Then, for each (s̄1, E

]
1), (s̄2, E

]
2) ∈ Pattern(D]),

rmeet
(
(s̄1, E

]
1), (s̄2, E

]
2)
) def=

(
s̄1 :: %s̄1(s̄2), E]1 B E

]
2

)
.

A consequence of this definition is that there is no precision loss in ‘rmeet’.

Theorem 1. For each (s̄1, E
]
1), (s̄2, E

]
2) ∈ Pattern(D]),

γp

(
rmeet

(
(s̄1, E

]
1), (s̄2, E

]
2)
))

=

 η
(
(t̄, C[1 ⊗G[2)

)
∣∣∣∣∣∣∣∣∣
(t̄1, C[1) ∈ γp

(
(s̄1, E

]
1)
)

(t̄2, C[2) ∈ γp
(
(s̄2, E

]
2)
)

(ū2, G
[
2) = %t̄1

(
(t̄2, C[2)

)
T |= C[1 ⊗G[2 → t̄ = t̄1 :: ū2

.
Proof. To simplify the notation, let q̄2 = %s̄1(s̄2). Then

γp

(
rmeet

(
(s̄1, E

]
1), (s̄2, E

]
2)
))

= γp

((
s̄1 :: q̄2, E

]
1 B E

]
2

))
[by Definition 4]

=

{
η
(
(t̄, C[)

) ∣∣∣∣∣ (ū, C[) ∈ γ(E]1 B E
]
2)

T |= C[→ t̄ = (s̄′1 :: q̄′2)
[
ū/vseq(s̄′1 :: q̄′2)

] } (4)

[by Definition 3]

Now, by the definition of B, we have (ū, C[) ∈ γ(E]1 B E
]
2) if and only if all the

following hold:

(r̄1, C
[
1) ∈ γ(E]1), (r̄2, C

[
2) ∈ γ(E]2),

(w̄2, G
[
2) = %r̄1

(
(r̄2, C

[
2)
)
, C[= C[1 ⊗G[2,

T |= C[→ ū = r̄1 :: w̄2.

11

By the definition of Pattern(D]) |r̄1| = |vars(s̄1)| and |w̄2| = |vars(q̄2)| =
|vars(s̄2)|. Hence, the expression (4) can be rewritten as η

(
(t̄, C[1 ⊗G[2)

)
∣∣∣∣∣∣∣∣∣
(r̄1, C

[
1) ∈ γ(E]1)

(r̄2, C
[
2) ∈ γ(E]2)

(w̄2, G
[
2) = %r̄1

(
(r̄2, C

[
2)
)

T |= C[1 ⊗G[2 → t̄ = s̄′1
[
r̄1/vseq(s̄′1)

]
:: q̄′2

[
w̄2/vseq(q̄′2)

]
.
(5)

Suppose that, for some t̄1 ∈ Tvars(r̄1), ū2 ∈ Tvars(w̄2),

T |= C[1 → t̄1 = s̄′1
[
r̄1/vseq(s̄′1)

]
T |= G[2 → ū2 = q̄′2

[
w̄2/vseq(q̄′2)

]
.

We note that, by the definition of the renaming function %,

q̄′2
[
w̄2/vseq(q̄′2)

]
= s̄′2

[
w̄2/vseq(s̄′2)

]
so that

T |= G[2 → ū2 = s̄′2
[
w̄2/vseq(s̄′2)

]
.

It therefore follows from the definition of (w̄2, G
[
2) that as vars(ū2) = vars(w̄2)

and vars(t̄1) = vars(r̄1), there exists t̄2 ∈ Tvars(r̄2) such that

(ū2, G
[
2) = %t̄1

(
(t̄2, C[2)

)
and

T |= C[2 → t̄2 = s̄′2
[
r̄2/vseq(s̄′2)

]
.

Then, by Definition 3, the expression (5) is equal to η
(
(t̄, C[1 ⊗G[2)

)
∣∣∣∣∣∣∣∣∣
(t̄1, C[1) ∈ γp

(
(s̄1, E

]
1)
)

(t̄2, C[2) ∈ γp
(
(s̄2, E

]
2)
)

(ū2, G
[
2) = %t̄1

(
(t̄2, C[2)

)
T |= C[1 ⊗G[2 → t̄ = t̄1 :: ū2

.
ut

Parameter Passing Concrete parameter passing is realized by an extended
unification procedure. Unification is extended because it must involve the con-
straint solver(s). Remember that our notion of “constraint solver” includes also

12

the interface between the Herbrand engine and the proper solver [16]. The in-
terface needs to be notified about all the bindings performed by the Herbrand
engine in order to maintain consistency between the solver and the Herbrand
part. We also assume that CLP programs are normalized in such a way that
interpreted function symbols only occur in explicit constraints. Note that this
is not a restriction, since this kind of normalization is either required by the
language syntax itself (for instance, this is the case of the clp(Q, R) libraries
of SICStus Prolog) or is performed automatically by the CLP system (see, e.g.,
[19] for a description of how normalization can be achieved).

At the abstract level we do not prescribe the use of any particular algorithm.
This is to keep our approach as general as possible. For instance, an implemen-
tor is not forced to use any particular representation for term-tuples (as in [10]).
Similarly, one can choose any sound unification procedure that works well with
the selected representation. Of particular interest is the possibility of choosing
a representation and procedure that closely match the ones employed in the
concrete language being analyzed. In the current version of the China analyzer
we adopted a representation of terms similar to the one used in the Warren’s
Abstract Machine and its variants [1] and a unification procedure derived from
[14]. In this case, all the easy steps typical of any unification procedure (functor
name/arity checks, peeling, and so on) are handled, at the abstract level, ex-
actly as they are at the concrete level.3 The only crucial operation in abstract
parameter passing over Pattern(D]) is the binding of an abstract variable to an
abstract term. This is performed by first applying a non-cyclic approximation
of the binding to the pattern component and then notifying the original (pos-
sibly cyclic) binding to the abstract constraint component. The correctness of
this approach, proved below, assumes the existence of a bind operator on the
underlying abstract constraint system satisfying the following condition.

Definition 5. (bind) Let E] ∈ D] be a description such that γ(E]) ⊆ Tm
z ×C[.

Let Z̄ = (Z1, . . . , Zm), u ∈ TZ̄ , vseq(u) = (Zj1 , . . . , Zjl) and let 1 ≤ h ≤ m.
Then, define

(k1, . . . , km1) def=
(

(1, . . . , h− 1)

::
(
(j1, . . . , jl) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {j1, . . . , jl}

))
.

3 Thus greatly reducing the proof obligations. For instance, termination of the abstract
unification procedure will be a consequence of termination of the concrete one.

13

If E]1
def= bind(E], u, Zh), then,

γ(E]1) ⊇

η
(
(q̄θ, C[1)

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(p̄, C[) ∈ γ(E])
p̄ = (p1, . . . , pm)
q̄ = (pk1 , . . . , pkm1

)
θ is an idempotent substitution
FV (C[1) ⊆ vars(q̄θ)
T |= θ ← (Z ′h = u′)[p̄/Z̄ ′]
T |= C[1 ↔

(
(Z ′h = u′)[p̄/Z̄ ′] ∧ C[

)
θ

.

Note that m1 = m− 1 if Zh /∈ vars(u), and m1 = m, otherwise.

Suppose we take any sound unification algorithm and modify it as follows:

1. add a new parameter consisting of a description in D];
2. replace the step that performs the binding Zh 7→ u, by one that performs

the binding Zh 7→ u[Znew/Zh] (where Znew is a fresh variable that avoids
the creation of cyclic terms in the pattern component), and updates the
description E] to bind(E], u, Zh);

3. add an η-normalization step so that the final result is still a description in
Pattern(D]).

With the above definition for bind the only difficult part of the proof of correct-
ness of the abstract (modified) unification algorithm with respect to the concrete
(original) algorithm is a corollary of the following result.

Theorem 2. Let (s̄, E]) ∈ Pattern(D]), (p̄, C[) ∈ γ(E]), Z̄ = (Z1, . . . , Zm) =
vseq(s̄), Zh ∈ Z̄, u ∈ TZ̄ , vseq(u) = (Zj1 , . . . , Zjl), and

(k1, . . . , km1) =
(

(1, . . . , h− 1)

::
(
(j1, . . . , jl) \ {1, . . . , h− 1}

)
::
(
(h+ 1, . . . ,m) \ {j1, . . . , jl}

))
.

We define

p̄
def= (p1, . . . , pm),

q̄
def= (pk1 , . . . , pkm1

).

Suppose that, for some idempotent substitution θ with variables in z and con-
straint C[1 ∈ C[such that FV (C[1) ⊆ vars(q̄θ),

E]1 = bind(E], Zh, u
)

T |= θ ← (Z ′h = u′)[p̄/Z̄ ′]

T |= C[1 ↔
(
(Z ′h = u′)[p̄/Z̄ ′] ∧ C[

)
θ

w = u[Zm+1/Zh]

14

Then
(
η
(
s̄[w/Zh]

)
, E]1

)
∈ Pattern(D]) and

η
((
s̄′[p̄θ/Z̄ ′], C[1

))
∈ γp

((
η
(
s̄[w/Zh]

)
, E]1

))
.

Proof. The following terminology is used in the proof. A substitution [W̄/V̄] is
called a renaming substitution in z for V̄ if W̄ is a sequence of distinct variables
in z (though not necessarily disjoint from V̄).

Note that, since Zm+1 /∈ vars(s̄) ∪ vars(u), w is a variant of u, and, hence,
s̄[w/Zh] is a variant of s̄[u/Zh] so that η

(
s̄[w/Zh]

)
= η

(
s̄[u/Zh]

)
. Therefore, we

just need to show that(
η
(
s̄[u/Zh]

)
, E]1

)
∈ Pattern(D])

and

η
((
s̄′[p̄θ/Z̄ ′], C[1

))
∈ γp

((
η
(
s̄[u/Zh]

)
, E]1

))
.

Note that m1 = m − 1 if Zh /∈ vars(u), and m1 = m, otherwise. Note also
that Zh[p̄/Z̄] = ph.

Let ν be a renaming substitution in z for s̄[u/Zh] such that

s̄[u/Zh]ν = η
(
s̄[u/Zh]

)
. (6)

Then, using the definition of (k1, . . . , km1), we have

(Z1, . . . , Zm1) = (Zk1 , . . . , Zkm1
)ν.

However, by definition of (k1, . . . , km1),

(Zk1 , . . . , Zkm1
) = vseq

(
s̄[u/Zh]

)
(7)

so that

(Z1, . . . , Zm1) = vseq
(
η
(
s̄[u/Zh]

))
. (8)

Thus, we have the first of the required results that(
η
(
s̄[u/Zh]

)
, E]1

)
∈ Pattern(D]).

Let µ be a renaming substitution in z for vars(p̄) ∪ vars(θ) such that

q̄θµ = η(q̄θ). (9)

Then, by the hypothesis, Eq. 9, and Definition 5,

(q̄θµ, C[1µ) = η
(
(q̄θ, C[1)

)
∈ γ(E]1). (10)

15

Also, as vseq(s̄′) = Z̄ ′ and, by the hypothesis, FV (C[1) ⊆ vars(p̄θ), we have

η
((
s̄′[p̄θ/Z̄ ′]µ,C[1µ

))
= η

((
s̄′[p̄θ/Z̄ ′], C[1

))
. (11)

Observe that, by the hypothesis,

T |= C[1 →
(
(Z ′h = u′)[p̄/Z̄ ′]

)
θ,

T |= C[1 →
(
ph = u′[p̄/Z̄ ′]

)
θ,

T |= C[1 → phθ = u′[p̄/Z̄ ′]θ,

so that, as Z̄ ′ ⊇ vars(u′),

T |= C[1 → phθ = u′[p̄θ/Z̄ ′]. (12)

Now, since [p̄θ/Z̄ ′] is idempotent, we have

s̄′
[
u′[p̄θ/Z̄ ′]/Z ′h

]
[p̄θ/Z̄ ′] = s̄′[u′/Z ′h][p̄θ/Z̄ ′] (13)

and also, as Z ′h 7→ phθ is a binding in [p̄θ/Z̄ ′],

s̄′[p̄θ/Z̄ ′] = s̄′[phθ/Z ′h][p̄θ/Z̄ ′]. (14)

Hence,

T |= C[1 → s̄′[p̄θ/Z̄ ′] = s̄′[phθ/Z ′h][p̄θ/Z̄ ′]
[by (14)]

T |= C[1 → s̄′[p̄θ/Z̄ ′] = s̄′
[
u′[p̄θ/Z̄ ′]/Z ′h

]
[p̄θ/Z̄ ′]

[by (12)]

T |= C[1 → s̄′[p̄θ/Z̄ ′] = s̄′[u′/Z ′h][p̄θ/Z̄ ′]
[by (13)]

T |= C[1µ→ s̄′[p̄θ/Z̄ ′]µ =
(
s̄[u/Zh]

)′[
p̄θ/Z̄ ′

]
µ (15)

[by applying µ].

However,(
s̄[u/Zh]

)′[
p̄θ/Z̄ ′

]
µ =

(
s̄[u/Zh]

)′[
p̄θµ/Z̄ ′

]
[as µ is a renaming for vars(p̄) ∪ vars(θ) ⊆ z]

=
(
s̄[u/Zh]

)′[
q̄θµ/(Zk1 , . . . , Zkm1

)′
]

[by the definition of q̄ and (7)]

=
(
s̄[u/Zh]ν

)′[
q̄θµ/(Z1, . . . , Zm1)′

]
.

[by definition of ν]

16

Therefore, by (15),

T |= C[1µ→ s̄′[p̄θ/Z̄ ′]µ =
(
s̄[u/Zh]ν

)′[
q̄θµ/(Z1, . . . , Zm1)′

]
. (16)

It therefore follows from (8), (10), and (16) that we can apply Definition 3
and hence obtain

η
((
s̄′[p̄θ/Z̄ ′]µ,C[1µ

))
∈ γp

((
η
(
s̄[u/Zh]ν

)
, E]1

))
.

Therefore, by (11) and (6), we have the required result

η
((
s̄′[p̄θ/Z̄ ′], C[1

))
∈ γp

((
η
(
s̄[u/Zh]

)
, E]1

))
.

ut

Projection When all the goals in a clause body have been solved, projection is
used to restrict the abstract description to the tuple of arguments of the clause’s
head. The projection operations on D[consist simply in dropping a suffix of
the term-tuple component, with the consequent projection on the underlying
constraint domain.

Definition 6. (‘project[k’)
{

project[k : D[→ D[
∣∣ k ∈ N} is a family of opera-

tions such that, for each k ∈ N and each (ū, C[) ∈ D[with |ū| ≥ k,

project[k
(
(ū, C[)

) def=
(
prefixk(ū),¶[∆ C[

)
,

where ∆ def= vars
(
prefixk(ū)

)
.

We now introduce the corresponding projection operations on Pattern(D])
and, in order to establish their correctness, we impose a safety condition on the
projection operations of D].

Definition 7. (¶]k and project]k) Assume we are given a family of operations{
¶]k : D] → D]

∣∣ k ∈ N} such that, for each E] ∈ D] with γ(E]) ⊆ Tm
z ×C[and

each k ≤ m,

γ
(
¶]k E

]
)
⊇
{

project[k
(
(ū, C[)

) ∣∣∣ (ū, C[) ∈ γ(E])
}
.

Then, for each (s̄, E]) ∈ Pattern(D]) such that s̄ ∈ Tm
z and each k ≤ m, we

define

project]k
(
(s̄, E])

) def=
(
prefixk(s̄),¶]j E

]
)
,

where j def=
∣∣vars

(
prefixk(s̄)

)∣∣.
17

With these definitions ‘project]k’ is correct with respect to ‘project[k’.

Theorem 3. For each (s̄, E]) ∈ Pattern(D]) such that s̄ ∈ Tm
z and each k ≤ m,

γp

(
project]k

(
(s̄, E])

))
⊇
{

project[k
(
(p̄, C[)

) ∣∣∣ (p̄, C[) ∈ γp((s̄, E])) }.
Proof. In the following we let s̄k

def= prefixk(s̄), j def=
∣∣vars(s̄k)

∣∣, r̄j def= prefixj(r̄).
Then

γp

(
project]k

(
(s̄, E])

))
= γp

(
(s̄k,¶]j E

])
)

[by Definition 7]

=

{
η
(
(q̄, G[)

) ∣∣∣∣∣ (ū, G[) ∈ γ(¶]j E])
T |= G[→ q̄ = s̄′k

[
ū/vseq(s̄′k)

] }
[by Definition 3]

⊇

 η
(
(q̄, G[)

) ∣∣∣∣∣∣∣
(ū, G[) = project[j

(
(r̄, C[)

)
(r̄, C[) ∈ γ(E])
T |= G[→ q̄ = s̄′k

[
ū/vseq(s̄′k)

]

[by Definition 7]

=

{
η
(
(q̄,¶[vars(r̄j)

C[)
) ∣∣∣∣∣ (r̄, C[) ∈ γ(E])

T |= ¶[vars(r̄j)
C[→ q̄ = s̄′k

[
r̄j/vseq(s̄′k)

] }
[by Definition 6]

=

{
η
(
(prefixk(p̄),¶[vars(r̄j)

C[)
) ∣∣∣∣∣ (r̄, C[) ∈ γ(E])

T |= C[→ p̄ = s̄′
[
r̄/vseq(s̄′)

] }
[by Definition 2]

=
{(

prefixk(p̄),¶[vars(r̄j)
C[
) ∣∣∣ (p̄, C[) ∈ γp((s̄, E])) }

[by Definition 3]

=
{

project[k
(
(p̄, C[)

) ∣∣∣ (p̄, C[) ∈ γp
(
(s̄, E])

)}
[by Definition 6].

ut

Remapping The operation of remapping is used to adapt a description in
Pattern(D]) to a different, less precise, pattern component. Remapping is essen-
tial to the definition of various join and widening operators. Consider a descrip-
tion (s̄, E]s̄) ∈ Pattern(D]) and a pattern r̄′ ∈ T∗z′ such that r̄′ is an anti-instance
of s̄. We want to obtain E]r̄ ∈ D] such that

γp
(
(r̄, E]r̄)

)
⊇ γp

(
(s̄, E]s̄)

)
. (17)

18

This is what we call remapping (s̄, E]s̄) to r̄′.

Definition 8. (‘remap’) Let (s̄, E]s̄) ∈ Pattern(D]) be a description with s̄ ∈ Tk
z

and let r̄′ ∈ Tk
z′ be an anti-instance of s̄. Assume also

∣∣vars(r̄′)
∣∣ = m and let

ū ∈ Tm
z be the unique tuple such that r̄′

[
ū/vseq(r̄′)

]
= s̄. Then the operation

remap(s̄, E]s̄, r̄′) yields E]r̄ such that γ(E]r̄) ⊇ γp
(
(ū, E]s̄)

)
.

Observe that the remap function is closely related to the residual abstraction
function α′ of Figure 1.4 With this definition, the specification of ‘remap’ meets
our original requirement given by (17).

Theorem 4. Let (s̄, E]s̄) be a description with s̄ ∈ Tk
z. Let also r̄′ ∈ Tk

z′ be an
anti-instance of s̄. If E]r̄ = remap(s̄, E]s̄, r̄′) then γp

(
(r̄, E]r̄)

)
⊇ γp

(
(s̄, E]s̄)

)
.

Proof. Assume
∣∣vars(r̄′)

∣∣ = m and let ū ∈ Tm
z be the unique tuple such that

r̄′
[
ū/vseq(r̄′)

]
= s̄. (18)

Then,

γp
(
(r̄, E]r̄)

)
=

{
η
(
(q̄, C[)

) ∣∣∣∣∣ (w̄, C[) ∈ γ(E]r̄)
T |= C[→ q̄ = r̄′

[
w̄/vseq(r̄′)

] }
[by Definition 3]

⊇

{
η
(
(q̄, C[)

) ∣∣∣∣∣ (w̄, C[) ∈ γp
(
(ū, E]s̄)

)
T |= C[→ q̄ = r̄′

[
w̄/vseq(r̄′)

] }
[since, by Definition 8, we have γ(E]r̄) ⊇ γp

(
(ū, E]s̄)

)
]

=

 η
(
(q̄, C[)

) ∣∣∣∣∣∣
(t̄, C[) ∈ γ(E]s̄)

T |= C[→ q̄ =
(
r̄′
[
ū/vseq(r̄′)

])′[
t̄/vseq(ū′)

]

[by Definition 3]

=

{
η
(
(q̄, C[)

) ∣∣∣∣∣ (t̄, C[) ∈ γ(E]s̄)
T |= C[→ q̄ = s̄′

[
t̄/vseq(s̄′)

] }
[by (18), since s̄ = r̄′

[
ū/vseq(r̄′)

]
and hence, vseq(ū) = vseq(s̄)]

= γp
(
(s̄, E]s̄)

)
[by Definition 3].

ut

4 Indeed, one can define α′
def
= λ(s̄, E]) ∈ Tk

z ×D] . remap
(
s̄, E], (Z′1, . . . , Z

′
k)
)
.

19

Upper Bound Operators A concrete (collecting) semantics for CLP will typ-
ically use set union to gather results coming from different computation paths.
We assume that our base domain D] captures this operation by means of an
upper bound operator ‘⊕’.

Definition 9. A partial function ⊕ : D]×D]� D] is an upper bound operator
over D] if and only if, for each E]1, E

]
2 ∈ D] such that E]1 ⊕ E

]
2 is defined, we

have E]1 � E
]
1 ⊕ E

]
2 and E]2 � E

]
1 ⊕ E

]
2.

The operation of merging two descriptions in Pattern(D]) is defined in terms
of ‘remap’. Let (s̄1, E

]
1) and (s̄2, E

]
2) be two descriptions with s̄1, s̄2 ∈ Tk

z . The
resulting description is

(
r̄, E]1⊕E

]
2

)
, where r̄′ ∈ Tk

z′ is an anti-instance of both s̄1

and s̄2, and E]i = remap(s̄i, E
]
i , r̄
′), for i = 1, 2. We note again that r̄′ might be

the least common anti-instance of s̄1 and s̄2, or it can be a further approximation
of lca(s̄1, s̄2): this is one of the degrees of freedom of the framework. Thus, the
family of operations we are about to present is parameterized with respect to a
common anti-instance function and the analyzer may dynamically choose which
anti-instance function is used at each step.

Definition 10. (‘joinφ’) Let φ be any common anti-instance function and ‘⊕’
an upper bound operator over D]. The operation (partial function)

joinφ : ℘f

(
Pattern(D])

)
� Pattern(D])

is defined as follows. For each k, I ∈ N and each finite family

F
def=
{

(s̄i, E
]
i)
∣∣ i ∈ I, s̄i ∈ Tk

z

}
of elements of Pattern(D]), if

⊕
i∈I remap(s̄i, E

]
i , r̄
′) is defined, then

joinφ(F) def= (r̄, E]),

where

r̄′
def= φ

(
{ s̄i | i ∈ I }

)
,

E]
def=
⊕
i∈I

remap(s̄i, E
]
i , r̄
′).

If φ is any common anti-instance function then ‘joinφ’ is an upper bound
operator on the domain Pattern(D]).

Theorem 5. For each k ∈ N, let F def=
{

(s̄i, E
]
i)
}
i∈I be a finite family of el-

ements of Pattern(D]) such that s̄i ∈ Tk
z, for each i ∈ I. For each common

anti-instance function φ and each j ∈ I we have γp
(
joinφ(F)

)
⊇ γp

(
(s̄j , E

]
j)
)
.

20

Proof. Let j ∈ I, r̄′ def= φ
(
{s̄i}i∈I

)
and E]

def=
⊕

i∈I remap(s̄i, E
]
i , r̄
′). Then r̄′ is

an anti-instance of s̄j and, by Definition 9, E]j � E]. Thus

γp
(
joinφ(F)

)
⊇ γp

(
(r̄, E])

)
[by Definition 10]

⊇ γp
((
r̄, remap(s̄j , E

]
j , r̄
′)
))

[by Proposition 1]

⊇ γp
(
(s̄j , E

]
j)
)

[by Theorem 4]

ut

Widenings It is possible to devise a (completely unnatural) abstract domain
D] that enjoys the ascending chain condition5 still preventing Pattern(D]) from
possessing the same property. This despite the fact that any element of Tn

z has
a finite number of distinct anti-instances in Tn

z . However, this problem is of
no practical interest if the analysis applies ‘joinφ’ at each step of the iteration
sequence. In this case, if we denote by (s̄j , E

]
j) ∈ Pattern(D]) the description at

step j ∈ N, we have (s̄i+1, E
]
i+1) = joinφ

({
(s̄i, E

]
i), . . .

})
, assuming no widening

is employed. This implies that s̄′i+1 is an anti-instance of s̄i. As any ascending
chain in Tn

z is finite, the iteration sequence will eventually stabilize if D] enjoys
the ascending chain condition.

In some cases, however, rapid termination of the analysis on D] can only be
ensured by using one or more widening operators ∇ : D] ×D] → D] [12]. These
can be lifted to work on Pattern(D]). As an example, we show the default lifting
used by the China analyzer:

widen
(
(s̄1, E

]
1), (s̄2, E

]
2)
) def=

{
(s̄2, E

]
2), if s̄1 6= s̄2;

(s̄2, E
]
1 ∇ E

]
2), if s̄1 = s̄2.

(19)

This operator refrains from widening unless the pattern component has stabi-
lized. A more drastic choice for a widening is given by

Widen
(
(s̄1, E

]
1), (s̄2, E

]
2)
) def=

(
s̄2, remap(s̄1, E

]
1, s̄
′
2)∇ E]2

)
. (20)

Widenings only need to be evaluated over (s̄1, E
]
1) and (s̄2, E

]
2) when s̄′2 is an

anti-instance of s̄1. Thus, as Tn
z satisfies the ascending chain condition, ‘widen’

and ‘Widen’ are well-defined widening operators on Pattern(D]).

Theorem 6. For i = 1, 2, suppose (s̄i, E
]
i) ∈ Pattern(D]) where s̄′2 is an anti-

instance of s̄1 and γp
(
(s̄1, E

]
1)
)
⊆ γp

(
(s̄2, E

]
2)
)

holds. Then
5 Namely, each strictly increasing chain is finite.

21

1. γp
(
(s̄2, E

]
2)
)
⊆ γp

(
widen

(
(s̄1, E

]
1), (s̄2, E

]
2)
))

;

2. γp
(
(s̄2, E

]
2)
)
⊆ γp

(
Widen

(
(s̄1, E

]
1), (s̄2, E

]
2)
))

.

Proof. (1) Suppose (s̄, E]) = widen
(
(s̄1, E

]
1), (s̄2, E

]
2)
)
. By the definition of widen,

if s̄1 6= s̄2, then (s̄, E]) = (s̄2, E
]
2) and there is nothing left to prove. If s̄1 = s̄2,

then (s̄, E]) = (s̄2, E
]
1 ∇ E]2). As ∇ is a widening on the D] domain, we have

E]2 � E]1 ∇ E]2. By γ monotonicity, this implies γ(E]2) ⊆ γ(E]1 ∇ E]2) and the
result follows from Proposition 1.

(2) Suppose (s̄, E]) = Widen
(
(s̄1, E

]
1), (s̄2, E

]
2)
)
, so that we have s̄ = s̄2 and

E] = remap(s̄1, E
]
1, s̄
′
2)∇ E]2.

As ∇ is a widening on the D] domain, we have E]2 � E]. Again, the result follows
from γ monotonicity and Proposition 1. ut

Besides ensuring termination, widening operators are also used to accelerate
convergence of the analysis. It is therefore important to be able to define widen-
ing operators on Pattern(D]) without relying on the existence of corresponding
widenings on D]. There are many possibilities in this direction and some of them
are currently under experimental evaluation. Just note that any upper bound op-
erator ‘joinφ’ can be regarded as a widening as soon as the common anti-instance
function φ is different from lca. In order to ensure the convergence of the abstract
computation, we will only consider widening operators on Pattern(D]) satisfying
the following (very reasonable) condition: if (s̄, E]) is the result of the widening
applied to (s̄1, E

]
1) and (s̄2, E

]
2), where s̄′2 is an anti-instance of s̄1, then s̄′ is an

anti-instance of s̄2. Both widen and Widen comply with this restriction.

Comparing Descriptions The comparison operation on Pattern(D]) is used
by the analyzer in order to check whether a local fixpoint has been reached.

Definition 11. (‘compare’) Let ‘-’ ⊆ D] × D] be a computable preorder that
correctly approximates ‘�’, that is, for each E]1, E

]
2 ∈ D], we have E]1 � E

]
2 when-

ever E]1 - E
]
2. The approximated ordering relation over Pattern(D]), denoted by

‘compare’ ⊆ Pattern(D])× Pattern(D]), is defined, for each (s̄1, E
]
1), (s̄2, E

]
2) ∈

Pattern(D]), by

compare
(
(s̄1, E

]
1), (s̄2, E

]
2)
) def⇐⇒

(
s̄1 = s̄2 ∧ E]1 - E

]
2

)
.

It must be stressed that the above ordering is “approximate” since it does not
take into account the peculiarities of D].6 More refined orderings can be obtained
in a domain-dependent way, namely, when D] has been fixed. It is easy to show
that compare is a preorder over Pattern(D]) that correctly approximates the
approximation ordering ‘�p’

The following is a trivial consequence of Definition 2 and Proposition 1.
6 It is also important not to confuse this approximate ordering with the approximation

ordering of Pattern(D]), denoted by ‘�p’, given in Definition 3.

22

Theorem 7. If compare
(
(s̄1, E

]
1), (s̄2, E

]
2)
)

holds, then

γp
(
(s̄1, E

]
1)
)
⊆ γp

(
(s̄2, E

]
2)
)
.

Moreover, compare is a preorder over Pattern(D]).

Proof. If compare
(
(s̄1, E

]
1), (s̄2, E

]
2)
)

holds, then, by Definition 11, s̄1 = s̄2 and
E]1 - E]2. Hence, since ‘-’ is a correct approximation of ‘�’, we have E]1 � E]2
and, by Proposition 1, γp

(
(s̄1, E

]
1)
)
⊆ γp

(
(s̄2, E

]
2)
)
. Furthermore, as - is defined

as a preorder, compare is a preorder. ut

Observe that the ability of comparing descriptions only when they have the
same pattern is not restrictive in our setting. The analyzer, in fact, will only
need to compare the descriptions arising from the iteration sequence at two
consecutive steps. By the definition of joinφ and the condition we imposed on
widenings, if (s̄i, E

]
i) and (s̄i+1, E

]
i+1) are the descriptions at steps i and i + 1,

then s̄′i+1 is an anti-instance of s̄i. Moreover, since ‘joinφ’ and the widening
operators are all upper-bound operators on Pattern(D]), we have

γp
(
(s̄i, E

]
i)
)
⊆ γp

(
(s̄i+1, E

]
i+1)

)
. (21)

If also the reverse inclusion holds in (21) then we have reached a local fixpoint.
The analyzer uses the approximate ordering to check for this possibility. Namely,
it asks whether

compare
(
(s̄i+1, E

]
i+1), (s̄i, E

]
i)
)

holds. The approximate test, of course, can fail even when equality does hold in
(21). But this will be a fault of the pattern component only a finite number of
times, since s̄′i+1 is an anti-instance of s̄i and Tn

z , ordered by the anti-instance
relation, has finite height. Thus, there exists ` ∈ N such that, for each i ≥ `,
s̄i = s̄`. After the `-th step the accuracy of the approximate ordering is in the
hands of D].

5 Experimental Evaluation

We have conducted an extensive experimentation on the analysis using the
Pattern(·) construction: this allowed to tune the implementation and to gain
insight on the implications of keeping track of explicit structural information. In
order to put ourselves in a realistic situation, we have assessed the impact of the
Pattern(·) construction on a very precise and complex domain for mode analysis
that we call Modes.7 The Modes domain captures information on simple types,
groundness, boundedness, pair-sharing, freeness, and linearity. It is a combina-
tion of, among other things, two copies of the GER representation for Pos [5] —
7 This is an important point: if one starts from an imprecise domain it is rather easy

to show big precision improvements.

23

one for groundness, the other for boundedness — and the non-redundant pair-
sharing domain PSD [4] with widenings as described in [24]. Some details on
how these domain are combined can be found in [6]. All the domains used have
been suitably extended in order to ensure correctness and precision also for the
analysis of real systems omitting the occurs-check [2, 15].

The benchmark suite used for the development and tuning of the China

analyzer is probably the largest one ever employed for this purpose. The suite
comprises all the programs we have access to (i.e., everything we could find by
systematically dredging the Internet): 286 programs, 15 MB of code, 500.000
lines, the largest program containing 10063 clauses in 45658 lines of code.

The comparison between Modes and Pattern(Modes) involves the two usual
things: precision and efficiency. However, how are we going to compare the
precision of the domain tracking explicit structural information with a domain
ignoring it? That is something that should be established in advance. Let us
consider a simple but not trivial Prolog program: mastermind.pl.8 Consider also
the only direct query for which it has been written, ‘?- play.’, and focus the
attention on the procedure extend code/1. A standard goal-dependent analysis
of the program with the Modes domain is only able to tell something like

extend_code(A) :-
list(A).

This means: “during any execution of the program, whenever extend code/1
succeeds it will have its argument bound to a list cell (i.e., a term whose principal
functor is either ’.’/2 or []/0)”. Not much indeed. Especially because this can
be established instantly by visual inspection: extend code/1 is always called
with a list argument and this completes the proof. If we perform the analysis
with Pattern(Modes) the situation changes radically. Here is what such a domain
allows China to derive:9

extend_code([([A|B],C,D)|E]) :-
list(B),
(functor(C,_,1);integer(C)),
(functor(D,_,1);integer(D)),
list(E),
ground([C,D]),
may_share([[A,B,E]]).

Under the circumstances mentioned above, this means that: “the argument of
extend code/1 will be bound to a term of the form [([A|B],C,D)|E], where
8 A program implementing the game “Mastermind”, rewritten by H. Koenig and

T. Hoppe after code by M. H. van Emden. Also in H. Coelho and J. C. Cotta,
“Prolog by Example”, Symbolic Computation, Springer-Verlag, Berlin, 1988. Avail-
able at http://www.cs.unipr.it/China/Benchmarks/Prolog/mastermind.pl.

9 Some extra groundness information obtained by the analysis has been omitted for
the sake of simplicity: this says that, if A and B turn out to be ground, then E will
also be ground.

24

B and E are bound to list cells; C is either bound to a functor of arity 1 or
to an integer, and likewise for D; both C and D are ground, and (consequently)
pair-sharing may only occur between A, B, and E”.

It is clear that the analysis with Pattern(Modes) yields much more infor-
mation. The value of this extra precision can only be measured from the point
of view of the target application of the analysis (e.g., optimized compilation,
abstract debugging and verification, etc.). In other words, it is not clear at all
how to define a fair measure for the precision gain independently from the in-
tended application. The approach we have chosen is simple though unsatisfac-
tory: throw away all the structural information at the end of the analysis and
compare the usual numbers (i.e., number of ground variables, number of free vari-
ables and so on). With reference to the above example, this metric pretends that
explicit structural information gives no precision improvements on the analysis
of extend code/1 in mastermind.pl. In fact, once all the structural informa-
tion has been discarded, the analysis with Pattern(Modes) only specifies that,
upon success, the argument of extend code/1 will be a list cell. We are thus
measuring how the explicit structural information present in Pattern(Modes)
improves the precision on Modes itself, which is only a tiny part of the real gain
in accuracy.

It is important to note that the experimental results we are about to report
have been obtained without using any widening on the pattern component. The
widening operations are only propagated to the underlying Modes domain by
means of the ‘widen’ operator given in Eq. (19). Moreover, the merge operation
employed is always ‘joinlca’. This is a deliberate choice: as we are currently tuning
the implementations of the Pattern(·) construction and of the Modes domains
(including its widenings), we feel that the inclusion of ad-hoc widenings for the
pattern component should be postponed. One of the contributions of this paper
is to show that explicit structural information analysis is feasible even without
such widenings.

Here we only summarize the results of the experimentation. The interested
reader can find all the relevant details at the URI http://www.cs.unipr.it/
China. The precision comparison is performed by measuring five different quan-
tities:

indep: the total number of independent argument pairs;
ground: the total number of ground argument positions;
linear: the total number of linear argument positions;
free: the total number of free argument positions;
bound: the total number of bound (or nonvar) argument positions.

Note that our results can be considered as a lower bound on the overall preci-
sion improvement. First of all, as already noted, we are completely disregarding
the precision gains coming from structural information in itself. Moreover, we
are not reporting some relational information computed by the analyses, like
groundness dependencies and sharing dependencies; often considered as a mere
by-product of the analysis, sometimes this information can be suitably exploited
to improve precision, e.g., when performing modular analyses.

25

x = %inc. indep ground linear free bound

GI GD GI GD GI GD GI GD GI GD

x < 0 0 1 0 0 0 1 0 0 0 0

x = 0 212 201 219 215 204 197 237 235 219 211

0 < x ≤ 2 33 31 20 21 40 38 22 18 46 41

2 < x ≤ 5 20 25 15 16 18 18 9 10 10 16

5 < x ≤ 10 7 9 9 9 6 8 9 9 6 6

x ≥ 10 14 19 23 25 18 24 9 14 5 12

Table 1. A summary of the Modes precision gained using structural information.

The results are summarized by partitioning the benchmark suite into six
classes of programs, identified by the per cent increase in precision due to the
Pattern(·) construction. Table 1 gives the cardinalities of these classes for both
goal-independent (GI) and goal-dependent (GD) analyses. A precision increase
(in at least one of the measured quantities) is observed on more than one third
of the benchmarks. The only precision decrease is due to the interaction between
the Pattern(·) construction and the widenings used in the Modes domain. It is
also worth observing that, on average, goal-dependent analysis is more likely to
benefit from the addition of structural information.

Structural information has the potential of pruning some computation paths
on the grounds that they cannot be followed by the program being analyzed.
In some cases the analysis is able to prove that a certain predicate can never
succeed and/or never be called. This phenomenon actually happens for a dozen
of programs in our benchmark suite: the analysis with Pattern(Modes) declares
some procedures dead, but the same procedures are fine for the analysis with
Modes. This means that systematic failure and/or the impossibility of calling
these procedures is not due to undefined predicates or explicit failures caused
by fail/0 and similar built-in predicates, but rather because of unification fail-
ures. At a closer examination, the problem seems to be caused by bugs in the
involved benchmark programs.10 We have allowed for this in the results in Fig-
ure 1 by normalizing the precision results for the Pattern(Modes) domain. That
is, we added to the results for Pattern(Modes) the number of variables or pair
sharings, as appropriate, that were lost due to the pruning, before calculating
the percentages. This amounts to the logically sound view whereby a procedure
that always fails will have, in the impossible case of success, all its variables
independent, ground, linear, free, and bound at the same time.

In order to evaluate the impact on efficiency of the Pattern transformation
we computed the fixpoint computation time for all the programs, both with
the Modes and with the Pattern(Modes) domains. The benchmark suite is thus

10 Indeed, China has proved very valuable as a debugging tool in several occasions,
even if it has not yet been integrated into a suitable programming environment.

26

Time diff. in seconds programs

GI GD

degradation ≥ 1 10 20

degradation < 1 105 120

same time 98 75

improvement < 1 51 48

improvement ≥ 1 22 23

Table 2. A summary of the impact of structural information on analysis time.

partitioned into five classes based on the absolute differences observed11 and
Table 2 gives the cardinality of the classes, again distinguishing between GI and
GD analyses. The numbers show that the full range of possible behaviors is
indeed observable. In particular, quite surprisingly, it is not uncommon the case
when the Pattern construction, even being inherently more precise and complex,
does allow significant time improvements. This is only partly due to the enhanced
ability of pruning failed computation paths. Most importantly, the description
of a set of tuples of terms in Pattern(Modes) is often much more efficient than
the corresponding description in Modes.

In order to control the computational cost even in the few badly-behaving
cases, which turn out to be much less than the well-behaving ones, it is neces-
sary to provide the Pattern(·) construction with one or more specific widening
operators, whose definitions do not depend on a corresponding widening on the
underlying abstract domain. As noted in the previous section, simple solutions
are readily available and currently under experimental evaluation.

6 Related Work

In [7], an alternative technique is proposed for augmenting a data-flow analy-
sis with structural information. Instead of upgrading the analysis domain with
structural information, this technique relies on program transformations. In this
approach, the data-flow analysis of a given program is performed in four steps:

1. A pure structural information analysis is performed on the original program
so as to collect an approximation of the common patterns in its success-set.

2. This common information is used to produce a specialized version of the
original program where the common structures identified in the first phase
are exposed. Roughly speaking, if all the success patterns for a predicate
p/n in the original program are instances of a given structure, the special-
ized program is such that all of its syntactic calls to p/n are instances of that

11 As the benchmark suite comprises several real programs of very respectable size,
we believe absolute time is what matters to assess the feasibility of the approach.
The experiments were conducted on a PC equipped with an AMD Athlon clocked
at 700 MHz, 256 MB of RAM, and running Linux 2.2.14. Note, once again, that no
widening was employed on the Pattern(·) construction.

27

structure. If the original program is a pure logic program, then the specializa-
tion phase presented in [7] preserves its success-patterns but not necessarily
its call-patterns and termination behavior.12

3. The specialized program is then further transformed by untupling. The un-
tupling transformation produces a new program where the sub-structures
of common structures are represented by different argument positions. For
example, if the specialized program computed in step 2 is such that all the
calls to p/1 are instances of p(f(X,Y, h(Z))), the untupling transformation
will introduce a new predicate p’/3, so that an instance p(f(t1, t2, h(t3)))
in the specialized program becomes p′(t1, t2, t3) in the untupled program.
The untupling transformation also adds a new clause for each predicate in
the specialized program in order to maintain the connection between the
specialized program itself and its untupled version. Following our example,
the untupled version of the program contains the clause

p(f(X, Y, h(Z))) :- p prime(X, Y, Z).

In [7] the untupling transformation is reported to preserve both success-
patterns (of the predicates in the specialized program) and termination be-
havior.

4. Analysis is finally performed on the untupled program with the abstract
domain of choice.

This new analysis technique is, as pointed out in [7], less precise, in general,
than the one of Pat(<) or Pattern(·). This happens because the transforma-
tional approach may miss pruning information and thus lead to the analysis of
computation branches that cannot lead to success (this phenomenon also has
an impact on the cost of the analysis). The technique is advocated in [7] for its
simplicity and efficiency.

As far as efficiency is concerned, [7] assumes that structural information anal-
ysis with Pat(<) (and, by extension, with Pattern(D])) is inherently inefficient.
This claim is supported by the comparison of their performance evaluation to
the one reported in [9] for the domain Pat(Pos). However, the pioneering work
described in [9] refers to implementations of Pos and of the generic structural
domain that are no longer representative of the current state-of-the-art. Indeed,
the experimental results we obtain for the Pattern(·) construction show that in
most cases the slow-down is very limited and that even consistent speed-ups (up
to a factor 5) can be achieved on the analysis of real programs. Moreover, in
[7] the comparison with Pat(Pos) is only conducted on the 11 (mainly small)
programs evaluated in [9]. Our experience tells us that such a small benchmark
suite is far too small to warrant any generalization of the results. It also seems
that, for the comparison, in [7] only the cost of the analysis of the untupled pro-
gram is computed. The computational costs of the other phases of the proposed
12 This property does not carry through to, say, Prolog programs, as it can be easily

established by considering a program constituted by only two clauses: p(X) :- q(X)

and q(X) :- var(X), X = a.

28

method (pattern analysis, specialization and untupling) are disregarded, even
though specialization and untupling are said to have linear complexity in the
size of the program.

As far as simplicity is concerned, one advantage of the approach described
in [7] is that one can reuse existing data-flow analyzers without having to de-
velop a generic structural domain. Therefore, despite the need to implement
the transformers used to obtain the specialized and the untupled versions of
the original program, this new proposal may be simpler to implement. How-
ever, an implementer willing to apply the Pat(<) or the Pattern(·) construc-
tions to a different abstract domain does not need to start from scratch. Since
both these constructions are generic, they can be (and have been) implemented
only once and for all. To be more precise, the Pattern(·) construction is imple-
mented as a C++ template. If one has a class Base Domain implementing the
domain D], an implementation of the Pattern(D]) domain is provided by the
class Pattern<Base Domain>.13 So, while it is true that a good deal of work was
invested in designing, implementing, testing and tuning the Pattern(·) construc-
tion, this work needs not to be repeated and its use as a template is one of the
most simple things one can imagine.

To complete the comparison, we observe that the transformational approach
may lack the wide applicability of the Pattern(·) construction. For instance, it
is not clear from the definitions given in [7] if their technique can be extended
so as to correctly deal with any implemented (constraint) logic programming
system (which may omit the occurs-check and provide built-ins such as var/1).
This ability is, in turn, one of the strongest points of our proposal.

7 Conclusion

We have presented the rational construction of a generic domain for structural
analysis of real CLP languages: Pattern(D]), where the parameter D] is an
abstract domain satisfying certain properties. We build on the parameterized
Pat(<) domain of Cortesi et al. [9, 10], which is restricted to logic programs and
requires the occurs-check to be performed. However, while Pat(<) is presented
as a specific implementation of a generic structural domain, our formalization is
implementation-independent. Reasoning at a higher level of abstraction we are
able to appeal to familiar notions of unification theory, while leaving considerable
more latitude for the implementer. Indeed our results show that, contrary to
popular belief, an analyzer incorporating structural information analysis based
on our approach can be highly competitive even from the efficiency point of view.

13 The Pattern template has additional arguments, each with its own default value,
that allow the user to select the parameters of the construction such as the widening
functions.

29

References

1. H. Aı̈t-Kaci. Warren’s Abstract Machine. A Tutorial Reconstruction. The MIT
Press, 1991.

2. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125
Pisa, Italy, March 1997. Printed as Report TD-1/97.

3. R. Bagnara. A hierarchy of constraint systems for data-flow analysis of constraint
logic-based languages. Science of Computer Programming, 30(1–2):119–155, 1998.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 2000. To appear.

5. R. Bagnara and P. Schachte. Factorizing equivalent variable pairs in ROBDD-
based implementations of Pos. In A. M. Haeberer, editor, Proceedings of the “Sev-
enth International Conference on Algebraic Methodology and Software Technology
(AMAST’98)”, volume 1548 of Lecture Notes in Computer Science, pages 471–485,
Amazonia, Brazil, 1999. Springer-Verlag, Berlin.

6. R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis techniques: A
comprehensive evaluation. In M. Gabbrielli and F. Pfenning, editors, Proceedings
of the ACM SIGPLAN 2nd International Conference on Principles and Practice of
Declarative Programming, Lecture Notes in Computer Science, Montreal, Canada,
2000. Springer-Verlag, Berlin. To appear.

7. M. Codish, K. Marriott, and C. Taboch. Improving program analyses by structure
untupling. Journal of Logic Programming, 43(3):251–263, 2000.

8. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S. Å. Tärnlund,
editors, Logic Programming, APIC Studies in Data Processing, volume 16, pages
231–251. Academic Press, New York, 1982.

9. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Conceptual and software
support for abstract domain design: Generic structural domain and open product.
Technical Report CS-93-13, Brown University, Providence, RI, 1993.

10. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: Open product and generic pattern construction.
Science of Computer Programming, 2000. To appear.

11. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

12. P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the 4th International Symposium on Program-
ming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295, Leuven, Belgium, 1992. Springer-
Verlag, Berlin.

13. R. Giacobazzi, S. K. Debray, and G. Levi. Generalized semantics and abstract inter-
pretation for constraint logic programs. Journal of Logic Programming, 25(3):191–
247, 1995.

14. S. Haridi and D. Sahlin. Efficient implementation of unification of cyclic struc-
tures. In J. A. Campbell, editor, Implementations of Prolog, pages 234–249. Ellis
Horwood/Halsted Press/Wiley, 1984.

15. P. M. Hill, R. Bagnara, and E. Zaffanella. The correctness of set-sharing. In
G. Levi, editor, Static Analysis: Proceedings of the 5th International Symposium,
volume 1503 of Lecture Notes in Computer Science, pages 99–114, Pisa, Italy, 1998.
Springer-Verlag, Berlin.

30

16. J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19&20:503–582, 1994.

17. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language and system.
ACM Transactions on Programming Languages and Systems, 14(3):339–395, 1992.

18. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
625. Morgan Kaufmann, Los Altos, Ca., 1988.

19. P. Lim and J. Schimpf. A conservative approach to meta-programming in con-
straint logic programming. In M. Bruynooghe and J. Penjam, editors, Proceedings
of the 5th International Symposium on Programming Language Implementation
and Logic Programming, volume 714 of Lecture Notes in Computer Science, pages
44–59, Tallinn, Estonia, 1993. Springer-Verlag, Berlin. Also available as Technical
Report ECRC-94-31, ECRC 1994.

20. K. Marriott and H. Søndergaard. On describing success patterns of logic programs.
Technical Report 12, The University of Melbourne, 1988.

21. K. Musumbu. Interprétation Abstraite des Programmes Prolog. PhD thesis, Fac-
ultés Universitaires Notre-Dame de la Paix – Namur Institut d’Informatique, Bel-
gium, September 1990.

22. T. Sato and H. Tamaki. Enumeration of success patterns in logic programs. The-
oretical Computer Science, 34:227–240, 1984.

23. G. Weyer and W. Winsborough. Annotated structure shape graphs for abstract
analysis of Prolog. In H. Kuchen and S. D. Swierstra, editors, Programming Lan-
guages: Implementations, Logics and Programs, Proceedings of the Eighth Inter-
national Symposium, volume 1140 of Lecture Notes in Computer Science, pages
92–106, Aachen, Germany, 1996. Springer-Verlag, Berlin.

24. E. Zaffanella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Nadathur,
editor, Principles and Practice of Declarative Programming, volume 1702 of Lecture
Notes in Computer Science, pages 414–431, Paris, France, 1999. Springer-Verlag,
Berlin.

31

